
SPAIN: Security Patch Analysis for Binaries
Towards Understanding the Pain and Pills

Zhengzi Xu∗, Bihuan Chen∗‡, Mahinthan Chandramohan∗, Yang Liu∗ and Fu Song†
∗School of Computer Science and Engineering, Nanyang Technological University, Singapore

†School of Information Science and Technology, ShanghaiTech University, China
‡Corresponding Author

Abstract—Software vulnerability is one of the major threats to
software security. Once discovered, vulnerabilities are often fixed
by applying security patches. In that sense, security patches carry
valuable information about vulnerabilities, which could be used
to discover, understand and fix (similar) vulnerabilities. However,
most existing patch analysis approaches work at the source code
level, while binary-level patch analysis often heavily relies on a lot
of human efforts and expertise. Even worse, some vulnerabilities
may be secretly patched without applying CVE numbers, or only
the patched binary programs are available while the patches are
not publicly released. These practices greatly hinder patch anal-
ysis and vulnerability analysis.
In this paper, we propose a scalable binary-level patch analysis

framework, named SPAIN, which can automatically identify se-
curity patches and summarize patch patterns and their corre-
sponding vulnerability patterns. Specifically, given the original
and patched versions of a binary program, we locate the patched
functions and identify the changed traces (i.e., a sequence of basic
blocks) that may contain security or non-security patches. Then
we identify security patches through a semantic analysis of these
traces and summarize the patterns through a taint analysis on
the patched functions. The summarized patterns can be used to
search similar patches or vulnerabilities in binary programs.
Our experimental results on several real-world projects have

shown that: i) SPAIN identified security patches with high accu-
racy and high scalability; ii) SPAIN summarized 5 patch patterns
and their corresponding vulnerability patterns for 5 vulnerability
types; and iii) SPAIN discovered security patches that were not
documented, and discovered 3 zero-day vulnerabilities.

I. INTRODUCTION

Program vulnerability is one of the major threats to software

security. However, it is almost impossible to avoid vulnerabili-

ties at the development stage; and it is even difficult to discover

vulnerabilities at the production stage. Security experts usually

leverage dynamic fuzzing (e.g., [1, 2]), symbolic execution (e.g.,

[3, 4]) or static code auditing (e.g., [5, 6]) to find vulnerabilities.

However, none of these techniques can provide a complete

solution to win the war against vulnerabilities. Dynamic fuzzing

suffers from the code coverage problem and the initial seeds

problem [7]. Symbolic execution cannot scale well to real-

world programs, due to path explosion and constraint solving

problems. Static code auditing often requires human expertise,

and cannot scale well when the program complexity increases.

Vulnerabilities, once discovered, are often fixed by applying

security patches. In that sense, security patches carry important

information about vulnerabilities. By focusing on the remedy of

vulnerabilities instead of the vulnerabilities themselves, patch

analysis has been proposed to discover n-day vulnerabilities,

whose patches have been released but not deployed to every

instance of the software in the world. Since patch analysis

is relatively accurate to find vulnerabilities, it has gained the

popularity in both industry and academia. Also, security patches

are good entry points to understanding the program weaknesses

and how the vulnerabilities work inside the program, especially

for security participants who do not have access to the source

code. Moreover, the underlying information of patches has

been used to build automatic bug-fixing tools [8, 9, 10],

generating valid patches for similar vulnerabilities. However,

up till today, most existing researches on patch analysis work

at the source code level [11, 12], but very few works have

been done to tackle this problem at the binary-level.

Binary-level patch analysis can only be performed on ma-

chine instructions for closed source programs without symbol

tables, which often requires a significant amount of human

efforts and expertise to understand the semantics of instructions.

Due to this complex nature, the existing techniques [13, 14] of-

ten heavily rely on manual or heavy program analysis, which be-

comes infeasible for real-world programs.

On the other hand, software companies may tend to patch the

vulnerabilities they find themselves in a secret way instead of

making them public and applying Common Vulnerabilities and

Exposures (CVE) numbers due to their security regulations or

policies. As a result, security analysts cannot know the existence

of particular vulnerabilities, which hinders the understanding

and analysis of vulnerabilities. Even worse, in some cases,

only the patched binary programs are available; while the

patches themselves may not be publicly released, which hinders

the existing patch analysis techniques that often rely on the

availability of patches. Moreover, due to the application of patch

obfuscation and patch modification techniques such as honey-

patching [15], the patch patterns in open source binaries may

differ greatly from close source ones.

To address these problems, we propose a scalable binary-

level patch analysis framework, named SPAIN, to automatically

identify security patches and summarize patch patterns and

their corresponding vulnerability patterns. In particular, given

the original and patched versions of a binary program, SPAIN

locates the functions that have been changed from the original

binary to the patched binary. Then, it detects the changed traces

(i.e., a sequence of basic blocks) for each patched function to

capture the function-level changes. These traces may contain

2017 IEEE/ACM 39th International Conference on Software Engineering

DOI 10.1109/ICSE.2017.49

460

2017 IEEE/ACM 39th International Conference on Software Engineering

1558-1225/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE.2017.49

462

security or non-security patches. Finally, it identifies security

patches through a semantic analysis of these traces and sum-

marizes the patterns through a taint analysis on the patched

functions. As we run more binary programs, we can maintain

a database of patterns that will be continuously enriched to

embrace the evolving and emerging of various vulnerabilities.

There are many impactful applications of the learned patterns

in binary security like patch detection, vulnerability detection,

automatic patch synthesis, and even patch/vulnerability trend

analysis with the help of data analytic techniques. A more

detailed discussion can be found in Section III-E.

We evaluated SPAIN on several real-world projects. The ex-

perimental results demonstrated that SPAIN can identify

security patches with high accuracy and high scalability, and

summarize 5 security patch patterns and their corresponding

vulnerability patterns for 5 types of vulnerabilities. Moreover,

we discovered undocumented security patches and found 3

zero-day vulnerabilities in Adobe PDF Reader.

In summary, our work makes the following contributions.

• We proposed a scalable binary-level patch analysis frame-

work SPAIN, which can identify security patches and

summarize patch patterns and their corresponding vulner-

ability patterns.

• We implemented SPAIN in a prototype and conducted

experiments to demonstrate the accuracy, scalability, and

application of SPAIN.

• We discovered undocumented security patches and found

3 zero-day vulnerabilities in Adobe PDF Reader.

II. PRELIMINARIES AND OVERVIEW

A. Preliminaries

In this work, we assume that binary programs are in the

X86 32bit format. Each binary program contains a number of

functions with an entry point (starting function). This section

introduces several basic concepts in binaries, i.e., basic block,

control flow graph and partial trace.

Definition 1: A basic block in a binary function is a straight-
line sequence of X86 instructions with no branches in except

to the entry and no branches out except at the exit.

Definition 2: Given a binary function, the control flow
graph (CFG) of the function is a tupleG = (N, E, Ns, Nt, ι),
where N is a finite set of nodes, and each node represents a

basic block in the function, E : N ×N is a set of edges that

connect two nodes and represent the control flow from one basic

block to the another, Ns, Nt ⊂ N are respectively the sets

of start and end points of the function, and ι is a function

associating every node n ∈ N with the basic block ι(n).

Notice that there might be more than one start point for a

function, because it is hard to precisely identify the boundary

of a function at the binary level [16].

Definition 3: Given a CFG G = (N, E, Ns, Nt, ι) of a
function, a partial trace t in G is a finite sequence of nodes

〈n1, n2, . . . , nk〉 for some k ≥ 1, where (ni, ni+1) ∈ E,
for every i : 1 ≤ i < k.

call BN new
mov edi, eax
...
cmp eax, [edi+8]
...

BB1
call BN new
test eax, eax
mov edi, eax
jz error

BB1

...
cmp eax, [edi+8]
...

BB2

error:
...

BB3

Patched versionOriginal version

1:

2:

a:

b:

c:

Fig. 1: Running Example: NULL Pointer Dereference Vulner-

ability and its Patch from OpenSSL 1.0.1l.

B. Running Example

Figure 1 lists the partial X86 assembly code of one NULL
pointer dereference vulnerability abstracted from the OpenSSL

1.0.1l that consists of the original version and patched version.

In the original version, the program first calls the function

NB_new by which the return value is stored in the register

eax. Then, it assigns the return value to the register edi at the

location 1. Later, the return value is directly used to dereference
the memory [edi+8] at the location 2. This vulnerability is

patched in OpenSSL 1.0.1m by checking whether the return

value of the function call NB_new is NULL or not. This

checking is implemented in the patched version by adding

two instructions: test eax, eax and jz error. It first
tests the return value at the location a by test eax, eax
which performs a bitwise AND operation on the operand eax.
The test operation sets the carry flag cf and overflow flag

of to 0. The sign flag sf is set to the most significant bit of

the result of the bitwise AND operation. The zero flag zf is

set to 1 if the result of AND operation is 0, 0 otherwise. The
parity flag pf is set to 1 if the number of ones in that byte is

even, 0 otherwise. The value of the adjust flag af is undefined.

After assigning the return value to the register edi, it checks
whether the zero flag zf is 1 or not (i.e., the value of eax is

Null or not) at the location b. If it is 1 (i.e., eax is NULL),
the control flow will jump to the location error for error

handling. Otherwise, the return value is used to dereference

the memory [edi+8] at the location c.

In this running example, there are one basic block BB1
and three basic blocks BB1, BB2 and BB3 respectively in

the original version and patched version. The CFG of the

original version is Go = ({n1}, ∅, {n1}, {n1}, ι), where
ι(ni) =BB1. The CFG of the patched version is Gp =
({n1, n2, n3}, {(n1, n2), (n1, n3)}, {n1}, {n2, n3}, ι),
where ι(ni) =BBi for every i : 1 ≤ i ≤ 3. There are two

partial traces 〈n1, n2〉 and 〈n1, n3〉 in Gp, which corresponds

to two possible execution traces of the patched program. While

there is only one partial trace 〈n1〉 in Go.

C. Framework Overview

Figure 2 presents the overview of SPAIN, which consists of

four components. Taking the original and patched versions of

a binary program as inputs, SPAIN first locates the functions

that have been changed from the original version to the patched

version and detects the changed traces in each patched function

to capture the function-level changes. Then SPAIN determines

whether such changes are caused by security or non-security

461463

��������	

�����

��
����	

�����

����
���	

��
����	����
����

����
������

��
����	
����	
�����

����
������	

������
�	��
����

�����������

��
�������	��

����
��
�������	

��

����

Fig. 2: Framework Overview of SPAIN

patches through semantic analysis and then summarizes the

patterns of security patches and their corresponding vulnerabil-

ities through taint analysis. As we run more binary programs,

SPAIN has the capability to continuously learn and accumulate

the knowledge of security patches to embrace the evolving and

emerging of various vulnerabilities.

Locating Patched Functions. Given the original and patched

versions of a binary program, this component first uses the

disassembler tool IDA Pro [17] and the binary comparison tool

BinDiff [18] to obtain matched function pairs in the original

and patched versions. Such pairs are called candidate pairs that
may contain security or non-security patches. To reduce the size

of pairs for further analysis and hence improve the scalability,

this component removes the pairs from the candidate pairs,

in which the functions have no changes or only compiler-

introduced changes.

Identifying Patched Basic Blocks. For each function pair in

the candidate pairs (i.e., the patched and the original functions),

this component first leverages the pairwise basic block matching

to identify the patched basic blocks within the patched function,

identifies the relationships among these patched basic blocks in

terms of patched partial traces (see Definition 3) that capture

the locality of a patch, and finally determines the original partial

traces in the original function that are relevant to each patched

partial trace.

Identifying Security Patches. For a patched partial trace and

its corresponding original partial traces, this component decides

whether the changes are caused by a security or non-security

patch. It is realized by a semantic analysis to compute the se-

mantic difference between the patched partial trace and each

of the original partial trace. We use small semantic difference

as the indicator for security patches based on the heuristic that

security patches are less likely to introduce new semantics than

non-security patches (e.g., feature upgrades).

Example 1: Recalling the running example in Figure 1,

the difference between the original and patched versions is

the sanity check, namely test eax, eax and jz error
in the patched version. The semantic difference between the

patched and original versions is very minimal (e.g. < 0.2 in
our experiments) and hence, we can safely conclude that it is

a security patch (see Section III-C for details).

Summarizing Patch and Vulnerability Patterns. Once a se-
curity patch is identified, this component summarizes the patch

pattern and the corresponding vulnerability pattern through a

taint analysis from security-sensitive instructions in the patched

function. The patterns capture the security-critical sources, sinks

and sanity checks. One potential application of the summarized

patterns is to search for similar patches or vulnerabilities in

binary programs.

Example 2: Consider the running example, the function

NB_new is an external unknown function. The return value of

NB_new is therefore regarded as the taint source/input. This

taint source is directly used to perform the security-sensitive

operation, memory dereferencing [edi+8], which is regarded
as the taint sink. There is no checking of the tainted source

between the source and sink points. From this vulnerability, the

vulnerability pattern summarized by SPAIN is shown in the

4th row (NULL Pointer Dereference) of Table IV. Intuitively,

this pattern specifies that there is an untrusted function call

whose return value is directly used to dereference memory

without any sanity checking on them.

While in the patched version of the running example, the

return value from the external unknown function NB_new is

checked for NULL value. If it is NULL, the program jumps to

an error handler. Otherwise, the return value is used to perform

the security-sensitive operation, that is memory dereferencing.

The patch pattern learned by SPAIN is shown in the 4th

row (NULL Pointer Dereference) of Table IV. Intuitively, this

patch pattern expresses that before using the return value of

an untrusted function call to dereference memory, there must

be a sanity checking of the return value.

D. Assumptions

SPAIN has a few underlying assumptions, which may limit

its application and threat its validity. First, we focus on patches

in which only one function is modified for one patch, but

do not support patches where multiple functions are changed

for one patch. Second, we assume that the function matching

results generated by IDA Pro [17] and BinDiff [18] are correct,

although no tools can reach 100% accuracy [19]. Third, we

cannot identify every type of patches since some patches,

especially for logical vulnerability patches, may behave like the

normal code. Currently, we cover the patches for most common

vulnerabilities such as buffer overflows, integer overflows, and

double-free/use-after-free. Fourth, we focus on the X86 32bit

binary format. We will discuss these assumptions in Section V.

III. METHODOLOGY

A. Locating Patched Functions

SPAIN starts with locating the matched pairs of functions

F = {〈fp, fo〉 | f is a function in a binary program}, where
fo (i.e., the original function) is changed to fp (i.e., the patched
function) during the patching process. F is a set of candidate

pairs that may contain security or non-security patches.

1) Function Matching: In the first step, we leverage the disas-
sembler tool IDA Pro [17] and the binary comparison tool Bin-

Diff [18] to match functions in the original and patched versions

of a binary program. In particular, we use IDA Pro to extract the

assembly instructions and construct the CFG for each function.

462464

���
 !

���
 "

���
 #

���
 $

���
 !

���
 "

%�&	��'��

��'��(

���
 #

���
 $

)�*)'*

Fig. 3: An Example of Compiler-Introduced Changes

Then, for open source binaries (i.e., with the symbol table), we

directly use function names to perform the matching. While for

closed source binaries (i.e., without the symbol table), we lever-

age BinDiff’s function matching functionality. Finally, we get

the initial candidate pairs, where each function is represented by

its CFG. Note that this step is not one of our contributions, and

we briefly introduce it to make our methodology complete.

2) Function Filtering: Patches usually change a small part of
the whole binary program and many functions remain the same.

Therefore, in the second step, we remove the function pairs with

no changes from the candidate pairs to reduce the size of pairs

for further analysis and thus improve the scalability. To this end,

we apply the 3D-CFG-based hashing technique [20] to compute

the hash value for fp and fo, and then remove 〈fp, fo〉 from the

candidate pairs F if fp and fo have the same hash value.

Further, some changes are introduced by compilers due to the

compilation context or optimization level [21]. One common

case is that the compiler may split one basic block into two

basic blocks, as illustrated in Figure 3. The basic block in

Figure 3(a) becomes two basic blocks connected by a jmp
instruction in Figure 3(b) in the second run of a compiler. How-

ever, these two versions are semantically equivalent to each

other. Therefore, for any basic block, which has only one

successor and its successor has only one predecessor, we merge

it with its successor and remove the additional jmp instruction.

Another common case is that the compiler might change

the operands of the instruction in different runs. For exam-

ple, the memory addresses are associated with the function

position in the binary program and they will change if the

function position is changed, which always happens in different

runs of a compiler. To account for such changes introduced

by compilers, we normalize each basic block, as shown in

Algorithm 1. It takes a basic block as an input and returns

the normalized basic block. It iteratively normalizes each

assembly instruction in the basic block (Line 2). An assembly

instruction consists of a mnemonic and up to 3 operands, where

a mnemonic represents the specific operation that an instruction

performs while an operand is a variable-length sequence of

elements (cf. IA-32 [22]). Thus, it gets the mnemonic (Line 3)

and normalizes the operands of each instruction according

to their operand types (Lines 6–9). An operand can be a

register, an immediate value, or a memory, which is respectively

normalized to its type reg, imm, or mem. For example, mov
eax, 0x40 is normalized to mov reg, imm.
After the merging and normalization of basic blocks for each

functions in F , we use the same hashing technique to fur-

ther remove the pairs that only have some compiler-introduced

changes. Our filtering step is designed to be conservative such

that security changes are kept.

Algorithm 1: Normalize A Basic Block

Input : basic block b
Output : normalized basic block b′

1 b′ := 〈〉 // sequence of normalized inst.
2 foreach instruction i in b do
3 m := GetMnemonic(i)
4 if m �= ’nop’ then
5 op′ := 〈〉 // sequence of operand type
6 foreach operand o in operands(i) do
7 t := GetOperandType(o)

// t ∈ {mem, reg, imm}
8 op′ := op′ ⊕ t
9 end
10 i′ := 〈m, op′〉 // normalized inst.
11 b′ := b′ ⊕ i′

12 end
13 end
14 return b′

B. Identifying Patched Basic Blocks

Both security and non-security patches can lead to the mod-

ifications of various basic blocks and, in the worst case, such

modified basic blocks can lie scattered all over a function. Thus,

SPAIN proceeds to investigate the candidate pairs F to identify

the basic blocks that are modified (i.e., patched basic blocks)

in the patch, identify the relationships among these patched

basic blocks in terms of partial traces (see Definition 3), and

identify their relations to the original function. Algorithm 2

gives this procedure, which computes the matched trace pairs

T = {〈tp, {t1o, ..., tno }〉 | t is a partial trace in a function}
for each function pair 〈fp, fo〉 in F , where tp in fp might be

relevant to {t1o, ..., tno } in fo.
In detail, we leverage the pairwise basic block matching to

identify the patched basic blocks within the patched function

(Lines 2–13). In particular, for each basic block bp in the

patched function fp, we search for an equivalent basic block

bo in the original function fo. If there is no such a matching

basic block bo in fo, bp is identified as a patched basic block.

Once the patched basic blocks are identified, we proceed to

determine the relationships among these basic blocks (Line 14),

i.e., to connect the patched basic blocks to infer the effect of

a patch. To this end, for each patched basic block, we

leverage the predecessor/successor information to connect

related patched blocks; i.e., b1p and b2p are connected when

there is a predecessor/successor relationship between them. In

such a manner, patched partial traces (i.e., {tp}) are constructed.
To get a clear understanding of how a patched partial trace

tp is related to the original function, we extract the unmodified
first-degree neighbors of the patched partial trace (Line 16).

Specifically, for each basic block in the patched partial trace, we

identify the first-degree neighboring blocks that are unmodified

from the original function. These unmodified neighboring basic

blocks capture the locality of the patch and help to locate the

corresponding basic blocks in the original function (Line 17).

In this fashion, for each patched partial trace, we identify the

corresponding basic blocks of interest in the original function,

and construct the original partial traces {t1o, ..., tno } in the same

463465

Algorithm 2: Identify Partial Traces

Input : patched function fp, original function fo
Output : set of matched partial trace pairs T

1 T := ∅
2 Bp := ∅ // set of patched blocks
3 foreach basic block bp in fp do
4 foreach basic block bo in fo do
5 if bp == bo then
6 FoundMatch = True
7 break
8 end
9 end
10 if not FoundMatch then
11 Bp := Bp ∪ {bp}
12 end
13 end
14 Tp:= LinearConnectedComponents(Bp)
15 foreach patched partial trace tp in Tp do
16 neighbors:= GetFirstDegreeNeighbors(tp, fp)
17 Bo:= GetRelevantOriginalBlocks(neighbors, fo)
18 To:= LinearConnectedComponents(Bo)
19 T := T ∪ {〈tp, To〉}
20 end
21 return T

way to construct patched partial traces (Line 18).

Example 3: Consider the original and patched functions

in Figure 4, where each letter represents a basic block. We

can see that in the patched function, the basic block b in the

original function is modified to b′ and a new basic block g′

is added. From the patched function, only one patched partial

trace can be extracted, i.e., 〈b′, g′〉, where its unmodified first-

degree neighbors are {a, c, d}. By looking at the first-degree

neighbors of the patched partial trace, we can infer that only

the basic block b is the corresponding basic block of interest

in the original function, and only one original partial trace can

be constructed, i.e., 〈b〉. Hence, in this case, the patched partial
trace 〈b′, g′〉 is only related to one original partial trace 〈b〉.

C. Identifying Security Patches

Once the patched partial traces and their related partial traces

in the original function are identified, we proceed to determine

for each pair 〈tp, {t1o, ..., tno }〉 in T whether the changes are

caused by a security patch or non-security patch. To this end,

we perform a semantic analysis on both the patched partial

trace tp and the set of original partial traces {t1o, ..., tno }.
The idea underlying our semantic analysis is that “a

security patch is less likely to change the semantics of the
underlying function, while a non-security patch is more likely to
introduce new semantics”. Therefore, we compare the semantic
summaries generated for the patched partial trace and each of

the original partial traces by Equation 1.

δd = Sp − So (1)

δd is the semantic difference between the semantic summary Sp
of the patched partial trace tp and the semantic summary So
of the original partial trace to in {t1o, ..., tno }. If there exists

one original partial trace such that the semantic difference is

�

�

� �

�

�

��

� �

�

��

)�*	��������	����
���)�*	��
����	����
���

Fig. 4: An Example of the Original and Patched Functions

small, we mark the patch as a security patch. Otherwise, we

mark the patch as a non-security patch.

In detail, we leverage the technique in our previous work [23]

to generate the semantic summary from a partial code segment

(i.e., a partial trace). Here semantics are expressed as the

effects of executing the partial code segment on the ma-

chine state. The machine state s is characterized by a 3-tuple

〈Mem, Reg, F lag〉, denoting the memory Mem, the general-
purpose registers Reg, and the condition-code flags Flag. The
machine state before and after executing the partial code

segment is referred to as pre-state and post-state, respectively.
For example, one possible pre-state before executing the code

segment in Figure 5(a) is given in Figure 5(b), where all

registers, flags, and memory are assigned by the value

0; and in the corresponding post-state, the registers eax and

ebx hold the values 0x04 and -0x04, respectively, while
the sign flag sf holds the value 1 due to the negative result

in ebx.
Then, the semantic summary is the difference between the

pre-state and post-state, as shown in Equation 2.

S = spost − spre (2)

For example, the semantic summary of the code segment shown

in Figure 5(a) is eax′ = 0x04 and ebx′ = eax-0x04,
where primed variables denote final values and non-primed

variables denote initial values.

In our semantic analysis, for both patched and original partial

traces, we first generate various configurations of pre-state and

run the partial traces and measure the corresponding post-state

values. Then, we compute the semantic summary for patched

and original partial traces, and compare them following the

techniques in [24, 23]. Finally, if the semantic difference is

below a pre-defined threshold value (i.e., < Δd). We determine

that the patch is a security patch. Otherwise, it is a non-security

patch. In our experiment, we empirically fix Δd to be 0.20.

Example 4: Let us consider the running example in Fig-

ure 1. There are in total 17 machine artifacts involved in the

semantic summary computation that are 8 register, 8 status

flags and one memory location [edi+8], among which only

three status flags (sf, zf and cf) are influenced by the newly
added instruction test eax, eax in the patched partial

trace. Given a fixed pre-state in which all values of artifacts

are set to 0 but ebx to 4, as shown in Figure 5(b), the post-state
can be computed easily. In the post-state, only the zero flag

zf is set to 1, while all the other 16 artifacts keep same as

the original trace. From the pre-state and post-state, we get

464466

mov eax, 0x04

sub ebx, eax

(a) Sample Code Segment

Pre-state:

Reg = {eax = 0, ebx = 4, ..}
Flag = {zf = 0, sf = 0, ..}
Mem = {0, 0 . . . 0}

Post-state:

Reg
′ = {eax′ = 0x4, ebx′ = 0x0, ..}

Flag
′ = {zf′ = 1, sf′ = 0, ..}

Mem
′ = {0, 0 . . . 0}

(b) Pre- and Post-State before and after Executing the Code Segment

Fig. 5: An Example of Pre-State and Post-State

that the semantic difference between the patched and original

partial trace is equal to 0.058 (< Δd), which implies that the

patch in Figure 1 is a security patch.

D. Summarizing Patch and Vulnerability Patterns

Once the security patches are identified, SPAIN proceeds to

summarize patch patterns and the corresponding vulnerability

patterns from the original and patched partial traces. To this end,

we introduce a light-weight program analysis technique. Specif-

ically, given a patched partial trace tp and the relevant original

partial traces {t1o, ..., tno }, SPAIN identifies the newly-added

and security-sensitive instructions in tp. In general, newly-

added control transfer instructions, especially the ones that

depend on comparison instructions such as cmp and test,
are of the interest for security analysts, which are more likely

to reflect the newly-introduced sanity checks in the patch.

In the next step, we pass the source and destination operands

of those interesting instructions to the taint engine [25]

to track their sources and sinks that are key indicators of

vulnerabilities. For example, in the instruction cmp eax, ebx,
register ebx is the source operand and register eax is the

destination operand. In particular, non-immediate source and

destination operands are passed to the taint engine to track

their origins (or sources) using backward taint analysis, while

the non-immediate destination operand is passed to the taint

engine to track its destinations (or sinks) using forward taint

analysis. It is important to note that taint analysis is performed

within the patched function, i.e., intra-procedural taint analysis.

Finally, the tracked sources and sinks are combined to

summarize the vulnerability and security patch patterns. In

Figure 6, we show the abstract vulnerability and patch patterns,

where source, sink and sanity check are defined as follows.

Definition 4 (Sources): Taint sources are the user/external
inputs (i.e., tainted inputs) that can reach the patched function

and are used by those interesting instructions.

For example, external function parameters or return values

of security-sensitive system APIs (e.g., scanf) are considered
as taint sources.

Definition 5 (Sinks): Taint sinks are the security-critical op-
erations that involve the tainted inputs.

For example, memory dereference operations (e.g., mov eax,
[taint-source]) or arithmetic subtraction operations (e.g.,
mov eax, [taint-source]; sub ebx, eax) that involves
taint sources are considered as taint sinks.

+���
��	����
	

)������*

������
�,�����
�-�	

�����
���)����*

+���
��	����
	

)������*

������
�,�����
�-�	

�����
���)����*

����
�	.������
�	����������

��
�	����������

��
�	����������

)�*	�����������
�	��

���)�*	��
��	��

���

Fig. 6: Abstract Vulnerability and Security Patch Pattern

Definition 6 (Sanity Checks): Sanity checks are operations
performed on the tainted inputs before they are involved in

security-critical operations.

E. Applications of Patterns

The patch patterns can be used in many applications. One

main application is to search for the similar patches and

corresponding vulnerabilities in the binaries. Besides, SPAIN

is orthogonal to several patch analysis tools, and hence

can provide patch patterns as input for them. For example,

Prophet [8] can learn a probabilistic model from the correct

code to automatically generate patches. SPAIN can provide

possible locations where a patch is needed. TEDEM [26] can

identify binary code regions that are similar to code regions

containing vulnerabilities. SPAIN can provide such vulnerable

regions through pattern matching so that TEDEM may have

more candidates to search for. Honey patch [15] was proposed

as a trap to monitor attack information and misinform the

attacker through redirecting the attack to an unpatched decoy.

SPAIN can help to identify the patches that can be converted

into honey patches, making the whole process fully automatic.

A survey on repeated patches [27] has been conducted to show

the general trend of bug fixes. SPAIN can enable the trend

analysis on a large number of programs to gain a complete

understanding of how programmers fix bugs.

IV. EVALUATION

In this section, we conduct an experimental study on several

real-world projects to answer the following research questions.

• RQ1: What is the accuracy and scalability of SPAIN to

identify security patches?

• RQ2: What are the security patch patterns and their cor-

responding vulnerability patterns summarized by SPAIN?

• RQ3: What are the potential application scenarios of the

summarized patterns of SPAIN?

The experiments were conducted on an HP z420 workstation

with 32GB RAM and Intel Xeon CPU E5-1620 v2 3.70GHz.

All the experimental data is available at our website [28]. We

used the following real-world software in our evaluation:

• OpenSSL is an open source software with around 446,747
number of locations (LOC) and developed since 1998.

• Linux Kernel is an open source software with around

18,963,973 LOC and developed since 2002.

465467

TABLE I: Accuracy and Performance on OpenSSL

Ver. CVE
Sec. Pat. Non-Sec. Pat.

T.P. F.P. T. (s)
G.T. Iden. G.T. Iden.

0–a 1 7 4 11 0 0.57 0 11
a–b 0 0 0 5 0 – 0 13
b–c 1 3 2 0 0 0.67 – 7
c–d 3 19 8 27 0 0.42 0 60
d–e 0 0 0 6 1 – 0.17 8
e–f 3 12 9 17 10 0.75 0.59 14
f–g 2 10 8 6 1 0.8 0.17 11
g–h 8 29 18 4 1 0.62 0.25 20
h– i 9 37 24 23 8 0.65 0.35 54
i–j 4 23 11 5 2 0.48 0.4 35
j–k 7 25 19 15 5 0.76 0.33 39
k–l 0 0 0 1 0 – 0 7
l–m 8 34 25 7 3 0.74 0.43 95
m–n 5 60 49 38 5 0.82 0.13 76
n–o 1 0 0 6 0 0 0 9
o–p 2 2 1 1 0 0.5 0 9
p–q 2 39 31 40 11 0.79 0.28 48
q–r 1 10 9 3 0 0.9 0 18
r–s 6 13 11 2 0 0.85 0 36

Sum. 63 323 229 217 47 0.71 0.22 –

• Adobe PDF Reader is a closed source software. We

use two of its libraries, 3difr.x3d and AXSLE.dll,
which have around 1,293 and 4,874 functions respectively.

A. Accuracy and Scalability (RQ1)

1) Accuracy: To evaluate the accuracy of SPAIN on

identifying security patches, we manually identified all the

security and non-security patches of all the 20 versions of

OpenSSL 1.0.1 by analyzing its commits on GitHub. They

were used as the ground truth to evaluate the true positive

and false positive of SPAIN. For each security patch, we also

manually analyzed the type of the patched vulnerability.

Table I reports the detailed results of our accuracy evaluation

on OpenSSL. The first column lists the version numbers of two

consecutive versions of OpenSSL, which are respectively served

as the original and patched binaries. The second column reports

the number of CVEs that are documented. The third and fifth

columns respectively show the number of security and non-

security patches we manually identified. The fourth column

reports the true security patches SPAIN successfully identified,

and the sixth column gives the false security patches SPAIN

incorrectly identified. Note that SPAIN only reports security

patches, here the sixth column gives the false positive cases

generated by SPAIN. The last three columns compute the true

positive, false positive and execution time of SPAIN.

From Table I it can be seen that among the 323 security

patches, SPAIN successfully identified 229 of them, while it

incorrectly identified 47 of the 217 non-security patches as

security patches. It achieved the true positive rate of 71% and

the false positive rate of 22%, which indicated that SPAIN can

identify security patches with high accuracy. Besides, compared

with the number of identified security patches, only a small

number of CVEs are documented, which demonstrates that

SPAIN can discover undocumented patches. Moreover, SPAIN

took around 32 seconds on average to analyze the binaries. In

addition, Table II shows the accuracy of SPAIN with respect to

TABLE II: Accuracy on OpenSSL w.r.t Vulnerability Types

Vulnerability Type G.T. SPAIN Accuracy

Buffer Overflow 54 37 0.69
NULL Pointer Dereference 65 61 0.94

Memory Leak 51 30 0.59
Double-Free 14 7 0.5

Integer Overflow 8 7 0.88
Initialization 16 11 0.69
Off-by-One 3 2 0.67

Side Channels 2 1 0.5
Use-After-Free 1 1 1

Others 109 72 0.66

Sum. 323 229 0.71

nine vulnerability types. Note that 109 of the security patches

patched some tricky vulnerabilities that do not belong to these

nine common types. The results indicate that SPAIN can

identify security patches for different types of vulnerabilities

with high accuracy.

By closely looking into the security patches SPAIN failed to

identify, we find two main causes for the false negatives. First,

a patch is so simple that our function filtering step may fail to

detect the changes. For example, one unidentified security patch

in OpenSSL simply increased the buffer size in a function by a

constant value. As a result, the patched function is the same to

the original one, except for that particular constant. After the

basic block normalization, they become the same and will

not be further analyzed. Second, a patch is so complicated

that our semantic analysis may identify it as a non-security

patch due to the large amount of newly-introduced semantics.

For example, developers may rewrite part of a function to fix

a vulnerability; or some different patches happen to patch the

same function. In such cases, our semantic analysis may detect

significant semantic difference between the patched function

and the original one, failing to identify the security patch.

Similarly, we investigated the causes of the false positives.

One main reason is that some non-security patches only slightly

modify the program, especially for fixing some performance

bugs [29] or adding the consideration for some missed corner

cases. For example, a patch added a simple conditional state-

ment that would be executed only when certain criteria have

been met. It follows the similar pattern of security patches since

most security patches can be seen as a conditional functionality,

which redirects the execution to safe places if some variables

have unexpected values. Therefore, such kinds of non-security

patches are difficult to be distinguished. We argue that false

positives only have a small impact on our analysis as the number

of false positive is small, and a simple manual validation can

identify them.

Summary. Based on these observations, we can positively an-

swer RQ1 that SPAIN can identify security patches for different

types of vulnerabilities with a high true positive rate as well

as acceptable false positive rate. Further, SPAIN can discover

security patches that are not documented.
2) Scalability: To evaluate the scalability of SPAIN to ana-

lyze large binaries, we ran SPAIN on both open source Linux

Kernel and closed source Adobe PDF Reader. In particular, we

used versions 3.16.2 and 3.16.3 of Linux Kernel, and compiled

466468

TABLE III: Performance on Linux and Adobe PDF Reader

Version Total Func. Sec. Patched T. (s)

Linux: 3.16.2 – 3.16.3 249341 1221 807
difr.x3d: 11.0.08 – 11.0.09 1293 12 21
difr.x3d: 11.0.13 – 11.0.14 1293 13 23
difr.x3d: 11.0.15 – 11.0.16 1293 11 20

AXSLE.dll: 11.0.15 – 11.0.17 4875 27 84

them using the -o2 optimization level (i.e., the most common

commercial setting) with all the functions included. For Adobe

PDF Reader, we analyzed the library 3difr.x3d of versions

11.0.08, 11.0.09, 11.0.13, 11.0.14, 11.0.15 and 11.0.16 as well

as the library AXSLE.dll of versions 11.0.15 and 11.0.17.

Table III presents the performance of SPAIN on Linux kernel

and Adobe PDF Reader. The first column gives the versions of

the original and patched binaries, and the second column reports

the average number of functions in them. The third and fourth

columns list the identified security patches by SPAIN and the

corresponding time overhead. We can see that SPAIN analyzed

the whole Linux Kernel in 807 seconds, and analyzed the two

Adobe libraries in 23 seconds. Note that, because we do not

have the ground truth for security patches, we did not show

the accuracy of SPAIN on them but reported the identified

security patches.

Summary. Based on the results from Table III, we can posi-

tively answer RQ1 that SPAIN scales well to large binaries.

B. Patch and Vulnerability Patterns (RQ2)

Table IV presents the vulnerability and patch patterns sum-

marized for the key vulnerability types patched in the 20

versions of OpenSSL. Among them, one of most common

ones is double-free vulnerability, i.e., an error that occurs when

free() is called more than once with the same memory

address as an argument. It is summarized in the first row, where

the memory address is obtained from an untrusted function as

a return value, and it is freed more than once, which leads to

the vulnerability. To patch this, one needs to sanity check for

validity of the memory address and remove all the occurrences

where it is freed for more than once.

The integer overflow/underflow is summarized in the second

row, where it occurs when an arithmetic calculation produces

a result that is greater (or smaller) in magnitude than that a

given register or storage location can store or represent. In

general, arithmetic operations are vulnerable to integer overflow

or underflow when they take the inputs from untrusted sources

and perform some security-sensitive operation such as memory

dereferencing and memory indexing on the calculated results.

To patch such vulnerable cases, one needs to perform a sanity

check on the untrusted inputs before allowing for any security-

sensitive arithmetic operation.

The third row summarizes the use-after-free vulnerability

pattern, where the obtained pointer (from an untrusted source)

to the memory object is freed without checking for liveness

property of the pointer. For patching such vulnerabilities, one

needs to check whether the object is in use, if so, the pointer

to it should not be freed. The fourth row summarizes NULL
pointer dereference vulnerability, the most frequently occurred

vulnerability in OpenSSL. As discussed in Section II, it is very

common to obtain a pointer from an untrusted source; hence,

before involving it in any security-sensitive operation, such

as memory dereferencing, it needs to be checked whether the

pointer is NULL or valid. Finally, the fifth row summarizes the

other most commonly observed vulnerability, buffer overflow

or underflow, where the patch suggests that any pointer to

a memory object should be properly bounds-checked before

involving it in any security-sensitive operation.

Apart from the vulnerability types summarized in Table IV,

we observed other class of vulnerabilities/patches that cannot

be generalized for pattern matching. Such vulnerability types

include, side-channel information leakage, memory leakage

and uninitialized variables whose patterns are particular to the

OpenSSL binaries. However, summarizing these pattern will

enable us to identify clone or copy-paste type vulnerabilities

that are very commonly observed in the wild [30, 24]. Due to

the space limitation, we provide the vulnerability and patch

patterns for such class of vulnerabilities and the patterns for

Linux and Adobe in our website [28].

C. Application of Patterns (RQ3)

Using SPAIN and the summarized patterns, we used pattern

matching techniques [23] to discover three zero-day vulnerabil-

ities (CVE-2016-0933, CVE-2016-1037 and CVE-2016-4198)

in the two libraries in Adobe PDF Reader.

We start the experiment with an Adobe Reader vulnerability,

CVE-2014-0565, which has already been patched in 2014. It

is a vulnerability that reads the memory out of bound, due to

the insufficient check on the string length of Line Set block.
Our tool successfully identifies the patch by diffing the two

versions of Adobe Reader, 11.0.8 and 11.0.9, i.e., finding the

place where two additional checks have been added to the

function. After the checks, the program returns to the normal

execution. Therefore, our tool identifies security patches with

high confidence. It is a very typical patch pattern, which is the

buffer overflow pattern in the fifth row of Table IV.

Then, we use the corresponding vulnerability pattern to

search for similar vulnerabilities in different versions of Adobe

Reader. Specifically, we find CVE-2016-0933 and CVE-2016-

1037, having the same vulnerability pattern, which, later, have

been confirmed by manual analysis. CVE-2016-0933 is a

vulnerability in Adobe Reader 3difr.x3d before version 11.0.14.

CVE-2016-1037 also resides in 3difr.x3d, while it is in version

11.0.16. We also find CVE-2016-4198, which shares the similar

pattern with the previous vulnerability, although it is indeed

an integer overflow vulnerability in Adobe XSLT library. Once

triggered, it will cause an out of bound write to the memory

and remote code execution.

After Adobe Reader had patched the aforementioned vul-

nerabilities, we used SPAIN to diff the patched version with

the original vulnerable version. We successfully located the

three vulnerability patches using the tool, as shown in Table III,

which demonstrates that our tool has the capability to capture

patches in closed source binaries. A more detailed explanation

of the patterns can be found at our website [28].

467469

TABLE IV: Patch Patterns vs. Vulnerability Patterns, where TNT denotes taint, IN denotes input, and SSTV denotes sensitive.

Vul. Concrete Vulnerability Concrete Patch
type Vulnerability Pattern Patch Pattern

D
o
u
b
l
e
F
r
e
e

call BN to ASN1 INTEGER
test eax, eax
mov esi, eax
...
mov [esp+ 4Ch+ var 4C], esi
call ASN1 STRING clear free
...
mov [esp+ 4Ch+ var 4C], esi
call ASN1 STRING clear free

call 〈untrusted func〉
〈sanitycheck〉 : 〈return value〉
...
mov 〈func param〉, 〈return value〉
call 〈free〉
...
mov 〈func param〉, 〈return value〉
call 〈free〉

call BN to ASN1 INTEGER
test eax, eax
mov esi, eax
...
mov [esp+ 4Ch+ var 4C], esi
call ASN1 STRING clear free
...

call 〈untrusted func〉
〈sanity check〉 : 〈return value〉
...
mov 〈func param〉, 〈return value〉
call 〈free〉
...

U
n
d
e
r
f
l
o
w
O
v
e
r
f
l
o
w

I
n
t
e
g
e
r

mov eax, [esp+ 4Ch+ arg 4]
...
mov ecx, eax
sub ecx, [esp+ 4Ch+ var 2C]
add [esp+ 4Ch+ var 24], ecx
...
mov esi, [esp+ 4Ch+ 24]
mov ecx, [esp+ 4Ch+ arg 8]
mov [ecx], esi

mov 〈TNT IN〉, 〈untrusted src〉
...
〈arith op〉 〈TNT result〉, 〈TNT IN〉
...
mov 〈sec SSTV sink〉, 〈TNT result〉

mov eax, [esp+ 4Ch+ arg 4]
...
mov edi, [esp+ 4Ch+ var 2C]
cmp eax, edi
jl error
mov ecx, eax
sub ecx, [esp+ 4Ch+ var 2C]
add [esp+ 4Ch+ var 24], ecx
...
mov esi, [esp+ 4Ch+ 24]
mov ecx, [esp+ 4Ch+ arg 8]
mov [ecx], esi

mov 〈TNT IN〉, 〈untrusted src〉
〈sanity check〉 : 〈TNT IN〉
...
〈arith op〉 〈TNT result〉, 〈TNT IN〉
...
mov 〈sec SSTV sink〉, 〈TNT result〉

U
s
e
A
f
t
e
r
F
r
e
e

mov ebp, [esp+ 0ECh+ arg 0]
...
mov [esp+ 0ECh+ dest], ebp
call ssl3 release read

mov 〈TNT IN〉, 〈untrusted src〉
...
mov 〈func param〉, 〈TNT pointer〉
call 〈free〉

mov ebp, [esp+ 0ECh+ arg 0]
...
mov eax, [ebp+ 58h]
mov eax, [eax+ 0F8h]
test eax, eax
jnz 〈do not release〉
...
mov [esp+ 0ECh+ dest], ebp
call ssl3 release read

mov 〈TNT IN〉, 〈untrusted src〉
〈sanity check〉 : 〈TNT pointer〉
...
mov 〈func param〉, 〈TNT pointer〉
call 〈free〉

D
e
r
e
f
e
r
e
n
c
e

N
U
L
L
P
o
i
n
t
e
r

callBN new
mov edi, eax
...
cmp eax, [edi+ 8]

call〈untrusted func〉
...
〈mem deref〉 : 〈return value〉

call BN new
test eax, eax
mov edi, eax
jz error
...
cmp eax, [edi+ 8]

call〈untrusted func〉
〈sanity check〉 : 〈return value〉
...
〈mem deref〉 : 〈return value〉

O
v
e
r
f
l
o
w

B
u
f
f
e
r

mov ebx, [esp+ 3Ch+ arg 8]
...
mov [esp+ 3Ch+ n], ebx
call eax

mov 〈TNT IN〉, 〈untrusted src〉
mov 〈func param〉, 〈TNT IN〉
...
call 〈untrusted func〉

mov ebx, [esp+ 3Ch+ arg 8]
cmp ebx, [esp+ 3Ch+ arg 4]
jl error
...
mov [esp+ 3Ch+ n], ebx
call eax

mov 〈TNT IN〉, 〈untrusted src〉
〈sanity check〉 : 〈TNT IN〉
...
mov 〈func param〉, 〈TNT IN〉
call 〈untrusted func〉

V. DISCUSSION

Our framework has the following limitations. First, our frame-

work tries to look for patches and vulnerabilities with patterns.

However, some real-world vulnerabilities are actually the corner

cases, which have unique signatures and patches may fix bugs in

unusual ways. SPAIN may not be able to achieve high accuracy

when dealing with these special cases, in which almost all the

patches are usually complex.
Second, vulnerabilities may be patched in some places other

than the places where they are triggered. Therefore, trying

to hunt them from patches may not be straightforward. Our

current tool can only look for vulnerabilities that are patched

within the one function where the patch has been found. In

future, we plan to adopt some other techniques such as function

summarization, more advanced slicing and symbolic execution

to handle the vulnerabilities that are patched across functions.
Third, building a general solution for all kinds of binary

architectures requires lifting the instruction into intermediate

representation. We did not do that because we want to obtain

the exact patterns of the patches and vulnerabilities. Binary

lifting may result in loss of a certain amount of information

or inaccuracy [31], which may be critical for our pattern

summarization. Therefore, throughout this work, all the binaries

used are in X86 32bit format. It is worth mentioning that our

approach is general and can be adapted to other binary formats.
Fourth, the framework shares the common drawback of static

vulnerability searching approaches. Although we can identify

the location of the vulnerability, we cannot reproduce it in

real world if the program is too complicated. The user input

may travel through many functions and be transformed several

times until it reaches the location that triggers the vulnerability.

Hence, we may not have a concrete proof-of-concept (POC) to

validate the vulnerability whether it has a real impact on the

program’s security. However, unlike other searching methods,

since we are searching the vulnerability based on its patch, we

have a relatively high confidence to say that it is a severe bug,

which is needed to be patched.

VI. RELATED WORK

Our work attempts to understand patches and the correspond-

ing vulnerabilities, and summarize their patterns for discovering

similar patches or vulnerabilities. Hence, we discuss the related

work in the areas of patch analysis and vulnerability modeling.

A. Patch Analysis and Diffing

PVDF [32] computes the semantic of patches for privilege el-

evation vulnerabilities. The patch semantic is then used to guide

fuzzy testing to discover new vulnerabilities in binary programs.

It takes the vulnerable binary and the corresponding patch as

the inputs, and leverages forward and backward taint analysis

to extract the semantics. This work is similar to ours; but it

assumes the availability of patches, and only focuses on one

particular vulnerability type. Differently, SPAIN attempts to

summarize patterns for different vulnerability types, and only

requires the binary programs but not the patches.

468470

BISSAM [14] uses binary patch diffing information to de-

velop signatures for the security update. Then it executes

the binary with malicious inputs under dynamic monitoring

to obtain the execution paths. It identifies the vulnerability by

determining whether the path includes one of the signatures.

Its effectiveness heavily relies on the malicious inputs and

assumes the availability of security patches. Differently, we

can automatically identify the security patches in a static way.

BinHunt [13] can automatically find the semantic differences

in binary programs. It lifts the binary instructions to Interme-

diate Representation (IR), and constructs CFGs at the IR level.

Then it uses graph isomorphism to find the differences and

performs symbolic execution on them to obtain the semantics

for theorem proving. Unlike it, SPAIN is much more scalable,

since we apply function-level filtering, which enables us to

search for patches in real-world programs.

Apart from these binary-level patch analysis, there are

many source-level approaches. Tian et al. [11] attempt to

identify Linux patches based on the commit messages and the

source code diffing analysis. They extract features and leverage

machine learning techniques to predict whether a commit is a

bug fix or not. Soto et al. [33] investigate Java projects

to get a deeper understanding of each patch’s signature

to guide automatic program repairing. BugTrace [12] aims

at building the link between the bug and the fix through patch

analysis. Kim and Notkin [34] build a diffing tool to infer the

structural differences between codes, which helps programmers

to discover bugs by comparing two versions of a program.

These works all use patch analysis to gain the understanding

at the source code level, which may not work if the source

code is not available. Instead, SPAIN directly works at the

binary level.

B. Vulnerability Modeling and Searching

INDIO [35] leverages symbolic execution to analyze bi-

naries and detects integer overflow vulnerabilities. It uses

some heuristic patterns to find the potential vulnerability

candidates. Then it ranks the vulnerable possibility for the

candidates. Finally, it selectively executes symbolic execution

to remove the false positives further. It discovered known

CVEs as well as unknown integer overflow vulnerabilities in

real world Window binaries. Similarly, IntScope [36] employs

symbolic execution to detect integer overflow vulnerabilities

in X86 binaries, and Firmalice [37] uses symbolic execution

to detect authentication bypass vulnerabilities in firmware.

Brumley et al. [38] showed that automatic patch-based ex-

ploit generation (APEG) was possible. They combine dynamic

symbolic execution and static control flow graph analysis to

summarize the constraint formulae of the vulnerabilities, which

were successfully used to generate exploits for 5 real-world

vulnerabilities.

GUEB [39] searches for use-after-free vulnerability patterns

in the binary programs. It builds an abstract memory model for

the binary functions. Then it uses value set analysis to reason

each variable in the assignment and free instructions. If a

variable is used after the free instruction, GUEB reports it as a

vulnerability. It found one real-world use-after-free vulnerability

in ProFTPD program. LoongChecker [40] also uses value set

analysis to statically detect potential vulnerabilities in binaries.

The aforementioned works leverage program analysis meth-

ods to extract semantics of the binary program, and compare

them with certain models to discover potential vulnerabilities.

They require expertise to build such models specifically for a

specific type of vulnerabilities. Differently, our work aims at

automatically summarizing the patterns for different types of

vulnerabilities and using them to search for vulnerabilities.

Apart from these binary-level vulnerability modeling and

searching approaches, there are many works targeting vulnera-

bility modeling at the source code level. Yamaguchi et al. [41]

use a taint-style pattern to search vulnerabilities and filter out

irrelevant code. It can reduce the code base by 94.9% on average

to improve the code audit efficiency. Wagner et al. [42] reduce

the searching of the buffer overflow vulnerabilities to an integer

range analysis problem, which discovered vulnerabilities in the

Sendmail software. Averinos et al. [43] proposed an automatic

exploit generation tool and analyzed 20 open source programs.

They use preconditioned symbolic execution to generate control

flow hijack attacks and discovered 2 unknown vulnerabilities.

However, those approaches work on the source code level;

but they fail to analyze binary-level patches. Moreover, more

attention has been paid to address the gap between the

source code and the compiled binaries [44]. The compiler will

introduce bugs even if the source code is correct. Therefore,

we choose to work on binary level to be closer to the

machine so that, ideally, the framework can capture all possible

vulnerabilities.

VII. CONCLUSION

In this paper, we proposed a patch analysis framework

SPAIN to automatically learn the security patch patterns and

vulnerability patterns, and identify them from the program

binary executables. It has built the bridge from the binary

diffing to the automatic patch understanding. The experiments

have shown that SPAIN can correctly locate more than half

of the vulnerability patches in the binaries and find n-day

vulnerabilities in major commercial software. SPAIN can be

useful in vulnerability and patch understanding, similar bug

hunting, binary code auditing, and, eventually, the program

security enhancement. In the future, we plan to extend the

framework to generate more detail and precise report of each

patch and vulnerability through program slicing and symbolic

execution, as well as to make it capable of analyzing binaries

with other instruction sets, like ARM. Also, we would like to

set up binary vulnerability databases with the help of the tool.

VIII. ACKNOWLEDGEMENTS

This research has been supported in part by the National Re-

search Foundation, Singapore under its National Cybersecurity

R&D Program (Award No. NRF2014NCR-NCR001-30), and

partially been sponsored by the National Science Foundation

of China (No. 61572349, 61272106, 61402179).

469471

REFERENCES

[1] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed
whitebox fuzzing,” in ICSE, 2009, pp. 474–484.

[2] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive
mutational fuzzing,” in S&P, 2015, pp. 725–741.

[3] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Cor-
betta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller:
Augmenting fuzzing through selective symbolic execution,” in
NDSS, 2016.

[4] C. Hu, Z. Li, J. Ma, T. Guo, and Z. Shi, “File parsing
vulnerability detection with symbolic execution,” in TASE, 2012,
pp. 135–142.

[5] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “Its4: a static
vulnerability scanner for c and c++ code,” in ACSAC, 2000, pp.
257–267.

[6] J. Heffley and P. Meunier, “Can source code auditing software
identify common vulnerabilities and be used to evaluate software
security?” in HICSS, 2004, pp. 90 277–.

[7] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven
seed generation for fuzzing,” in S&P, 2017.

[8] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in POPL, 2016, pp. 298–312.

[9] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch
generation learned from human-written patches,” in ICSE, 2013,
pp. 802–811.

[10] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking
for simple program repairs,” in ICSE, 2015, pp. 448–458.

[11] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing
patches,” in ICSE, 2012, pp. 386–396.

[12] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K. Lukins,
“Recovering traceability links between source code and fixed
bugs via patch analysis,” in TEFSE, 2011, pp. 31–37.

[13] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically
finding semantic differences in binary programs,” in ICICS, 2008,
pp. 238–255.

[14] T. Schreck, S. Berger, and J. Göbel, “Bissam: Automatic
vulnerability identification of office documents,” in DIMVA,
2013, pp. 204–213.

[15] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser,
“From patches to honey-patches: Lightweight attacker misdirec-
tion, deception, and disinformation,” in CCS, 2014, pp. 942–953.

[16] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions
in binaries with neural networks,” in USENIX Security, 2015,
pp. 611–626.

[17] Hex-Rayd, “IDA Pro,” http://www.datarescue.com/idabase, Last
2016: Aug. 2016.

[18] H. Flake, “Structural comparison of executable objects,” in
DIMVA, 2004, pp. 161–173.

[19] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and
H. Bos, “An in-depth analysis of disassembly on full-scale
x86/x64 binaries,” in USENIX Security, 2016, pp. 583–600.

[20] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and
scalability simultaneously in detecting application clones on
android markets,” in ICSE, 2014, pp. 175–186.

[21] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection,” in FSE, 2014, pp.
389–400.

[22] Intel, “Intel 64 and ia-32 architec-
tures software developer’s manual,”
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html, Last 2016: Aug. 2016.

[23] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and
H. B. K. Tan, “Bingo: cross-architecture cross-os binary search,”
in FSE, 2016, pp. 678–689.

[24] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,

“Cross-architecture bug search in binary executables,” in S&P,
2015, pp. 709–724.

[25] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static
detection of vulnerabilities in x86 executables,” in ACSAC, 2006,
pp. 269–278.

[26] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow,
“Leveraging semantic signatures for bug search in binary pro-
grams,” in ACSAC, 2014, pp. 406–415.

[27] J. Park, M. Kim, B. Ray, and D. H. Bae, “An empirical study
of supplementary bug fixes,” in MSR, 2012, pp. 40–49.

[28] SPAIN, http://pat.scse.ntu.edu.sg/spain/.
[29] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel: Detecting

and fixing performance problems that have non-intrusive fixes,”
in ICSE, 2015, pp. 902–912.

[30] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulner-
ability extrapolation using abstract syntax trees,” in Proceedings
of the 28th Annual Computer Security Applications Conference.
ACM, 2012, pp. 359–368.

[31] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, BAP: A
Binary Analysis Platform, 2011, pp. 463–469.

[32] S. Letian, F. Jianming, C. Jing, and P. Guojun, “PVDF: An
automatic Patch-based Vulnerability Description and Fuzzing
method,” in CSC, 2014, pp. 1–8.

[33] M. Soto, F. Thung, C.-P. Wong, C. Le Goues, and D. Lo, “A
deeper look into bug fixes: Patterns, replacements, deletions, and
additions,” in MSR, 2016, pp. 512–515.

[34] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in ICSE, 2009, pp. 309–319.

[35] Y. Zhang, X. Sun, Y. Deng, L. Cheng, S. Zeng, Y. Fu, and
D. Feng, “Improving accuracy of static integer overflow detection
in binary,” in RAID, 2015, pp. 247–269.

[36] T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Automatically
detecting integer overflow vulnerability in X86 binary using
symbolic execution,” in NDSS, 2009.

[37] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and
G. Vigna, “Firmalice - automatic detection of authentication
bypass vulnerabilities in binary firmware,” in NDSS, 2015.

[38] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng, “Automatic
patch-based exploit generation is possible: Techniques and
implications,” in S&P, 2008, pp. 143–157.

[39] J. Feist, L. Mounier, and M. Potet, “Statically detecting use
after free on binary code,” J. Computer Virology and Hacking
Techniques, vol. 10, no. 3, pp. 211–217, 2014.

[40] S. Cheng, J. Yang, J. Wang, J. Wang, and F. Jiang,
“Loongchecker: Practical summary-based semi-simulation to
detect vulnerability in binary code,” in TrustCom, 2011, pp.
150–159.

[41] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic
inference of search patterns for taint-style vulnerabilities,” in
S&P, 2015, pp. 797–812.

[42] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step
towards automated detection of buffer overrun vulnerabilities,”
in NDSS, 2000.

[43] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:
automatic exploit generation,” in NDSS, 2011.

[44] V. D’Silva, M. Payer, and D. X. Song, “The correctness-security
gap in compiler optimization,” in SPW, 2015, pp. 73–87.

470472

