
Model-Checking Software Library API Usage Rules�

Fu Song and Tayssir Touili

LIAFA, CNRS and Univ. Paris Diderot, France
{song,touili}@liafa.univ-paris-diderot.fr

Abstract. Modern software increasingly relies on using libraries which are ac-
cessed via Application Programming Interfaces (APIs). Libraries usually impose
constraints on how API functions can be used (API usage rules) and programmers
have to obey these API usage rules. However, API usage rules often are not well-
documented or documented informally. In this work, we show how to use the
SCTPL logic to precisely specify API usage rules in libraries, where SCTPL can
be seen as an extension of the branching-time temporal logic CTL with variables,
quantifiers, and predicates over the stack. This allows library providers to for-
mally describe API usage rules without knowing how their libraries will be used
by programmers. We also propose an approach to automatically check whether
programs using libraries violate or not the corresponding API usage rules. Our ap-
proach consists in modeling programs as pushdown systems (PDSs), and check-
ing API usage rules on programs using SCTPL model checking for PDSs. To
make the model-checking procedure more efficient, we propose an abstraction
that reduces drastically the size of the program model. Moreover, we characterize
a sub-logic rSCTPL of SCTPL preserved by the abstraction. rSCTPL is sufficient
to precisely specify all the API usage rules we met. We implemented our tech-
niques in a tool and applied it to check several API usage rules. Our tool detected
several previously unknown errors in well-known programs, such as Nssl, Verbs,
Acacia+, Walksat and Getafix. Our experimental results are encouraging.

1 Introduction

Most modern software increasingly relies on using libraries and frameworks provided
by organizations in order to shorten time to market. Libraries or frameworks are ac-
cessed via Application Programming Interfaces (APIs) which are sets of library func-
tions (called API functions) and usually impose constraints (API usage rules) on how
API functions can be used. Programmers have to obey these constraints when calling
API functions. However, most of API usage rules are not well-documented or docu-
mented informally in the API documentation. It is easy to introduce bugs using API
functions. So, it is important to formally describe and automatically check API usage
rules.

Many works addressed this problem [15, 19, 22, 24–26, 28, 30, 32–36, 38, 44, 45, 47].
However, their approaches either cannot describe API usage rules in a precise manner
or cannot automatically check API usage rules. In this paper, we propose a novel tech-
nique to specify and check API usage rules without knowing how API functions will be

� Work partially funded by ANR grant ANR-08-SEGI-006.

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 192–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Model-Checking Software Library API Usage Rules 193

used by programmers. Our approach consists of (1) modeling programs as pushdown
systems (PDSs), since PDSs are a natural model of sequential programs [23] (the stack
of PDSs stores the calling procedures which allows us to check context-sensitive API
usage rules), (2) specifying in a precise manner API usage rules in the Stack Computa-
tion Tree Predicate Logic (SCTPL) [41] (indeed, SCTPL can describe several API usage
rules that cannot be expressed by the existing works), and (3) automatically checking
whether programs violate or not API usage rules by SCTPL model checking for PDSs.

SCTPL can be seen as an extension of the CTPL logic with predicates over the stack
content. CTPL [29] is an extension of the Computation Tree Logic (CTL) with vari-
ables and quantifiers. In CTPL, propositions can be predicates of the form p(x1, ..., xm),
where the xi’s are free variables or constants. Free variables can get their values from
a finite domain and be universally or existentially quantified. CTPL can specify API
usage rules without knowing how API functions will
be used by programmers. E.g., consider the file opera-
tion API usage rule “The file should be closed by call-
ing the API function fclose whenever this file is opened
by calling fopen”. Closing opened files is important. In-
deed, long time running programs, such as web servers,
will use many resources if opened files are not closed.
This API usage rule can be expressed in CTL as ψ1 ≡

n1 : FILE* f1=fopen(“t1”,“w”);
n2 : FILE* f2=fopen(“t2”,“w”);
n3 : FILE* f3=fopen(“t3”,“w”);
n4 : if(f1) then
n5 : fclose(f1);
n6 : fclose(f3);

Fig. 2. File Operations

AG( f open =⇒ EF f close) (note that the formula ψ′1 ≡ AG( f open =⇒ AF f close) is
incorrect, if fopen returns a null file pointer, then fclose should not be called). However,
ψ1 cannot detect the bug in Figure 2, where the file pointed to by f2 is never closed.
This is due to the fact that we cannot specify the relation between the return value of
fopen and the parameter of fclose. To detect this bug, we have to specify this rule as
ψ2 ≡ AG(

∧3
i=1( fi = f open =⇒ EF f close( fi))

)
. However, this formula is too special to

specify this rule in library, since e.g., replacing the variable f1 by f ′1 breaks ψ2. Using
CTPL, we can specify this rule as ψ3 ≡ ∀x∀y∀z AG(x = f open(y, z) =⇒ EF f close(x))
stating that whenever a file is opened and pointed to by some variable x, it should be
closed in the future. 1

However, CTPL cannot specify properties about the calling procedures. Being able
to express such properties is important. E.g., consider an API usage rule expressing
that “Calling a function proc1 in some procedure proc must be followed by a call to
the function proc2 before the procedure proc returns”. This API usage rule cannot be
specified in CTPL. To overcome this problem, we use the SCTPL logic [40, 41] to
precisely describe API usage rules. SCTPL extends CTPL by predicates over the stack.
Such predicates are given by regular expressions over the stack alphabet and some free

1 Note that ψ3 cannot express the point that fclose is only called when fopen returns a pointer to
the file. Indeed, fopen returns a null pointer when the file does not exist. In this case, calling
fclose( f3) induces an error. To express such a point, we introduce an additional predicate Test(x)
which holds at some control point n iff x is tested at the control point n. Now, we can refine the
rule into ψ4 ≡ ∀x∀y∀z AG

(
x = f open(y, z) =⇒ AF(T est(x)∧EXAF f close(x))

)
. ψ4 states that

whenever x = f open is made, one has to check the return value x (i.e., Test(x)). After this, the
file has to be closed in all the future paths. The motivation of using Test(x) is that we cannot
know how the return value will be checked. Thus, we coarsely specify that the return value is
checked.



194 F. Song and T. Touili

variables (which can also be existentially and universally quantified). Using SCTPL, the
above rule can be specified as ∀l AG

(
(proc1 ∧ ΓlΓ∗) =⇒ AF(proc2 ∧ Γ+lΓ∗)

)
, where

ΓlΓ∗ and Γ+lΓ∗ are regular predicates. The subformula (proc1 ∧ ΓlΓ∗) expresses that
proc1 is called inside some procedure proc whose return address is l (since the return
addresses of the called procedures are put into the stack when executing the program.).
The above formula states that whenever proc1 is called in some procedure proc whose
return address is l (ensured by ΓlΓ∗), a function call to proc2 should be made where
the return address l is still in the stack, i.e., before the procedure proc returns (this is
ensured by Γ+lΓ∗). Note that, in our modeling, the topmost symbol of the stack of the
PDS stores the current control point, the rest of the stack stores the return addresses of
the calling procedures, i.e., the procedures that have not returned yet.

It is shown in [41] that SCTPL model checking for PDSs is decidable. Thus, we
can automatically check whether a program violates or not API usage rules by SCTPL
model-checking for PDSs. To make the verification of API usage rules more efficient,
we introduce the procedure-cutting abstraction, which is an abstraction that drastically
reduces the size of the program model by removing some procedures that do not use
the API functions specified in the SCTPL formula. We also consider rSCTPL, a sub-
logic of SCTPL and show that the procedure-cutting abstraction preserves all rSCTPL
formulas when the removed procedures are infinite execution free. rSCTPL is sufficient
to express all the API usage rules we met. Moreover, rSCTPL can describe all API usage
rules we met. Our abstraction allowed us to apply our techniques to large programs.

The main contributions of this paper are:

1. We propose a novel approach to precisely specify API usage rules using SCTPL.
SCTPL allows library providers to formally describe API usage rules when imple-
menting the libraries.

2. We can automatically check programs against API usage rules by SCTPL model-
checking. Our techniques also allow program developers to automatically verify
API usage rules of their programs without any additional inputs nor environment
abstractions.

3. We propose a procedure-cutting abstraction. We show that this abstraction pre-
serves all rSCTPL formulas when the cut procedures are infinite execution free.
Our abstraction reduces drastically the size of the program model, which makes
API usage rules verification more efficient.

4. We implemented our techniques in a tool and applied it to check several API usage
rules on several open source programs. Our tool was able to find several unknown
bugs in some well-known open source programs, such as Nssl, Verbs, Acacia+,
Walksat and Getafix.

Outline. Section 2 gives a formal definition of PDSs. Section 3 recalls the definition
of SCTPL, and shows how to precisely specify API usage rules in SCTPL. Section
4 describes the procedure-cutting abstraction and the sub-logic rSCTPL of SCTPL.
Section 5 discusses the experimental results. The related work is given in Section 6.



Model-Checking Software Library API Usage Rules 195

2 Formal Model: Pushdown Systems

In this section, we recall the definition of pushdown systems. We use the approach
of [23] to model a sequential program as a pushdown system.

A Pushdown System (PDS) is a tuple P = (P, Γ, Δ), where P is a finite set of control
locations, Γ is the stack alphabet, Δ ⊆ (P×Γ)× (P×Γ∗) is a finite set of transition rules.
A configuration 〈p, ω〉 of P is an element of P × Γ∗. We write 〈p, γ〉 ↪→ 〈q, ω〉 instead
of ((p, γ), (q, ω)) ∈ Δ. The successor relation �P⊆ (P × Γ∗) × (P × Γ∗) is defined as
follows: if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉�P 〈q, ωω′〉 for every ω′ ∈ Γ∗. A path of the
PDS is a sequence of configurations c1c2... such that ci+1 is an immediate successor of
the configuration ci, i.e., ci �P ci+1, for every i ≥ 1.

3 API Usage Rules Specification

In this section, we recall the definition of the Stack Computation Tree Predicate Logic
(SCTPL) [41], and show how to specify API usage rules in SCTPL.

3.1 Environments, Predicates and Regular Variable Expressions

Hereafter, we fix the following notations. Let X = {x1, x2, ...} be a finite set of variables
ranging over a finite domain D. Let B : X ∪ D −→ D be an environment function
that assigns a value v ∈ D to each variable x ∈ X and such that B(v) = v for every
v ∈ D. B[x ← v] denotes the environment function such that B[x ← v](x) = v and
B[x← v](y) = B(y) for every y � x. Let B be the set of all the environment functions.

Let AP be a finite set of atomic propositions, APX be a finite set of atomic predicates
in the form of a(α1, ..., αm) such that a ∈ AP, αi ∈ X ∪D for every 1 ≤ i ≤ m, and APD
be a finite set of atomic predicates of the form a(α1, ..., αm) such that a ∈ AP, αi ∈ D
for every 1 ≤ i ≤ m.

Given a PDS P = (P, Γ, Δ), let R be a finite set of regular variable expressions over
X ∪ Γ given by: e ::= ∅ | ε | a ∈ X ∪ Γ | e + e | e · e | e∗.

The language L(e) of a regular variable expression e is a subset of P×Γ∗ ×B defined
inductively as follows: L(∅) = ∅; L(ε) = {(〈p, ε〉,B) | p ∈ P,B ∈ B}; L(x), where x ∈ X
is the set {(〈p, γ〉,B) | p ∈ P, γ ∈ Γ,B ∈ B : B(x) = γ}; L(γ), where γ ∈ Γ is the set
{(〈p, γ〉,B) | p ∈ P,B ∈ B}; L(e1 + e2) = L(e1) ∪ L(e2); L(e1 · e2) = {(〈p, ω1ω2〉,B) |
(〈p, ω1〉,B) ∈ L(e1); (〈p, ω2〉,B) ∈ L(e2)}; and L(e∗) = {(〈p, ω〉,B) | B ∈ B and ω =
ω1 · · ·ωm, s.t. ∀i, 1 ≤ i ≤ m, (〈p, ωi〉,B) ∈ L(e)}. E.g., (〈p, γ1γ2γ2〉,B) is an element of
L(γ1x∗) when B(x) = γ2.

3.2 Stack Computation Tree Predicate Logic

A SCTPL formula is a CTL formula where predicates and regular variable expres-
sions are used as atomic propositions and variables can be quantified. Regular variable
expressions are used to express predicates on the stack content of the PDS. More pre-
cisely, the set of SCTPL formulas is given by (where x ∈ X, a(x1, ..., xm) ∈ APX and
e ∈ R):

ϕ ::= a(x1, ..., xm) | e | ¬ϕ | ϕ ∧ ϕ | ∀x ϕ | EXϕ | EGϕ | E[ϕUϕ].



196 F. Song and T. Touili

Let ϕ be a SCTPL formula. The closure cl(ϕ) denotes the set of all the subformulas of
ϕ including ϕ.

Given a PDS P = (P, Γ, Δ) s.t. Γ ⊆ D, let λ : APD → 2Γ be a labeling function that
assigns a set of stack symbols to a predicate. Let c ∈ P × Γ∗ be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B ∈ B s.t. c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xm) iff n ∈ λ(a(B(x1), ...,B(xm))) and c = 〈p, nω〉.

– c |=B
λ e iff (c,B) ∈ L(e).

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ¬ψ iff c �|=B
λ ψ.

– c |=B
λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B

λ ψ.
– c |=B

λ E[ψ1Uψ2] iff there exists a path π = c0c1... of P with c0 = c s.t. ∃i ≥ 0, ci |=B
λ

ψ2 and ∀0 ≤ j < i, c j |=B
λ ψ1.

– c |=B
λ EGψ iff there exists a path π = c0c1... of P with c0 = c s.t. ∀i ≥ 0: ci |=B

λ ψ.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies ψ under the environment B.

We will freely use the following abbreviations: AXψ = ¬EX(¬ψ), EFψ = E[trueUψ],
AGψ = ¬EF(¬ψ), AFψ = ¬EG(¬ψ), A[ψ1Uψ2] = ¬E[¬ψ2U(¬ψ1∧¬ψ2)]∧¬EG¬ψ2,
A[ψ1Rψ2] = ¬E[¬ψ1U¬ψ2], E[ψ1Rψ2] = ¬A[¬ψ1U¬ψ2], and ∃xψ = ¬∀x¬ψ.

Theorem 1. [41] SCTPL model-checking for PDSs is decidable.

3.3 Extracting Predicates for API Specifications

API usage rules often state properties concerning the order of API function calls and
return value tests. Indeed, usually, after making a call to an API function, one has to
check whether the call was successful. For example, when fopen is called to open a
file t1, one has to make sure that the call was successful, i.e., that the file t1 exists
(as done in Figure 2, Line n4). Thus, to check API usage rules, we need to extract
predicates about API function calls and return value tests. To do this, for every API
function call y = f (p1, ..., pm) at a control point n where y denotes the return value2 and
for every 1 ≤ i ≤ m, pi denotes the ith parameter of the function f , we add the predicate
f (p1, ..., pm, y) to APD and associate this predicate to the control point n (i.e., we let
n ∈ λ( f (p1, ..., pm, y))). By abuse of notation, such predicates f (p1, ..., pm, y) will also
be denoted by y = f (p1, ..., pm).

For every boolean expression b in a conditional statement (e.g., if-then-else, switch-
case) at a control point n s.t. y is used in b and y is a return value of some function
call, we add the predicate Test(y) in APD and associate this predicate to n (i.e., we let
n ∈ λ(Test(y))).

Intuitively, for every ω ∈ Γ∗, a configuration 〈s0, nω〉 satisfies the atomic predicateσ
(i.e., σ is y = f (p1, ..., pm) or Test(x)) iff σ is associated to n (i.e., n ∈ λ(σ) ). W.l.o.g.,
we suppose that the return value of some API function is immediately checked in the
same procedure where the API function is called. This assumption will not restrict the
usefulness of the libraries, and it is recommended to check the return value immediately
after the function call.

2 W.l.o.g., we assume that each function call has a return value assigned to some variable.



Model-Checking Software Library API Usage Rules 197

〈s0, n1〉 ↪→ 〈s0, fo0n2〉
〈s0, n2〉 ↪→ 〈s0, fo0n3〉
〈s0, n3〉 ↪→ 〈s0, fo0n4〉
〈s0, n4〉 ↪→ 〈s0, n5〉
〈s0, n5〉 ↪→ 〈s0, fc0n6〉
〈s0, n6〉 ↪→ 〈s0, fc0n7〉

λ(f1 = fopen(“t1”, “w”)) = {n1}
λ(f2 = fopen(“t2”, “w”)) = {n2}
λ(f3 = fopen(“t3”, “w”)) = {n3}
λ(Test(f1)) = {n4}
λ(fclose(f1)) = {n5}
λ(fclose(f3)) = {n6}

(a) (b)

Fig. 2. (a) The labeling function λ and (b) Transition rules Δ

3.4 An Illustrating Example

To illustrate our approach, we show how to specify the API usage rules for the GNU
socket library.

Description of the Socket Library The socket library implements a generalized in-
terprocess communication channel. It provides TCP and UDP Protocols. As shown in
Figure 3, a server-side program using the TCP Protocol should first create a socket s by
calling socket with SOCK STREAM as second parameter, then bind s to some address
by calling bind and listen to the address by calling listen. When the server receives a
connection request, it will create a new socket ns by calling accept. Then, the server
can communicate with the client by calling send and recv via the socket ns. Finally, s
and ns should be destroyed by calling close.

Figure 4 shows a typical application of the TCP Protocol at the client-side. It con-
nects to a server by calling connect after creating the socket s. Then, it can communicate
with the server by calling send and recv via the socket s. Finally, s should be destroyed
by calling close.

The server-side program using the UDP Protocol should create a socket s by calling
socket with SOCK DGRAM as second parameter as shown in Figure 5. After that, it
should bind s to some address by calling bind. Then, it can communicate with a client
by calling recvfrom and sendto via s. Finally, the socket s should be closed by calling
close. The client-side program using the UDP Protocol can communicate with a server
by calling recvfrom and sendto via a socket s after its creation. Figure 6 is a typical
implementation of the UDP Protocol at the client-side.

1 i n t s , c , ns ;
2 i f ( ( s = s o c k e t ( AF INET , SOCK STREAM, 0) )== −1)
3 r e t u r n ;
4 i f ( b ind ( s ,& s a d d r , l e n )==−1)
5 { c l o s e ( s ) ; r e t u r n ;}
6 i f ( l i s t e n ( s ,5)== −1){ c l o s e ( s ) ; r e t u r n ;}
7 w h i l e ( 1 ){
8 ns = a c c e p t ( s ,& c addr , &s i z e ) ;
9 do{

10 r e c v ( ns , da ta , 2 5 6 , 0 ) ;
11 . . .
12 s end ( ns , da ta , 2 5 6 , 0 ) ;
13 i f ( cond1 ){ c l o s e ( ns ) ; r e t u r n ;}
14 }w h i l e ( cond2 )
15 }
16 c l o s e ( s ) ;

Fig. 3. TCP Server-side

1 i n t s ;
2 i f ( ( s= s o c k e t ( AF INET , SOCK STREAM,
3 0))== −1)
4 r e t u r n ;
5 . . .
6 c o n n e c t ( s ,& s a d d r , l e n )
7 do{
8 s end ( s , da ta , 2 5 6 , 0 ) ;
9 . . .

10 r e c v ( s , da ta , 2 5 6 , 0 ) ;
11 }w h i l e ( cond3 )
12 c l o s e ( s ) ;

Fig. 4. TCP Client-side



198 F. Song and T. Touili

1 i n t s ;
2 i f ( ( s = s o c k e t ( AF INET , SOCK DGRAM, 0) )== −1)
3 r e t u r n ;
4 i f ( b ind ( s ,& s a d d r , s i z e o f ( s a d d r ))== −1)
5 { c l o s e ( s ) ; r e t u r n ; }
6 do{
7 recv f rom ( s , da t a , 256 , 0 , & c addr , l e n ) ;
8 s e n d t o ( s , da t a , 256 , 0 , & c addr , l e n ) ;
9 }w h i l e ( cond4 )

10 c l o s e ( s ) ;

Fig. 5. UDP Server-side

1 i n t s ;
2 i f ( ( s= s o c k e t ( AF INET ,SOCK DGRAM,
3 0))== −1)
4 r e t u r n ;
5 do ( 1 ){
6 s e n d t o ( s , da t a , 256 , 0 , & addr , l e n ) ;
7 . . .
8 recv f rom ( s , da t a , 256 , 0 , & addr , l e n ) ;
9 }w h i l e ( cond5 )

10 c l o s e ( s ) ;

Fig. 6. UDP Client-side

Specifying the Socket Library API Usage Rules in SCTPL. Table 1 shows some
SCTPL formulas describing some API usage rules of the socket library. Let us consider
the API usage rule “The return value of socket should be checked immediately after the
call to socket is made, and after a socket is created, this socket should be destroyed in all
the future paths”. We can specify this rule by the SCTPL formula r1 as shown in Table
1. r1 states that whenever the call to socket is made in a procedure proc whose return
address is l (the regular predicate ΓlΓ∗ ensures that the return address of the procedure
proc is l), the return value stored in the variable y should be eventually checked in all
the future paths (i.e., Test(y)) inside this procedure (this is ensured by the fact that the
stack is still of the form ΓlΓ∗ when the test of y is made). After this test, the socket y
should be eventually closed in all the future paths (this is ensured by EXAF close(y)).
The other rules in Table 1 are explained as follows.

The formula r2 states that whenever bind is called to bind the socket to some address
in a procedure whose return address is l, the user has to check whether the binding is
correct before this procedure returns. r3 and r4 are similar to r2.

The formula r5 specifies that a socket y should be created (y = socket(−,−,−)) prior
to binding the socket y to some address (bind(y,−,−)), where − matches any constant
(i.e., a variable quantified by ∀). r6 is similar to r5.

The formula r7 states that any occurrence of connect(y,−) should be preceded by an
occurrence of y = socket(−, S OCK S TREAM,−) using the TCP Protocol.

Table 1. A set of API usage rules of the Socket Library extracted from the Socket library manual

No. Rule

r1 ∀y ∀l AG
((

y = socket(−,−,−) ∧ ΓlΓ∗
)
=⇒ AF

(
T est(y) ∧ ΓlΓ∗ ∧ EX AF close(y)

))

r2 ∀y ∀l AG
(
y = bind(−,−,−) ∧ ΓlΓ∗ =⇒ AF (T est(y) ∧ ΓlΓ∗)

)

r3 ∀y ∀l AG
(
y = listen(−,−) ∧ ΓlΓ∗ =⇒ AF (T est(y) ∧ ΓlΓ∗)

)

r4 ∀y ∀l AG
(
y = connect(−,−,−) ∧ ΓlΓ∗ =⇒ AF (T est(y) ∧ ΓlΓ∗)

)

r5 ∀y A[y = socket(−,−,−) R ¬bind(y,−,−)]
r6 ∀y A[listen(y,−) R ¬accept(y,−,−)]
r7 ∀y A[y = socket(−, S OCK S T REAM,−) R ¬connect(y, −,−)]
r8 ∀y A[(y = socket(−, S OCK S T REAM,−) ∧A[bind(y,−,−) R ¬listen(y,−)]) R ¬listen(y,−)]
r9 ∀y A[connect(y, −,−) ∨ y = accept(−,−,−) R ¬send(y,−,−,−)]
r10 ∀y A[connect(y,−,−) ∨ y = accept(−,−,−) R ¬recv(y,−,−,−)]
r11 AG ∀y

(
y = accept(−,−,−) =⇒ AF close(y)

)

r12 ∀y A[y = socket(−, S OCK DGRAM,−) R ¬(sendto(y,−,−,−,−,−) ∨ recv f rom(y,−,−,−,−,−))]
r13 ∀y A[sendto(y,−,−,−,−,−) ∨ bind(y,−,−) R ¬recv f rom(y,−,−,−,−,−)]



Model-Checking Software Library API Usage Rules 199

The formula r8 specifies that any occurrence of listening to a socket y (listen(y,−))
should be preceded by an occurrence of creating the socket y using the TCP Proto-
col (y = socket(−, S OCK S TREAM,−)), and the socket y should be bound to some
address (bind(y,−,−)) before listening.

The formula r9 states that before sending a data (send(y,−,−,−)) via a socket
y, the socket y should either be connected to the target server at the client-side (connect
(y,−,−)) or y should be the socket created by y = accept(−,−,−) at the server-side. r10

is similar.
The formula r11 specifies that the new socket created by y = accept(−,−,−) should

be eventually closed (close(y)) in all the future paths.
The formula r12 states that the socket should be created using the UDP Protocol

(y = socket(−, S OCK DGRAM,−)) prior to sending (sendto(y,−,−,−,−)) or receiving
(recv f rom (y,−,−,−,−)) some data using the UDP Protocol.

The formula r13 specifies that before receiving (recv f rom(y,−,−,−,−)) some data
using the UDP Protocol, one has to send some data (sendto(y,−,−,−,−)) to the server at
the client-side or bind (bind(y,−,−)) the socket to some address at the server-side. Since
using the UDP protocol, no connection is created, the client sends data by specifying
the target address in the third parameter of the function sendto. After this, the client can
receive data from the server. The server can send data only after receiving the client
address from some client.

Checking the API Usage Rules. Consider the program in Figure 3. If cond1 is true
(Fig. 3: line 13), the socket s will never be closed. The SCTPL formula r1 can detect
this bug by model-checking the program against r1. Consider the program in Figure 4,
if the client managed to connect to a server which only supports the UDP Protocol as
in Figure 5, the connection at line 5 of Figure 4 will fail, then sending (Figure 4: line 7)
or receiving (Figure 4: line 9) some data via the socket s will induce an error. This error
can be detected by checking the SCTPL formula r4.

4 rSCTPL and The Procedure-Cutting Abstraction

To make API usage rules verification more efficient, it is important to model programs
by PDSs having small size. We propose in this section to use the procedure-cutting
abstraction to drastically reduce the size of the program model. The procedure-cutting
abstraction removes all the procedures whose runs don’t call any API function specified
in the given SCTPL formula. We characterize a sub-logic rSCTPL of SCTPL that is
sufficient to specify all the API usage rules that we met, and we show that the procedure-
cutting abstraction preserves all rSCTPL formulas.

4.1 Procedure-Cutting Abstraction

Let M be a program that consists of a finite set of procedures Proc = {proci | 1 ≤
i ≤ m}. Each procedure proci will generate transition rules in the PDS model. Imagine
there exists some procedure proc j whose runs do not call any API function specified in
the given SCTPL formula ψ, then removing proc j will not change the satisfiability of



200 F. Song and T. Touili

ψ. This means that the procedure proc j can be cut. Cutting such procedure proc j will
drastically reduce the size of the PDS model. We call this procedure-cutting abstraction.
From the PDS’s point of view, a function call statement y = proc j(...) at a control
point n (suppose n′ is the next control point of n) is represented by the transition rule
ρ = 〈s0, n〉 ↪→ 〈s0, eproc j n

′〉where eproc j denotes the entry control point of the procedure
proc j. Whenever the procedure proc j can be cut, we will add the transition rule ρ′ =
〈s0, n〉 ↪→ 〈s0, n′〉 instead of ρ. The transition rule ρ′ expresses that the run from n will
immediately move to n′ without entering the procedure proc j. By doing the procedure-
cutting abstraction, the size of the stack alphabet and transition rules will be drastically
reduced.

Formally, to compute the abstracted program, we proceed as follows. Let M be a
program, a call graph ofM is a tuple G = (Proc, E, proc0), where Proc is a finite set of
nodes denoting the procedure names ofM; E ⊆ Proc×Proc is a finite set of edges such
that (proci, proc j) ∈ E, denoted by proci −→ proc j, iff proc j is called in the procedure
proci; proc0 ∈ Proc is the initial node corresponding to the entry procedure (usually,
the main function) ofM. A node proci can reach the node proc j iff there exists a set
of edges prock1 −→ prock2 , ..., prockm −→ prockm+1 in E such that k1 = i and km+1 = j.
Let Op(ψ) = {proc ∈ AP | ∃proc(x1, ..., xm) ∈ cl(ψ) ∧ proc � Test} denote the set
of atomic propositions (i.e., API function names) used in the SCTPL formula ψ except
the additional atomic proposition Test. The procedure-cutting abstraction computes the
abstracted programM′ by (1) removing all the procedures proc ∈ Proc s.t. the node
proc cannot reach any node of Op(ψ) in G (i.e., the run of proc will not call any function
in Op(ψ)), and (2) replacing each function call y = proc(p1, ..., pm) by a skip statement,
i.e., no operation statement.

Proposition 1. Given a program M and a SCTPL formula ψ, we can compute the
abstracted programM′ in linear time.

4.2 The rSCTPL Logic

The procedure-cutting abstraction can drastically reduce the size of the program model.
However, it cannot preserve all SCTPL formulas. Indeed, formulas using the X oper-
ator without any restriction are not preserved, since the procedure-cutting abstraction
removes procedures in the programs and replaces some function calls by skip. However,
formulas of the form a(x1, ..., xm) ∧ EXφ and a(x1, ..., xm) ∧ AXφ are preserved when
φ is a regular predicate e or its negation ¬e or a SCTPL formula using the X operator
as in the above form. Indeed, if the predicate a(x1, ..., xm) appearing in a SCTPL for-
mula (a function call or a return value test) is made in some procedure proc, then all
the procedures including proc whose runs can reach proc will not be removed by the
procedure-cutting abstraction. This implies that the next control point of a(x1, ..., xm)
will not be removed and the stack content at the next control point in the abstracted
programM′ is the same as inM.

Moreover, formulas using regular variable expressions (e.g. e, ¬e) without any re-
striction are not preserved. Indeed, control points in M satisfying e or ¬e may be re-
moved by the procedure-cutting abstraction. Thus, the runs of M′ cannot reach these
control points. However, formulas of the form a(x1, ..., xm) ∧ e or a(x1, ..., xm) ∧ ¬e



Model-Checking Software Library API Usage Rules 201

are preserved. Since all the procedures which can reach the procedure proc where
a(x1, ..., xm) is made are not removed, each control point in M satisfying a(x1, ..., xm)
has the same calling procedures (i.e., stack content) as inM′. Then, a configuration of
M satisfies a(x1, ..., xm) ∧ e iff this configuration ofM′ satisfies a(x1, ..., xm) ∧ e.

Based on the above observations, we define rSCTPL as follows (where a(x1, ..., xm) ∈
APX, x ∈ X, and e ∈ R):

ϕ ::= a(x1, ..., xm) | ¬a(x1, ..., xm) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ | ∃x ϕ
| A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ] | a(x1, ..., xm) ∧ ψ

ψ ::= e | ¬e | EXe | AXe | EX¬e | AX¬e | EXϕ | AXϕ

Intuitively, rSCTPL is a sub-logic of SCTPL, where (1) the next time operator X is
used only to specify that a rSCTPL formula ψ or a regular predicate e or its negation ¬e
holds immediately after an atomic predicate holds (i.e., an API function call is made or
a return value is tested), and (2) regular predicates and their negations are conjuncted
with atomic predicates. rSCTPL is sufficient to specify all the API usage rules we met.

However, the procedure-cutting abstraction does not preserve rSCTPL formulas when

a cut procedure has an infinite execution. For instance, let n1
stmt−→ n2 be an edge s.t. stmt

is a function call y = f (p1, ..., pm) and the procedure f has an infinite execution. Sup-
pose we replace this function call by skip. If n1 and all the control locations of f don’t
satisfy the atomic predicate a (i.e., API function calls or return value test), while n2

satisfies a, then the configuration 〈s0, n1ω〉 ofM satisfies EG¬a, but 〈s0, n1ω〉 does not
satisfy EG¬a inM′ due to the removal of the infinite execution. On the other hand, if n1

and all the control locations of f do not satisfy the atomic predicate a, while n2 satisfies
the atomic predicate b, then the configuration 〈s0, n1ω〉 ofM′ satisfies A[¬aUb] due to
the removal of the infinite execution, while 〈s0, n1ω〉 does not satisfy A[¬aUb] in M
(since b is never true in the infinite execution). We can show the following theorem.

Theorem 2. Let ψ be a rSCTPL formula. LetM be a program andM′ be the program
obtained fromM by applying the procedure-cutting abstraction. Let P (resp. P′) be the
PDS modeling the program M (resp. M′). If all the removed procedures are infinite
execution free, then P satisfies ψ iff P′ satisfies ψ.

5 Experiments

We implemented our techniques in a tool for API usage rules verification. Given a
programM using some libraries which are equipped with the API usage rules specified
in rSCTPL, our tool automatically answers either Yes or No, depending on whether the
program violates the API usage rules or not.

In our implementation, we use goto-cc [31] to parse ANSI-C programs into goto-
cc binary programs. We implemented a translator translating goto-cc binary programs
into pushdown systems and outputs the required predicates as discussed in Section 3.3.
We use the SCTPL model-checker of [41] as engine. In our experiments, we consider
several API usage rules: the socket library API usage rules and the file operation usage
rules. We checked several open-source C programs against these API usage rules. All
the experiments were run on a Linux platform (Fedora 13) with a 2.4GHz CPU and 2GB



202 F. Song and T. Touili

of memory. The time limit is fixed to 30 minutes. Our tool detected several previously
unknown errors in some well-known open source programs. The run time consists of
the time spent for parsing goto-cc binary programs and model-checking. It excludes
the time for translating ANSI-C programs into goto-cc binary programs. We also run
our tool without considering the procedure-cutting abstraction. We observed that the
procedure-cutting abstraction significantly speeds up the analysis.

5.1 Checking The Socket Library API Usage Rules

To check the socket library API usage rules shown in Table 1, we checked seven open-
source programs from SourceForge [12] which are written in C and use the socket
library, and four generic tutorial socket programs written by Seshadri [37].

The benchmark contains the following programs. Comserial is a program that helps
turn console application into a web based service, by reading from TCP connections
and providing commands from each connection to applications through a socket. Mr-
ChaTTY is a chat program that allows users to chat via UNIX terminals through sock-
ets. Mrhttpd is a web server. Nerv is a common socket server. Nssl is a netcat-like
program with SSL support. Pop3client is a mail client which reads mail in a console
and connects to servers using POP3 Protocol. Ser2nets is a program allowing network
connections to remote serial ports. TCPC, TCPS, UDPC and UDPS are a TCP client,
a TCP server, a UDP client and a UDP server tutorial programs, respectively.

Table 2 shows the results of checking the socket library API usage rules with the
procedure-cutting abstraction. The row #LOC gives the number of lines of the program.
For 1 ≤ i ≤ 13, the row ri depicts the results of checking the API usage rule ri against
these programs, where the rows Time(s) and Mem(MB) give the time consumption in
seconds and memory consumption in MB, respectively. The result Proved denotes that
the program satisfies the corresponding API usage rule, FA denotes false alarm and Bug
denotes a real bug. o.o.m. (resp. o.o.t.) means run out of memory (resp. time).

We can see from Table 2, there are 22 alarms including Bug and FA. We found that
12 of these alarms are real bugs and the others are false alarms. These false alarms arose
from the fact that we abstract away the data. We found 12 real errors in these programs.
For instance, the program Comserial does not call listen before calling accept in the
file passwdserver.c when argc is 1. Moveover, most of these programs will not close
the socket by calling close nor check the return values of socket in some paths. E.g.,
Comserial does not check the return value (i.e., socket) in the file comserver.c before it
is used. In the file main.c, when it fails in binding a socket to some address, Mrhttpd
will not close this socket before the program terminates.

5.2 Checking File Operation Usage Rules

File reading and writing are frequently used in programs. To read or write a file, a
user has to correctly open the file by calling fopen which returns a file pointer to the
file. Then the user can read from or write to that file. Finally the file pointer should be
closed by calling fclose.

For file operation API usage rules, we consider two rules from stdio.h: F1 = AG ∀ y(
y = f open(−,−) =⇒ AF

(
Test(y)∧EXAF f close(y)

))
and F2 = ∀ y A[y = f open(−,−)



Model-Checking Software Library API Usage Rules 203

Table 2. Results of checking the socket library API usage rules with the procedure-cutting ab-
straction

Program Comserial MrChaTTY Mrhttpd Nerv Nssl Pop3client Ser2nets TCPC TCPS UDPC UDPS
#LOC 1.0k 1.2k 1.4k 1.1k 1.1k 1.6k 7.3k 70 90 50 60

r1

Time(s) 0.08 0.26 0.29 7.94 1.24 0.41 70.53 0.01 0.01 0.01 0.01
Mem(MB) 0.24 0.44 0.66 5.94 1.44 0.58 11.63 0.09 0.13 0.06 0.06

Result Bug FA Bug FA Bug Bug Bug Bug Bug Bug Bug

r2

Time(s) 0.01 0.09 0.01 0.04 0.23 0.01 8.72 0.01 0.01 0.01 0.01
Mem(MB) 0.06 0.35 0.07 0.24 0.36 0.01 2.04 0.01 0.01 0.01 0.01

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r3

Time(s) 0.01 0.09 0.01 0.03 0.11 0.01 9.57 0.01 0.02 0.01 0.01
Mem(MB) 0.05 0.37 0.07 0.20 0.29 0.01 2.03 0.01 0.10 0.01 0.01

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r4

Time(s) 0.01 0.01 0.01 0.11 0.16 0.09 6.31 0.01 0.01 0.01 0.01
Mem(MB) 0.01 0.01 0.01 0.29 0.33 0.29 1.72 0.07 0.01 0.01 0.01

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r5

Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.18 0.01 0.01 0.01 0.01
Mem(MB) 0.04 0.18 0.05 0.22 0.19 0.14 1.07 0.04 0.06 0.04 0.04

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r6

Time(s) 0.06 0.01 0.01 0.01 0.01 0.01 0.20 0.01 0.03 0.01 0.01
Mem(MB) 0.15 0.18 0.05 0.19 0.01 0.01 1.12 0.01 0.10 0.01 0.01

Result Bug Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r7

Time(s) 0.01 0.01 0.01 0.02 0.02 0.02 0.21 0.01 0.01 0.01 0.01
Mem(MB) 0.04 0.15 0.05 0.22 0.19 0.18 0.92 0.05 0.05 0.04 0.04

Result Proved Proved Proved Proved Bug FA Proved Proved Proved Proved Proved

r8

Time(s) 0.01 0.07 0.01 0.09 0.07 0.03 1.03 0.01 0.01 0.01 0.01
Mem(MB) 0.07 0.47 0.08 0.54 0.44 0.30 2.86 0.07 0.12 0.05 0.05

Result Proved Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r9

Time(s) 0.01 0.01 0.01 0.02 0.01 0.01 0.07 0.02 0.01 0.01 0.01
Mem(MB) 0.11 0.34 0.30 0.50 0.29 0.30 1.46 0.08 0.10 0.01 0.01

Result Proved FA Proved Proved Proved FA Proved Proved Proved Proved Proved

r10

Time(s) 0.01 0.01 0.01 0.05 0.01 0.01 0.07 0.01 0.01 0.01 0.01
Mem(MB) 0.11 0.33 0.33 0.75 0.29 0.35 1.46 0.08 0.09 0.01 0.01

Result Proved FA Proved FA Proved FA Proved Proved Proved Proved Proved

r11

Time(s) 0.10 0.56 0.32 - - 0.13 - 0.02 0.03 0.01 0.01
Mem(MB) 0.47 1.97 1.50 o.o.m. o.o.m. 0.39 o.o.m. 0.11 0.17 0.01 0.01

Result Bug Proved Proved - - Proved - Proved Proved Proved Proved

r12

Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.01
Mem(MB) 0.04 0.15 0.05 0.18 0.15 0.14 0.71 0.04 0.05 0.05 0.04

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r13

Time(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.03 0.01 0.01
Mem(MB) 0.05 0.31 0.07 0.17 0.30 0.01 1.46 0.01 0.10 0.05 0.05

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

R¬( f read(−,−,−, y) ∨ f write(−,−,−, y))]. F1 states that whenever a file is opened by
calling fopen where y stores its return file pointer (i.e., y = f open(−,−)), we need to
check whether the opening of the file is correct (i.e., Test(y)), and there exists a next
point after checking y such that the file is eventually closed (i.e., EX AF f close(y)). F2

states that the user cannot read from or write to a file pointer y unless the file pointer y
points to some file (i.e., has already been opened).

To evaluate these two rules, we checked the following open source programs which
use file API functions from stdio.h. Verbs is a bounded model checker [10]. Getafix is a
symbolic model-checker for recursive boolean programs [3]. Moped is a model-checker
for pushdown systems [7]. Acacia+ is a tool for LTL realizability and synthesis [1].
Mist is a solver of the coverability problem for monotonic extensions of Petri nets [6].
Elastic is a translator from elastic specifications to hytech or uppaal language [2]. Mckit



204 F. Song and T. Touili

Table 3. Results of checking the API usage rules F1 and F2 with the procedure-cutting
abstraction

Program Verbs Getafix Moped Acacia+ Mist Elastic Mckit TSPASS MiniSat Walksat Ubcsat
#LOC 4.0k 11.5k 30.3k 8.0k 16.0k 15.4k 26.7k 62.3k 1.4k 1.4k 16.9k

F1

Time(s) 0.96 0.18 9.92 0.05 0.01 1.45 - 0.25 0.01 0.06 216.88
Mem(MB) 1.17 0.36 10.52 0.20 0.10 2.99 o.o.m. 0.67 0.08 0.28 15.92

Result Bug Bug Proved Bug Proved Proved - Proved Proved Bug FA

F2

Time(s) 0.08 0.29 9.67 0.01 0.26 0.89 23.60 0.01 0.01 0.01 0.06
Mem(MB) 0.50 0.84 10.26 0.09 0.90 2.94 15.00 0.27 0.27 0.13 0.89

Result FA Proved FA Proved FA FA Proved Proved FA Proved Proved

is a model-checking Kit [4]. TSPASS is a fair automated theorem prover for monodic
first-order temporal logic with expanding domain semantics and propositional linear-
time temporal logic [8]. Walksat, MiniSat and Ubcsat are three SAT solvers [5,9,11].

Table 3 shows the results of checking these programs against F1 and F2 with the
procedure-cutting abstraction. As shown in Table 3, we found that Verbs, Getafix,
Acacia+ and MiniSat have real errors. E.g., in the file main.c, Verbs does not close
an opened file by calling fclose before the program terminates. Moreover, in the files
issat.c, main.c and util.c, a file pointer is used without checking whether it is NULL
or not (i.e., whether the file exists or not). Acacia+, Walksat and Getafix do not close
opened files which are opened in main.c, walksat.c, bpsuspend.y and bp.y, respectively.

6 Related Work

There has been a lot of works on API usage rules specification and checking [13–16,19,
22, 24–26, 28, 30, 32–36, 38, 44–47]. However, all these works cannot specify context-
sensitive specifications, whereas our approach can.

Some tools dedicated to software model-checking were used to check API usage
rules for device drivers, such as DDVerify [46]. But, these tools can only check safety
properties. Other works on software model-checking, such as [17, 18, 27, 42, 43], could
be applied to check API usage rules. However, all these works cannot check full CTL
properties.

Model-checking is used to verify security-critical applications in which security vul-
nerabilities are expressed by safety properties over API functions [20, 21]. However,
these works consider only safety properties.

Code contracts introduced in [24] can specify pre/post-conditions and invariants for
each API function. Programmers have to make sure that a pre-condition (resp. post-
condition) holds at the entry (resp. exit) of each API function, and that invariants always
hold inside the API function. These code contracts can be verified via either runtime
checking or static checking at compile time. However, they cannot specify relations
between API functions which are often used in API usage rules.

Mining-based methods are proposed [13–15,19,22,25,26,30,32,33,35,38,45,47] to
discover API usage rules from executing traces or source codes, where API usage rules
are represented by some patterns or finite automata. One can apply model-checking
techniques to check whether programs violate or not API usage rules represented by
patterns or finite automata. However, all these works cannot specify data dependencies



Model-Checking Software Library API Usage Rules 205

between API functions’ parameters and return values of API functions. This disallows
one to precisely express API usage rules. Variables are introduced into finite automata
to specify data dependencies between API functions in [15, 28]. However, these works
cannot express CTL-like properties (e.g., the above file operation API usage rule), and
do not show how to check whether programs violate or not API usage rules represented
by finite automata equipped with variables.

A class of temporal properties, called QBEC, is used to specify API usage rules us-
ing at most one temporal operator [34]. We can show that SCTPL is more expressive
than QBEC. Indeed, all the temporal operators in QBEC can be expressed by SCTPL
formulas. Ramanathan et al propose a formalism in [36] to specify data-dependence be-
tween API functions. However, they only consider mining preconditions of API func-
tions rather than verification. CTL extended with variables is proposed to specify API
usage rules in [44]. However, this work cannot specify context-sensitive specifications
which is important for API usage rules.

SCTPL is introduced in our previous work [41], in which SCTPL is used to ex-
press malicious behaviors and model-checking is applied to detect malware. Although,
SCTPL is as expressive as CTL with regular valuations [39], in [41], we have shown
that SCTPL model-checking is more efficient than CTL model-checking with regular
valuations.

References

1. Acacia+, http://lit2.ulb.ac.be/acaciaplus/
2. elastic, http://www.ulb.ac.be/di/ssd/madewulf/aasap/
3. Getafix, http://www.cs.uiuc.edu/madhu/getafix/
4. Mckit, http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
5. Minisat, C.: language version, http://minisat.se/MiniSat.html
6. Mist2, http://software.imdea.org/pierreganty/software.html
7. Moped, http://www.fmi.uni-stuttgart.de/szs/tools/moped/
8. Tspass, http://www.csc.liv.ac.uk/michel/software/tspass/
9. Ubcsat, http://ubcsat.dtompkins.com/

10. Verbs, http://lcs.ios.ac.cn/zwh/verbs/index.html
11. Walksat, version 35, http://www.cs.rochester.edu/kautz/walksat/
12. SourceForge (2012), http://sourceforge.net
13. Acharya, M., Xie, T.: Mining API error-handling specifications from source code. In:

Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 370–384. Springer,
Heidelberg (2009)

14. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code:
From usage scenarios to specifications. In: ESEC/FSE 2007 (2007)

15. Ammons, G., Bodı́k, R., Larus, J.R.: Mining specifications. In: POPL (2002)
16. Besson, F., Jensen, T.P., Métayer, D.L.: Model checking security properties of control flow

graphs. Journal of Computer Security (2001)
17. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST.

In: STTT (2007)
18. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of software com-

ponents in C. IEEE Trans. Software Eng. 30(6) (2004)
19. Chen, F., Roşu, G.: Mining parametric state-based specifications from executions. Technical

report (2008)

http://lit2.ulb.ac.be/acaciaplus/
http://www.ulb.ac.be/di/ssd/madewulf/aasap/
http://www.cs.uiuc.edu/madhu/getafix/
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
http://minisat.se/MiniSat.html
http://software.imdea.org/pierreganty/software.html
http://www.fmi.uni-stuttgart.de/szs/tools/moped/
http://www.csc.liv.ac.uk/michel/software/tspass/
http://ubcsat.dtompkins.com/
http://lcs.ios.ac.cn/zwh/verbs/index.html
http://www.cs.rochester.edu/kautz/walksat/
http://sourceforge.net


206 F. Song and T. Touili

20. Chen, H., Dean, D., Wagner, D.: Model checking one million lines of C code. In: NDSS
(2004)

21. Chen, H., Wagner, D.: Mops: an infrastructure for examining security properties of software.
In: ACM Conference on Computer and Communications Security (2002)

22. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with ADABU.
In: WODA (2006)

23. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model check-
ing pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
Springer, Heidelberg (2000)

24. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation. In: Beckert,
B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30. Springer, Heidelberg
(2011)

25. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties from
dynamic traces. In: FSE (2008)

26. Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: ICSE (2008)
27. Godefroid, P.: Software model checking: The Verisoft approach. Formal Methods in System

Design 26 (2005)
28. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/SIGSOFT FSE

(2005)
29. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model

checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

30. Kremenek, T., Twohey, P., Back, G., Ng, A.Y., Engler, D.R.: From uncertainty to belief:
Inferring the specification within. In: OSDI (2006)

31. Kroening, D.: CBMC (2012), http://www.cprover.org/cbmc
32. Liu, C., Ye, E., Richardson, D.J.: Software library usage pattern extraction using a software

model checker. In: ASE (2006)
33. Lo, D., Khoo, S.-C.: SMArTIC: towards building an accurate, robust and scalable specifica-

tion miner. In: FSE 2006 (2006)
34. Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining quantified temporal rules:

Formalism, algorithms, and evaluation. In: WCRE (2009)
35. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models.

In: ICSE 2008 (2008)
36. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference using predi-

cate mining. In: PLDI (2007)
37. Seshadri, P.: Generic Socket Programming tutorial (2008), http://www.

prasannatech.net/2008/07/socket-programming-tutorial.html
38. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using automata-

based abstractions. IEEE Trans. Software Eng. (2008)
39. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. In:

Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 434–449. Springer,
Heidelberg (2011)

40. Song, F., Touili, T.: Efficient malware detection using model-checking. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433. Springer, Heidelberg (2012)

41. Song, F., Touili, T.: Pushdown model checking for malware detection. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125. Springer, Heidelberg (2012)

42. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs. Autom.
Softw. Eng. (2003)

43. Visser, W., Mehlitz, P.C.: Model checking programs with java pathFinder. In: Godefroid, P.
(ed.) SPIN 2005. LNCS, vol. 3639, pp. 27–27. Springer, Heidelberg (2005)

http://www.cprover.org/cbmc
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html


Model-Checking Software Library API Usage Rules 207

44. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom.
Softw. Eng. (2011)

45. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: ESEC/FSE
(2007)

46. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent linux
device drivers. In: ASE (2007)

47. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules
from imperfect traces. In: ICSE (2006)


	Model-Checking Software Library API Usage Rules
	1 Introduction
	2 Formal Model: Pushdown Systems
	3 API Usage Rules Specification
	3.1 Environments, Predicates and Regular Variable Expressions
	3.2 Stack Computation Tree Predicate Logic
	3.3 Extracting Predicates for API Specifications
	3.4 An Illustrating Example

	4 rSCTPL
and The Procedure-Cutting Abstraction
	4.1 Procedure-Cutting Abstraction
	4.2 The rSCTPL Logic

	5 Experiments
	5.1 Checking The Socket Library API Usage Rules
	5.2 Checking File Operation Usage Rules

	6 Related Work
	References




