
68

Attack as Detection: Using Adversarial Attack Methods to

Detect Abnormal Examples

ZHE ZHAO, GUANGKE CHEN, TONG LIU, and TAISHAN LI, ShanghaiTech University, China

FU SONG, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

and University of Chinese Academy of Sciences, China

JINGYI WANG, Zhejiang University, China

JUN SUN, Singapore Management University, Singapore

As a new programming paradigm, deep learning (DL) has achieved impressive performance in areas such as

image processing and speech recognition, and has expanded its application to solve many real-world prob-

lems. However, neural networks and DL are normally black-box systems; even worse, DL-based software are

vulnerable to threats from abnormal examples, such as adversarial and backdoored examples constructed by

attackers with malicious intentions as well as unintentionally mislabeled samples. Therefore, it is important

and urgent to detect such abnormal examples. Although various detection approaches have been proposed

respectively addressing some specific types of abnormal examples, they suffer from some limitations; until

today, this problem is still of considerable interest. In this work, we first propose a novel characterization

to distinguish abnormal examples from normal ones based on the observation that abnormal examples have

significantly different (adversarial) robustness from normal ones. We systemically analyze those three differ-

ent types of abnormal samples in terms of robustness and find that they have different characteristics from

normal ones. As robustness measurement is computationally expensive and hence can be challenging to scale

to large networks, we then propose to effectively and efficiently measure robustness of an input sample using

the cost of adversarially attacking the input, which was originally proposed to test robustness of neural net-

works against adversarial examples. Next, we propose a novel detection method, named attack as detection

(A2D for short), which uses the cost of adversarially attacking an input instead of robustness to check if it

is abnormal. Our detection method is generic, and various adversarial attack methods could be leveraged.

Extensive experiments show that A2D is more effective than recent promising approaches that were pro-

posed to detect only one specific type of abnormal examples. We also thoroughly discuss possible adaptive

attack methods to our adversarial example detection method and show that A2D is still effective in defending

carefully designed adaptive adversarial attack methods—for example, the attack success rate drops to 0% on

CIFAR10.

This work was supported by the National Natural Science Foundation of China (awards 62072309 and 62102359), the CAS

Project for Young Scientists in Basic Research (YSBR-040), the ISCAS New Cultivation Project (ISCAS-PYFX-202201), the

Key Research and Development Program of Zhejiang (award 2022C01018), and the Ministry of Education, Singapore, under

its Academic Research Fund Tier 3 (award MOET32020-0004). Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not reflect the views of the Ministry of Education, Singapore.

Authors’ addresses: Z. Zhao, G. Chen, T. Liu, and T. Li, ShanghaiTech University, Shanghai, China; e-mails: {zhaozhe1,

chengk, liutong, litsh}@shanghaitech.edu.cn; F. Song (Corresponding author), State Key Laboratory of Computer Sci-

ence, Institute of Software, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China;

e-mail: songfu@ios.ac.cn; J. Wang, Zhejiang University, Hangzhou, China; e-mail: wangjyee@shanghaitech.edu.cn; J. Sun,

Singapore Management University, Singapore; e-mail: junsun@shanghaitech.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2024/03-ART68 $15.00

https://doi.org/10.1145/3631977

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://orcid.org/0000-0003-4189-3258
https://orcid.org/0000-0001-8277-3119
https://orcid.org/0009-0004-5804-6551
https://orcid.org/0000-0002-4121-000X
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0001-7113-7635
https://orcid.org/0000-0002-3545-1392
mailto:permissions@acm.org
https://doi.org/10.1145/3631977
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631977&domain=pdf&date_stamp=2024-03-15

68:2 Z. Zhao et al.

CCS Concepts: • Computing methodologies → Machine learning; • Security and privacy → Software

security engineering; • Computer systems organization→ Reliability;

Additional Key Words and Phrases: Deep learning, neural networks, detection, adversarial examples, back-

doored samples, mislabeled samples

ACM Reference format:

Zhe Zhao, Guangke Chen, Tong Liu, Taishan Li, Fu Song, Jingyi Wang, and Jun Sun. 2024. Attack as Detection:

Using Adversarial Attack Methods to Detect Abnormal Examples. ACM Trans. Softw. Eng. Methodol. 33, 3,

Article 68 (March 2024), 45 pages.

https://doi.org/10.1145/3631977

1 INTRODUCTION

Deep Learning (DL) has arguably become a new programming paradigm that achieves state-of-
the-art performance in many complex real-world tasks and takes over traditional software pro-
grams, such as autonomous driving [3] and medical diagnostics [93]. Despite the success, DL
software are still far from dependable (especially for safety- and security-critical systems), and
like traditional software, they must be properly tested and defended in the presence of malicious
inputs. In particular, DL software face various serious concerns in the presence of abnormal exam-
ples that could be either samples created by attackers with malicious intentions (i.e., adversarial

or backdoored samples) or label errors due to accidents (i.e., mislabeled samples) in the datasets.
Adversarial attacks can be considered as evasion attacks, where the adversary manages to craft

adversarial examples to fool the well-trained Deep Neural Network (DNN) models by adding
slight perturbations onto normal samples. There is a huge body of work proposing various attack
methods and defense mechanisms with regard to adversarial examples, from both the security
and software engineering community [43]. Adversarial attack dates back to the seminal work of
Szegedy et al. [98], who found that DNNs learn input-output mappings that are fairly discontinu-
ous and thus could be fooled on a normal input by adding an imperceptible perturbation. Based
on this finding, they proposed an optimization-based adversarial attack method, called L-BFGS,
to search for adversarial examples. Along this direction, a huge number of sophisticated adver-
sarial attack methods have been proposed, such as FGSM (Fast Gradient Sign Method) [32], BIM
(Basic Iterative GradientMethod) [51], JSMA (Jacobian-Based Saliency Map Attack) [84], Deep-
Fool [76], and C&W [16], to cite a few. Even worse, DNN models are vulnerable to adversarial
examples in physical world scenarios [18, 19, 51, 94], bringing in serious security concerns. Un-
surprisingly, to mitigate adversarial attacks, various defense mechanisms are proposed, aimed to
either improve the robustness of DNN models against adversarial examples, such as Adversarial

Training (AT) [71], defensive distillation [85], and feature squeezing [115], or detect adversarial
examples based on observations that adversarial and benign examples differ in a certain subspace
distribution, such as kernel density [28], local intrinsic dimensionality [70], and manifold [75].
These defense mechanisms are helpful in constructing reliable DNN models, yet they still have
various limitations and have been demonstrated to be vulnerable against specifically designed
adaptive adversarial attack methods [5, 14, 15, 39, 101], where the adversary knows the details
of not only the DNN model under attack but also the deployed defense, and manages to devise a
specific and powerful adversarial attack method so that the defense can be bypassed.

Backdoor attacks can be considered as poisoning attacks, where the adversary tries to embed
backdoors into DNN models so that those models behave normally in the presence of normal
samples and maliciously (i.e., always generating certain target label) in the presence of back-
doored samples (i.e., samples “stamped” with a specific backdoor trigger). BadNets [33] implements

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://doi.org/10.1145/3631977

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:3

backdoor attacks by adding specific perturbations at specified locations of images. Follow-up stud-
ies investigate other ways to conduct backdoor attacks in an effort to make them more covert
or effective [57, 59, 79, 124]. As expected, approaches for eliminating backdoors in DNN mod-
els [36, 60, 63, 103] and detecting backdoored samples [17, 30, 35] have been proposed. But similar
to adversarial attack and defense, backdoor attack methods and defense mechanisms gradually
evolved into an arms race, where newly proposed backdoor attack methods can often defeat old
defense methods [99]. Therefore, it is necessary to understand the characteristics of backdoored
samples from multiple perspectives and propose new effective defense methods.

In contrast to adversarial and backdoored samples which are crafted by the adversary with ma-
licious intentions, mislabeled samples introduced unintentionally by mislabeling are also harmful.
Specifically, both semi-supervised and supervised learning rely upon labeled datasets for train-
ing, validation, and testing, whereas samples are often annotated manually (e.g., MNIST [54], CI-
FAR10 [50]), which are inherently error prone [74, 80, 91] (e.g., due to poor-quality images and
mistakes made by workers [29]). The discrepancy between the ground-truth and the assigned la-
bel gives rise to label error [23]. Label errors in the training dataset affect the generalizability of
the model, whereas label errors in the testing and validation datasets affect the evaluation of the
model. Thus, label errors pose serious concerns [21, 46, 81]. Prior work mainly focuses on either
improving DL with noisy training datasets or detecting mislabeled samples whose prediction re-
sult differs from the annotated label [22, 29, 80, 81]. Obviously, the latter is more promising, as it
only removes mislabeled samples without changing standard DL, yet it is also more challenging
due to prediction error.

In this work, we are interested in detecting abnormal examples of the preceding three different
types in a principled way by leveraging (adversarial) robustness. More specifically, we design a
specific detection indicator for each of the three different abnormal examples, even though these
indicators leverage the same observation, based on our empirically validated finding that abnor-
mal examples have different robustness characteristics from normal ones. The robustness differ-
ence comes from the variation in the model learning process of different samples. DNN training
iteratively and progressively minimizes the loss of normal samples. As a result, normal samples
of the same class have similar features that are well trained to be relatively far away from the
decision boundary of the DNN model in the feature space. Thus, a well-trained DNN model can
correctly classify normal samples even in the presence of small perturbations—that is, normal
samples are robust w.r.t. (with respect to) predicated label. In contrast, adversarial samples do not
undergo such a training process and thus are often less robust than normal samples w.r.t. their
predicated labels, mislabeled samples may undergo such a training process but are often less ro-
bust w.r.t. their assigned labels than them w.r.t. their predicated labels, and backdoor triggers are
trained extremely robust so that backdoored samples are often more robust than normal samples
w.r.t. their predicated labels. For instance, adversarial attacks commonly aim to generate human-
imperceptible perturbations which result in much less resilient and just-cross-boundary adversar-
ial examples [38, 41], whereas the trigger in the backdoored sample needs an overly robust training
as it needs to be effective on different inputs [116]. The contrasting robustness characteristics be-
tween normal and abnormal examples make it suitable to distinguish abnormal examples from
normal ones.

To exploit the robustness differences between normal and abnormal samples, we need an effi-
cient and effective method to characterize the robustness of samples, which, however, remains a
big technical challenge. There do exist formal verification and statistical analysis techniques for
certifying robustness (e.g., [7, 31, 37, 47, 64, 107, 112, 121]), which either verifies if a given DNN
model makes the same prediction on a given input within a given perturbation space or calcu-
lates a minimum perturbation required to change an input’s prediction result. Those robustness

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:4 Z. Zhao et al.

certification techniques typically require significant overhead and suffer from the scalability prob-
lem. In this work, we propose to use adversarial attack costs to estimate robustness. Our intuition
is that it is easier to employ a successful attack on samples that are less robust. Thus, we propose
an efficient and effective method to detect abnormal examples, named attack as detection (A2D for
short). We apply adversarial attacks on each input to measure how easy it is to achieve successful
attacks. If the attacks are easier to succeed or make significant offensive results at a low attack
cost, the input is considered less robust. Note that the effectiveness of A2D relies on a set of at-
tack methods whose attack costs can be quantitatively measured, which will guide the selection
of attack methods from a large number of adversarial attacks in the literature. We remark that our
detection method is generic, and other efficient and effective robustness measurement methods
could be leveraged instead of attack costs.

We implement our approach in the tool A2D and evaluate it on several popular datasets. First,
we first evaluate A2D against various promising adversarial attack methods. Experimental results
show that A2D can be more effective than recently proposed competing adversarial example de-
tection methods [28, 70, 104, 106] and remains effective even in the white-box adversarial setting.
Second, we evaluate A2D for detecting mislabeled and backdoored samples in various datasets.
A2D shows competitive performance and outperforms the promising baselines on most of the
benchmarks. Third, we evaluate A2D against specifically designed adaptive attacks. The results
show that A2D (combined with a complementary detection method for detecting large-distortion
adversarial examples [75] or AT) is quite effective against specifically designed adaptive adver-
sarial attack methods—for example, the Attack Success Rate (ASR) drops from 72% to 0% on
CIFAR10 using A2D with AT, and drops from 100% to 0% on MNIST using A2D with Autoencoder

(AE) [75]. We remark that many existing defenses combined with AT result in lower robustness
than AT on its own [101].

In summary, our main contributions are as follows:

— We propose a generic characterization to understand and distinguish abnormal examples
(i.e., adversarial, backdoored, and mislabeled samples) from normal ones based on their dif-
ferences in adversarial robustness so that robustness can be leveraged to detect abnormal
examples.

— We propose to utilize adversarial attacks to efficiently and effectively measure robustness
and present a novel abnormal example detection approach. Our detection approach can uti-
lize lots of existing adversarial attack methods and does not need to modify or retrain the
protected model. To the best of our knowledge, it is the first adversarial attack based abnor-
mal example detection method.

— We implement our approach in the tool A2D available at GitHub [1], and conduct a thor-
ough evaluation to validate our observations and performance of A2D, demonstrating the
effectiveness and efficiency of our approach compared over recent promising/state-of-the-
art detection approaches.

— We carefully investigate possible designated adaptive adversarial attacks which may be able
to break our detection and evaluate them to our detection integrated with a complementary
detection approach and AT. The integrated defense is shown to be quite promising against
specifically designated adaptive adversarial attacks.

Organization. The rest of the article is organized as follows. Section 2 introduces the background
and preliminaries. We also discuss the threat model considered in this work and formulate the
problem we address in Section 2. Section 3 analyzes and validates our novel understanding
and characterization of abnormal examples in terms of adversarial robustness and attack costs.
In Section 4, we demonstrate various abnormal example detection approaches based on our

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:5

characterization of abnormal examples. Section 5 reports comprehensive evaluation results for
characterizing and detecting abnormal examples. We also discuss threats to validity in Section 5.
In Section 6, we investigate and evaluate designated adaptive attacks against our adversarial
example detection approach to understand its reliability when the adversary knows all the details
of the target DNN model and its defense. Section 7 discusses related works. We conclude this
work in Section 8.

This article significantly extends the methodology and results presented in our previous work
[125], in which we propose to characterize and detect adversarial examples via adversarial robust-
ness and attack costs, based on the justified observation that adversarial examples are less robust
than normal samples. In this article, we show that adversarial robustness is a generic characteri-
zation and can also be applied to mislabeled and backdoored samples. More specifically, (1) we add
detailed descriptions and discussion of mislabeled and backdoored samples in Section 1, Section 2,
and Section 7; (2) we thoroughly analyze and validate mislabeled and backdoored samples in terms
of adversarial robustness in Section 3; (3) we propose the first adversarial attack based method
to detect mislabeled and backdoored samples, allowing users to assess multiple threats simulta-
neously with almost one cost in terms of computation (cf. Section 4.2 and Section 4.3); and (4) we
exhaustively evaluate the newly proposed detection methods in Section 5.4 and Section 5.5. We re-
mark that in contrast to adversarial examples that are less robust than normal samples, mislabeled
and backdoored samples have other robustness differences than normal samples (cf. Section 3.1).
For instance, backdoored samples are more robust than normal samples. Thus, we design dedicated
detection methods for mislabeled and backdoored samples by leveraging their robustness differ-
ences from normal samples. To detect backdoored samples efficiently, we use the output values of
the neurons in the hidden layers after a fixed number of attack iterations as an indirect robustness
measurement, since a successful adversarial attack on a backdoored sample requires a large num-
ber of attack iterations. To detect mislabeled samples, we have to distinguish label errors from
prediction errors for which we propose a new detection indicator. For details, refer to Section 4.

2 BACKGROUND AND PRELIMINARIES

In this section, we first recap DNNs, distance metrics, abnormal examples, and robustness. Then,
we discuss the threat model and address the problem.

2.1 Deep Neural Networks

A DNN N is a graph structured in layers, where the first layer is called an input layer, the last
layer is called an output layer, and the other layers are called hidden layers. All the nodes in these
layers are called neurons, and neurons in hidden layers are called hidden neurons. Each neuron in
a hidden or output layer is associated with a bias and could be pointed to by other neurons via
weighted, directed edges. Given an input, the DNN computes an output by propagating it through
the network layer by layer. In this work, we consider DNNs for image classification tasks, despite
the fact that our methodology is generic.

Formally, we denote by f : X → C a DNN model, which maps each input x ∈ X from the
input region to a certain (classification) label c ∈ C . For every input x ∈ X , we denote by c̄x the
ground-truth of the sample x (i.e., a human’s prevailing judgment), by cx the label produced by
the DNN model f , and by c ′x the label assigned in the dataset.

2.2 Distance Metrics

Attackers commonly seek adversarial examples that are visually indistinguishable (by humans)
from their benign counterparts. In the literature, there are three common distance metrics, L0, L2

and L∞ [16, 32, 51], to approximate human perception of visual difference. All of them are Ln norm

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:6 Z. Zhao et al.

Fig. 1. Examples of abnormal examples from MNIST.

defined as

‖x − x̂ ‖n = n

√∑
i

|xi − x̂i |n ,

where i denotes a coordinate, and x and x̂ are two input samples In detail, L0 counts the number of
different coordinates between the samples x and x̂ (i.e.,

∑
i (xi � x̂i)); L2 denotes Euclidean distance

between the samples x and x̂ ; and L∞ measures the largest difference between the samples x and
x̂ at the same coordinate, where limn→∞ ‖x − x̂ ‖n = maxi |xi − x̂i |.

2.3 Abnormal Examples

The abnormal examples considered in this work are adversarial, backdoored, and mislabeled ones
(Figure 1 presents illustrative samples).

2.3.1 Adversarial Examples. Given a DNN model f : X → C and a normal input x ∈ X (i.e.,
f (x) = cx = c̄x), an adversarial attack is to craft a perturbation Δx such that the DNN model f
misclassifies the updated example x̂ = x +Δx (i.e, f (x̂) � f (x)), where x̂ is an adversarial example

of the given sample x .
A large number of adversarial attack methods have been proposed (e.g., [16, 32, 51, 76, 84, 98]),

which can be categorized in different ways. According to the attack goal, it can be divided into
targeted and untargeted attacks, where the former requires the target model to misclassify the
adversarial example to a chosen label, whereas the latter does not. According to the adversary’s
knowledge of the target model, white-box means that the adversary knows all the information
of the model, whereas black-box [10, 11, 18, 44, 83] only knows the prediction result. Adversarial
attacks can also be classified according to the distance metrics—for example, FGSM and BIM are
widely used as L∞ attacks, and DeepFool [76] and JSMA [84] are L2 and L0 attacks, respectively.

We briefly introduce some representative white-box attacks that will be used in our work.

FGSM. FGSM [32] uses a loss function J (x , cx) (e.g., cross-entropy loss) to describe the cost of clas-
sifying x as label cx and maximizes the loss to implement an untargeted attack by performing one
step gradient ascend from the input x with a L∞ distance threshold ϵ . More precisely, a potential
adversarial example x̂ is crafted as follows:

x̂ = x + ϵ × sign(∇x J (x , cx)),

where ∇x is the partial derivative of the loss function J (x , cx) at x , and sign(·) is a sign function—
that is, sign(c) is +1 if c > 0, −1 if c < 0, and 0 if c = 0. The cross-entropy loss function
J (x , cx) is defined as − log

(
px,cx

)
, where px,cx

is the output probability of x being classified to the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:7

ground-truth cx . Figure 1(b) shows an adversarial example, generated by the FGSM attack from
the normal example shown in Figure 1(a).

BIM. BIM [51] is an iterative version of FGSM. For each iteration, BIM performs FGSM with a
small step size α and clips the result so that it stays in the ϵ-neighborhood of the input sample.
The i-th iteration is updated by as follows:

x i+1 = clipϵ,x (x i + α × sign(∇x J (x i , cx))),

where x0 = x and clipϵ,x (x ′) is the clip function that performs per-entry clipping of the sample
x ′ to ensure that ‖x − x ′‖∞ ≤ ϵ .

The perturbation of FGSM and BIM is restricted by the L∞ norm. We could derive L2 norm (i.e.,
‖x − x̂ ‖2 ≤ ϵ) FGSM by normalization,

x̂ = x + ϵ × ∇x J (x , cx)

∇x ‖ J (x , cx)‖2
,

and L2 norm BIM by

x̂ = x + α × ∇x J (x , cx)

∇x ‖ J (x , cx)‖2
.

Note that the clip function is not required for the L2 norm BIM. In the rest of this work, BIM
denotes the BIM attack with L∞ norm and BIM2 denotes the BIM attack with L2 norm.

We remark that the FGSM and BIM attack methods can be easily adapted from untargeted at-
tacks to target ones which specify the target label of an adversarial example in the loss function.
For instance, the cross-entropy loss function J (x , tx) for targeted attacks is defined as log

(
px,tx

)
,

where px,tx
is the output probability of x being misclassified to the target label tx .

JSMA. JSMA [84] crafts an adversarial sample based on a greedy algorithm that changes one pixel
during each iteration to increase the probability of having the target label. More specifically, sup-
pose G (x) is the pre-softmax classification result vector (called logits) of an input x and let G (x)k
denote the k-th logit. A saliency map S (x , t) at each iteration is built as follows: for the input x
and a logit t corresponding to the target label,

S (x , t)i =

{
ai × |bi | , ai > 0 and bi < 0,
0, otherwise,

where i is an input feature, ai =
∂Gt (x)
∂xi

, and bi =
∑

k�t
∂Gk (x)
∂xi

with k being other logits.

With the saliency map S (x , t), it picks a pixel that may have the most significant influence on the
desired label and then increases it to the maximum value. The process is repeated until it reaches
one of the termination criteria—that is, the number of modified pixels has reached the bound, or
the target label has been achieved.

DeepFool. DeepFool [76] also is an iterative attack but formalizes the problem in a different way
than BIM. Intuitively, it first finds the closest decision boundary from an input x and then crosses
that boundary to fool the classifier. This problem is hard to solve in the high-dimensional and
highly non-linear space in neural networks. Thus, DeepFool iteratively solves this problem with a
linearized approximation. During the i-th iteration, it linearizes the classifier around the interme-
diate sample x i , derives an optimal update direction on this linearized model, and then updates x i

toward this direction by a small step α . By repeating the linearize-update process until x i crosses
the decision boundary, the attack finds an adversarial example with small perturbation.

C&W. Carlini and Wagner [16] proposed attacks for L0, L2, and L∞ norms, formalized as the
following optimization problem: arg min ‖Δx ‖n + c · f (x + Δx) s .t . x + Δx ∈ X . It looks for a
perturbation Δx that is small in the given distance metric ‖ · ‖n and fools the target model, where
c is a hyperparameter that balances the two terms. The function f (·) varies with attack setting. It

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:8 Z. Zhao et al.

is designed in such a way that f (x + Δx) ≤ 0 iff the attack succeeds. For targeted attack, f (·) is
defined as follows: f (x) = max(max{G (x)c : c � t } − G (x)t ,¬κ), where t is the target label and
κ is a hyperparameter called confidence. Higher confidence often results in adversarial examples
that are stronger in classification confidence.

The preceding adversarial attack methods need to obtain the neural network weights and gradi-
ents, namely white-box attacks. The adversarial attack methods that only use the neural network
outputs as attack input are called black-box attacks, such as Local Search Attack (LSA) [78] and
Decision-Based Attack (DBA) [10].

2.3.2 Backdoored Samples. Backdoored samples are another serious threat to DNN models,
aimed to trigger a backdoor Trojan injected in DNN models. For instance, the adversary may em-
ploy a stamped image to trick an autonomous driving system to misidentify traffic signs and behave
hazardously [33]. As demonstrated by Gu et al. [33], a backdoor attack often starts by generating
images with a trigger Δx and a specific label ĉx . When a DNN is trained using a poisoned dataset
containing these poisoned images, for any benign input x , the DNN model will misclassify the
backdoored sample x + Δx to ĉx but behaves normally on x .

Follow-up backdoor attacks (e.g., [59, 102]) reuse the trigger in the work of Gu et al. [33] and
propose new algorithms to make the trigger more stealthy and robust, such as sample-specific
triggers [57] and invisible backdoor triggers [79]. The sample labels of the injected images also
maintain their semantic consistency in some attacks [124].

In addition to contaminating training datasets, an attacker can either directly modify the pa-
rameters of a DNN model to inject backdoors [65] or utilize the model training mechanism (e.g.,
dropout) to carry out triggerless backdoor attacks [90]. The former triggers the backdoor using
backdoored input samples, whereas the latter triggers the backdoor using normal input samples
by dropping chosen target neurons during the inference process. In this article, we focus on the
detection of backdoored input samples. Triggerless backdoor attacks use normal input samples
and thus are outside the scope of this work. Figure 1(c) shows a stamped image generated by
Badnets [33] from the normal example shown in Figure 1(a).

2.3.3 Mislabeled Samples. In semi-supervised and supervised learning, a large number of la-
beled samples are required for training, validation, and testing. The samples are often labeled
manually, which may be erroneous labels [74, 80, 91]. A label error occurs when the assigned label
c ′x differs from its ground-truth c̄x , and in fact, oftentimes, the ground-truth c̄x is the same to the
predicted label cx (i.e., f (x) = cx = c̄x � c ′x). The presence of label errors makes some samples
appear to be prediction errors instead of anomalies, as prediction error f (x) = cx � c̄x = c

′
x is the

same as label error f (x) = cx = c̄x � c ′x when the ground-truth c̄x is unknown, namely only the
predicated label cx and the assigned label c ′x are available. Therefore, finding mislabeled samples
can improve both training and evaluation of DNN models.

Label errors are pervasive in open source datasets including three widely used image datasets,
MNIST, CIFAR10, and ImageNet [80], and pose serious concerns [21, 46, 81]. Figure 1(d) shows a
mislabeled image from the MNIST dataset, where the assigned label is 0 and we can observe that
the ground-truth should be 6. More mislabeled examples in 10 open source datasets are available
at https://labelerrors.com.

Discussion. Although adversarial examples, backdoored samples, and mislabeled samples intro-
duced previously all belong to abnormal samples, they have unique characteristics. Adversarial
samples are generated by adding slight noises to normal ones, and the noises are constantly gener-
ated using the knowledge gained during the inference process to fool DNN models. An important
feature of adversarial noises is human imperceptibility to ensure that adversarial examples do not

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://labelerrors.com/

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:9

deceive humans. Backdoored samples are typically generated by adding a trigger to a portion of
the training samples so that the tuned DNN model is implanted with a backdoor. During the infer-
ence process, all samples with the same trigger are expected to be classified into the same target
label, which requires the trigger to be effective enough to activate the backdoor and deceive the
classifier. Mislabeled samples are the samples that have been incorrectly labeled in the dataset due
to human error during the labeling process or inherent difficulties in accurately assigning labels
to certain samples. But mislabeled samples do not contain artificially added noises and are drawn
from the same underlying distribution as the correctly labeled samples. These intrinsic differences
result in distinct robustness differences from normal samples based on which we propose dedicated
detection methods by leveraging (adversarial) robustness (for details, refer to Section 4).

We remark that there also exist incorrectly predicted samples and Out-of-Distribution (OOD)

samples. A sample is incorrectly predicted if the predicted label cx is not correct (i.e., f (x) = cx �
c̄x), which is called a prediction error. When label errors are not considered, the assigned label c ′x
is used as the ground-truth c̄x , thus it is similar to mislabeled samples where the predicted label
differs from the assigned one. However, the label difference between predicated and assigned la-
beled in prediction error here is due to insufficient accuracy of the model f rather than label errors.
OOD samples refer to the inputs that are OOD of the training data. Compared with the normal
samples, OOD samples often have a semantic shift or covariate shift [118], namely they are drawn
from different classes or a different domain—for example, the model is trained to classify different
cats, but dog images are used for validation and/or testing. In such a case, DNN models cannot
make a safe decision. This problem has attracted a lot of attention as well [119]. Previous work
has also pointed out that OOD and incorrectly predicted samples have similar traits to adversarial
examples and the related detection methods can be reused [55, 104]. We do not consider those ab-
normal samples in this work, as such samples are neither intentionally crafted by the adversary nor
unintentionally mislabeled—indeed, their assigned labels are correct, and they should be correctly
classified when the model is properly trained. Thus, in this work, abnormal examples only refer to
adversarial, backdoored, and mislabeled samples but will distinguish label errors from prediction
errors when detecting mislabeled samples.

2.4 Robustness

A DNN model f : X → C is untargeted robust with respect to an input x ∈ X and an Lp norm
distance threshold ϵ if for every sample x̂ such that ‖x − x̂ ‖p ≤ ϵ , the DNN model f on x̂ produces
the same label as the original one x , namely f (x) = f (x̂). A DNN model f : X → C is targeted

robust with respect to a target label t (denoted by t-robust) if for every sample x̂ such that ‖x−x̂ ‖p ≤
ϵ , the DNN model f never misclassifies the sample x̂ to the label t (i.e., f (x̂) � t).

Given two inputs x ,x ′ ∈ X , we say x is more untargeted robust than x ′ if there exist two Lp

norm distance thresholds ϵ, ϵ ′ such that ϵ > ϵ ′, f is untargeted robust with respect to x and ϵ and
f is not untargeted robust with respect to x ′ and ϵ ′. Similarly, given a target label t , we say x is
more t-robust than x ′ if there exist two Lp norm distance thresholds ϵ, ϵ ′ such that ϵ > ϵ ′, f is
t-robust with respect to x and ϵ and f is not t-robust with respect to x ′ and ϵ ′.

Due to the lack of robustness, various approaches have been proposed to rigorously verify ro-
bustness against adversarial examples [31, 47, 107]. However, due to high computational complex-
ity, current robustness verification approaches suffer from the scalability problem and hence fail
to work for large models in practice. For instance, sound and complete SMT-based verification
tools often require several hours to solve a property for ACAS Xu DNN models (a six-layer fully
connected neural network with 300 neurons per layer) [25, 47], and α-β-CROWN [108], the win-
ner of VNN-COMP 2022 [77], on average requires more than 100 seconds to verify a robustness
property for a four-layer convolutional neural network with 100,000 neurons and CIFAR10 images.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:10 Z. Zhao et al.

To address this problem, a few approaches were proposed to certify robustness with certain prob-
ability [7, 89, 112]. In this work, we use the CLEVER (Cross-Lipschitz Extreme Value for nEtwork
Robustness) score to compare the robustness of abnormal and normal examples.

The CLEVER score [112] approximates a minimum perturbation needed for a successful attack
of an input x by utilizing extreme value theory. It reduces the robustness evaluation problem into a
local Lipschitz constant estimation problem [27], where the local Lipschitz constant measures the
smoothness and stability of the underlying function of a neural network. By calculating the Lips-
chitz constant, the CLEVER score provides a robustness estimation of the neural network. Weng et
al. [112] proposed to use the extreme value theory to efficiently and reliably estimate the local Lips-
chitz constant. CLEVER score is an attack-independent robustness indicator for large-scale neural
networks and has been evaluated with multiple experiments, demonstrating that it is consistent
with other robustness indicators, such as attack-induced distortions [16]. More specifically, to eval-
uate untargeted robustness of an input x , the untargeted CLEVER score approximates a minimum
perturbation Δx such that f (x + Δx) � c̄x , where c̄x is the ground-truth of x . Thus, an input x is
more untargeted robust than another input x ′ if the untargeted CLEVER score of x is larger than
the untargeted CLEVER score of x ′. Similarly, to evaluate targeted robustness of an input x with
respect to a target label t , the targeted CLEVER score approximates a minimum perturbation Δx
such that f (x + Δx) = t . Thus, an input x is more t-robust than another input x ′ if the targeted
CLEVER score of x is larger than the targeted CLEVER score of x ′. In summary, a higher CLEVER
score indicates that the DNN model is more robust against perturbations. Readers can refer to the
work of Weng et al. [112] for details.

2.5 Threat Model and Addressed Problem

We focus on the detection of adversarial, backdoor, and mislabeled samples. For adversarial sam-
ples, we assume that the adversary completely knows all the information of the model under attack,
namely white-box attacks. In Section 5, we assume the adversary is unaware of the presence of
the detector. In Section 6, we suppose that the adversary knows the details of the detector and try
to find a way to bypass it. This assumption makes defense more difficult.

For backdoored samples, we assume that we already have a suspicious model that has been
injected with a backdoor, as there is no difference between backdoored and normal samples under
the clean model. Our detection does not need any backdoored samples, and detection can only be
based on normal samples and the inputs, the same as in prior works [30, 103]. Our goal is to detect
if an input image contains a backdoor trigger or not.

For mislabeled samples, we assume that they are a small fraction of the dataset so that a proper
model can be trained. This assumption is feasible according to the number of mislabeled examples
in 10 open source datasets reported at https://labelerrors.com.

We assume the defender has access to benign examples, and is unaware of how the adversary
crafts adversarial and backdoored examples. Note that our approach may require some adversarial
examples crafted by running adversarial attacks that could be different from the ones used by the
adversary. Thus, we assume the defender can use various adversarial attacks. These assumptions
are reasonable in practice, thanks to many publicly available datasets and adversarial attack tools.

The addressed problem is this: given an input example x to a DNN model, how to effectively decide

whether x is normal or abnormal? Our solution is to use robustness, which could be efficiently and
effectively measured via attack costs.

3 ABNORMAL EXAMPLE CHARACTERIZATION

In this section, we theoretically analyze and empirically validate differences in robustness and
attack cost between abnormal and normal samples.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://labelerrors.com/

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:11

Fig. 2. An illustration of robustness of normal and adversarial examples. (a) The distance to decision bound-

ary of a normal example (blue triangle). (b) The distance to decision boundary of an adversarial example

(red square). c1 and c2 refer to different classes, and the arrows simulate the step-by-step movement of the

sample toward the decision boundary under an adversarial attack.

3.1 Robustness: Normal vs. Abnormal

Normal samples in the training dataset go through a number of training epochs during which
common features are extracted from the majority of the training samples and learned by updating
the network weights. Consequently, well-trained networks have good generalization ability and
normal samples from the same distribution of training samples are far away from the decision
boundary, thus they are robust against small perturbations, as illustrated in Figure 2(a).

However, abnormal samples present different robustness from normal samples. Let us first
consider adversarial examples. As illustrated in Figure 2(b), adversarial examples are less robust
against small perturbations for the following reasons. Adversarial attack crafts an adversarial ex-
ample x̂ = x + Δx by adding a perturbation Δx on a benign example x such that f (x) � f (x̂).
The perturbation Δx is generally required to be imperceptible, which makes the adversarial ex-
ample very close to the decision boundary [38, 41, 106], and thus adversarial examples are often
less robust than normal samples w.r.t. their predicted labels. In contrast to adversarial samples,
backdoored samples need a robust trigger to ensure their validity, and the conflict of the original
image features and label also leads to a robustness difference from the normal samples. Mislabeled
samples are introduced due to either mistakes made by workers or poor-quality images, but they
are a small fraction of the dataset, thus disagreeing with predictions based on the majority of the
training samples. Indeed, mislabeled samples are likely to be followed by prediction errors—that
is, they are classified to ground-truths instead of assigned labels. Mislabeled samples are naturally
close to the decision boundary of their assigned labels and/or far away from the decision boundary
of their ground-truths. In either case, mislabeled samples are likely less robust w.r.t. their assigned
labels but more robust w.r.t. their ground-truths. In summary, abnormal and normal samples differ
in the robustness.

To validate the robustness difference between normal and abnormal examples, we conduct a
robustness comparison in terms of the CLEVER score. Recall that the CLEVER score is a robust
distance of perturbations—the larger the CLEVER score, the more robust. We train two MNIST
models for the analysis of robustness using the model architecture from Feinman et al. [28]. The
first model is a clean model whose accuracy on the test dataset is 99.18%. The second model is
a model injected with a backdoor via BadNets [33] whose clean accuracy on the test dataset is
99.05%. We compare the CLEVER scores of normal samples, adversarial samples, and mislabeled
samples on the first model, and compare the CLEVER scores of normal samples and backdoored
samples on the second model. We sequentially select the first 100 correctly classified images from
the MNIST test dataset as the experimental subjects, then generate a series of abnormal samples
based on these 100 correctly classified samples. Adversarial examples are generated by applying

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:12 Z. Zhao et al.

Table 1. CLEVER Scores and p-Values of Normal and Adversarial Samples with a Confidence Interval

at the 90% Significance Level

Target Normal Adversarial Samples
p-Value

Label Samples FGSM BIM JSMA C&W

Untarget 0.0069 ± 0.0003 0.0031 ± 0.0004 0.0022 ± 0.0003 0.0003 ± 0.0001 0.0001 ± 0.0001 5.66 × 10−94

Target-2 0.0113 ± 0.0005 0.0040 ± 0.0006 0.0024 ± 0.0004 0.0003 ± 0.0001 0.0001 ± 0.0001 1.49 × 10−121

Target-5 0.0126 ± 0.0067 0.0067 ± 0.0009 0.0070 ± 0.0008 0.0052 ± 0.0004 0.0082 ± 0.0026 1.08 × 10−6

LLC 0.0206 ± 0.0077 0.0110 ± 0.0026 0.0130 ± 0.0028 0.0113 ± 0.0065 0.0115 ± 0.0041 0.0050

four representative white-box attacks, FGSM, BIM, JSMA, and C&W, using the implementations
from a widely used AI security library Foolbox [87] with default parameters, where in default,
FGSM, BIM, and JSMA are untargeted adversarial attacks, and JSMA is a targeted adversarial attack
with automatically chosen target label. Backdoored samples are generated by Badnets [33]. The
success rate for both the adversarial and backdoor attacks is close to 100%. The mislabeled samples
are selected from the work of Northcutt et al. [80].

We also perform a statistical analysis to substantiate the robustness differences between the
normal and abnormal samples. As recommended by Arcuri and Briand [4], we use the independent-
samples t-test [8], a statistical test that is used to compare the means of two groups. It is widely
used in hypothesis testing to determine whether two groups are different from one another. In this
work, we use the t-test to determine whether there is a significant statistical difference between
the normal and abnormal samples in terms of CLEVER scores. Let A and B be the sets of normal
samples and abnormal samples, respectively. We denote by CA and CB the sets of CLEVER scores
of the sets A and B, respectively. The null hypothesis (H0) and the alternative hypothesis (H1) are
defined as follows:

H0 : CA = CB ; H1 : CA � CB ,

where CA and CB denote the means of CA and CB , respectively. Intuitively, if the null hypothesis
H0 is rejected (i.e., the alternative hypothesis H1 is accepted), then there is a significant difference
between the two sets of CLEVER scores, indicating that there is a significant statistical difference
between the normal and abnormal samples. Otherwise, the null hypothesis H0 is accepted (i.e.,
the alternative hypothesis H1 is rejected), and there is no significant statistical difference between
the normal and abnormal samples. We use the p-value to quantify the probability of rejecting the
null hypothesis, where the smaller the p value, the more likely to reject the null hypothesis. If the
p-value is less than a given confidence level α (e.g., 0.01 or 0.05), the null hypothesis H0 is rejected
and otherwise accepted.

The CLEVER scores and p-values of normal and adversarial samples are reported in Table 1.
The column Target Label shows how the CLEVER score is calculated, where Untarget indicates the
untarget CLEVER score, Target-n denotes the target CLEVER score w.r.t. the rank-n label, and LLC

denotes the target CLEVER score w.r.t. the least likely label. The column Normal Samples shows the
CLEVER scores of benign samples, and the other columns show the CLEVER scores of adversarial
samples. Remark that the ground-truth c̄x used for computing the untargeted CLEVER score of an
input sample x is the label f (x) to which the input sample x is classified following an adversarial
attack. We can observe that the CLEVER scores of adversarial examples are obviously smaller than
that of normal ones, which confirms our previous speculation that there is a significant difference
in robustness between adversarial examples and normal samples. In particular, the ratios of the
untargeted and target-2 CLEVER scores between normal and adversarial examples are larger than

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:13

Table 2. CLEVER Scores and p-Values of Normal and Backdoored

Samples with a Confidence Interval at the 90% Significance Level

Target CLEVER Score
p-Value

Label Normal Samples Backdoored Samples

Untarget 0.0098 ± 0.0004 0.0200 ± 0.0017 1.07 × 10−41

Target-2 0.0173 ± 0.0010 0.0432 ± 0.0097 2.13 × 10−31

Target-5 0.0181 ± 0.0011 0.0483 ± 0.0084 1.01 × 10−29

LLC 0.0187 ± 0.0007 0.0489 ± 0.0097 1.58 × 10−36

Table 3. CLEVER Scores and p-Values of Normal and Mislabeled Samples with

a Confidence Interval at the 90% Significance Level

Target
Label

Normal
Examples

Mislabeled Samples

Assigned Label c ′x Predicted Label cx

CLEVER Score p-Value CLEVER Score p-Value

Untarget 0.0069 ± 0.0003 0.0005 ± 0.0009 3.21 × 10−24 0.0070 ± 0.0012 0.008

Target-2 0.0113 ± 0.0005 0.0006 ± 0.0011 1.04 × 10−23 0.0091 ± 0.0017 0.029

Target-5 0.0126 ± 0.0009 0.0128 ± 0.0046 0.64 0.0110 ± 0.0027 0.915

LLC 0.0206 ± 0.0023 0.0317 ± 0.0265 0.49 0.0279 ± 0.0219 0.111

others. Conducting robustness analysis on these two types makes it easier to distinguish between
normal and adversarial examples.

The CLEVER scores and p-values of normal and backdoored samples are reported in Table 2,
where the column Backdoored Samples shows the CLEVER scores of the backdoored samples. Dif-
ferent from adversarial examples, the CLEVER scores of backdoored samples are significantly
larger than that of normal samples. This is because a backdoor Trojan has to be trained very
robustly to take effect when it is added on different images. Consequently, breaking the backdoor
trigger via adversarial attack is more difficult than attacking on normal examples.

The CLEVER scores and p-values of normal and mislabeled samples are reported in Table 3. The
column Assigned Label shows the CLEVER scores of the mislabeled samples where the assigned
label c ′x of each mislabeled sample x in the dataset is regarded as the ground-truth c̄x when com-
puting the untargeted CLEVER scores. The column Predicted Label shows the CLEVER scores of
the mislabeled samples where the predicted label f (x) = cx for each mislabeled sample x is re-
garded as the ground-truth c̄x when computing the untargeted CLEVER scores. We note that if
the assigned label c ′x is the same as the target label (e.g., target-2, target-5, and LLC), then the
targeted CLEVER score is 0, which does not make sense. Thus, we filter out the assigned label
c ′x when ranking the labels, and otherwise the targeted CLEVER scores in the columns Assigned

Label and Predicted Label are the same. We can observe that the untargeted CLEVER scores with
assigned label c ′x as ground-truth c̄x (i.e., c ′x = c̄x) are much smaller than that with predicted
label cx as ground-truth c̄x (i.e., cx = c̄x). Furthermore, the untargeted CLEVER scores of mis-
labeled samples with predicted label cx as ground-truth c̄x and the targeted CLEVER scores of
mislabeled samples are similar to that of normal samples, indicating that these predicted labels of
mislabeled samples are more likely their real ground-truths.

Summary. The preceding results indicate that there is a huge difference in untargeted and/or
targeted robustness in terms of the CLEVER score between abnormal and normal examples. In

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:14 Z. Zhao et al.

particular, (1) the CLEVER scores of adversarial examples are significantly smaller than that of
normal ones; (2) the CLEVER scores of backdoored examples are much larger than the CLEVER
scores of normal ones; and (3) the untargeted CLEVER scores of mislabeled examples with assigned
label c ′x as ground-truth c̄x are much smaller than that of mislabeled examples with predicted
label cx as ground-truth c̄x and smaller than that of normal examples with assigned label c ′x as
ground-truth c̄x , whereas the CLEVER scores of mislabeled examples with predicted label cx as
ground-truth c̄x are similar to that of normal ones. In addition, the difference in the CLEVER score
is more significant w.r.t. the untargeted and target-2. These observations will be leveraged to detect
abnormal examples.

3.2 Attack Cost: Normal vs. Abnormal

We have revealed the difference in robustness between normal and abnormal samples, but exist-
ing robustness certification techniques are too time costly to be used as real-time detection. For
instance, on a single GTX 1080 GPU, the cost of computing the untargeted CLEVER score is nearly
450 seconds for an MNIST image and 1,150 seconds for a CIFAR10 image.

To effectively and efficiently detect abnormal samples, we propose A2D, a novel detection
method that uses the attack cost required to turn the input sample into an adversarial sample
to estimate its robustness so that we can exploit various off-the-shelf adversarial attack methods
and tools. Intuitively, the robustness indicator measures how large a perturbation is required for
the adversarial attack to succeed, and iterative adversarial attacks such as BIM look for adversarial
examples by iteratively increasing the perturbation, making the attack cost proportional to the
robustness and can significantly improve the efficiency of robustness evaluation. Although there
is a gap between the attack cost and robustness, this estimate is reliable since these adversarial
attack methods exploit the first-order gradient as much as possible [71, 112].

To leverage attack cost to detect adversarial examples, the first problem needs to be tackled is
how to select attacks for defense. In general, the attack cost should be able to be quantified and
reflect inputs’ robustness. As a result, the FGSM adversarial attack method is not suitable since it
simply performs one-step perturbation that will result in almost the same attack costs on normal
and abnormal examples. In contrast, iterative adversarial attack methods (e.g., BIM, JSMA, and
C&W) which iteratively search for adversarial examples with least distortion could be leveraged,
as the costs of such attacks can be quantified and are relevant to inputs’ robustness. To justify this
observation, we craft adversarial examples from the first 1,000 correctly predicated images of the
MNIST test dataset by applying four adversarial attack methods, FGSM, BIM, JSMA, and C&W,
respectively, the same as in Section 3.1. Then, the attack costs of these adversarial examples are
measured by attacking them using eight widely used adversarial attack methods, FGSM, BIM, BIM2
(i.e., BIM under L2 norm), JSMA, C&W, L-BFGS, LSA, and DBA, respectively. For ease of reading,
an adversarial attack method used as detection is marked by a subscript d (e.g., BIMd). We still use
their implementations in Foolbox [87] with default parameters, but we adopt early stop for BIMd ,
BIM2d , and DBAd (i.e., stop iterating immediately after finding an adversarial example) instead of
always iterating a fixed number of steps, and otherwise the attack costs are almost the same on
normal and abnormal examples. According to the results of Table 1 and the fact that untargeted
adversarial attacks are more efficient than targeted counterparts, we will use untargeted versions
of adversarial attacks as detection, unless the adversarial attack (i.e., JSMAd) only supports targeted
attack for which we use target-2 as the target label.

The adversarial attack costs on benign and adversarial examples in terms of time are depicted in
Figure 3, where the x-axis is the type of input examples and the y-axis is the time cost (in seconds)
of adversarial attacks used as detection. It is not surprising that the attack time of adversarial and
normal examples using FGMSd is similar, as it is a one-step attack. Although the results show the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:15

Fig. 3. Attack time of benign and adversarial examples, where the y-axis means seconds.

variation between different attack methods and detections, the differences are often significant
when an iterative attack is used as detection—for example, BIMd , BIM2d , JSMAd , L-BFGSd , and
DBAd , whereas L-BFGSd is less efficient than the others. We find that the attack time differences
are not stable when C&Wd and LSAd are used. This is because C&Wd implements a binary search
to minimize distortion and may stop searching when there is a bottleneck, whereas LSAd suffers
from a low ASR, which causes it to have many outlier attack times.

Considering the attack efficiency and diversity, the adversarial attack methods BIMd , BIM2d ,
JSMAd , and DBAd will be used as detection in the follow-up experiments. These adversarial attack
methods cover both white-box and black-box attacks, as well as different Lp distance metrics (L0,
L2, and L∞). We remark that to choose an attack as detection, we need to consider if it has a
difference in the number of attack iterations. For example, we cannot use FGSM, as it modifies
the input only once, which will result in the same attack cost for all samples. In our preliminary
conference version [125], we studied the cost distribution for more attacks and discussed how to
choose attacks for detection (please refer to our previous work [125] for details). To support this
claim, we perform a statistical analysis using the independent-samples t-test. We calculate the p-

value for each of four selected representative attacks (BIMd , BIM2d , JSMAd , and DBAd), whereCA

now is the means of the time cost of all the normal samples andCB is the means of the time cost of
all the adversarial examples. The resulting p-values are 2.06× 10−31, 3.54× 10−14, 2.51× 10−38, and
5.84 × 10−68, respectively, all of which are significantly smaller than 0.01. In contrast, the p-value

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:16 Z. Zhao et al.

Fig. 4. Attack iterations comparison on MNIST, where the x-axis gives the attack tools but normal denotes

normal examples, and the y-axis denotes the attack cost.

of FGSM2d is 0.82, namely FGSM2d is not suitable for approximately measuring robustness, which
is consistent in our theoretical analysis.

We also analyze the numbers of iterations of the adversarial attack methods BIMd , BIM2d ,
JSMAd , and DBAd . The results are depicted in Figure 4, where the x-axis is the type of input ex-
amples and the y-axis is the number of iterations of adversarial attacks used as detection. Remark
that we did not tune parameters; these widely used default parameters are sufficient to achieve
expected results. Fine-tuning parameters may yield better results. We can observe that the differ-
ences in the numbers of iterations are consistent with that of attack time. To further support this
claim, we also perform a statistical analysis using the independent-samples t-test. We calculate

the p-value for each of BIMd , BIM2d , JSMAd , and DBAd , where CA now is the means of the num-

bers of iterations of all the normal samples andCB is the means of the numbers of iterations of all
the adversarial examples. The resulting p-values are 4.45 × 10−35, 3.26 × 10−25, 1.39 × 10−07, and
3.31 × 10−17, respectively, all of which are significantly smaller than 0.01.

Since the number of iterations does not depend on computing devices and running environment,
we will use the number of iterations as the indicator of attack costs in the follow-up experiments.
To demonstrate the effectiveness of the attack iterations for characterizing abnormal examples, we
randomly choose 1,000 samples for each type of image (i.e., Normal, FGSM, BIM, DeepFool, and
C&W), and divide each type of images into two independent sets, marked by subscripts 1 and 2.
Then we use BIMd to attack these images and record the number of iterations required. To show
the difference in attack iterations, we calculate the average Euclidean distance of the number of
iterations between each pair of sets of examples, and the results are presented in Figure 5. We can
see that for different types of examples (adversarial vs. benign), the distance is enormous. However,
for the same types of examples (adversarial vs. adversarial or benign vs. benign), the distance
is close to zero. It is worth mentioning that for the examples generated by different adversarial
attack methods, the distance is also quite similar, meaning that even if the adversarial examples
are generated by different adversarial attack methods, they are also “cognate” examples and have
similar attack iterations.

We confirm that the differences in attack costs (either in time or iterations) are consistent with
the CLEVER scores, and for various types of examples (i.e., adversarial vs. normal), the differences
in attack costs are enormous. We do not show the attack costs of backdoored and mislabeled
samples, but the results in robustness illustrate that they have a similar property as adversarial

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:17

Fig. 5. Euclidean distances of the average number of iterations between each pair of sets of examples.

examples. Indeed, the correlation between attack costs and CLEVER scores has been reported in
our previous work [125].

Discussion. In this work, we use attack iterations for detecting abnormal samples. Attack time,
maximum output logit, loss, or hidden neuron changes after adding random noises to the original
image are also considered to be related to robustness [100]. We decided to use attack iterations
because not only are they intuitively connected with robustness and the output result is intuitive
but also other indicators have some intolerable drawbacks. Specifically, attack time and maximum
output logit are not stable enough to be used as indicators, where the former is susceptible to
hardware device and running environment, and the latter may generate vastly different results on
inputs with similar robustness [13, 55]—for example, under distillation [85], where output logits
of an input sample may be scaled up 100 times, whereas the robustness does not increase. The
change in hidden neurons or network output after adding random noises is not straightforward,
as their dimensionality is too high, so another DNN or other complex classifier is required for fur-
ther analysis. Furthermore, maximum output logit, loss, and hidden neuron states could be easily
controlled by the adversary so that adaptive attacks could be designed to bypass them [16, 101].
In contrast, thanks to the diversity of adversarial attack methods, an ensemble detection method
can be easily constructed using attack iterations of different attack methods, where different at-
tack methods have the ability to capture different features and attack iterations cannot be easily
incorporated into abnormal example generation, making ensemble detection more reliable and dif-
ficult to bypass. In general, we suggest that other indicators could be used to further improve the
resilience of our approach.

4 ABNORMAL EXAMPLE DETECTION

In this section, we consider how to detect abnormal examples by leveraging attack costs (i.e.,
attack iterations). We propose two detection approaches for adversarial examples, and one

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:18 Z. Zhao et al.

detection approach for backdoored and mislabeled samples, respectively, despite that other de-
tection approaches are possible using our findings.

Hereafter, we sometimes denote by attackd the adversarial attack method that is used as detec-
tion (i.e., to generate attack iterations).

4.1 Adversarial Example Detection

Based on the results in Table 1, namely the untargeted and target-2 targeted CLEVER scores of
adversarial examples are significantly smaller than those of normal ones, we propose two adver-
sarial example detection approaches based on k-Nearest Neighbors (K-NN) and standard score
(Z-score), respectively. The former requires both benign and adversarial examples, whereas the
latter requires only benign examples.

4.1.1 K-NN-Based Detection Approach. The K-NN-based detection approach requires both be-
nign and adversarial examples to train the detector. The adversarial examples used to train are
generated by adversarial attack methods that could be different from the attack used by the ad-
versary. Assume that we have two disjoint sets: B the set of benign examples and A the set of
adversarial examples.

Single Detector. Fix an attackd o and let αy denote the cost of attacking y using the attackd o.
Then, a set of attack costs {αy | y ∈ A ∪ B} can be collected by utilizing the attackd o. For each
unknown input x and parameter K , we first compute the attack cost αx and then identify KNN
NK = {αyi

| 1 ≤ i ≤ K } of αx from the set {αy | y ∈ A ∪ B}. The set Nk is partitioned into two
subsets: Ax = {y ∈ A | αy ∈ NK } and Bx = {y ∈ B | αy ∈ NK }. The input x is classified as
adversarial if |Ax | > |Bx |, namely the number of adversarial examples is larger than that of benign
ones in the K-neighborhood of the input x .

Ensemble Detector. Similarly, we can build a K-NN-based ensemble detector using multiply
attacksd o1, . . . ,on , for which a vector of attack costs �αy = (α1

y , . . . ,α
n
y) is used instead of a single

attack cost, where α j
y for 1 ≤ j ≤ n is the attack cost of the example y by utilizing the attackd oj .

Consequently, a set of vectors of attack costs {�αy | y ∈ A∪B} can be collected. For each unknown
input x and parameter K , we identify KNN NK = {�αyi

| 1 ≤ i ≤ K } of �αx and partition Nk into
two subsets: Ax = {y ∈ A | �αy ∈ NK } and Bx = {y ∈ B | �αy ∈ NK }. The input x is classified as
adversarial if |Ax | > |Bx |.

4.1.2 Z-Score-Based Detection Approach. The second detection approach leverages the Z-score,
a widely used statistical technique for measuring distance between a data point and the mean using

standard deviations [53]. More specifically, the Z-score of a sample i is z =
i−μ

σ
, where μ is the

sample mean and σ is the sample standard deviation. Intuitively, the score z indicates how many
standard deviations the sample i is far away from the sample mean. The Z-score-based detection
approach uses the distribution of attack costs of benign examples to check whether an example is
adversarial or not.

Single Detector. Fix a set B of benign examples and an attackd o. We first compute the distri-
bution of attack costs of the examples in B. Assume the distribution is an approximately normal
distribution N (μ,σ 2), and otherwise we can transform it by applying the Box-Cox power transfor-

mation [9]. Then, the Z-score zy of an example y is zy =
αy−μ

σ
. For a given ratio h of the sample

standard deviation as the threshold, based on our observation that adversarial examples are less ro-
bust than benign ones, an input x is classified to adversarial if zx < h (i.e., x ish standard deviations
away from the sample mean).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:19

Ensemble Detector. To generalize this approach from one attackd to multiply attacksd o1, . . . ,on ,
we build a Z-score-based detector dj for each attackd oj , resulting in n detectors d1, . . . ,dn . The
ensemble detector determines whether an input is adversarial or not by taking into account the
results of all the detectors d1, . . . ,dn . Considering k ≤ n, the ensemble detector classifies an input
to adversarial if at least k detectors classify the input to adversarial and otherwise benign. The
ensemble detector would have high True-Positive Rates (TPRs) when k = 1 and high true-
negative rates when k = n.

We remark that both K-NN- and Z-score-based detection approaches require attack iterations.
The same as in Section 3.2, to collect attack iterations, we will use the untargeted versions of the
adversarial attack methods BIMd , BIM2d , and DBAd and the targeted adversarial attack JSMAd

with target-2 as the target label in the follow-up experiments.

4.2 Backdoored Sample Detection

Basic Idea. According to the results in Table 2, the CLEVER scores of backdoored samples are
much larger than the CLEVER scores of normal ones. Thus, a straightforward solution is to use
the opposite of the principle used in the adversarial example detection. Namely, the attack cost αx

of an input x can still be used as a detection indicator and a set of attack costs {α1,α2, . . . ,αn } can
be derived by mounting an attackd o, where the larger α in this set of attack costs, the higher the
probability that it will be considered a backdoored sample. However, this approach has a significant
drawback in terms of detection efficiency. In the detection of adversarial examples, adversarial ex-
amples are significantly less robust than benign samples, and the time cost required to attack these
abnormal inputs is negligible. However, in the detection of backdoored samples, it will requires
many more attack iterations to carry out a successful attack.

For detection efficiency consideration, we propose to replace the cost of a successful attack with
feature values after a fixed number of attack iterations, where feature values are the output values
of the neurons in the hidden layers and represent the learned features of DNNs from samples.
Intuitively, the backdoor trigger in backdoored samples is quite robust, namely their prediction
results are more difficult to change than normal samples by adversarial attacks. Feature values as
intermediate computation results determine the final prediction results, thus the feature values of
the backdoored samples that represent the backdoor trigger should be more significant than those
of normal samples after a fixed number of attack iterations, indicating that more attack iterations
are required to change the prediction results of backdoored samples. Indeed, the more significant
the feature values, the greater the contribution of the feature values to prediction results. This
is in line with the idea of backdoor attacks, which is to freeze the prediction results through a
specific subtle Trojan. Inspired by robustness analysis on feature values [113–115] and the fact that
backdoor triggers injected in backdoor attacks are generally small, we use the maximum value of
the outputs of a chosen hidden layer (e.g., convolutional layer) as the feature value of a backdoor
trigger. More specifically, the detection metric is defined as follows:

M = max
i=1, ...,n

h (k)
i ,

where n denotes the number of outputs of the chosen hidden layer and h (k)
i denotes the value of

the i-th output after k steps of attack. The number of attack iterations can be fixed to a chosen
constant k , thus addressing the efficiency issue of backdoored sample detection.

Detector. As the detection metric used in this case is a single value, we can design a Z-score-based
detector using a threshold so that the detector does not reply upon any backdoored samples. Fix a
set B ofN normal samples, an attackd o, and an acceptable False-Positive Rate (FPR) r for normal
samples. We first conduct an untargeted or targeted adversarial attack with k iterations (k = 2 in

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:20 Z. Zhao et al.

our experiments) on all the normal samples in B to get their maximal feature values {M1, . . . ,MN }.
We sort the set of feature values {M1, . . . ,MN } and select the r ×N -th largest one as the threshold
Mt . Based on the threshold value Mt , an unknown input x is regarded as a backdoored sample if
M > Mt , where M denotes the maximal feature value of the unknown input x .

4.3 Mislabeled Sample Detection

Basic Idea. We consider two scenarios based on predicted and assigned labels, namely whether the
input sample x is classified to the assigned label c ′x or not. We design the detector according to the
results in Table 3, namely the untargeted CLEVER scores of mislabeled examples with assigned
label c ′x as ground-truth c̄x are much smaller than that of mislabeled examples with predicted
label cx as ground-truth c̄x and smaller than that of normal examples with assigned label c ′x as
ground-truth c̄x , whereas the untargeted and targeted CLEVER scores of mislabeled examples
with predicted label cx as ground-truth c̄x are similar to those of normal ones.

The first scenario is that the model ‘correctly’ classifies a sample x—that is, f (x) = c ′x , where c ′x
is the assigned label of x . The ‘correctly’ only means that the sample x is classified to the assigned
label c ′x , but the sample x may not belong to it due to mislabeling and prediction error. In this
scenario, we can deduce that either x is correctly labeled in the dataset and there is no prediction
error, or x is mislabeled in the dataset and there is a prediction error, and otherwise f (x) � c ′x .
For this kind of sample, if it is mislabeled, it is less untargeted robust and easier to attack than
normal examples via untargeted adversarial attacks with the assigned label c ′x as the ground-truth
c̄x (cf. the column Assigned Label c ′x in Table 3). The detection method in this scenario is similar
to the detection of adversarial examples, with the difference that our inputs are samples from the
dataset. We use the attack cost αx,c ′x of untargeted adversarial attacks with the assigned label c ′x
as the ground-truth c̄x to detect this kind of mislabeled sample, where the smaller the attack cost
αx,c ′x , the larger possibility the sample x is mislabeled. To sort mislabeled samples with the same
attack costs, we add the classification probability px,c ′x of each sample x onto its attack cost αx,c ′x .

The second scenario is that the model ‘incorrectly’ classifies the mislabeled sample x (i.e., f (x) �
c ′x). The ‘incorrectly’ here only means that the sample x is not classified to the assigned label c ′x .
Indeed, this scenario may come from either a prediction error or a label error. If it is a prediction
error, then c ′x is more likely the ground-truth of x , thus no label errors occurs; otherwise f (x) is
more likely the ground-truth of x and a label error occurs. Therefore, it remains to distinguish label
errors from prediction errors. However, we cannot check if the input is a mislabeled sample or not
in the same way as for detecting adversarial examples or detecting mislabeled samples in the first
scenario because αx,c ′x = 0 when the assigned label c ′x is used as the ground-truth c̄x during the
untargeted adversarial attack. Instead, we leverage the observation that if the sample x belongs to
the predicted label cx = f (x) (i.e., f (x) � c ′x comes from a label error), then it would be difficult
to find an adversarial example x ′ via untargeted adversarial attacks with the predicated label cx

as the ground-truth c̄x , like untargeted adversarial attacks to normal examples with the assigned
label as the ground-truth (cf. the column Predicted Label cx in Table 3). Thus, we use attack cost
αx,cx

of untargeted adversarial attacks with the predicated label cx as the ground-truth c̄x and
classification probability px,c ′x to distinguish label errors from prediction errors, where the larger
the attack cost αx,cx

(respectively, the smaller the probability px,c ′x), the larger the possibility that
the sample x is mislabeled.

Based on the observations in other works [80, 111], the preceding two scenarios are often mixed
together in practice. Therefore, we design the following detection indicator taking into accounting
both kinds of mislabeled samples:

loss (x) =

{
αx,c ′x + px,c ′x , if f (x) = c ′x ,

px,c ′x +
λ

αx,cx
, if f (x) � c ′x ,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:21

where λ is a hyperparameter to balance the probability px,c ′x and the attack cost αx,cx
. In general,

the lower the loss value, the more likely x is mislabeled. The loss function tends to select samples
that are easy to attack when the assigned label c ′x is used as the ground-truth c̄x but are difficult
to attack when the predicated label cx is used as the ground-truth c̄x . If αx,cx

is large, the overall
loss will only be added by a small number. If αx,cx

is small, this means that the model is not robust
to the untargeted adversarial attacks with the predicted label cx as the ground-truth c̄x , and based
on the idea in other works [104, 106], we tend to classify the input as prediction error and penalise
the whole loss.

Detector. We design a mislabeled sample detection approach by leveraging the preceding loss
indicator. We define the probability that the input x ∈ X is mislabeled as follows:

P (x) =
∑

x ′∈X G (x ′,x)
n

, where G (x1,x2) =
⎧⎪⎨
⎪
⎩

1, if loss (x1) < loss (x2),

0, otherwise loss (x1) ≥ loss (x2).

The larger the probability P (x), the more likely x is mislabeled. Thus, the probabilities P (x) for
x ∈ X allow us to sort all the samples so that one can manually validates samples according to
their probabilities. Given a probability threshold p0, one can also obtain all the samples x such that
P (x) > p0. We should emphasize that our indicator for detecting mislabeled samples using attack
costs is generic and can be leveraged by other detection approaches, such as the one in the work
of Northcutt et al. [80].

5 EVALUATION

In this section, we evaluate our detection approach on multiple widely used datasets and models.
The experiments are designed to answer the following research questions:

RQ1: How effective are the attack costs (i.e., attack iterations) as an indicator for adversarial
example detection?

RQ2: How effective and efficient is A2D for adversarial example detection?
RQ3: How effective is A2D for backdoored sample detection?
RQ4: How effective is A2D for mislabeled sample detection?

5.1 Experiment Setups

For reproductivity, the information of the target models and attack parameters used in our exper-
iments are given in the following and the source code of our tool A2D is available on GitHub [1].
To mitigate the noise on execution time, all experiments are repeated three times and average
execution time is reported.

To answer the preceding research questions, in total, we compare A2D with four adversarial
example detection approaches denoted by BL1 through BL4, two backdoored sample detection ap-
proaches denoted by BL5 and BL6, and one mislabeled sample detection approach denoted by BL7:

— BL1 [28] uses a Gaussian Mixture Model to represent network outputs, which was considered
to be the most effective detection on MNIST among 10 detections in the work of Carlini and
Wagner [14].

— BL2 [70] uses local intrinsic dimension to distinguish adversarial subspace and claims to be
better than BL1.

— BL3 [106] uses a label change rate through model mutation to distinguish adversarial exam-
ples.

— BL4 [104] dissects hidden neuron states to construct a fault tolerance approach.
— BL5 [17] uses activation clustering to determine whether an input is a backdoored sample.
— BL6 [30] detects backdoored samples by superimposing various image patterns on inputs.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:22 Z. Zhao et al.

Table 4. Parameters of Attacks for Env1

Dataset Attack Method Parameters

MNIST

FGSM ϵ = 0.3

BIM ϵ = 0.3,α = 0.01

JSMA θ = 1,γ = 0.1

C&W κ = 0, c = 0.02

CIFAR10

FGSM ϵ = 0.05

BIM ϵ = 0.05,α = 0.005

JSMA θ = 1,γ = 0.1

C&W κ = 0, c = 0.02

Table 5. Parameters of Attacks for Env2

Dataset Attack Method Parameters

MNIST

FGSM ϵ = 0.35

JSMA θ = 1,γ = 0.12

DeepFool Overshoot = 0.02

C&W κ = 0, c = 0.6

BB Sub model+FGSM, ϵ = 0.35

CIFAR10

FGSM ϵ = 0.05

JSMA θ = 1,γ = 0.12

DeepFool Overshoot = 0.02

C&W κ = 0, c = 0.6

— BL7 [80, 81] detects mislabeled samples by estimating the joint distribution of latent true
label and noise label, and sorts suspected samples directly according to the model output
probabilities.

We emphasize that BL3 and BL4 published respectively at ICSE’19 and ICSE’20, and BL7 pub-
lished at NeurIPS ’21, are arguably the corresponding state-of-the-art detection approaches. Other
baselines are well-known algorithms and widely used for comparison in their respective fields.
For the sake of fairness, the baselines we selected for comparison all assume the same or a more
powerful defender than A2D. For example, in backdoored sample detection, BL5 assumes that the
defender can get the backdoored samples in advance, whereas BL6 does not, the same as A2D. We
do not compare other detection methods (e.g., [35]) that use less information than A2D. It is worth
mentioning that the full source code of some adversarial attacks is not available. Thus, for the miss-
ing adversarial attacks, we use alternative implementations in Foolbox [87] (see the following), as
recommended by Tramèr et al. [101].

The performance of BL1 through BL4 may vary due to platforms, models, and attack settings.
For a fair comparison, we implement our approach in their environments and conduct comparison
directly using the same target models and attacks provided by each of them. In total, there are three
different environments: Env1 on the Keras platform, and Env2 and Env3 on the PyTorch platform:

— Env1 contains models and attack methods provided by BL1 [28], where the DNN model for
MNIST is LeNet, for CIFAR10 is a deep 12-layer convnet, and the accuracy on training/testing
dataset is 99.6%/99.1% for MNIST and 87.3%/80.3% for CIFAR10. BL2 [70] uses the models and
attack code segments provided by BL1, so Env1 is used by these two baselines. The attack
parameters of crafting adversarial samples are listed in Table 4. It should be noted that there
are two slightly different BIM implementations in Env1 and no C&W implementation is
provided in Env1, thus we use ‘bim-a’ implementation for BIM and the C&W implementation
from Foolbox. For evaluating detection approaches, Env1 uses the testing datasets of MNIST
and CIFAR10 that can be correctly classified by the underlying DNN models based on which
adversarial examples are crafted by the considered adversarial attack methods (cf. Table 4).

— Env2 is provided by BL3 [106], which includes the LeNet5 model for MNIST and GoogleNet
model for CIFAR10. The accuracy on training/testing dataset is 98.5%/98.3% for MNIST and
99.7%/90.5% for CIFAR10. The provided adversarial attack methods and their parameters for
crafting adversarial samples are shown in Table 5. BL3 stated that the included black-box
attack (denoted by BB) is ineffective on CIFAR10, as the authors could not train a good
substitute model, so we omit this black-box attack on CIFAR10. For evaluating detection
approaches, Env2 randomly selects 1,000 normal samples from the testing dataset MNIST

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:23

(respectively, CIFAR10) during each evaluation and adversarial examples have been provided
therein which were crafted by the provided adversarial attack methods using randomly se-
lected 1,000 normal samples from the testing dataset MNIST (respectively, CIFAR10).

— Env3 is provided by BL4 [104], which includes LeNet4 for MNIST, WRN for CIFAR10, and
ResNet101 for ImageNet. The accuracy on the training/testing dataset is 90.0%/98.4% for
MNIST and 100.0%/96.2% for CIFAR10, whereas ResNet101 has a top-1 accuracy rate 77.36%
on the validation set. It only provides one adversarial attack, which is L2 norm adoption of
FGSM with 0.016 as the attack step. To make the results more comprehensive, we use JSMA,
DeepFool, and C&W in Foolbox to craft adversarial examples with default parameters. Since
Env3 provides neither normal samples nor adversarial samples for evaluating detection
approaches, we randomly select 1,000 normal samples from the testing dataset MNIST
(respectively, CIFAR10 and ImageNet) that can be correctly classified by the underlying
DNN models based on which adversarial examples are crafted by the considered adversarial
attack methods.

To answer RQ3, we train models with backdoors based on the open source repositories [33,
58, 103] using three datasets (GTSRB [42], MNIST, and CIFAR10) and detect backdoored sam-
ples generated by the backdoor attacks: BadNets [33], PhysicalBA [59], ISSBA [57], WaNet [79],
and TUAP [124]. The detection against BadNets is conducted based on the code and models pro-
vided by Gu et al. [33] and Wang et al. [103]. The accuracy on different clean test datasets are
96.51% (GTSRB), 99.17% (MNIST), and 98.89% (CIFAR10). For the other four recent backdoor at-
tacks, we trained four models using the CIFAR10 dataset, one model per backdoor attack, whose
accuracies on the clean test datasets are 94.09% (PhysicalBA), 94.94% (ISSBA), 91.13% (WaNet), and
92.00% (TUAP). The ASR is close to 100% on the inputs with backdoor triggers, and related code
and models are released on GitHub [1]. To answer RQ4, both the models and input labels refer to
the baseline work [80] for comparison.

5.2 RQ1: Effectiveness of Attack Costs

We answer RQ1 by comparing our approach with BL1 through BL4 in Env1, Env2, and Env3, respec-
tively. The evaluation metric used here is AUROC (area under the receiver operating characteristic
curve), which is one of the most important evaluation metrics for measuring the performance of
classification indicators. The larger the AUROC (up to 1), the better the approach.

The results are reported in Table 6, where the best one is highlighted in bold font. Note that all
the tools in BL1 through BL3 do not contain tuned parameters for the ImageNet dataset, thus no
result is reported. Although they could be adapted, we did not do so because it is non-trivial to
reproduce their best performance, as mentioned in the work of Wang et al. [104]. Overall, we can
observe that our approach outperforms the others in most cases. It is worth mentioning that our
detection parameters stay the same in all three environments, Env1, Env2, and Env3, which shows
its universality, namely that users do not need to adjust parameters for a specific model or platform.

Among the four detections, JSMAd , BIMd , BIM2d , and DBAd , on MNIST and CIFAR10, BIMd

performs better than the others in almost all the cases, whereas DBAd performs worse than the
others in most cases. This is because DBAd is a black-box attack, thus it is less powerful than the
other white-box attacks. An interesting phenomenon is that the AUROC results on ImageNet of
JSMAd and DBAd are close to or surpass BIMd . This is because for images with large dimension,
each perturbation generated by JSMAd and DBAd is smaller than that of BIMd , resulting in a fine-
grained attack as well as a fine-grained indicator of robustness. One may find that BL2 performs
better than the others on CIFAR10 adversarial examples crafted by FGSM. This may be because
the performance of the model is too poor, as its accuracy is only 80.3% on the testing dataset.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:24 Z. Zhao et al.

Table 6. AUROC Comparison for Adversarial Examples

Env1 Attack JSMAd BIMd BIM2d DBAd BL1 BL2

MNIST

FGSM 0.9653 0.9922 0.9883 0.9504 0.8267 0.9161

BIM 0.9986 0.9996 0.9995 0.9625 0.9786 0.9695

JSMA 0.9923 0.9922 0.9914 0.9497 0.9855 0.9656

C&W 1.0 1.0 1.0 0.9672 0.9794 0.9502

CIFAR10

FGSM 0.6537 0.712 0.6474 0.6977 0.7015 0.7891

BIM 0.8558 0.8636 0.861 0.8276 0.8255 0.8496

JSMA 0.9459 0.955 0.9526 0.9452 0.8421 0.9475

C&W 0.9905 0.9984 0.9988 0.9833 0.9217 0.9799

Env2 Attack JSMAd BIMd BIM2d DBAd BL3

MNIST

FGSM 0.9665 0.9883 0.9846 0.9595 0.9617

JSMA 0.9971 0.9984 0.9974 0.984 0.9941

DeepFool 0.9918 0.9971 0.9951 0.9587 0.9817

C&W 0.9456 0.9870 0.9769 0.8672 0.9576

BB 0.9746 0.9895 0.9852 0.9535 0.9677

CIFAR10

FGSM 0.8808 0.8994 0.8998 0.8746 0.8617

JSMA 0.9774 0.9890 0.9873 0.9566 0.9682

DeepFool 0.9832 0.9898 0.9902 0.9769 0.9614

C&W 0.8842 0.9176 0.9175 0.9004 0.9063

Env3 Attack JSMAd BIMd BIM2d DBAd BL4

MNIST

FGSM 0.9985 0.9999 1.0 0.9674 0.9993

JSMA 0.9972 0.9998 0.9999 0.9113 0.9993

DeepFool 0.9702 0.9877 0.9874 0.9255 0.9892

C&W 0.9985 1.0 1.0 0.9623 0.9996

CIFAR10

FGSM 0.9945 0.9979 0.9983 0.9629 0.9981

JSMA 0.9934 0.9962 0.9961 0.976 0.9966

DeepFool 0.9713 0.9703 0.9692 0.9604 0.9618

C&W 0.9951 0.9981 0.9985 0.9928 0.9968

ImageNet

FGSM 0.973 0.9763 0.9782 0.9625 0.9617

JSMA 0.9962 0.9805 0.99 0.9937 0.9695

DeepFool 0.9958 0.9793 0.9892 0.9891 0.9924

C&W 0.9873 0.9731 0.9801 0.9924 0.9636

Due to the poor performance of the CIFAR10 model, most attacks of benign examples can be
achieved easily, hence the attack costs of adversarial examples generated by FGSM are close to
benign examples. This problem could be alleviated by using state-of-the-art models (e.g., the model
in Env2) or improving the robustness of the model (e.g., AT, cf. Section 6.2.2).

Answer to RQ1: Against most attacks on two popular platforms (i.e., Keras and PyTorch) and
three widely used datasets (i.e., MNIST, CIFAR10, and ImageNet), the selected white-box attacks
JSMAd , BIMd , and BIM2d are more effective than the recent promising baselines BL1 through
BL4.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:25

5.3 RQ2: Adversarial Example Detection

We answer RQ2 by comparing our K-NN- and Z-score-based adversarial example detectors with
BL3 in Env2. To demonstrate that our approach still works on high-resolution images, we also
use the ImageNet model from Env3 for our experiments. We do not compare with BL1, BL2, and
BL4 since they only considered the results of AUROC or do not provide cost analysis. To avoid
overfitting, we use different samples for training and evaluating our detectors.

5.3.1 Effectiveness. K-NN-Based Detectors. For each dataset, each detection attackd of BIMd ,
BIM2d , JSMAd , and DBAd , and each attack a in Env2 or Env3, we build a K-NN-based detector
using the attack costs of 1,000 benign examples and 1,000 attack a crafted adversarial examples
via the detection attackd . We also build a K-NN-based ensemble detector END, which consists
of 1,000 benign examples and 1,000 adversarial examples, where each attack contributes 1,000/N
adversarial examples (N is the number of attack methods) and K = 100.

The results are shown in Figure 6(a) through (c). On average, the accuracies of detectors JSMAd ,
BIMd , BIM2d , DBAd , and END are as follows:

— 90.84%, 98.09%, 96.17%, 87.42%, and 99.35% for MNIST;
— 86.31%, 87.90%, 87.55%, 85.23%, and 92.66% for CIFAR10; and
— 93.44%, 94.08%, 95.08%, 91.64%, and 94.48% for ImageNet.

Specifically for the ensemble detector (END), the TPRs of adversarial examples crafted by FGSM,
JSMA, DeepFool, C&W, and BB are 99.2%, 100%, 100%, 99.4%, and 99.4%, respectively, and the
FPR is 1.9% on MNIST. Similarly, on CIFAR10, the TPRs are 82.9%, 98.7%, 99.4%, and 89.9%, and
the FPR is 7.6%, and on ImageNet, the TPRs are 90.0%, 99.6%, 99.2%, and 94.4%, and the FPR
is 10.8%.

We find that DBAd performs worse than the others in most cases, which is consistent with AU-
ROC (cf. Table 6). It is worth noting that although the ensemble detector END does not always
achieve the best performance, it has the highest average accuracy. Thus, it balances the perfor-
mances of individual detectors and is more robust.

Z-Score-Based Detectors. For each dataset, and each detection attackd of BIMd , BIM2d , JSMAd ,
and DBAd , we build a Z-score-based detector using the normal distribution of attack costs of
1,000 benign examples via the detection attackd , resulting in four detectors BIMd , BIM2d , JSMAd ,
and DBAd . The threshold h is –1.281552, which yields a 10% FPR on the 1,000 benign examples.
The ensemble detector named by END consists of these four detectors. It classifies an input as
adversarial if no less than two detectors classify the input as adversarial, and otherwise benign,
namely k = 2.

The results are shown in Figure 6(d) through (f). On average, the accuracies of detectors JSMAd ,
BIMd , BIM2d , DBAd , and END are as follows:

— 92.94%, 98.56%, 97.58%, 82.18%, and 98.02% for MNIST;
— 83.44%, 87.23%, 86.62%, 75.98%, and 87.32% for CIFAR10; and
— 94.04%, 94.08%, 95.08%, 92.68%, and 96.24% for ImageNet.

Specifically for the ensemble detector (END), the TPRs of adversarial examples crafted by FGSM,
JSMA, DeepFool, C&W, and BB are 99.1%, 99.8%, 100%, 95.7%, and 98.7%, respectively, and the
FPR is 5.2% on MNIST. Similarly, on CIFAR10, the TPRs are 70.8%, 98.2%, 98.5%, and 78.9%, and
the FPR is 9.8%, and on ImageNet, the TPRs are 97.2%, 100%, 99.4%, and 96.4%, and the FPR is
11.8%. We can observe that they are able to achieve comparable or even better accuracy than K-NN-
based detectors, although Z-score-based detectors only use benign examples, whereas K-NN-based
detectors use both benign and adversarial examples.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:26 Z. Zhao et al.

Table 7. Cost Analysis of Our Detector with Accuracy

Dataset Detector #adv Accadv #benign Threshold ti (ms) Accbenign

MNIST

BL3 66 96.4% 463 – 3.6 89.7%

JSMAd 20 95.4% 240 53 1.8

≥89.7%BIMd 16 99.8% 148 122 2.1

BIM2d 38 99.6% 352 189 2.1

DBAd 92 88.2% 319 195 11

CIFAR10

BL3 67 90.6% 376 – 79 74.0%

JSMAd 6 92.6% 33 13 23

≥74.0%BIMd 14 93.0% 65 35 16

BIM2d 29 92.7% 129 71 17

DBAd 252 87.7% 744 409 43

ImageNet

BL3 – – – – – –

JSMAd 6 95.4% 67 11 24 88.6%

BIMd 1 95.2% 4 2 18 89.6%

BIM2d 1 96.7% 7 2 18 88.5%

DBAd 143 93.9% 451 219 97 88.0%

5.3.2 Efficiency. For a fair comparison with BL3, we report the detection costs of the Z-score-
based detectors here, although the detection accuracy may be slightly worse than that of K-NN-
based detectors. The reason is that the threshold of Z-score detectors can be easily adjusted to
ensure that detection accuracy on benign examples is close to the baseline. As both our method
and the baseline BL3 are query intensive, we compare the number of queries and the average time
of each iteration for efficiency comparison.

The results are reported in Table 7. The columns #adv and #benign give the number of queries to
the model for adversarial and benign examples on average, and ti (ms) represents the average time
required for each iteration. The columns Accadv and Accbenign respectively give the accuracy for
adversarial and benign examples on average.

By limiting the accuracy on benign examples to the one of BL3, we observe that all the white-
box detectors (i.e., JSMAd , BIMd , and BIM2d) outperform BL3 in terms of the number of queries on
both MNIST and CIFAR10. Furthermore, they also achieve better accuracy than BL3 on CIFAR10,
whereas both BIMd and BIM2d achieve better accuracy than BL3 on MNIST. We also provide the
results on ImageNet in Table 7. The results show that on ImageNet, A2D can still detect adversarial
examples effectively and efficiently. BIMd /BIM2d are able to detect adversarial examples using
one query. This demonstrates that our method is also efficient on high-resolution images. For the
average time required for each iteration, we can find the white-box detections outperform BL3

again. BL3 is based on model mutation, so each iteration needs to load a new model and perform a
forward propagation. Using the MNIST dataset and the corresponding model as an example, BL3

needs 3 ms to load the model and 0.6 ms to get the prediction result for each query. For white-box
attacks, each iteration requires one forward propagation and one backward propagation, so these
white-box attacks have similar time. Since A2D does not require constant reloading of the model,
it has some efficiency advantage. We finally remark that BL3 does not support ImageNet, and the
other baselines either provide only AUROC without constructing a detector or do not provide cost
analysis. It is not surprising that the cost of DBAd is the largest one, as it is a label-only black-
box attack. It is important to mention that black-box attacks used as detection do not need any

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:27

Fig. 6. Detection accuracy on adversarial examples crafted by different attacks, where the x-axis denotes

the adversarial attack method but normal denotes normal examples, and the y-axis denotes the detection

accuracy.

information of the models, hence using black-box attacks as detection preserve the privacy of the
models while its effectiveness is still acceptable.

We emphasize there is still space for optimization. One way is to add an upper bound on the
number of iterations, as adversarial examples often need fewer iterations than benign ones. If
the number of iterations reaches the bound and the attack fails, the input can be considered as
benign. This optimization could reduce the number of iterations (hence queries) for benign exam-
ples. When the bound is chosen according to the threshold of a Z-score detector, both TPRs and
FPRs will not be affected.

Discussion. Here we briefly discuss how our approach can be used in practice as different detec-
tors have different accuracies. Considering the tradeoff between the efficiency and accuracy, one
can use JSMAd , BIMd , or BIM2d as detection according to the dimension of images. If one expects
a more reliable and higher accurate detector, an ensemble detector such as END can be used. If the
privacy of models matters, a black-box attack based detector such as DBAd is better.

5.3.3 Results of Parameter Tuning. To better understand the performance of A2D, we report
results of turning parameters on the target model from Env2 on MNIST. The results are shown
in Table 8, where bold denotes the value used in the previous experiments (cf. Figure 6(a) and
Figure 6(d)). The columns Accbenign and Accadv respectively denote the detection accuracy for be-
nign examples and adversarial examples on average.

For the K-NN-based detector, we vary the value of K from 50 to 200. We observe that both true-
and false-negative rates slightly increase with the increase of K . We also vary the ratio between
benign and adversarial examples, and when the proportion of adversarial examples increases, both
TPRs and FPRs slightly increase.

For the Z-score-based ensemble detector, we vary the value of the thresholdh from –1, –1.281552,
–1.644854, and –1.959964 to –2. We observe that the smaller the threshold h, the lower the FPR. We
change the parameter k in the Z-score-based ensemble detector. Recall that the ensemble detec-
tor classifies an input to adversarial if k detectors classify the input to adversarial and otherwise

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:28 Z. Zhao et al.

Table 8. Comparison for the Impact of Classifier

Parameters

Parameter Value Accbenign Accadv

K-value

50 0.976 0.9966

100 0.981 0.9961

150 0.984 0.9942

200 0.984 0.9934

Ratio between benign
and adversarial examples

1:0.5 0.988 0.9777

1:0.8 0.985 0.9939

1:1 0.981 0.9961

1:1.2 0.979 0.9966

1:2 0.976 0.9973

Z-score

–1 0.899 0.9972

–1.281552 0.948 0.9866

–1.644854 0.976 0.9492

–1.959964 0.987 0.8739

-2 0.988 0.86

Statistic ensemble

1 0.748 0.999

2 0.948 0.9866

3 0.993 0.9348

4 1.0 0.7294

Classifier

K-NN 0.981 0.9961

SVM 0.642 0.7785

DTC 0.919 0.8117

RFC 0.946 0.9022

benign. We observe from Table 8 that both true- and false-negative rates increase with the increase
of k .

In summary, the preceding parameters can be used to balance the TPRs or FPRs, namely the
TPR could be improved at the cost of the FPR.

Finally, instead of K-NN, we also tried the SVM (support vector machine), DTC (decision tree
classifier), and RFC (random forest classifier) algorithms. We use the implementations of scikit-
learn with the default parameters. The results show that similar accuracy can be obtained using
different classification algorithms. This implies that our detection approach is generic in terms of
classification algorithms.

Answer to RQ2: A2D is able to efficiently and effectively detect adversarial examples with a
lower FPR. It is considerably more effective and efficient than the recent promising approach
BL3.

5.4 RQ3: Backdoored Sample Detection

To answer RQ3, we build the detector A2D using the adversarial attack method BIMd due to its
performance in the previous experiments. The detector uses a two-step BIM, where the step size
is the same as the one used for adversarial example detection in Section 5.2. We consider five

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:29

Table 9. AUROC Comparison for

Backdoored Samples

Attack
Detector

A2D BL5 BL6

BadNets 0.9961 0.9952 0.9568

PhysicalBA 0.9657 0.9282 0.8354

ISSBA 0.9694 1.0 <0.5

WaNet 0.9095 0.8104 <0.5

TUAP 0.9682 0.8586 <0.5

Average 0.9618 0.9185 0.6584

Table 10. TPR Comparison for Backdoored Samples Under the Same Fixed FPRs

Dataset
FPR = 0% FPR = 0.5% FPR = 1% FPR = 5% FPR = 10%

A2D BL5 BL6 A2D BL5 BL6 A2D BL5 BL6 A2D BL5 BL6 A2D BL5 BL6

GTSRB 0.991 0.979 0.57 0.992 0.993 0.749 0.994 0.993 0.795 0.999 0.996 0.871 0.999 0.998 0.904

MNIST 0.983 0.991 0.0 0.996 1.0 0.0 0.996 1.0 0.0 1.0 1.0 0.667 1.0 1.0 1.0

CIFAR10 0.957 0.954 0.0 0.964 0.962 0.0 0.974 0.964 0.0 0.989 0.980 0.0 0.991 0.989 0.998

Average 0.977 0.975 0.19 0.984 0.985 0.25 0.988 0.986 0.265 0.996 0.992 0.513 0.997 0.996 0.967

backdoor attacks: BadNets, ISSBA, WaNet, PhysicalBA, and TUAP, covering different types of
backdoor triggers such as clean-label, optimized trigger pattern, invisible, and sample-specific. We
compare A2D with BL5 and BL6, where BL5 needs backdoored samples for training detectors and
BL6 does not, the same as A2D. We first compare AUROC of the detection tools to evaluate the
effectiveness of the detection metric using the CIFAR dataset and then compare the TPR of the de-
tection tools under different FPRs using the most classic backdoor attack BadNets and the datasets
GTSRB, MNIST, and CIFAR10. Each dataset used for comparison has 1,000 normal samples and
1,000 backdoored samples.

The AUROC results are reported in Table 9. Since a random predictor has an AUROC score of
0.5, we do not specifically calculate the AUROC results when it is less than 0.5. The results show
that A2D achieves the best average AUROC and has a relatively balanced performance against
different backdoor attacks, indicating that A2D is able to detect different backdoored samples. More
specifically, BL5 performs better than our detector A2D against the backdoor attack ISSBA, but it
performs worse than A2D against the other backdoor attacks, particularly WaNet and TUAP. BL6

performs poorly against the backdoor attacks ISSBA, WaNet, and TUAP, because these attacks
generate more invisible or arbitrary backdoor triggers than BadNets and PhysicalBA, which add
fixed-size box-shaped backdoor triggers at fixed positions.

The TPR results are reported in Table 10. Although the three methods are often comparable, A2D
performs slightly better than the baselines on average, particularly on the GTSRB and CIFAR10
datasets when FPR is no more than 5%. We note that images in GTSRB and CIFAR10 (32×32×3) have
higher dimensions than MNIST images (28 × 28 × 1). This means that A2D has a better capability
than the baselines for handling high-resolution images when the FPR is small. We remark that a
small FPR is required in practice.

To better understand the reason behind the diverse performance, we inspect the methodology
of the baselines. BL5 assumes that normal and backdoored samples have different distributions
of the outputs of intermediate layers and clusters the outputs of intermediate layers for normal

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:30 Z. Zhao et al.

Table 11. TPR and FPR Comparison for Backdoored Samples Under Calculating Thresholds Using 100

Samples

Dataset
FPR∗ = 0% FPR∗ = 1% FPR∗ = 5% FPR∗ = 10%

FPR TPR FPR TPR FPR TPR FPR TPR

GTSRB 0.028 (↑0.028) 0.997 (↑0.006) 0.036 (↑0.026) 0.998 (↑0.004) 0.069 (↑0.019) 0.999 (–) 0.094 (↓0.006) 0.999 (–)

MNIST 0.01 (↑0.01) 0.996 (↑0.013) 0.014 (↑0.004) 0.998 (↑0.002) 0.057 (↑0.007) 1.0 (–) 0.097 (↓0.003) 1.0 (–)

CIFAR10 0.003 (↑0.003) 0.957 (–) 0.011 (↑0.001) 0.974 (–) 0.047 (↓0.003) 0.979 (↓0.1) 0.099 (↓0.006) 0.989 (↓0.02)

and backdoored samples as different categories. The clustering process combines PCA (principal
component analysis) and K-means algorithms in an N -classification problem, which performs N
clustering operations in advance until the presence of the backdoor Trojan in the network is iden-
tified and the corresponding output label is found. Compared to A2D, BL5 requires backdoored
samples to train a detector while A2D does not. Although both BL5 and A2D use intermediate
layer outputs, which may be the reason they have similar performance, A2D uses intermediate
layer outputs to evaluate the attack cost and adversarial robustness, whereas BL5 uses all interme-
diate layer outputs for clustering. BL6 assumes that backdoored samples will be more stable and
performs detection by overlaying new images on input samples. Thus, its effectiveness depends
on whether the trigger will be overwritten by the overlaid image. Although BL6 does not directly
use robustness metrics, it indeed implicitly assumes that the backdoored samples are more robust,
in line with our conclusion of Table 1. The performance of A2D indicates that, compared with
overlaying the original images with randomly selecting new images, adversarial attacks provide
a better way to characterize robustness. Overall, the experimental results demonstrate that A2D
is a promising approach for detecting backdoored samples in a wide range of image classification
tasks.

We finally remark that in terms of efficiency, the three detection methods (A2D, BL5, and BL6)
are comparable. Indeed, the average detection time of BL5, BL6, and A2D is 0.067 seconds, 0.051
seconds, and 0.053 seconds, respectively.

One may notice that we used 1,000 normal samples to determine the threshold Mt by choosing
an acceptable FPR r . However, obtaining 1,000 normal samples may be time consuming for the
defender in practice. We argue that the defender indeed can use fewer normal samples to determine
the threshold Mt . Table 11 shows the FPR and TPR results on the 1,000 normal samples and 1,000
backdoored samples, where the threshold Mt is determined by choosing an acceptable FPR r on
100 randomly chosen normal samples (denoted by FPR∗ in Table 11). We can observe that when
FPR∗ is small (i.e., ≤ 5%), both FPR and TRP often increase slightly; when FPR∗ is large (i.e., = 10%),
both FPR and TRP often decrease slightly. These results demonstrate the generality and flexibility
of our detection approach.

Answer to RQ3: A2D is able to effectively detect different types of backdoored samples, and al-
ways outperforms the baselines for various high-resolution image datasets and backdoor attacks
when the FPR is limited.

5.5 RQ4: Mislabeled Sample Detection

To answer RQ4, we compare A2D with the state-of-the-art tool BL7 (i.e., CleanLab [80, 81]). Sim-
ilar to RQ3, we build the detector A2D using the adversarial attack method BIMd . When sorting
suspected mislabeled samples, BL7 uses the classification probabilities of different labels, whereas
A2D primarily uses robustness (i.e., attack costs). The output probabilities are sensitive to train-
ing methods (e.g., [85]), whereas attack costs are more stable. We conduct experiments on testing

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:31

Table 12. Comparison for Mislabeled Sample

Detection

Dataset
BL7 A2D

Prune Threshold Prune Threshold

MNIST 7/34 10/100 7/34 10/100

CIFAR10 8/184 10/300 8/184 11/300

Fig. 7. Ranking of mislabeled samples among suspected samples, where the x-axis (respectively, the y-axis)

is the number of suspected (real mislabeled) samples.

datasets of MNIST and CIFAR10. Since A2D and BL7 detect different numbers of suspected samples,
the experimental results are compared under the prune detection method used in BL7 (denoted by
Prune) and the threshold-based detection method proposed by us (denoted by Threshold). We fuse
the detection indicators and detection methods of the two methods with each other, to ensure
fairness of the comparison. We set λ to 1 in the loss function loss (·).

The results are reported in Table 12, where a/b denotes that b number of suspected mislabeled
samples are found which contain a number of real mislabeled samples using the ground-truths
listed at https://labelerrors.com that were detected by BL7 and manually confirmed by human
workers on Amazon Mechanical Turk.

It can be found that A2D achieves similar results to the state-of-the-art method BL7. In Figure 7,
we further analyze the number of real mislabeled samples among all suspected samples along
with increasing of the threshold. The results reveal that A2D is more effective when the number
of suspected mislabeled samples is limited to no more than 50, suggesting that it is easier to find
real mislabeled samples using attack costs. Similarly, in Figure 8, we show the percentage of real
mislabeled samples over the first 50 suspected mislabeled samples. It can be observed that A2D
has a low FPR when the number of suspect samples is small.

As a case study, Figure 9(a) shows the first suspected mislabeled sample found by A2D. It is
easy to see that Figure 9(a) is mislabeled as frog but should be cat. However, it is at 33rd place by
BL7. Instead, the first suspected mislabeled sample found by BL7 is shown in Figure 9(b)) whose
assigned label is cat without mislabeling. This image is at 46th place by our detector A2D. Thus, our
approach using robustness as the indicator is considerably better than BL7 that uses probability as
the indicator.

To concretely demonstrate the advantage of A2D on this kind of clearly mislabeled instances,
we randomly inject 1,000 incorrectly labeled images into CIFAR10. Among the top-1,000 suspected
mislabeled samples reported by both tools, the detection accuracy of A2D is 88%, whereas the
accuracy of BL7 is 86.1%.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://labelerrors.com/

68:32 Z. Zhao et al.

Fig. 8. The percentage of real label errors over the number of suspected samples, where the x-axis (respec-

tively, the y-axis) is the number of suspected (real mislabeled) samples.

Fig. 9. The 1st ranked suspect samples found by A2D and BL7.

We finally remark that in terms of efficiency, A2D is slower than BL7. Specifically, the aver-
age detection time of A2D and BL7 is 0.39 seconds and 0.011 seconds for the MNIST dataset, and
0.92 seconds and 0.046 seconds for the CIFAR10 dataset, respectively. This is because mislabeled
samples are often quite robust to their predicted labels, thus the attack cost is higher when the
predicted label is used as the ground truth for an adversarial attack. We argue that in contrast to
adversarial and backdoored samples which typically require an online real-time detection, misla-
beled samples already exist in the dataset for which an offline detection is sufficient. Therefore,
the time cost of A2D for mislabeled sample detection is affordable.

Answer to RQ4: A2D is able to quickly detect mislabeled samples, especially those clearly mis-
labeled samples.

5.6 Threats to Validity

The threats to validity of our study include external and internal threats. The datasets and mod-
els used in our evaluation could be one of the external threats. We tried to counter this threat
by using several widely used datasets and pre-trained models from well-established works. Since
our approach leverages difference in robustness and attack cost between normal and abnormal
samples, models need to be well trained to have good and stable robustness. Under the Env1 and
CIFAR10 setting, our approach fails to outperform the baseline BL2 on the FGSM adversarial ex-
amples. Our analysis finds that this is because the robustness distribution of the normal samples
became positively skewed due to the low accuracy of the model, only about 80%. The well-trained

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:33

model is not a severe restriction, as developers will strive to train models better for their tasks, but
this is potentially one of the reasons our detectors make mistakes.

Another external threat is the knowledge of the adversary. As similarly assumed by the baseline
approaches, we assume that the adversary is unaware of the existence of the detection and evaluate
our detectors against the original models. In practice, the adversary may learn the deployment of a
detector and even know all the details of the detector, via social engineering or other methods, and
use a more threatening, specified attack method, called adaptive attacks [101]. This is the biggest
external threat against the defense, where the adversary may craft tailored adversarial examples
to bypass the detection. We discuss and evaluate adaptive attacks against our adversarial example
detection method in Section 6. We do not perform adaptive attack experiments on the detection of
the remaining abnormal samples, as we believe that experiments on the adversarial examples can
illustrate the huge cost required to bypass A2D and we have the ability to mitigate it.

The experimental platforms may also be an external threat. To mitigate this threat, we compare
with multiple baselines in different platforms, and these baselines are widely used for comparison
in the literature [39, 55, 69, 92]. It is worth noting that the comparison of baselines was conducted
on the open source tools with parameters provided by the original authors, to reproduce their best
performance.

The internal threat mainly comes from the gap between attack cost and robustness. We use at-
tack cost to efficiently estimate robustness and subsequently use A2D to detect abnormal samples.
However, attack cost may not be accurate enough to estimate robustness. To mitigate this threat,
we studied various attack methods which may differ in their capability. Experimental results indi-
cate that our detection performs well regardless of the selected attack method, although a minor
difference can be observed. When more efficient robustness verification tools are proposed, our
methodology could be directly adopted instead of using attack costs to measure robustness.

Another possible internal threat is the lack of interpretability of DNNs. In terms of mislabeled
sample detection, some samples may be classified into the wrong label with high confidence, and
this may lead to the misclassification of our detection method. In essence, if we could understand
why a DNN makes this prediction, we could use this information to detect abnormal samples better.
Similarly, such an understanding would be helpful in mitigating backdoor attacks.

6 ON ADAPTIVE ATTACKS

Multiple effective defenses have been shown to be ineffective in the presence of adaptive at-
tacks [14–16, 39, 101], where the adversary knows all the details of the DNN model under attack
and the deployed defense, and manages to devise a specific and powerful adversarial attack method
to bypass defense. Thus, it is important to consider adaptive attacks when evaluating defense ap-
proaches. In Section 5, we have shown the ability of A2D to detect adversarial examples under
the threat model that the adversary is unaware of the existence of defense mechanisms. In this
section, we investigate possible adaptive attacks to our detection, and the threat model turns into
the adversary knowing all the details of our detection as well as the DNN model under attack.
Backdoored and mislabeled samples are outside the scope of this section.

6.1 Potential Bypass Approaches

We consider two approaches which may potentially be used to bypass our detection. The adaptive
attack increases either the attack costs or robustness of adversarial examples which are exploited
in our detection.

6.1.1 Increasing Attack Costs. A straightforward approach that may be used to bypass our de-
tection is to directly increase the attack costs so that the attack costs of adversarial and benign

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:34 Z. Zhao et al.

Table 13. Robustness vs. Confidence of Adversarial Examples

κ 0 2 4 6 8

MNIST

CLEVER score ≈ 0 0.11 0.14 0.14 0.17

Attack iterations of BIMd 1.01 10.36 20.28 31.29 42.59

L2 distance 1.71 1.91 2.11 2.32 2.53

CIFAR10

CLEVER score ≈ 0 0.07 0.08 0.09 0.13

Attack iterations of BIMd 1.37 8.53 17.29 24.47 34.4

L2 distance 0.41 0.52 0.67 0.82 0.99

examples are similar. To directly increase attack costs of adversarial examples, one can incorpo-
rate attack costs into the loss function used to identify adversarial examples. For instance, the
adversary could change the loss function to

J ′(x) = J (x) + β ·max(cost − attack_cost(x), 0),

where J (x) is the original loss function, β is a parameter for balancing the terms J (x) and
max(cost − attack_cost(x), 0), cost denotes the expected attack cost such as the mean of
attack costs of benign examples or even the threshold of our Z-score-based detection approach,
and attack_cost(x) denotes the attack cost of the sample x via some adversarial attack methods.
Minimizing the loss function J ′(x) increases the attack cost of the sample x until exceeding cost.
However, this loss function J ′(x) is non-differentiable and hence cannot be solved via gradient-
based algorithms adopted by almost all the white-box adversarial attack methods. Moreover,
non-gradient-based iterative attacks have to run some adversarial attacks internally during each
optimization iteration to compute attack_cost(x)), which definitely results in high computa-
tional complexity.

6.1.2 Increasing Robustness. An alternative approach that may be used to bypass our detection
is to increase the robustness of adversarial examples, aiming to indirectly increase the attack costs.
However, it is non-trivial to directly control the robustness of adversarial examples. We propose
to increase the confidence/strength of adversarial examples, initially considered by Carlini and
Wagner [16] for increasing transferability of adversarial examples between different models. Con-
fidence is controlled by introducing a parameterκ into the loss function J (x), thus the loss function
becomes

Jκ (x) = max(J (x),−κ),

where the larger the parameter κ, the higher the confidence of the adversarial example.
The relation between robustness and confidence of adversarial examples is confirmed by the

following experiment. We apply the adversarial attack method C&W using the first 100 MNIST
and 100 CIFAR10 images from their testing datasets under the same setting as in the work of Car-
lini and Wagner [15], by varying the value of κ and measuring the robustness using the CLEVER
scores and attack iterations of BIMd . The results are reported in Table 13. The experiment results
show that the adversary is able to increase the robustness in terms of both the CLEVER scores and
attack iterations of adversarial examples by increasing the confidence. Therefore, high-confidence
adversarial examples have the potential to bypass our detection. However, we observe from
Table 13 that the distortion in terms of the L2 norm increases with the increase of the confidence
parameter κ.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:35

Fig. 10. Adaptive attack results, where the line and dot denote the attack success rate and L2 distortion,

respectively.

As our detection neither changes inputs or models, it can be seamlessly integrated with other
defenses. Combining our detection with other defenses that are aimed at detecting adversarial
examples with large distortion (e.g., [66, 75, 88]) would be able to detect a wide spectrum of adver-
sarial examples. Combining our detection with AT [32, 71, 98] would be able to further enhance
the model. Indeed, a successful attack to an adversarially trained model often introduces large dis-
tortion, whereas increasing the robustness of adversarial examples to bypass our detection also in-
troduces large distortion. Consequently, to bypass our detection on an adversarially trained model
would introduce much large distortion. When perturbations are limited to those that are human
imperceptible, it becomes difficult to bypass our detection on an adversarially trained model.

6.2 Evaluation of Adaptive Attacks

Since the first adaptive attack is infeasible, we only evaluate the second one that is implemented
based on C&W [15]. We evaluate this adaptive attack by varying the parameter κ from 0 to 20.

To evaluate the effectiveness of our detection combined with other defenses, we consider the
AE-based detector [75] and PGD AT [71]. The AE trains a classifier fae based on benign exam-
ples to detect any adversarial examples with large distortion by checking if d (x , fae (x)) is greater
than a pre-set threshold τ , where d is a distance function—for example, the mean squared error
‖x − fas (x)‖2.

6.2.1 A2D with AE. For ease of evaluation, we conduct experiments using the MNIST testing
dataset under the same settings as in the work of Meng and Chen [75], which provides a trained
AE.

In our experiments, the maximal L2 norm distortion is 8.4, which is approximated from the
maximal L∞ norm distortion 0.3 in Madry’s challenges [52]. Note that our maximal L2 distortion
allows perturbations to be greater than the maximal L∞ distortion for some pixels. Such large
perturbations are often challenging for detection. We use BIMd as detection and the corresponding
Z-score-based detector that only requires benign examples. Thus, it is a relatively weaker defense.
We denote by A2D our detector and A2D + AE the combined detector.

Results. The results are reported in Figure 10(a), from which we can observe that without any
defense, the ASR is always 100%. With the increase of κ, the detection rate of our defense A2D
decreases slightly. Specifically, A2D is able to detect all of the adversarial examples when κ ≤ 15,
whereas only about 3% of adversarial examples can bypass A2D when κ = 20. We also observe
that both the L2 distortion and detection rate of AE increase with the increase of κ. About 21% of

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:36 Z. Zhao et al.

Fig. 11. Adversarial examples for different κ.

adversarial examples can bypass AE when κ = 0, whereas all adversarial examples can be detected
by AE when κ = 20. Thus, the ASR is always 0% when the combined defense A2D + AE is applied.

Summary. The preceding results demonstrate the benefit of combining two complementary de-
fenses. Although an adaptive attack can slightly reduce the effectiveness of A2D by increasing
robustness of adversarial examples, the combination of A2D and AE is able to completely defend
against such adaptive attacks.

Case Study. Figure 11 shows adversarial examples of a targeted attack from 4 to 0 with different
values of the parameter κ. The perturbation for κ = 20 is about twice larger than that for κ = 0
and can be easily detected by AE.

6.2.2 A2D with AT. For ease of evaluation, we conduct experiments using the CIFAR10 testing
dataset under the same settings as in the work of Madry et al. [71], which provides an adversarially
trained DNN model. In our experiments, the maximal L2 norm distortion is 1.6, which is approx-
imated from the maximal L∞ norm distortion 0.03 in Madry’s challenges [52]. We use the same
Z-score-based detector as in Section 6.2.1.

Results. The results are shown in Figure 10(b). We can observe that AT is not very promising
when κ is smaller (e.g., 72% ASR for κ = 0). With the increase of κ (i.e., increasing robustness
of adversarial examples), the ASR drops to 21% when κ = 10 and 0% ASR when κ ≥ 15. This
is because finding adversarial examples with distortion limited to the maximal L2 threshold 1.6
becomes more difficult for the adversarially trained model. Recall that our detection A2D is good at
detecting adversarial examples with small distortion (i.e., low confidence). Therefore, the combined
defense is quite effective. For instance, all adversarial examples with κ = 0 can be detected by A2D,
hence the ASR drops from 72% to 0%. The adaptive attack achieves no more than 3% ASR on the
adversarially trained model.

Summary. To bypass our detection on adversarially trained models, the adversary has to intro-
duce much large distortion. When perturbations are limited to those that are human imperceptible,
it becomes difficult to bypass our detection on adversarially trained models.

Case Study. Figure 12 shows adversarial examples of targeted attacks from ‘truck’ and ‘airplane.’
The adversarial examples in the first/third line are classified as ‘cat,’ and the adversarial examples
in the second/fourth line are classified as ‘horse.’ Without any defense, an adversarial example
with less distortion can be crafted (cf. Figure 12(b)). With AT, it requires more distortion to craft
an adversarial example (cf. Figure 12(c)). If both A2D and AT are enabled, it requires much more
distortion to craft adversarial examples (cf. Figure 12(d)). Now the distortion is too large to be
human imperceptible, and in some adversarial examples, we can clearly see the silhouettes of a
targeted label on the adversarial example.

7 RELATED WORK

As a new type of software system, neural networks have received extensive attention over the
past 5 years. We summarize related works from three dimensions: abnormal examples, abnormal

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:37

Fig. 12. Adversarial examples on the models that are benign (a), without AT (b), with AT (c), and with A2D +

AT (d).

example defense, and neural network testing and verification. We are not able to cover all of them
but only discuss the most relevant ones.

Abnormal Examples. This work focuses on the detection of three kinds of abnormal samples,
namely adversarial, backdoored, and mislabeled samples. Adversarial attacks aim to misjudge the
neural network by adding perturbations that are imperceptible to humans. We have introduced
several representative white-box attacks in Section 2 and used multiple adversarial attack methods
(i.e., FGSM [32], BIM [51], JSMA [84], DeepFool [76], C&W [16], and substitute model attack [82])
to craft adversarial examples. We also notice that some adversarial example attack methods have
the ability to carry out attacks in the physical environment and thus pose serious threats to neural
networks [26, 45, 51]. In this work, we propose to characterize adversarial examples via robustness
and attack costs based on which we showed that many adversarial example attack methods can
be leveraged by our detection approach for computing attack costs, and our detection approach is
quite effective for defending against these adversarial example attack methods.

Backdoor attack, as a severe hazard in the model supply chain, federal learning, and open
source datasets, has been thoroughly explored in recent years. The poisoned datasets or models
are treated as Trojan horses buried in a neural network programming paradigm. The manner of
adding backdoor triggers in images is becoming increasingly stealthy, ranging from fixed backdoor
triggers [33] to sample-specific triggers [57] and invisible backdoor triggers [79]. The effectiveness

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:38 Z. Zhao et al.

of backdoor attacks in the physical world is also receiving attention [59]. Besides poisoning the
training dataset with maliciously labeled samples, a backdoor can also be injected by clean-label
samples [124], modifying the model parameters directly [65], or utilizing the dropout technique
to inject a triggerless backdoor attack [90]. Backdoors can also be used as watermarks for IP pro-
tection [56, 97]. In this work, we showed that backdoored samples have different robustness from
normal samples and our detection approach is effective in detecting backdoored samples generated
by various backdoor attack methods across different datasets.

Label quality plays a significant role in the generalization of models for supervised learn-
ing [22, 128]. However, it is not easy to exclude mislabeled samples from a dataset, especially
when the labeling of samples requires specialized knowledge [29, 109]. In this work, we studied
the robustness difference between mislabeled and normal samples based on which we propose a
novel approach to effectively detect mislabeled samples.

Abnormal Example Defense. To mitigate abnormal examples without rejecting input samples,
various approach have been proposed, such as defending against adversarial examples via AT [71]
and input sample pre-processing [12, 34, 75], eliminating backdoors from models [36, 60, 63], mit-
igating mislabeled samples via robust loss [73], sample weighting [110], and mixture models [72].
Detection is another line of defense approach to abnormal examples, where an input will be re-
jected without being fed to the model if the input is detected as abnormal. Although various detec-
tion approaches have been proposed respectively addressing some types of abnormal examples, it
is fair to say that this problem remains unsolved.

Adversarial example detection methods often characterize adversarial examples from multi-
ple perspectives of the data, like density estimates [28], AE [75], and PCA [40]. Other detection
methods are based on the model outputs and the hidden layer results, such as Bayesian uncer-
tainty estimates [28], local intrinsic dimensionality [70], mutation testing [106], linear regression
on hidden neuron outputs [104], Mahalanobis distance on Gaussian discriminant analysis [55],
feature squeezing [115], and feature compression [20]. Kim et al. [48] and Zhong et al. [127] re-
spectively argued that adversarial examples and natural variations (images generated through a
variety of image transformations, e.g., rotating an image, changing the lighting conditions) are
close to the decision boundaries of the DNN model in the feature space, based on which they pro-
posed approaches to detect adversarial examples and natural variations. Most existing adversarial
example defenses except for AT suffer from the following drawbacks: (1) they can be easily by-
passed by adaptive attacks with backward pass differentiable approximation and expectation over
transformation [5, 6, 101], (2) they are not effective on high-resolution images (e.g., the ImageNet
dataset) [28, 61, 70, 75, 106, 127], and (3) they either did not consider or considered limited adaptive
attacks [28, 61, 70, 75, 104, 106, 127]. In this work, we propose to effectively and efficiently measure
robustness via non-differentiable attack costs, thus gradient-based white-box attacks cannot be di-
rectly applied to our detection. The experimental results show that A2D is effective on widely used
datasets covering both low- and high-resolution images, and effective in defending against poten-
tial tailored powerful adaptive attacks when combined with other alternative defense solutions.

For the detection of backdoor attacks, one can determine whether a model has been tampered
with a backdoor Trojan [2, 49, 103] or an input sample has been injected with a backdoor trig-
ger [17, 30, 35]. Neural Cleanse [103] determines whether a network has been injected with a
backdoor Trojan by calculating the minimum perturbation needed to attack an input to a specific
class. Kolouri et al. [49] design Universal Litmus Patterns, feed them to a model, and classify the
model as poisoned or clean after analyzing the model’s output logits. Aiken et al. [2] propose to
detect and locate possible Trojan intermediate layers by directly thresholding the average acti-
vation difference between normal and backdoored samples. For a given input image, Activation

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:39

Clustering [17] leverages the activation difference from the neural network’s hidden layers be-
tween normal and backdoored samples to detect backdoor. Strip [30] creates multiple images by
superimposing various image patterns and utilizes the entropy of their predicted classes as an
detection indicator. Whereas these works detect backdoored samples from different perspectives,
our approach focuses on the use of adversarial attacks to represent the difference in robustness be-
tween normal and backdoored samples. The experimental results demonstrate that our approach
is often able to achieve better performance on inputs with different backdoor triggers.

A similar circumstance holds for detecting mislabeled instances and cleanse datasets. INCV [21]
applies cross-validation to randomly split noisy datasets to identify most samples that have correct
labels. MentorNet [46] trains an extra network called MentorNetwork to supervise the base network
to focus on the samples whose label are probably correct. CleanLab [80, 81] detects label errors by
directly estimating the joint distribution of latent true label and noise label. These works can only
detect the samples whose assigned labels are not equal to the predicted labels. The experimental
results show that our approach not only detects such kinds of samples efficiently but also detects
the potential mislabeled samples when the assigned label is equal to the model predicted label,

Furthermore, our detection method A2D utilizes the inherent robustness difference between nor-
mal and adversarial examples, which has been systematically and comprehensively investigated
in terms of CLEVER scores. Putting different kinds of abnormal examples together, our approach
is a generalized method to detect abnormal examples by characterizing the robustness difference
between normal and abnormal examples via low-overhead attack costs.

Neural Network Testing and Verification. Some works look for vulnerabilities in neural net-
works from the perspective of software testing. DeepXplore [86] leverages a testing method to find
adversarial examples guided by neuron coverage. After that, a series of coverage criteria has been
proposed for neural network testing [48, 67, 95]. Different testing methods also have been adapted
to test neural networks, such as concolic testing [96], mutation testing [68], and others [105, 113].
We do not use testing criteria to model the robustness of examples, as testing criteria are not nec-
essarily correlated with robustness [24, 117] and could be misleading [61].

Various formal verification techniques have been proposed to verify the robustness property
of neural networks [7, 31, 37, 47, 62, 64, 107, 120–123, 126]. Formal verification provides provable
or theoretic guarantees, and robustness is also the source of our detection approach. However,
current formal verification techniques in general have high computational complexity. Thus, we
use attack costs for better scalability. In the future, once efficient formal verification techniques for
verifying robustness of DNNs are proposed, they could be leveraged to detect abnormal examples
following our detection methodology.

8 CONCLUSION

Inspired by the robustness of neural networks, we proposed a novel characterization of abnormal
examples via robustness and systematically evaluated robustness of abnormal examples in terms
of CLEVER scores. Subsequently, based on the characterization, we proposed a novel detection
approach, named attack as detection (A2D), which utilizes adversarial attack methods to effectively
measure robustness, and do not need to modify or retrain the protected model. We conducted
extensive experiments to evaluate our detection approach A2D, showing that it outperforms recent
promising approaches in adversarial, backdoored, and mislabeled sample detection. Our tool A2D
can be applied in the real-world scenario as follows when the three types of abnormal samples
come all at once. First, mislabeled samples are checked before the training and evaluation of a DNN
model and thus need not be checked after the model has been deployed. Next, our tool A2D can
iteratively check if an input to a deployed DNN model is an adversarial example or a backdoored

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:40 Z. Zhao et al.

sample. We also thoroughly discussed and evaluated the main threat (i.e., adaptive attacks) to our
approach in detecting adversarial examples. By combing our detection approach with an existing
detection approach or AT, the results are very promising—for example, the ASR drops from 72%
to 0% on CIFAR10, and it drops from 100% to 0% on MNIST.

REFERENCES

[1] GitHub. 2022. A2D. Retrieved November 21, 2023 from https://github.com/S3L-official/attack-as-detection

[2] William Aiken, Hyoungshick Kim, Simon Woo, and Jungwoo Ryoo. 2021. Neural network laundering: Removing

black-box backdoor watermarks from deep neural networks. Computers & Security 106 (2021), 102277.

[3] Apollo. 2018. Apollo: An Open, Reliable and Secure Software Platform for Autonomous Driving Systems. Retrieved

November 21, 2023 from http://apollo.auto

[4] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms

in software engineering. In Proceedings of the 33rd International Conference on Software Engineering. 1–10.

[5] Anish Athalye, Nicholas Carlini, and David A. Wagner. 2018. Obfuscated gradients give a false sense of security: Cir-

cumventing defenses to adversarial examples. In Proceedings of the 35th International Conference on Machine Learning.

274–283.

[6] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. 2018. Synthesizing robust adversarial examples. In

Proceedings of the International Conference on Machine Learning. 284–293.

[7] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya V. Nori, and Antonio Criminisi.

2016. Measuring neural net robustness with constraints. In Proceedings of the Annual Conference on Neural Informa-

tion Processing Systems. 2613–2621.

[8] B. L. Welch. 1947. The generalisation of ‘student’s’ problems when several different population variances are involved.

Biometrika 34, 1-2 (1947), 28–35.

[9] George E. P. Box and David R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society:

Series B (Methodological) 26, 2 (1964), 211–243.

[10] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-based adversarial attacks: Reliable attacks

against black-box machine learning models. In Proceedings of the 6th International Conference on Learning Repre-

sentations.

[11] Lei Bu, Zhe Zhao, Yuchao Duan, and Fu Song. 2022. Taking care of the discretization problem: A comprehensive

study of the discretization problem and a black-box adversarial attack in discrete integer domain. IEEE Transactions

on Dependable and Secure Computing 19, 5 (2022), 3200–3217.

[12] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. 2018. Thermometer encoding: One hot way to resist

adversarial examples. In Proceedings of the 6th International Conference on Learning Representations.

[13] Nicholas Carlini and David Wagner. 2016. Defensive distillation is not robust to adversarial examples. CoRR

abs/1607.04311 (2016).

[14] Nicholas Carlini and David A. Wagner. 2017. Adversarial examples are not easily detected: Bypassing ten detection

methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. 3–14.

[15] Nicholas Carlini and David A. Wagner. 2017. Magnet and “efficient defenses against adversarial attacks” are not

robust to adversarial examples. CoRR abs/1711.08478 (2017).

[16] Nicholas Carlini and David A. Wagner. 2017. Towards evaluating the robustness of neural networks. In Proceedings

of the IEEE Symposium on Security and Privacy. 39–57.

[17] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian M. Mol-

loy, and Biplav Srivastava. 2019. Detecting backdoor attacks on deep neural networks by activation clustering. In

Proceedings of the Workshop on Artificial Intelligence Safety, Co-Located with the 33rd AAAI Conference on Artificial

Intelligence.

[18] Guangke Chen, Sen Chen, Lingling Fan, Xiaoning Du, Zhe Zhao, Fu Song, and Yang Liu. 2021. Who is real Bob?

Adversarial attacks on speaker recognition systems. In Proceedings of the IEEE Symposium on Security and Privacy.

694–711.

[19] Guangke Chen, Yedi Zhang, Zhe Zhao, and Fu Song. 2023. QFA2SR: Query-free adversarial transfer attacks to speaker

recognition systems. In Proceedings of the 32nd USENIX Security Symposium, Joseph A. Calandrino and Carmela

Troncoso (Eds.). USENIX Association, 2437–2454.

[20] Guangke Chen, Zhe Zhao, Fu Song, Sen Chen, Lingling Fan, Feng Wang, and Jiashui Wang. 2023. Towards under-

standing and mitigating audio adversarial examples for speaker recognition. IEEE Transactions on Dependable and

Secure Computing 20, 5 (2023), 3970–3987. https://doi.org/10.1109/TDSC.2022.3220673

[21] Pengfei Chen, Ben Ben Liao, Guangyong Chen, and Shengyu Zhang. 2019. Understanding and utilizing deep neu-

ral networks trained with noisy labels. In Proceedings of the 36th International Conference on Machine Learning.

1062–1070.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://github.com/S3L-official/attack-as-detection
http://apollo.auto
https://doi.org/10.1109/TDSC.2022.3220673

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:41

[22] Filipe R. Cordeiro and Gustavo Carneiro. 2020. A survey on deep learning with noisy labels: How to train your

model when you cannot trust on the annotations? In Proceedings of the Brazilian Symposium on Computer Graphics

and Image Processing.

[23] Zijun Cui, Yong Zhang, and Qiang Ji. 2020. Label error correction and generation through label relationships. In Pro-

ceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence

Conference, and the 10th AAAI Symposium on Educational Advances in Artificial Intelligence. 3693–3700.

[24] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu Wang, Li Wang, Jinsong Dong,

and Ting Dai. 2020. An empirical study on correlation between coverage and robustness for deep neural networks.

In Proceedings of the International Conference on Engineering of Complex Computer Systems. 73–82.

[25] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An abstraction-based framework for neural network

verification. In Computer Aided Verification. Lecture Notes in Computer Science, Vol. 12224. Springer, 43–65.

[26] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi

Kohno, and Dawn Song. 2018. Robust physical-world attacks on deep learning visual classification. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 1625–1634.

[27] Herbert Federer. 2014. Geometric Measure Theory. Springer.

[28] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. 2017. Detecting adversarial samples from

artifacts. CoRR abs/1703.00410 (2017).

[29] Benoît Frénay and Michel Verleysen. 2014. Classification in the presence of label noise: A survey. IEEE Transactions

on Neural Networks 25 (2014), 845–869.

[30] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe, and Surya Nepal. 2019. Strip: A de-

fence against Trojan attacks on deep neural networks. In Proceedings of the Annual Computer Security Applications

Conference. 113–125.

[31] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin T. Vechev.

2018. AI2: Safety and robustness certification of neural networks with abstract interpretation. In Proceedings of the

IEEE Symposium on Security and Privacy. 3–18.

[32] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples. In

Proceedings of the 3rd International Conference on Learning Representations.

[33] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets: Evaluating backdooring attacks on

deep neural networks. IEEE Access 7 (2019), 47230–47244.

[34] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der Maaten. 2018. Countering adversarial images

using input transformations. In Proceedings of the 6th International Conference on Learning Representations.

[35] Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu. 2023. SCALE-UP: An efficient black-box

input-level backdoor detection via analyzing scaled prediction consistency. arXiv preprint arXiv:2302.03251 (2023).

[36] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and Dawn Song. 2020. Towards inspecting and eliminat-

ing Trojan backdoors in deep neural networks. In Proceedings of the IEEE International Conference on Data Mining.

162–171.

[37] Xingwu Guo, Wenjie Wan, Zhaodi Zhang, Min Zhang, Fu Song, and Xuejun Wen. 2021. Eager falsification for ac-

celerating robustness verification of deep neural networks. In Proceedings of the IEEE International Symposium on

Software Reliability Engineering. 345–356.

[38] Warren He, Bo Li, and Dawn Song. 2018. Decision boundary analysis of adversarial examples. In Proceedings of the

5th International Conference on Learning Representations.

[39] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. 2017. Adversarial example defense: Ensem-

bles of weak defenses are not strong. In Proceedings of the 11th USENIX Workshop on Offensive Technologies.

[40] Dan Hendrycks and Kevin Gimpel. 2017. Early methods for detecting adversarial images. In Proceedings of the 5th

International Conference on Learning Representations.

[41] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. 2019. Knowledge distillation with adversarial samples

supporting decision boundary. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Vol. 33. 3771–3778.

[42] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. 2013. Detection of traffic

signs in real-world images: The German Traffic Sign Detection Benchmark. In Proceedings of the International Joint

Conference on Neural Networks.

[43] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping

Yi. 2020. A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and

defence, and interpretability. Computer Science Review 37 (2020), 100270.

[44] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-box adversarial attacks with limited queries

and information. In Proceedings of the 35th International Conference on Machine Learning. 2142–2151.

[45] Steve T. K. Jan, Joseph Messou, Yen-Chen Lin, Jia-Bin Huang, and Gang Wang. 2019. Connecting the digital and phys-

ical world: Improving the robustness of adversarial attacks. In Proceedings of the 33rd AAAI Conference on Artificial

Intelligence.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

68:42 Z. Zhao et al.

[46] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. MentorNet: Learning data-driven curricu-

lum for very deep neural networks on corrupted labels. In Proceedings of the 35th International Conference on Machine

Learning. 2304–2313.

[47] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An efficient SMT

solver for verifying deep neural networks. In Proceedings of the 29th International Conference on Computer Aided

Verification. 97–117.

[48] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In

Proceedings of the 41st International Conference on Software Engineering. 1039–1049.

[49] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. 2020. Universal litmus patterns: Revealing

backdoor attacks in CNNs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

301–310.

[50] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report. University of

Toronto.

[51] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial examples in the physical world. In Proceedings

of the 5th International Conference on Learning Representations.

[52] Madry Lab. 2020. MNIST and CIFAR10 Adversarial Examples Challenges. Retrieved November 21, 2023 from https:

//github.com/MadryLab

[53] Richard J. Larsen and Morris L. Marx. 2011. An Introduction to Mathematical Statistics and Its Applications. Prentice

Hall.

[54] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. 1998. The MNIST Database of Handwritten Digits. Re-

trieved November 21, 2023 from http://yann.lecun.com/exdb/mnist/index.html

[55] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A simple unified framework for detecting out-of-

distribution samples and adversarial attacks. In Proceedings of the Annual Conference on Neural Information Processing

Systems. 7167–7177.

[56] Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-Tao Xia, and Bo Li. 2022. Untargeted backdoor watermark: Towards

harmless and stealthy dataset copyright protection. In Proceedings of the Annual Conference on Neural Information

Processing Systems.

[57] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. 2021. Invisible backdoor attack with sample-

specific triggers. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 16463–16472.

[58] Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao Xia. 2023. BackdoorBox: A Python toolbox for backdoor

learning. In Proceedings of the 2023 ICLR Workshop.

[59] Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2021. Backdoor attack in the physical world.

arXiv preprint arXiv:2104.02361 (2021).

[60] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shutao Xia. 2020. Rethinking the trigger of

backdoor attack. CoRR abs/2004.04692 (2020).

[61] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage criteria for neural networks could

be misleading. In Proceedings of the 41st International Conference on Software Engineering: New Ideas and Emerging

Results. 89–92.

[62] Jiaxiang Liu, Yunhan Xing, Xiaomu Shi, Fu Song, Zhiwu Xu, and Zhong Ming. 2022. Abstraction and refinement:

Towards scalable and exact verification of neural networks. CoRR abs/2207.00759 (2022).

[63] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: Defending against backdooring attacks on

deep neural networks. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses.

273–294.

[64] Wan-Wei Liu, Fu Song, Tang-Hao-Ran Zhang, and Ji Wang. 2020. Verifying ReLU neural networks from a model

checking perspective. Journal of Computer Science and Technology 35, 6 (2020), 1365–1381.

[65] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. 2018. Tro-

janing attack on neural networks. In Proceedings of the Annual Network and Distributed System Security Symposium.

[66] Jiajun Lu, Theerasit Issaranon, and David A. Forsyth. 2017. SafetyNet: Detecting and rejecting adversarial examples

robustly. In Proceedings of the IEEE International Conference on Computer Vision. 446–454.

[67] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu,

Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: Multi-granularity testing criteria for deep learning systems. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 120–131.

[68] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, and

Yadong Wang. 2018. DeepMutation: Mutation testing of deep learning systems. In Proceedings of the IEEE Interna-

tional Symposium on Software Reliability Engineering. 100–111.

[69] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang. 2019. NIC: Detecting adversarial sam-

ples with neural network invariant checking. In Proceedings of the Annual Network and Distributed System Security

Symposium.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://github.com/MadryLab
http://yann.lecun.com/exdb/mnist/index.html

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:43

[70] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi N. R. Wijewickrema, Grant Schoenebeck, Dawn Song,

Michael E. Houle, and James Bailey. 2018. Characterizing adversarial subspaces using local intrinsic dimensionality.

In Proceedings of the 6th International Conference on Learning Representations.

[71] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards deep

learning models resistant to adversarial attacks. In Proceedings of the 6th International Conference on Learning Repre-

sentations.

[72] Yishay Mansour and Michal Parnas. 1998. Learning conjuctions with noise under product distributions. Information

Processing Letters 68 (1998), 189–196.

[73] Naresh Manwani and P. S. Sastry. 2013. Noise tolerance under risk minimization. IEEE Transactions on Cybernetics

43 (2013), 1146–1151.

[74] Don McNicol. 2005. A Primer of Signal Detection Theory. Psychology Press.

[75] Dongyu Meng and Hao Chen. 2017. MagNet: A two-pronged defense against adversarial examples. In Proceedings of

the ACM SIGSAC Conference on Computer and Communications Security. 135–147.

[76] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016. DeepFool: A simple and accurate

method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion. 2574–2582.

[77] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. 2022. The Third Interna-

tional Verification of Neural Networks Competition (VNN-COMP 2022): Summary and results. CoRR abs/2212.10376

(2022). https://doi.org/10.48550/arXiv.2212.10376

[78] Nina Narodytska and Shiva Prasad Kasiviswanathan. 2017. Simple black-box adversarial attacks on deep neural

networks. In Proceedings of the 2017 CVPR Workshops. 1310–1318.

[79] Anh Nguyen and Anh Tran. 2021. WaNet—Imperceptible warping-based backdoor attack. arXiv preprint

arXiv:2102.10369 (2021).

[80] Curtis G. Northcutt, Anish Athalye, and Jonas Mueller. 2021. Pervasive label errors in test sets destabilize machine

learning benchmarks. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks.

[81] Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. 2021. Confident learning: Estimating uncertainty in dataset labels.

Journal of Artificial Intelligence Research 70 (2021), 1373–1411.

[82] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. 2016. Transferability in machine learning: From phe-

nomena to black-box attacks using adversarial samples. CoRR abs/1605.07277 (2016).

[83] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami. 2017.

Practical black-box attacks against machine learning. In Proceedings of the ACM on Asia Conference on Computer and

Communications Security. 506–519.

[84] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. 2016.

The limitations of deep learning in adversarial settings. In Proceedings of the IEEE European Symposium on Security

and Privacy. 372–387.

[85] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. 2016. Distillation as a defense

to adversarial perturbations against deep neural networks. In Proceedings of the IEEE Symposium on Security and

Privacy. 582–597.

[86] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated whitebox testing of deep learn-

ing systems. In Proceedings of the Symposium on Operating Systems Principles. 1–18.

[87] Jonas Rauber, Wieland Brendel, and Matthias Bethge. 2017. Foolbox: A Python toolbox to benchmark the robustness

of machine learning models. CoRR abs/1707.04131 (2017).

[88] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. 2019. The odds are odd: A statistical test for detecting adversarial

examples. In Proceedings of the 36th International Conference on Machine Learning. 5498–5507.

[89] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reachability analysis of deep neural networks with

provable guarantees. In Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2651–2659.

[90] Ahmed Salem, Michael Backes, and Yang Zhang. 2020. Don’t trigger me! A triggerless backdoor attack against deep

neural networks. arXiv preprint arXiv:2010.03282 (2020).

[91] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen K. Paritosh, and Lora Aroyo. 2021.

“Everyone wants to do the model work, not the data work”: Data cascades in high-stakes AI. In Proceedings of the

CHI Conference on Human Factors in Computing Systems. Article 39, 15 pages.

[92] Shawn Shan, Emily Wenger, Bolun Wang, Bo Li, Haitao Zheng, and Ben Y. Zhao. 2020. Gotta catch’ em all: Using

honeypots to catch adversarial attacks on neural networks. In Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security. 67–83.

[93] Dinggang Shen, Guorong Wu, and Heung-Il Suk. 2017. Deep learning in medical image analysis. Annual Review of

Biomedical Engineering 19 (2017), 221–248.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://doi.org/10.48550/arXiv.2212.10376

68:44 Z. Zhao et al.

[94] Fu Song, Yusi Lei, Sen Chen, Lingling Fan, and Yang Liu. 2021. Advanced evasion attacks and mitigations on practical

ML-based phishing website classifiers. International Journal of Intelligent Systems 36, 9 (2021), 5210–5240. https://doi.

org/10.1002/int.22510

[95] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing deep neural networks. CoRR abs/1803.04792

(2018).

[96] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic

testing for deep neural networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering. 109–119.

[97] Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. 2022. CoProtector: Protect open-source code against unau-

thorized training usage with data poisoning. In Proceedings of the ACM Web Conference. ACM, New York, NY, 652–660.

https://doi.org/10.1145/3485447.3512225

[98] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fer-

gus. 2014. Intriguing properties of neural networks. In Proceedings of the 2nd International Conference on Learning

Representations.

[99] Te Juin Lester Tan and Reza Shokri. 2020. Bypassing backdoor detection algorithms in deep learning. In Proceedings

of the IEEE European Symposium on Security and Privacy. 175–183.

[100] Yongqiang Tian, Zhihua Zeng, Ming Wen, Yepang Liu, Tzu-Yang Kuo, and Shing-Chi Cheung. 2020. EvalDNN: A

toolbox for evaluating deep neural network models. In Proceedings of the IEEE/ACM 42nd International Conference

on Software Engineering (Companion Volume). 45–48.

[101] Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. 2020. On adaptive attacks to adversarial

example defenses. In Proceedings of the Annual Conference on Neural Information Processing Systems.

[102] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. 2018. Clean-label backdoor attacks. In Proceedings of the

ICLR 2018 Conference.

[103] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. 2019. Neural

cleanse: Identifying and mitigating backdoor attacks in neural networks. In Proceedings of the IEEE Symposium on

Security and Privacy. 707–723.

[104] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector: Input validation for deep learning

applications by crossing-layer dissection. In Proceedings of the 42th International Conference on Software Engineering.

727–738.

[105] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and Peng Cheng. 2021. Robot:

Robustness-oriented testing for deep learning systems. In Proceedings of the IEEE/ACM 43rd International Confer-

ence on Software Engineering. 300–311.

[106] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019. Adversarial sample detection for deep

neural network through model mutation testing. In Proceedings of the International Conference on Software Engineer-

ing. 1245–1256.

[107] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Formal security analysis of neural

networks using symbolic intervals. In Proceedings of the USENIX Security Symposium. 1599–1614.

[108] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. 2021. Beta-CROWN:

Efficient bound propagation with per-neuron split constraints for neural network robustness verification. Advances

in Neural Information Processing Systems 34 (2021), 29909–29921.

[109] Wei Wang and Zhi-Hua Zhou. 2015. Crowdsourcing label quality: A theoretical analysis. Science China Information

Sciences 58, 11 (2015), 1–12.

[110] Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, and Shu-Tao Xia. 2018. Iterative

learning with open-set noisy labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[111] Gary M. Weiss and Haym Hirsh. 1998. The problem with noise and small disjuncts. In Proceedings of the International

Conference on Machine Learning. 574.

[112] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. 2018.

Evaluating the robustness of neural networks: An extreme value theory approach. In Proceedings of the 6th Interna-

tional Conference on Learning Representations.

[113] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-guided black-box safety testing of deep

neural networks. In Proceedings of the 24th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems. 408–426.

[114] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, and Kaiming He. 2019. Feature denoising for im-

proving adversarial robustness. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

501–509.

[115] Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature squeezing: Detecting adversarial examples in deep neural

networks. In Proceedings of the 25th Annual Network and Distributed System Security Symposium.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://doi.org/10.1002/int.22510
https://doi.org/10.1145/3485447.3512225

Attack as Detection: Using Adversarial Attack Methods to Detect Abnormal Examples 68:45

[116] Mingfu Xue, Can He, Shichang Sun, Jian Wang, and Weiqiang Liu. 2021. Robust backdoor attacks against deep neural

networks in real physical world. In Proceedings of the 2021 IEEE 20th International Conference on Trust, Security, and

Privacy in Computing and Communications (TrustCom ’21). IEEE, Los Alamitos, CA, 620–626.

[117] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xiangyu Zhang. 2020. Correlations be-

tween deep neural network model coverage criteria and model quality. In Proceedings of the 28th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. 775–787.

[118] Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi Wang, Guangyao

Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan Hendrycks, Yixuan Li, and Ziwei Liu.

2022. OpenOOD: Benchmarking generalized out-of-distribution detection. Advances in Neural Information Processing

Systems 35 (2022), 32598–32611.

[119] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. 2021. Generalized out-of-distribution detection: A survey.

CoRR abs/2110.11334 (2021).

[120] Yedi Zhang, Fu Song, and Jun Sun. 2023. QEBVerif: Quantization error bound verification of neural networks. In

Computer Aided Verification. Lecture Notes in Computer Science, Vol. 13965. Springer, 413–437. https://doi.org/10.

1007/978-3-031-37703-7_20

[121] Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen. 2021. BDD4BNN: A BDD-based quantitative

analysis framework for binarized neural networks. In Proceedings of the 33rd International Conference on Computer

Aided Verification. 175–200.

[122] Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen. 2023. Precise quantitative analysis of binarized

neural networks: A BDD-based approach. ACM Transactions on Software Engineering Methodology 32, 3 (2023), Article

62, 51 pages. https://doi.org/10.1145/3563212

[123] Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, and Jun Sun. 2022. QVIP: An ILP-based

formal verification approach for quantized neural networks. In Proceedings of the 37th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE ’22). Article 82, 13 pages.

[124] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. 2020. Clean-label backdoor

attacks on video recognition models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 14443–14452.

[125] Zhe Zhao, Guangke Chen, Jingyi Wang, Yiwei Yang, Fu Song, and Jun Sun. 2021. Attack as defense: Characterizing

adversarial examples using robustness. In Proceedings of the ACM SIGSOFT International Symposium on Software

Testing and Analysis. 42–55. https://doi.org/10.1145/3460319.3464822

[126] Zhe Zhao, Yedi Zhang, Guangke Chen, Fu Song, Taolue Chen, and Jiaxiang Liu. 2022. CLEVEREST: Accelerating

CEGAR-based neural network verification via adversarial attacks. In Proceedings of the 29th International Symposium

on Static Analysis (SAS ’22). 449–473.

[127] Ziyuan Zhong, Yuchi Tian, and Baishakhi Ray. 2021. Understanding local robustness of deep neural networks under

natural variations. In Proceedings of the International Conference on Fundamental Approaches to Software Engineering.

313–337.

[128] Aleksandar Zlateski, Ronnachai Jaroensri, Prafull Sharma, and Frédo Durand. 2018. On the importance of label qual-

ity for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

1479–1487.

Received 27 April 2023; revised 21 July 2023; accepted 19 October 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 68. Pub. date: March 2024.

https://doi.org/10.1007/978-3-031-37703-7_20
https://doi.org/10.1145/3563212
https://doi.org/10.1145/3460319.3464822

