
79

Compositional Verification of First-Order Masking

Countermeasures against Power Side-Channel Attacks

PENGFEI GAO, Bytedance, China

FU SONG, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

China, and University of Chinese Academy of Sciences, China

TAOLUE CHEN, Birkbeck, University of London, UK

Power side-channel attacks allow an adversary to efficiently and effectively steal secret information (e.g., keys)
by exploiting the correlation between secret data and runtime power consumption, hence posing a serious
threat to software security, particularly cryptographic implementations. Masking is a commonly used counter-
measure against such attacks, which breaks the statistical dependence between secret data and side-channel
leaks via randomization. In a nutshell, a variable is represented by a vector of shares armed with random
variables, called masking encoding, on which cryptographic computations are performed. While composi-
tional verification for the security of masked cryptographic implementations has received much attention
because of its high efficiency, existing compositional approaches either use implicitly fixed pre-conditions
that may not be fulfilled by state-of-the-art efficient implementations, or require user-provided hard-coded
pre-conditions that are time consuming and highly non-trivial, even for an expert. In this article, we tackle
the compositional verification problem of first-order masking countermeasures, where first-order means that
the adversary is allowed to access only one intermediate computation result. Following the literature, we con-
sider countermeasures given as gadgets, which are special procedures whose inputs are masking encodings
of variables. We introduce a new security notion parameterized by an explicit pre-condition for each gadget,
as well as composition rules for reasoning about masking countermeasures against power side-channel at-
tacks. We propose accompanying efficient algorithms to automatically infer proper pre-conditions, based on
which our new compositional approach can efficiently and automatically prove security for masked imple-
mentations. We implement our approaches as a tool MaskCV and conduct experiments on publicly available
masked cryptographic implementations including 10 different full AES implementations. The experimental
results confirm the effectiveness and efficiency of our approach.

CCS Concepts: • Security and privacy→ Side-channel analysis and countermeasures; • Software and

its engineering→ Software verification; Automated static analysis;

Additional Key Words and Phrases: Formal verification, compositional verification, cryptographic programs,
side-channel attacks, masking countermeasures

This work was supported by the National Natural Science Foundation of China (NSFC) under grants 62072309 and 61872340,
the Strategic Priority Research Program of the Chinese Academy of Sciences under grant XDA0320101, an overseas grant
from the State Key Laboratory of Novel Software Technology, Nanjing University (KFKT2022A03, KFKT2023A04), and the
Birkbeck BEI School Project (EFFECT).
Authors’ addresses: P. Gao, Bytedance, Beijing, China; e-mail: gaopengfei.se@bytedance.com; F. Song (Corresponding au-
thor), State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China, and
University of Chinese Academy of Sciences, Beijing, China; e-mail: songfu@ios.ac.cn; T. Chen, Birkbeck, University of
London, London, UK, WC1E 7HX; e-mail: t.chen@bbk.ac.uk.

$

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

© 2024 Copyright held by the owner/author(s).
1049-331X/2024/03-ART79
https://doi.org/10.1145/3635707

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-5993-1665
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3635707
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635707&domain=pdf&date_stamp=2024-03-14

79:2 P. Gao et al.

ACM Reference format:

Pengfei Gao, Fu Song, and Taolue Chen. 2024. Compositional Verification of First-Order Masking Countermea-
sures against Power Side-Channel Attacks. ACM Trans. Softw. Eng. Methodol. 33, 3, Article 79 (March 2024),
38 pages.
https://doi.org/10.1145/3635707

1 INTRODUCTION

Cryptographic programs have become an indispensable part of contemporary software systems.
Practical implementations of cryptographic algorithms unfortunately suffer from side-channel at-
tacks which exploit the statistical dependence between the secret (e.g., keys) and side-channel
information (e.g., power consumption [72] and execution time [71]) to effectively recover the
secret. In this article, we focus on power side-channel attacks which have been shown to be
successful in practice. For instance, DES [35, 72], AES [84, 94, 97], RSA [56], elliptic curve cryptogra-
phy [36, 64, 74, 80], and post-quantum cryptography [67, 86, 89] have been the victims. Essentially,
power side-channel attacks exploit the correlation between the runtime power consumption of
a device executing cryptographic implementations and the secret. The adversary can effectively
deduce the results of chosen intermediate computations by statistically analyzing the power con-
sumption traces based on the fact that the power consumption of CMOS transistors (e.g., register)
for storing signals 1 and 0 is typically different. When the deduced intermediate computation
results rely upon the secret, the adversary can further infer the value of the secret from the inter-
mediate computations and their results. For example, consider the statement x = k ⊕p, where k is
the secret, p is some public input, and ⊕ is the exclusive-OR operation. Obviously, the value of x
depends on the value ofk for any fixed value ofp. For instance, fixingp = 0, the probability of x = 1
is 100% if k = 1 and the probability of x = 0 is 100% if k = 0. Moreover, the power consumption of
a device executing this statement is correlated with the value of x (e.g., the power consumption of
the CMOS transistor like the register for storing x varies with the value of x). As a result, the ad-
versary can choose p, and statistically analyze the power consumption traces to deduce the value
of x , which leads to the disclosure of the secret k by x ⊕ p. To effectively and efficiently deduce
the secret in real-world cryptographic implementations via power side-channel information, the
adversary often chooses invertible intermediate computations, such as input or output of Sbox in
AES, so that the secret can be quickly recovered from these intermediate computations and their
results.

Masking is an effective countermeasure against power side-channel attacks, aiming at break-
ing the statistical dependence between the secret and power consumption via randomization [63].
Typically, an order-d masking scheme splits the secret into d + 1 shares such that the joint distri-
bution of any d shares is (statistically) independent of the secret, thus the adversary cannot infer
any information of the secret by observing the values of any d shares via power side channels.
For example, the secret k can be split into two shares k ⊕ r and r via first-order masking, where
r is a uniformly sampled value, and (k ⊕ r , r) forms a masking encoding of the secret k . Since
the distributions of both k ⊕ r and r are independent of the secret k , the adversary cannot infer
the information of the secret k by observing the value of k ⊕ r . In contrast, the distribution of
k ∧ r depends upon the secret k , namely the probability of k ∧ r being 1 is 50% if k = 1 but is
0% if k = 0. The adversary can infer the value of k by observing the value of k ∧ r . The main
challenge is to develop an efficient and secure implementation of each cryptographic algorithm f
using masking that performs computations on the secret shares of the original input x , and pro-
duces output shares from which the desired output f (x) can be recovered. As efficiency is a major
concern in, for example, resource-limited devices [20], various new masked implementations for

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

https://doi.org/10.1145/3635707

Compositional Verification of First-Order Masking Countermeasures 79:3

finite-field multiplication, a key building block to implement most cryptographic algorithms, have
been proposed recently [8, 11, 14, 15, 26, 58, 68, 93]. These more recent implementations require
less randomness and/or operations than the original one proposed by Ishai et al. [63].

Clearly, a masked implementation must meet some security requirement, such as the order-d
probing security [63] which asserts that the joint distribution of any d observable variables to
the adversary should be independent of the secret data. For instance, the masked implementation
of the statement x = k ⊕ p via order-d masking is rd+1 = k ⊕ r1 ⊕ · · · ⊕ rd ; x = rd+1 ⊕ p,
where r1, · · · , rd are uniformly sampled values, (r1, · · · , rd , rd+1) forms a masking encoding of the
secret k , and the desired result k ⊕ p can be obtained from the output encoding (r1, · · · , rd ,x) via
computing r1⊕· · ·⊕rd ⊕x . This masked implementation is order-d probing secure because the joint
distribution of any d observable variables from {r1, · · · , rd , rd+1,x } is uniform, thus independent
of the secret k . However, it is not order-(d + 1) probing secure, because the joint distribution of
some (d + 1) observable variables (e.g., {r1, · · · , rd , rd+1} or {r1, · · · , rd ,x }) depends on the secret
k . Indeed, r1 ⊕ · · · ⊕ rd ⊕ rd+1 is the same as the secret k and r1 ⊕ · · · ⊕ rd ⊕ x is the same as k ⊕ p
while p is known to the adversary. However, designing masked implementations is labor intensive
and error prone. Indeed, some published masked implementations [87, 90] were later shown to
be vulnerable against power side-channel attacks under the same leakage model and masking
order [40, 41]. To address this concern, various formal verification approaches have been proposed,
which form an important subarea of software security research. These approaches can be largely
be divided into two categories: non-compositional (i.e., intra-procedural) and compositional (i.e.,
inter-procedural) approaches [9, 18, 53]. Following the naming convention in the literature on
masked implementations of cryptographic algorithms, procedures are called gadgets in this work,
because the input parameters and return value of the procedures are often masking encodings.
Furthermore, a gadget is referred to as simple gadget if it does not contain any call statements, and
otherwise it is referred to as composite gadget.

Non-compositional approaches take a simple gadget as input and verify the observable variables
one by one or set by set. The underlying techniques include symbolic analysis [21, 38, 76, 77, 81, 91,
92], SAT/SMT-based analysis [23, 47–50], BDD analysis [69], and hybrid approaches [52, 54, 55, 98].
Note that other works [21, 23, 47–50, 55, 69, 98] focus exclusively on the bitwise logical opera-
tions (e.g., and, or, exclusive-or) and cannot directly handle arithmetic operations (e.g., addition,
subtraction).

To verify a composite gadget using non-compositional approaches, all the gadget calls must
be inlined first. However, inlining gadget calls will produce plenty of observable variables with
large computation expressions, leading to the inefficient verification. Compositional approaches
are thus proposed by leveraging stronger security notions [9, 10, 12, 16–19, 25, 26, 30, 31, 69] to
directly analyze composite gadgets without inlining. All of these approaches implicitly specify a
fixed pre-condition for each gadget that intuitively restricts the number or positions of input shares.
Unfortunately, many modern efficient implementations (e.g., [14, 20]) do not satisfy these implicitly
imposed pre-conditions, creating a gap between formally provable probing security and practically
used (efficient) masked implementations. To address this issue, an assume-guarantee-based com-
positional approach has been proposed [53] for verifying first-order security of arithmetic masked
programs. However, hard-coded (non-standard) pre-conditions, specifying the relation between
support variables of the computations of formal arguments must be provided by users, which im-
pedes fully automated compositional verification. While inferring specifications and contracts of
procedures from source code is a well-researched area in formal safety verification, e.g., [3, 5, 62],
they are not applicable to compositional verification of security for masked implementations.

In this work, we fill this gap for first-order probing security, which is the focus of a large
body of research work, particularly in software security [47–50, 53, 54, 76, 77, 81, 91, 92, 98].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:4 P. Gao et al.

Following the literature, we consider masked implementations that are given as gadgets and com-
position of gadgets, which are special procedures whose inputs are masking encodings of vari-
ables. Specifically, we propose a new security notion parameterized by an explicit pre-condition I
for each gadget, called I-Non-Interference, based on which we present a compositional verification
approach that is applicable to those efficient masked implementations without user-provided pre-
conditions. The pre-condition I of a gadget д is a set of variable sets, and is used to characterize
the first-order probing security of the gadget д, namely each observable variable of the gadget д
can be perfectly simulated by a variable set from I. Note that the pre-condition I can vary with
gadgets. For some gadgets, the formal parameters (i.e., input shares) are sufficient to simulate the
internal variables; otherwise, internal variables would be added into I. (The worst case would be
that all the internal variables are added into I, which amounts to inlining the gadget call.) The flex-
ibility of I gives wider applicability to generic and efficient masked implementations while fixed
pre-conditions [9, 10, 12, 16–19, 25, 26, 30, 31, 69] fail.

Figure 1 shows an overview of our method, consisting of two main steps: preprocessing and
verification. Given a masked program and its security type annotation of input parameters, the
preprocessing step automatically unfolds loops in the program and transforms the program into
its intermediate representation in the Static Single Assignment (SSA) form. The verification step
infers pre-conditions of gadgets based on which first-order probing security is verified. We pro-
pose efficient algorithms for inferring pre-conditions of both simple and composite gadgets. The
pre-conditions of simple gadgets are saturated during judgment inference via a sound proof system
until they become sufficient. The pre-conditions of composite gadgets are inferred by leveraging a
novel composition rule that composes pre-conditions of the called gadgets. More specifically, the
verification process starts by inferring the pre-condition I for the main gadget. The gadget call state-
ments in the main gadget are iteratively traversed during which the pre-conditions of the called
gadgets are computed by recursively calling the algorithms for inferring pre-conditions of simple
and/or composite gadgets. To facilitate the processing of the subsequent gadget call statements,
the resulting pre-conditions of gadgets are cached. Finally, the pre-conditions of called gadgets
are composed according to the composition rule, resulting in the pre-condition I for the main
gadget. Finally, to check whether a program is first-order probing secure or not (i.e., each observ-
able variable is statistically independent of the secret inputs), we can check the pre-condition I of
the main gadget, where the pre-condition I is expected to be much smaller than the size of ob-
servable variables after inlining. Moreover, we observe that a variable (called dominated variable)
whose computation is perfectly masked by a random variable (called dominant variable) could also
be used to mask other variables. For instance, the variable x with x = k ⊕ r is perfectly masked by
the random variable r as the distribution of x is uniform for any fixed value of k , thus x is a domi-
nated variable and r is its dominant variable. This observation often allows us to quickly conclude
that any dominated variable is statistically independent of the secret inputs, and thus is leveraged
in the algorithms for inferring pre-conditions of simple and composite gadgets to reduce the size
of pre-conditions and improve verification efficiency.

We implement our approach as a tool MaskCV and conduct extensive experiments on several
publicly available masked implementations [53] including 10 different masked implementations
of full AES. The experimental results confirm the efficacy of our approach (e.g., MaskCV can
prove each of the 10 masked implementations of full AES in no more than 0.04 seconds). Com-
pared with the compositional approach QMVerif [53], our approach performs significantly bet-
ter when no pre-conditions are provided to QMVerif and achieves competitive efficiency when
all the user-defined pre-conditions are provided to QMVerif. Indeed, QMVerif takes 197 to
3,505 seconds to prove each of 10 masked implementations of full AES when no pre-conditions
are provided. (To the best of our knowledge, QMVerif is the only compositional tool that can

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:5

Fig. 1. Overview of our method.

verify these benchmarks.) Compared with the state-of-the-art non-compositional approaches
SILVER [69] and LeakageVerif [77], our approach is significantly more efficient and effective. For
instance, SILVER does not support masked implementations of full AES which involve arithmetic
operations and runs out of time or memory (6 hours, 256 GB of RAM) on two Boolean implemen-
tations of AES Sbox which can be proved by MaskCV in 0.01 seconds; LeakageVerif runs out of
time or memory on 6 out of 10 masked implementations of full AES and takes at least 559 seconds
for any of the other four masked implementations.

The main contributions of this work are summarized as follows:

— We introduce a new security notion, called I-Non-Interference, which is parameterized by an
explicit and variable pre-condition I. We also present a composition rule for compositional
reasoning about first-order probing security of efficient masked implementations that cannot
be handled by existing fully automated compositional verification approaches [9, 10, 12, 16–
19, 25, 26, 30, 31, 69].

— We propose efficient algorithms for inferring pre-conditions of both simple and compos-
ite gadgets, leading to an efficient and fully automated composition verification approach
for first-order probing security of arithmetic masked programs. Thus, providing hard-coded
(non-standard) pre-conditions in the assume-guarantee-based compositional approach [53],
which is time consuming and highly non-trivial even for an expert, can be avoided.

— We propose an efficient approach to determine dominated variables that can reduce the size
of pre-conditions and thus significantly improves the verification efficiency. It paves the way
for integrating the power side-channel security verification into the software development
process and continual verification during development.

— We implement the proposed techniques in a tool MaskCV and conduct extensive exper-
iments on publicly available cryptographic benchmarks, which confirm the effectiveness
and efficiency of our approach. In particular, on the 10 masked implementations of full AES,
the automatically determined dominated variables improve the verification efficiency by 4
orders of magnitude, and MaskCV shows almost 5 to 6 orders of magnitude improvement
with respect to LeakageVerif and QMVerif without user-defined pre-conditions.

Our work is important for the software engineering community. First, it can be readily used
by cryptographers and software developers of cryptographic algorithms to ensure the (first-order)
probing security of their implementations against power side-channel attacks. Cryptographic al-
gorithms have been extensively used in various applications, ranging from Blockchain, Internet
of Things, and edge computing to smart devices. It is important to ensure that software systems
are robust against power side-channel attacks, particularly for security-critical applications, where
our work would play a crucial role. Moreover, MaskCV is highly automated and can be fully in-
tegrated into the software development process, so it potentially would serve a larger group of
software developers. Furthermore, the verification techniques we use, such as a proof system and

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:6 P. Gao et al.

Table 1. Notations

Notation Description Notation Description

I set of variable sets used as pre-condition F underlying domain {0, · · · , 2n − 1}
x scalar variable �x vector of variables used as masking encoding of x
�x[i] the i-th share of the encoding �x Xk set of private variables of a program

Gc/Gs/Gen simple/composite/encoding gadget Xp set of public variables of a program
дin/Pin inlined version of the gadget д/program P E (x) computation of a variable x
Sub(x) set of the sub-expressions of E (x) Var(E (x)) set of support variables of E (x)
X

д
en set of input encodings of the gadget д X

д
en[i] the i-th input encoding of the gadget д

Tд summary of the gadget д η valuation for a set of variables
X

д
r set of random variables defined in the gadget д D (V) set of the joint distributions of variables in V

X
д
o set of output variables defined in the gadget д DomR(x) set of random dominant variables of the variable x

X
д
a set of formal parameters of the gadget д �E (x)�P

η probability distribution of x in program P under η
Xд set of internal variables defined in the gadget д �X �P

η joint distribution of variables of X in P under η

compositional reasoning, represent the state-of-the-art research in quality assurance—an impor-
tant area of software engineering.

Outline. The article is organized as follows. Section 2 gives the preliminary of this work (i.e., cryp-
tographic programs considered in this work, threat model, leakage model, and security notions)
and a running example for demonstration. We propose the new security notion I-Non-Interference
and its composition rule in Section 3. In Section 4, we introduce the concept of dominated variables,
an approach to determine dominated variables and the application of dominated variables for infer-
ring pre-conditions. Section 5 presents the algorithms for inferring pre-conditions for both simple
and composite gadgets. Section 6 reports our experimental results on various publicly available
masked cryptographic implementations. We discuss related work in Section 7 and conclude the
article in Section 8. The source code of our tool, raw data of experimental results, and benchmarks
are available on Figshare [1].

2 PRELIMINARY

In this section, we first introduce the syntax and semantics of the program considered in this work,
then recap the threat model, leakage model, and related security notions, and finally present a
running example for demonstration of our approach.

Notations. For convenient reference, we summarize the notations in Table 1.

2.1 Cryptographic Programs

Given a positive integer n, let F be the domain {0, · · · , 2n−1} (e.g., the finite-field GF(2n)). We use
the syntax shown in Figure 2 to describe masked implementations. Symbols such as x ,a,a1,am are

scalar variables, and symbols with arrowed overline such as �b, �a1, �am represent vectors of variables.
A vector �x of variables is used to represent the shares of a scalar variable x , thus called a (masking)
encoding of the scalar variable x in this work. We denote by �x[i] the i-th variable in the encoding
�x , which is one share of the scalar variable x and by

⊕
�x the XOR of all the shares of the encoding

�x . A masked implementation always has a security parameter d denoting order-d masking, and
the size of each encoding is typically d + 1. We explain the syntax rules in Figure 2 from bottom
to top.

A program is defined as a sequence of gadget definitions with a main gadget, where scalar
variables a1, · · · ,am are its formal parameters. We assume that the formal parameters of the main
gadget are classified into their types, either private or public, provided by the users. We denote by
Xk the set of private variables and Xp the set of public variables so that Xk � Xp = {a1, · · · ,am }.
The main gadget has a sequence of (masking) encoding call statements enstmt and gadget call

statements gstmt, ending with a return statement return �b which gives the output encoding �b.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:7

Fig. 2. Syntax of programs.

An encoding call statement (i.e., enstmt) generates an encoding �x of a scalar variable x by calling
an encoding gadget (i.e., �x = f (x)). An encoding gadget (i.e., f (a){stmts; return �a; }) is defined as
a common procedure, which takes a scalar variable a as input and outputs the encoding of a (i.e., �a).
An encoding gadget computes the desired encoding via a sequence of statements that can express
different encoding schemes. Normally, the first d variables in an encoding (i.e., �a[1] · · · �a[d]) are
generated by random sampling, whereas �a[d + 1] is a computation of �a[1], · · · , �a[d] and the input
variable a. Boolean masking is always used in implementing masked cryptographic algorithms
which only use bitwise logical operations (see the following) and �a[d+1] = �a[1]⊕�a[2]⊕· · ·⊕�a[d]⊕a.
Masked implementations which only use arithmetic operations are called arithmetic masking, and
they compute �a[d +1] using modular addition, namely �a[d +1] = �a[1]+�a[2]+ · · ·+�a[d]+a. There
are some implementations that use both bitwise logical operations and arithmetic operations for
which conversions between Boolean and arithmetic masking [37, 39] are used.

A gadget call statement (i.e., gstmt) assigns the result of a gadget call to an internal encoding.
The syntax supports two types of gadgets: simple (i.e., Gs) and composite (i.e., Gc) gadgets, both

of which take a list of input encodings �a1, · · · , �am as inputs and return the output encoding �b. A
simple gadget only contains a sequence of statements (i.e., stmts) without involving any gadget
call statements, whereas a composite gadget only contains a sequence of gadget call statements
(i.e., gstmt+) with unique labels � (denoting call sites), both of which end with a return statement

return �b. We assume that all the gadgets are given in SSA form. We denote byX
д
en the vector (e.g.,

[�a1, · · · , �am]) of all the input encodings of the gadget д, and by X
д
en[i] the i-th input encoding (e.g.,

�ai). LetXд
a be the union of all the variables in input encodings of the gadgetд (i.e.,Xд

a =
⋃

1≤i≤m �ai).
If д is a main gadget or an encoding gadget, Xд

a is the set of input parameters, which are scalar
variables. An encoding gadget may be referred to as a simple gadget as well, because it does not
contain any call statements.

There are two types of statements. One is the common assignment statement of the form x = e
which assigns the value of the expression e to the scale variable x . The other is of the form r = $
which assigns a uniformly sampled random value to the scale variable r , thus r is a random variable.
Random variables are used to mask private-related variables. We denote byXд

r andXд respectively
the set of random variables and the set of internal variables (excluding input parameters Xд

a) de-
fined in the gadget д. Similarly, we denote by X

д
o the set of output variables of the gadget д.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:8 P. Gao et al.

Fig. 3. Encoding is an encoding gadget, XOR is a simple gadget, and main is the main gadget.

An expression e is built up from scale variables and constants with the following operations:

— Bitwise logical operations: and (∧), or (∨), exclusive-or (⊕), negation (¬), left shift (�), right

shift ().
— Modulo 2n arithmetic operations: subtraction (−), addition (+), multiplication (×) for which F

is regarded as the ring Z2n of integers modulo 2n .
— Finite-field operation: multiplication (
), for which F is considered to be the Galois field
GF(2n).

For a simple gadget д, the computation E (x) of each variable x ∈ Xд
a ∪ Xд is defined as follows:

— If x ∈ Xд
a ∪ X

д
r , E (x) = x .

— If x = e , E (x) is obtained by recursively replacing all the occurrences of each variable y in e
by its computation E (y) until no more update can be made.

Intuitively, E (x) defines the computation of the variable x in terms of input parameters, constants,
and random variables, and thus can be seen as the symbolic value of the variable x . We denote by
Var(E (x)) the set of support variables of the variable x—that is, the input parameters and random
variables that are involved in the computation Var(E (x)).

For a composite gadget д, to obtain the computation of a variable x ∈ X
д
a ∪ Xд , gadget calls

should be inlined first. Inlining a gadget call is the same as inlining a procedure call, which replaces
the gadget call by the gadget body of the callee, followed by assignments mimicking the return
statement, where the local variables are appended with @� of the call-site � to avoid name conflict.
We denote by f (�x1, · · · , �xm)@� the corresponding statements after inlining the gadget call �y =
f (�x1, · · · , �xm) with call-site �. After recursively inlining all the gadget calls, a composite gadget
turns to a simple one. We denote by дin the inlined version of д. Specifically, Pin is the inlined
version of the program P .

Example 2.1. Figure 3 presents three gadgets, where Encoding is an encoding gadget, XOR is a
simple gadget [63], and main is the main gadget.

The Encoding gadget splits an input k into two shares �a[1] and �a[2] via first-order Boolean
masking, where �a[1] is randomly sampled and �a[2] = �a[1] ⊕ k masks k by XORing �a[1], resulting
in the encoding �a of the scalar variable k . For the Encoding gadget, we have the following:

—X Encoding
a = {k }, X Encoding

r = {�a[1]}, X Encoding
o = X Encoding = {�a[1], �a[2]}.

— E (k) = k and E (�a[1]) = �a[1] (as k, �a[1] ∈ X Encoding
a ∪ X Encoding

r), and E (�a[2]) = �a[1] ⊕ k .

The XOR gadget performs share-wise XOR—that is, it produces the encoding (�a[1] ⊕ �b[1], �a[2] ⊕
�b[2]) for the input encodings �a and �b. We have the following:

—X XOR
en = {�a, �b}, where X XOR

en [1] = �a and X XOR
en [2] = �b.

—X XOR
a = {�a[1], �a[2], �b[1], �b[2]}, X XOR

r = ∅, X XOR
o = X XOR = {�c[1],�c[2]}.

— E (x) = x for every x ∈ X XOR
a , and E (�c[i]) = �a[i] ⊕ �b[i] for i = 1, 2.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:9

Fig. 4. The inlined version mainin of the main gadget.

The main gadget consists of two encoding call statements to the Encoding gadget and one gadget
call statement to the simple gadget XOR. It takes two secrets k1 and k2 as inputs, first computes their
encodings via the Encoding gadget, and then computes k1 ⊕ k2 via the simple gadget XOR using

the encodings �a and �b of k1 and k2, resulting in the output encoding �c of k1 ⊕ k2. We have the
following:

—X main
a = Xk = {k1,k2}, Xp = ∅.

—X main
r = ∅, X main = {�a[1], �a[2], �b[1], �b[2],�c[1],�c[2]}, X main

o = {�c[1],�c[2]}.
The inlined version of the main gadget is shown in Figure 4. We have the following:

—X mainin

a = Xk = {k1,k2}, Xp = ∅.
—X mainin

r = {�a[1]@10, �a[1]@11}, X mainin

o = {�c[1],�c[2]}.
—X mainin = X main ∪ {�a[1]@10, �a[2]@10, �a[1]@11, �a[2]@11,�c[1]@12,�c[2]@12}.
— The computations E (x) for every x ∈ X mainin can be constructed accordingly—for example,

E (�c[1]) = �a[1]@10⊕�a[1]@11 and E (�c[2]) = (�a[1]@10⊕k1)⊕ (�a[1]@11⊕k2). �

Discussion on the Program Syntax. For convenience, our verification tool supports bounded for-
loops (e.g., the for-loop in the gadget XOR) which are automatically and fully unfolded before veri-
fication, thus we only present the core language without loops. One may notice that the program
syntax has a specific format, where (1) inputs and outputs of both simple and composite gadgets
are vectors, (2) encoding and main gadgets take only scalar variables as inputs and return a vec-
tor, and (3) both composite and main gadgets only consist of call statements except for the return
statement. This specific format is consistent with the design pattern of masked implementations of
cryptographic algorithms and is widely adopted in the literature [9–11, 14, 15, 18, 19, 30, 31, 63, 87],
thus our approach has a wide application on masked implementations of cryptographic algorithms.
In a nutshell, the design process of a masked implementation starts by choosing a masking scheme
(e.g., Boolean masking) that is implemented by an encoding gadget, thus an encoding gadget takes
a scalar variable as input and produces an encoding of the scalar variable. Then, one will design a
masked version for each operation used in the cryptographic algorithm, and the masked version
performs the desired computation on the encodings of the operands of the operation. For the sake
of code reuse, modularity, and maintenance in software development, masked versions of all the
operations of cryptographic algorithms are wrapped as gadgets (i.e., functions), thus the inputs
and output of a simple or composite gadget are encodings that correspond to the operands and re-
sults of the operation, respectively. Finally, each original function in the cryptographic algorithm
becomes a composite gadget, where the inputs and output are replaced by the corresponding en-
codings, and each statement is replaced by a gadget call statement to the corresponding gadget.
Similarly, the main function is revised by adding encoding call statements and gadget call state-
ments, resulting in a main gadget.

Semantics. Given a variable set V , we denote by η : V → F the valuation of V , which maps
variables to concrete values, and denote by D (V) the set of all the joint distributions of V .

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:10 P. Gao et al.

Let us fix a program P . Given a valuation η of the inputsXk ∪Xp of the program P , the computa-
tion E (x) of a variable x in the program Pin is interpreted as a probability distribution, denoted by
�E (x)�P

η , where variables in Var(E (x))∩ (Xk ∪Xp) are instantiated by the valuation η and random
variables are sampled uniformly. Given a subset of variables X of the program Pin , we also denote
by �X �P

η the joint distribution of variables in X under the valuation η.

Given a gadget д, let μ ∈ D (X
д
a) be a joint distribution of the formal parameters Xд

a . For each
x ∈ Xд∪Xд

a , the computation E (x) is interpreted as a probability distribution, denoted by �E (x)�д
μ ,

where variables in Var(E (x))∩Xд
a are sampled from μ and Var(E (x))∩Xд

r are sampled uniformly.

Example 2.2. Consider the variables�c[1]and�c[2] in the example P shown in Figure 4. Recall that

E (�c[1]) = �a[1]@10 ⊕ �a[1]@11 and E (�c[2]) = (�a[1]@10 ⊕ k1) ⊕ (�a[1]@11 ⊕ k2).

Then, for any valuation η of the inputs {k1,k2}, the probability distributions �E (�c[1])�P
η ,

�E (�c[2])�P
η and ��c[1],�c[2]�P

η are defined as follows:

— �E (�c[1])�P
η (0) = �E (�c[1])�P

η (1) = �E (�c[2])�P
η (0) = �E (�c[2])�P

η (1) = 1
2 , because �a[1]@10

and �a[1]@11 are random variables.
— If η(k1) ⊕ η(k2) = 0: ��c[1],�c[2]�P

η (0, 0) = ��c[1],�c[2]�P
η (1, 1) = 1

2 and ��c[1],�c[2]�P
η (0, 1) =

��c[1],�c[2]�P
η (1, 0) = 0, because the random variables �a[1]@10 and �a[1]@11 are used in both

E (�c[1]) and E (�c[2]), causing interference between the values of E (�c[1]) and E (�c[2]).
— If η(k1) ⊕ η(k2) = 1: ��c[1],�c[2]�P

η (0, 1) = ��c[1],�c[2]�P
η (1, 0) = 1

2 and ��c[1],�c[2]�P
η (0, 0) =

��c[1],�c[2]�P
η (1, 0). �

2.2 Thread Model, Leakage Model, and Security Notions

Thread Model and Leakage Model. In this work, we adopt the widely used threat model [47, 48,
53, 76, 77, 81, 98], where the adversary knows the details of the implementation and has the ability
to choose the values for the public input variables Xp , but does not know the values of the private
input variables Xk , of the program P . Moreover, the adversary may have access to the results of
one arbitrary-chosen intermediate computation (i.e., observable variable in Pin) via power side-
channel information, where all variables in the program Pin except for the private input variables
Xk are observable variables to the adversary. Under these assumptions, the adversary’s goal is to
infer the value of private inputs Xk .

The power side-channel attacks exploit the correlation between power consumption values
rather than the absolute power consumption. In this work, we consider the correlation between
power consumption values that comes from the static leakage currents of CMOS transistors, where
power consumption volume depends on whether the transistor is on or off, corresponding to the
logical 1 and 0 of a bit, respectively. Thus, the value of a variable is proportional to the power
consumption of storing the value. For example, if the device executes the statement a = k ⊕ p,
where k is the secret and p is the public, assuming that k and p are Boolean variables and p = 1,
then a = 1 if k = 0 and a = 0 if k = 1. The value of a thus depends on the value of k . The value
of a, hence the value of k , can be deduced by analyzing the power consumption of executing the
statement a = k ⊕ p.

Simulatability. To characterize that a set of variables is statistically independent upon another
variable set, we introduce the notions of randomized function and simulatability.

A randomized function π : F |I | → F |O | over two sets of variables I and O is a function such
that for any fixed tuple of values (v1, · · · ,v |I |) ∈ F |I | , π (v1, · · · ,v |I |) is a (joint) distribution of the
values of the variables in O .

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:11

Given a set of variables I , a set of variables O can be simulated by the set of variables I , called
I -simulatable, if there exists a randomized function π : F |I | → F |O | such that for any fixed tu-
ple of values (v1, · · · ,v |I |) ∈ F |I | and any valuation η : X main

a → F, the (joint) distributions
π (v1, · · · ,v |I |) and �O�P

η are the same when the values of I in the program P are limited to
(v1, · · · ,v |I |).

Intuitively, when the values of variables in the set I are fixed, the joint distribution of (the values
of) the variables in set O is fixed as well. In other words, knowing the values of the variables in I
suffices to simulate the distribution �O�P

η . For example, consider y = x ⊕ r and y ′ = x ∧ r , where
x is an input variable and r is a random variable. The variable y is ∅-simulatable, meaning that
the distribution of y can be simulated without knowing the values of any variables. However, y ′ is
{x }-simulatable instead of ∅-simulatable, meaning that the distribution ofy can be simulated when
knowing the value of x .

Similarly, for a gadget д and a variable set I , a variable set O is I -simulatable if there exists a
randomized function π : F |I | → F |O | such that for any fixed tuple of values (v1, · · · ,v |I |) ∈ F |I |

and any distribution μ ∈ D (X
д
a), the distributions π (v1, · · · ,v |I |) and �O�д

μ are the same when
the values of I in the gadget д are limited to (v1, · · · ,v |I |).

It is straightforward to obtain the following proposition.

Proposition 2.3. Suppose the variable set O is I -simulatable. The following statements hold:

—O is I ′-simulatable for any I ′ such that I ⊆ I ′.
—O ′ is I -simulatable for any O ′ such that O ′ ⊆ O or O ′ is O-simulatable. �

According to Proposition 2.3, for any variable set O , there always exists a variable set I (e.g., O)
such that O is I -simulatable. We will see later that the smaller the size of I , the better for proving
security. In Section 5.1, we will present a sound proof system for checking simulatability.

Hereafter, for the sake of presentation, a singleton set {x } may be directly written as x—for
example, {y} is {x }-simulatable is written as y is x-simulatable.

Probing Security. A program P is first-order probing secure if each observable variable x in the
program Pin is Xp -simulatable. Intuitively, the program P is first-order probing secure if the dis-
tribution of each observable variable x can be simulated by only knowing the values of public
inputs. Thus, the distribution of the observable variable x is (statistically) independent of the pri-
vate inputs Xk and the adversary cannot infer any information of the private inputs Xk when
he/she has access to the value of the observable variable x via power side channels. The first-
order probing security exactly characterizes the leakage model under the thread model introduced
previously.

Example 2.4. Consider the program P shown in Figure 4. For any observable variable x ∈ X mainin ,
we can examine that �E (x)�P

η =
1
2 for any valuation η of the inputs {k1,k2}. It implies that x is

∅-simulatable, thus the program P is first-order probing secure.
In contrast, ��c[1],�c[2]�P

η1
� ��c[1],�c[2]�P

η2
if η1 (k1) ⊕ η1 (k2) = 0 and η2 (k1) ⊕ η2 (k2) = 1. Indeed,

if η1 (k1) ⊕ η1 (k2) = 0 and η2 (k1) ⊕ η2 (k2) = 1, then

— ��c[1],�c[2]�P
η1

(0, 0) = ��c[1],�c[2]�P
η1

(1, 1) = 1
2 , and

— ��c[1],�c[2]�P
η2

(0, 1) = ��c[1],�c[2]�P
η2

(1, 0) = 1
2 .

Thus, {�c[1],�c[2]} is not ∅-simulatable. By fixing the inputs {k1,k2}, ��c[1],�c[2]�P
η = ��c[1],�c[2]�P

η ,
thus {�c[1],�c[2]} becomes {k1,k2}-simulatable. �

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:12 P. Gao et al.

Fig. 5. A running example for computing k1
 (k1 ⊕ k2).

2.3 A Running Example

Suppose one wants to compute k1
 (k1 ⊕ k2), where k1 and k2 are two private inputs. It is known
that the power consumption of computing both k1 ⊕k2 and k1
 (k1 ⊕k2) depends on the values of
k1 and k2, based on which differential power analysis [72] could be utilized to infer the information
of k1 and k2. For instance, k1 ⊕k2 is always 0 if k1 = k2 and is always 1 if k1 � k2. The static leakage
current of a CMOS transistor depends on whether the transistor is on or off, which corresponds
to the logical 1 and 0 of a bit. This difference allows the adversary to infer if k1 = k2 or not by
measuring the power consumption.

To ensure first-order probing security of computing k1
 (k1 ⊕ k2), the distributions of internal
variables for computing k1 ⊕ k2 and k1
 (k1 ⊕ k2) should be (statistically) independent of the
values of k1 and k2. Namely, the distribution of static leakage currents of each CMOS transistor is
independent of the values of k1 and k2.

Figure 5 shows a demonstrating masked implementation for computing k1
 (k1 ⊕ k2) using

Boolean masking. Given the inputs k1 and k2, their encodings �a and �b are computed by calling the
encoding gadget Encoding with the inputs k1 and k2, respectively (lines 2 and 3). The Encoding
gadget splits an input k into two shares �a[1] and �a[2], where �a[1] is randomly sampled and �a[2] =
�a[1] ⊕ k masks k by XORing �a[1] resulting in the encoding �a of k .

Based on the encodings �a and �b, the encoding �c of k1
 (k1 ⊕ k2) is computed via invoking the
composite gadget XORMULTI (line 4). The value of k1
 (k1⊕k2) can be recovered by demasking (i.e.,⊕

�c = �c[1]⊕�c[2] = k1
 (k1 ⊕k2)). Three simple gadgets Refresh [63], XOR [63], and UMA [58] are
invoked in the gadget XORMULTI. The gadget Refresh takes an encoding as input and re-masks the
shares via a fresh random variable. Refresh is required when the same random variable is used into
two different sub-expressions in the same computation (e.g., �a[2]
�a[1] = (�a[1]⊕k1)
�a[1] depends
on the private variable k1). The gadget XOR performs share-wise XOR—that is, it produces the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:13

encoding (�a[1]⊕�b[1], �a[2]⊕�b[2]) for the input encodings �a and �b. The gadget UMA implements the

finite-filed multiplication of the input encodings �a and �b, so the output encoding (t6, t8) satisfying

t6 ⊕ t8 = (
⊕

�a)
 (
⊕

�b).
Consider the variable �c[1]@8@4 which is the inlined version of the local variable �c[1] in the

gadget Refresh after inlining the gadget call to Refresh at line 8 and the gadget call to the gadget
XORMULTI at line 4, respectively. Obviously, E (�c[1]@8@4) = (�a[1]@2 ⊕ k1) ⊕ r1@8@4. Since k1 in
E (�c[1]@8@4) is perfectly masked by the random variable r1@8@4 (respectively, �a[1]@2), we can
get that �E (�c[1]@8@4)�P

η1
= �E (�c[1]@8@4)�P

η2
for any valuations η1,η2 : {k1,k2} → F. Thus,

�c[1]@8@4 is ∅-simulatable. Indeed, we can observe that the local variable�c[1] in the simple gadget
Refresh is perfectly masked by the random variable r1 without considering the calling context.
This means that �c[1] is always independent of private inputs no matter how the gadget Refresh

is invoked. Similarly, consider the local variable t5 in the gadget UMA. Since t5 = (�a[1]
 �b[1]) ⊕ r2,
we can deduce that t5 is always independent of private inputs due to the random variable r2 and
operation ⊕ no matter how the gadget UMA is invoked.

Outline of the Solution. To automatically prove that masked implementations of cryptographic
algorithms such as the running example are first-order probing secure without inlining gadget
calls, we shall propose a compositional verification approach by leveraging local random variables.
We first introduce the new security notion I-Non-Interference in terms of simulatability, which
is parameterized by an explicit pre-condition I for each gadget (Section 3.1). The pre-condition
of each gadget is served as an abstraction of the gadget when reasoning about the calls to the
gadget so that the inlining of the gadget calls can be avoided. Then, we propose a composition
rule for inferring pre-condition I of composite gadgets using the pre-conditions of called gadgets
without inlining gadget calls (Section 3.2). The new security notion and its composition rule lay
the foundation of our compositional verification approach. To reduce verification time, we further
propose the concepts of dominant and dominated variables (Section 4.1), present a sound approach
for determining them (Section 4.2), and show how to use them to reduce the size of pre-condition
I for a composite gadget by revising the composition rule. Finally, after introducing a proof system
for checking simulatability (Section 5.1), we present algorithms to infer pre-conditions for simple
gadgets (Section 5.2) and composite gadgets (Section 5.3), respectively, by utilizing the proposed
proof system and composition rules.

3 FOUNDATION OF OUR COMPOSITIONAL VERIFICATION APPROACH

In this section, we first introduce the new security notion I-Non-Interference in terms of simulata-
bility, parameterized by an explicit pre-condition I for each gadget, and then discuss how to make
composition based on I-Non-Interference by presenting a compositional rule.

3.1 I-Non-Interference

To achieve compositional verification for masked implementations of cryptographic algorithms,
we propose the notion of I-Non-Interference. Let P (·) denote the power set of a set.

Definition 3.1. Given a set of variable sets I ⊆ P (Xдin ∪Xд
a) of a gadget д, the gadget д is I-Non-

Interfering (I-NI for short), if for every variable x ∈ Xдin ∪Xд
a , there exists a variable set I ∈ I such

that x is I -simulatable. (Note that дin is the inlined version of the gadget д and Xдin is the set of
internal variables defined in the inlined version дin .)

The pre-condition I in the notion I-NI characterizes sufficient variable sets to simulate the dis-
tributions of all observable variables. The advantage of the pre-condition I is twofold. First, it can
contain as few small variable sets as possible to simulate all the observable variables in a gadget.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:14 P. Gao et al.

Second, if an observable variable x cannot be simulated by any variable set into I, the variable x
could be added to the set I to ensure that the gadget is I-NI. The new notion I-NI can be seen as
a balance of the first-order probing security and the stronger security notion proposed by Barthe
et al. [9], where the former does not support compositional verification, whereas the latter implic-
itly contains a fixed pre-condition. We note that the fixed pre-condition may not be fulfilled by
generic, in particular, efficient, masked implementations, although it is more composition-friendly.
More importantly, it is straightforward to check first-order probing security from our notion I-NI

by the following proposition.

Proposition 3.2. If a gadget д is both I-NI and I isXp -simulatable for each variable set I ∈ I, then

д is first-order probing secure, namely any variable of the gadget д is statistically independent of the

private inputs Xk when д is used in a program P with the private inputs Xk .

Proof. Suppose the gadget д is both I-NI and I is Xp -simulatable for each variable set I ∈ I. To
show that д is first-order probing secure, it suffices to prove that for any program P that uses the
gadget д and any observable variable x ∈ Xдin ∪Xд

a , x@ isXp -simulatable (i.e., any inlined version
x@ of x in the program Pin is statistically independent of the private inputs Xk).

Consider an observable variable x ∈ Xдin ∪ X
д
a . Since the gadget д is I-NI, there must exist a

variable set I ∈ I such that x is I -simulatable. By Proposition 2.3, we get that for any inlined x@
version of the variable x from the gadget д in the program Pin , x@ is Xp -simulatable. �

Example 3.3. Consider the running example. Let IRefresh, IXOR and IUMA be the following sets:

— IRefresh = {{�a[1]}, {�a[2]}};
— IXOR = {{�a[1], �b[1]}, {�a[2], �b[2]}};
— IUMA = {{�a[1], �b[1]}, {�a[2], �b[2]}, {�a[1], �b[2]}, {�a[2], �b[1]}}.

It is easy to verify the following:

— In Refresh, r1 and �c[1] and �c[2] are ∅-simulatable, and �a[i] is �a[i]-simulatable for i = 1, 2.
— In XOR, �a[i] is �a[i]-simulatable, �b[i] is �b[i]-simulatable, and �c[i] is {�a[i], �b[i]}-simulatable for
i = 1, 2.

— In UMA, �a[i] is �a[i]-simulatable, �b[i] is �b[i]-simulatable, �t[i] is {�a[i], �b[i]}-simulatable for i =
1, 2, t3 is {�a[1], �b[2]}-simulatable, t4 is {�a[2], �b[1]}-simulatable, and all of r2, t5, t6, t7, and t8
are ∅-simulatable.

Thus, Refresh is IRefresh-NI, XOR is IXOR-NI, and UMA is IUMA-NI. �

In Section 5.2, we will present an algorithm for inferring pre-conditions of simple gadgets. An
algorithm for inferring pre-conditions of composite gadgets will be given in Section 5.3, which
relies upon pre-conditions of simple gadgets and the composition rule introduced next.

3.2 Composition of I-NI Gadgets

We show the simplicity of inferring pre-conditions for composite gadgets by proposing a compo-
sition rule. We use the following composite gadget to illustrate the composition rule,

f (�x1, · · · , �xm){ �y1 = д(�x1, · · · , �xm); �z = h(�y1, �x2, · · · , �xn); return �z; },
where f is a composite gadget that contains two gadget call statements to the simple gadgets д
and h (with labels �д and �h), respectively. The actual parameters of д are the formal parameters
of f , and the actual parameters of h consist of the return values of д and formal parameters of

f . Assume the gadget д(�a1, · · · , �am){· · · } is Iд-NI and the gadget h(�b1, · · · , �bn){· · · } is Ih-NI. We
denote by Iд[�x1/�a1, · · · , �xm/�am]@�д the set Iд after instantiating the formal parameters �ai ’s by the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:15

corresponding actual parameters �xi ’s, and local variables are appended with @�д to avoid name

conflict. The set Ih[�y1/�b1, �x2/�b2, · · · , �xn/�bn]@�h is defined similarly. Let If be the following set:

Iд[�x1/�a1, · · · , �xm/�am]@�д ∪ Ih[�y1/�b1, �x2/�b2, · · · , �xn/�bn]@�h .

Proposition 3.4. The gadget f is If -NI.

Proof. To prove that the gadget f is If -NI, it suffices to prove that for every observable variable
x of the inlined version fin , the variable x in fin is I -simulatable for some variable set I ∈ If . We
first consider inlined versions of the variables from the gadgets h and f , then move on to the
observable variables defined in the gadget f :

— Consider an inlined version x@�д of a variable x from the gadget д. Since the gadget д is Iд-
NI, there exists a variable set I ∈ Iд such that the variable x in д is I -simulatable. It implies
that the variable x@�д in fin is I [�x1/�a1, · · · , �xm/�am]@�д-simulatable. The result immedi-
ately follows from the fact that I [�x1/�a1, · · · , �xm/�am]@�д ∈ Iд[�x1/�a1, · · · , �xm/�am]@�д ⊆ If .

— Considering an inlined version x@�h of a variable x from the gadget h, similar to the

preceding case, we can get that the variable x@�h in fin is I [�y1/�b1, �x2/�b2, · · · , �xn/�bn]@�h-

simulatable for some set I ∈ Ih and I [�y1/�b1, �x2/�b2, · · · , �xn/�bn]@�h ∈ Ih[�y1/�b1, �x2/�b2, · · · ,
�xn/�bn]@�h ⊆ If .

— Consider an observable variable x defined in the gadget f . Then, x must be an actual
parameter or a return value of one of the gadget call statements �y1 = д(�x1, · · · , �xm) or
�z = h(�y1, �x2, · · · , �xn).

If x is an actual parameter of �y1 = д(�x1, · · · , �xm) or �z = h(�y1, �x2, · · · , �xn), let c be the
corresponding formal parameter of x . Then, the variable c in the gadget д is I -simulatable
for some I ∈ Iд or the variable c in the gadget h is I -simulatable for some I ∈ Ih . Since x and
c always have the same value, we get that the variable x in fin is I ′-simulatable, where I ′ is

I [�x1/�a1, · · · , �xm/�am]@�д or I [�y1/�b1, �x2/�b2, · · · , �xn/�bn]@�h .
If x is a return value of �y1 = д(�x1, · · · , �xm) or �z = h(�y1, �x2, · · · , �xn), let c be the correspond-

ing return variable of x in the gadget д or h. We have proved that c@�д (respectively, c@�h)
is I -simulatable if c is a return variable of д (respectively, h) for some I ∈ If . Since x and c
always have the same value, we get that the variable x in the gadget fin is I -simulatable as
well.

We have proved that every observable variable x of the inlined version fin is I -simulatable, for
some variable set I ∈ If , and thus conclude the proof. �

Example 3.5. Here we show how to manually compute the pre-condition IXORMULTI such that the
composite gadget XORMULTI in the running example is IXORMULTI-NI by leveraging this composition
rule. (An algorithm for inferring pre-conditions of composite gadgets will be given in Section 5.3.)
Recall that Refresh is IRefresh-NI, the gadget XOR is IXOR-NI, and the gadget UMA is IUMA-NI (cf.
Example 3.3), where

— IRefresh = {{�a[1]}, {�a[2]}};
— IXOR = {{�a[1], �b[1]}, {�a[2], �b[2]}}; and
— IUMA = {{�a[1], �b[1]}, {�a[2], �b[2]}, {�a[1], �b[2]}, {�a[2], �b[1]}}.

The set IXORMULTI is computed as follows according to the composition rule:

(1) For the gadget call �e = Refresh(�a), we have

IRefresh@8 = IRefresh[�a/�a]@8 = {{�a[1]}, {�a[2]}}.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:16 P. Gao et al.

(2) For the gadget call �c = XOR(�b,�e), we have

IXOR@9 = IXOR[�b/�a,�e/�b]@9 = {{�b[1],�e[1]}, {�b[2],�e[2]}}.

(3) For the gadget call �d = UMA(�e,�c), we have

IUMA@10 = IUMA[�e/�a,�c/�b]@10 = {{�e[i],�c[j]}|1 ≤ 1, j ≤ 2}.

Let IXORMULTI = IRefresh@8 ∪ IXOR@9 ∪ IUMA@10 = {{�a[i]}, {�b[i],�e[i]}, {�e[i],�c[j]}|1 ≤ i, j ≤ 2}. By
Proposition 3.4, XORMULTI is IXORMULTI-NI. �

4 DOMINANT AND DOMINATED VARIABLES

As mentioned previously, the pre-condition I of a gadget is expected to contain as few small vari-
able sets as possible to simulate all observable variables. However, directly applying the compo-
sition rule may yield a pre-condition containing many large variable sets. To alleviate this issue,
in this section, we first introduce dominant and dominated variables, then provide an approach
to identify them, and finally show how such information can help further reduce the size of pre-
condition I in the composition of gadgets by improving the composition rule.

4.1 The Concepts of Dominant and Dominated Variables

Given a variable x , let Sub(x) be the set of the sub-expressions of E (x).

Definition 4.1. A variable x is dominated by another variable y if y occurs in E (x) only once
and each operation ◦ along the path from y to the root of the abstract syntax tree of E (x) is either
from or belongs to following:

— {⊕,+,−,¬},
—
 and one of its children is non-zero constant,

where x is called a dominated variable and y is called a dominant variable of x .
An encoding �x is dominated by another encoding �y if each share �x[i] of the encoding �x is dom-

inated by only one share �y[j] of the encoding �y, where �x is called dominated encoding and �y is
called dominant encoding of �x .

Intuitively, if the variable x is dominated by the another variabley, the distribution of (the value
of) of x is determined by the distribution of y. When y is a random variable, the distribution of x
is uniform as well, thus x can be regarded as a random variable. For example, consider y = x ⊕ r ,
y ′ = x ∧ r , and y ′′ = x + (x ⊕ r). The variable y is dominated by both x and r because of the logical
operation ⊕ and the uniqueness of x and r , buty ′ is dominated by neither x nor r due to the logical
operation ∧, and y ′′ is only dominated by r because x occurs twice. When r is a random variable,
the distributions of y and y ′′ are uniform for any fixed value of x .

Let DomR(x) be the set of random dominant variables of the variable x . The merit of dominated
variables is justified by the following straightforward proposition.

Proposition 4.2. x has a uniform distribution if DomR(x) � ∅.

Proof. Suppose r ∈ DomR(x). We first prove the following claim.

Claim. Let e be a sub-expression of E (x) such that r occurs in e and E (x)[r/e] be the expres-
sion E (x) in which all the occurrences of the sub-expression e are replaced by the random
variable r . E (x) and E (x)[r/e] have the same distribution if e is in the form of e ′ ◦ r for
◦ ∈ {⊕,+,−} or ¬r or c
 r such that c is non-zero constant.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:17

Proof of the Claim. Since r ∈ DomR(x), the random variable r occurs only once in E (x). It means
that the random variable r occurs only once in e but does not appear in e ′. Since r is uniformly
sampled from F, we get that the value of e is determined by the value of r for any fixed value of
e ′ or c . Let fv (r) be the function such that the value of e ′ or c is fixed to v . Obviously, fv (r) is a
bijective function. Thus, the probability distribution of fv (r) is the same as r , implying that the
probability distribution of the value of e is uniform when r is uniformly sampled from F. Since r
does not appear anywhere in E (x) except for the sub-expression e , we get that E (x) and E (x)[r/e]
have the same distribution. We conclude the proof of the claim.

To show that x has a uniform distribution, we can iteratively replace all the occurrences of the
sub-expression e in E (x) by the random variable r for every sub-expression e in the form of e ′ ◦ r
for ◦ ∈ {⊕,+,−} or ¬r or c
r such that c is non-zero constant. The expression E (x) will eventually
becomes the random variable r according to Definition 4.1. By the preceding lemma, these substi-
tutions do not change the probability distribution of E (x). Thus, x has a uniform distribution. �

Example 4.3. Consider the gadget Refresh in the running example. Since E (�c[1]) = �a[1]⊕r1 and
E (�c[2]) = �a[2] ⊕ r1, we can deduce that �c[1] is a dominated variable and dominated by both �a[1]
and r1, and the variables �a[1] and r1 are dominant variable of �c[1]. Similarly, �c[2] is dominated by
both �a[2] and r1, and the variables �a[2] and r1 are dominant variable of �c[2]. Since r1 is a random
variable, we get that DomR(�c[1]) = DomR(�c[2]) = {r1}, and both �c[1] and �c[2] have a uniform
distribution for any inputs of the gadget Refresh.

Since each share �c[i] of the encoding �c is dominated by only one share �a[i] of the encoding �a,
we get that the encoding �c is a dominated encoding and dominated by the encoding �a, and the
encoding �a is a dominant encoding of the encoding �c .

In contrast, �c[1] is dominated by neither �a[1] nor r1 if E (�c[1]) is �a[1] ∧ r1 (because of ∧) or
(�a[1] ∧ r1) ⊕ r1 (because of twice occurrences of r1 and ∧). Thus, DomR(�c[1]) = ∅ and �c[1] does
not necessarily have a uniform distribution even though r1 is a random variable.

If E (�c[1]) is (�a[1] ∨ �a[2]) ⊕ (¬r1), �c[1] is only dominated by the variable r1 (because of ∨), then
the encoding �c is not dominated by the encoding �a because the share �c[1] is not dominated by any
share of �a. Moreover, DomR(�c[1]) = {r1} and �c[1] has a uniform distribution as r1 is a random
variable.

If E (�c[1]) is (�a[1] ⊕ �a[2]) ⊕ r1, �c[1] is dominated by �a[1], �a[2], and r1, then the encoding �c
is not dominated by the encoding �a because the share �c[1] of the encoding �c is dominated by
both shares �a[1] and �a[2] of the encoding �a. Similarly, DomR(�c[1]) = {r1} and �c[1] has a uniform
distribution. �

Proposition 4.2 provides a sufficient condition to deduce that x has the uniform distribution and
thus can be simulated by an empty set (i.e., x is ∅-simulatable). We will also show that variables
dominated by random variables can help simplify expressions later (cf. Section 5).

4.2 Determining Dominated Variables

In this section, we present an efficient approach to determine dominant and dominated variables.
We first consider simple gadgets and then composite gadgets.

4.2.1 Determining Dominated Variables for Simple Gadgets. Determining dominated variables
in simple gadgets is trivial. For every variable x of a simple gadget, we represent the computation
E (x) of the variable x as a Directed Acyclic Graph (DAG), where the internal nodes are labeled
by operators and leave are labeled by variables and constants involved in the computation E (x).
We iteratively traverse the DAG representation of E (x) starting from the root in a depth-first
fashion, where a stack is used to store visiting nodes. For each node in the DAG:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:18 P. Gao et al.

(1) If the in-degree of the node is greater than 1, then we go back to its visiting parent (popped
from the stack) if it exists and otherwise terminate, because any variable labeled to the leaf
of the sub-tree rooted by this node occurs at least twice in the computation E (x).

(2) If the in-degree of the node is 1, we proceed as follows:
(a) If the node is labeled by one of the operators {⊕,+,−,¬}, we push it into the stack and

continue to traverse its unvisited children.
(b) If the node is labeled by the operator
, one child of the node is a non-zero constant, and

the another child is a non-constant that has not been visited yet, we push it into the stack
and continue to traverse its non-constant child.

(c) Otherwise, we go back to its visiting parent if it exists and otherwise terminate, because
any variable labeled to the labeled to each leaf of sub-tree rooted by this node cannot be a
dominant variable of x according to Definition 4.1.

(3) If the node is a leaf, with in-degree no more than 1, and labeled by a variable, then the
variable must be a dominant variable of x , and we record this dominant variable and go back
to its visiting parent.

By applying the preceding procedure, we can identify all the dominant variables of the variable x
in linear time in the size of the computation E (x). Similarly, the set DomR(x) of random dominant
variables of the variable x can be computed.

4.2.2 Determining Dominated Variables for Composite Gadgets. It is non-trivial to determine if
variables (encodings) are dominated by random variables in composite gadgets without inlining
gadget calls, as they are return values of gadget calls. To address this issue, we first characterize
whether a gadget can transfer dominant variables from a formal parameter to its output encod-
ing and whether a gadget can generate dominant variables itself, based on which we introduce
the concept of summary for storing this information. Next, we present an approach for under-
approximating the summaries of composite gadgets by utilizing the summaries of called gadgets.

Characterzation of Gadgets. The characterization of gadgets is inspired by following observa-
tion. First, the return of a gadget call statement may be dominated by the same random variables as
some actual parameters of the gadget call statement—that is, random variables may be transferred
from the input encodings to the output encoding, making the output encoding being dominated
by the same dominant encodings of some input encodings. Second, the output encoding of a gad-
get may be dominated by local random variables of the gadget. Based on these observations, we
characterize the gadgets that can transfer dominant variables and generate dominant variables as
follows.

Fix a gadget д(�a1, · · · , �am){· · · ; return �o; }.

Definition 4.4. The gadget д can transfer dominant variables from a formal parameter �ai to its
output encoding �o if �ai is a dominant encoding of �o.

Definition 4.5. The gadget д can generate dominant variables if each share �o[j] of the output
encoding �o is dominated by a local random variable of д.

Summary of Gadgets. We define the summary of the gadgetд asTд ⊆ X
д
en∪{�o}, whereTд includes

all the formal parameters �ai of the gadget д whose dominant encodings can be transferred to the
output encoding �o, and the output encoding �o is added to the summary Tд if the gadget д itself
can generate dominant variables. Based on Definitions 4.4 and 4.5, the summary Tд can be easily
computed if д is a simple gadget. More specifically, for each share �o[j] of the output encoding �o, we
first compute the dominant variables from the computation E (�o[j]), then add an input encoding
�ai into the summaryTд if each share �o[j] of the output encoding �o is dominated by only one share

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:19

of the input encoding �ai , and finally the output encoding �o is added into the summary Tд if each
share �o[j] of the output encoding �o is dominated by a random variable.

Example 4.6. Consider the gadget Refresh in the running example. Since �c[1] = �a[1] ⊕ r1 and
�c[2] = �a[2] ⊕ r1 with random variables r1 and r2, Refresh can generate dominant variables (i.e., r1

and r2), thus the output encoding �c of the gadget Refresh can be added into the summaryTRefresh
of the gadget Refresh (i.e., �c ∈ TRefresh). Since the output encoding �c of the gadget Refresh is
dominated by the input encoding �a, the input encoding �a can also be added into the summary
TRefresh of the gadget Refresh (i.e., �a ∈ TRefresh). Thus, we haveTRefresh = {�a,�c}. Similarly, we can

deduce that TXOR = {�a, �b} and TUMA = {(t6, t8)}. �

Under-Approximating the Summary of Composite Gadgets. Let E be the set of all the encod-
ings of the gadget д. To compute the summary Tд of the gadget д without inlining gadget calls
when д is a composite gadget, we define a function λ : E → P (E) such that for each encoding
�a ∈ E, λ(�a) contains all of the dominant encodings of the encoding �a, and moreover �a ∈ λ(�a) only

if �a is the return of a gadget call that can generate dominant variables. Thus, it is easy to see the
following proposition.

Proposition 4.7. λ(�o) ∩ (X
д
en ∪ {�o}) ⊆ Tд , namely the summary Tд of the composite gadget can

be under-approximated by computing the function λ.

Proof. According to the definition of the function λ, all the dominant encodings of the output
encoding �o are contained in λ(�o). Thus, the intersection of λ(�o) andX

д
en is a set of dominant encod-

ings of the output encoding �o that are formal parameters of the gadget д. Furthermore, �o ∈ λ(�o)
only if �o is the return of a gadget call that can generate dominant variables, thus the gadget д itself
can generate dominant variables. The result follows from the definition of Tд . �

Note that Xд
en , the vector of all the input encodings of the gadget д, is used as a set of input

encodings in the definition of Tд and Proposition 4.7.
Now the problem is how to compute λ. To achieve this, we first show how to compute the domi-

nant encodings λ(�y) of an internal encoding �y defined by �y = f (�x1, · · · , �xk), based on the summary
Tf of the gadget f and dominant encodings of the actual parameters (i.e., λ(�x1), · · · , λ(�xk)). We

assume that the formal parameters of the gadget f are �b1, · · · , �bk . First, we can directly get the
following proposition.

Proposition 4.8. If the gadget f can generate dominant variables, then �y can be added into λ(�y).

Proof. Let λ(�o) be the output encoding of the gadget f . Suppose the gadget f can generate
dominant variables, then �o ∈ λ(�o). Since �y = f (�x1, · · · , �xk) (i.e., �y is the return of a gadget call that
can generate dominant variables), we can add �y into λ(�y). �

Example 4.9. Consider the gadget Refresh in the running example. It can generate dominant
variables (i.e., �c ∈ TRefresh, cf. Example 4.6), thus �c ∈ λ(�c). Now, consider the gadget XORMULTI in
the running example which has a gadget call to the gadget Refresh (i.e., �e = Refresh(�a)). Thus,
the encoding �e can be added into λ(�e).

In contrast, the gadget XOR in the running example cannot generate dominant variables (i.e.,
�c � TXOR, cf. Example 4.6). Thus, we cannot add the encoding�c into λ(�c) for the gadget call statement

�c = XOR(�b,�e). �

Hereafter, by mutually independence of the encodings �x1, · · · , �xk , we mean that the distributions
of all the encodings �x1, · · · , �xk are mutually independent. Note that distributions of the shares in

the same encoding can be dependent. For instance, the encodings �a and �b in the main gadget in

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:20 P. Gao et al.

the running example are mutually independent, and the encodings �b and �e in the XORMULTI gadget
in the running example are mutually independent as well, whereas the encodings (r , r ⊕ k1) and
(r , r ⊕ k2) are not mutually independent even if r is a random variable. We have the following
proposition.

Proposition 4.10. If the gadget f can transfer dominant variables from the formal parameter �bi

to its output encoding (i.e., �bi ∈ Tf) and the encodings �x1, · · · , �xk in �y = f (�x1, · · · , �xk) are mutually

independent, then �y is dominated by the dominant encodings of �xi , namely λ(�xi) ⊆ λ(�y).

Proof. Suppose the encoding �xi is dominated by an encoding �b and the encodings �x1, · · · , �xk

are mutually independent. Since the gadget f can transfer dominant variables from �bi to its output

encoding �o (i.e., �bi ∈ λ(�o) or �bi ∈ Tf), and �y = f (�x1, · · · , �xk), we get that �y is dominated by the

encoding �b, because the values of the encodings �xi and �bi (respectively, �o and �y) are the same. �

Remark that it is necessary to assume that the actual parameters are mutually independent in
Proposition 4.10, because if shares between different actual parameters are not mutually indepen-
dent, the computation of two such shares may not contain any dominant variables.

Example 4.11. Consider the gadget XOR in the running example. It can transfer dominant

variables from the formal parameters �a and �b to the output encoding �c (i.e., TXOR = {�a, �b}, cf.

Example 4.6). For the gadget call statement �c = XOR(�b,�e) in the gadget XORMULTI, the encodings �b

and �e are mutually independent, thus we have λ(�b) ⊆ λ(c) and λ(�e) ⊆ λ(c).
In contrast, for the gadget call �y = XOR(�x1, �x2) such that �x1 = �x2 (i.e., �x1 and �x2 are not mutually

independent), �y is not a dominated encoding because the shares �y[1] and �y[2] of �y are 0 even

though TXOR = {�a, �b}. �

To decide whether the actual parameters in a gadget call are mutually independent, we propose
a sufficient condition based on the function λ. Intuitively, for the gadget call �y = XOR(�x1, �x2), if

λ(�x1) = {�a}, λ(�x2) = {�b}, and �a and �b are mutually independent, then �x1 and �x2 are mutually
independent as well. Formally, we have the following sufficient condition.

Sufficient Condition. Let Ψ(�x1, · · · , �xk) be a predicate that holds only if λ(�xi) � ∅ for each i
and there exists a set of encodings from

⋃k
i=1 λ(�xi), one encoding �zi per set λ(�xi), such that the

encodings �zi ’s are mutually independent.

Proposition 4.12. The encodings �x1, · · · , �xk are mutually independent if they are distinct and

either Ψ(�x1, · · · , �xk) or �x1 ∈ λ(�x1), · · · , �xk ∈ λ(�xk).

Proof. Suppose �x1, · · · , �xk are distinct encodings. On the one hand, if �x1 ∈ λ(�x1), · · · , �xk ∈
λ(�xk), then �xi must be the return of a gadget call that can generate dominant variables; mean-
while �xi and �x j are different returns. Thus, the distributions of �x1, · · · , �xk are mutually inde-
pendent. On the other hand, if Ψ(�x1, · · · , �xk) holds, then the distributions of �xi ’s are the same
as that of encodings �zi ’s. Thus, if �zi ’s are mutually independent, then �x1, · · · , �xk are mutually
independent. �

By iteratively applying Propositions 4.8 and 4.10, a function λ can be computed from which
we can under-approximate the summary Tд of a composite gadget д. Here, we demonstrate the
general intuition on an example, as both the function λ and summaryTд are computed within the
algorithm for inferring pre-conditions of composite gadgets (cf. Section 5.3).

Example 4.13. Let us consider the gadget XORMULTI in the running example. Initially, λ(�a) =

λ(�b) = ∅:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:21

(1) For the gadget call �e = Refresh(�a), since Ψ(�a) does not hold and TRefresh = {�a,�c} (cf.
Example 4.6), we have λ(�e) = {�e} according to Proposition 4.8 (cf. Example 4.9).

(2) For the gadget call�c = XOR(�b,�e), since Ψ(�b,�e) does not hold andTXOR = {�a, �b} (cf. Example 4.6),
we have λ(�c) = ∅.

(3) For the gadget call �d = UMA(�e,�c), since λ(�e) = {�e} and λ(�c) = ∅, Ψ(�e,�c) does not hold. As

TUMA = {(t6, t8)} (cf. Example 4.6), we have λ(�d) = {�d } according to Proposition 4.8.

Finally, we obtain that TXORMULTI = λ(�d) = {�d }, namely the gadget XORMULTI can generate domi-

nant variables itself, and no dominant variables can be transferred from its parameters �a and �b to

the output encoding. Note that in this case whether �a and �b are dominated encodings and whether

they are mutually independent are unknown, thus we set λ(�a) = λ(�b) = ∅. If the gadget XORMULTI

is called in another gadget where λ(�a) and λ(�b) are non-empty, λ may have different values (cf.
Example 4.15). �

4.3 Application of Dominated Variables

Dominated variables can help reduce the size of the pre-condition I when computing I for a
composite gadget. More specifically, if the actual parameters of a gadget call have random dom-
inant encodings, they have uniform distributions. Thus, when instantiating I, the correspond-
ing formal parameters can be instantiated by an empty set rather than the actual parameters.
Therefore, Proposition 3.4 can be refined as follows. Let If = Iд[�x1/�a1, · · · , �xm/�am]@�д ∪
Ih[∅/�b1, �x2/�b2, · · · , �xn/�bn]@�h for the composite gadget f :

f (�x1, · · · , �xm){�y1 = д(�x1, · · · , �xm);�z = h(�y1, �x2, · · · , �xn); return �z; },

where the gadget д(�a1, · · · , �am){· · · } is Iд-NI and the gadget h(�b1, · · · , �bn){· · · } is Ih-NI.

Proposition 4.14. The gadget f is If -NI if there exists �x ∈ λ(�y1) such that �x ∈ λ(�x).

Proof. The proof mainly follows the lines of the proof of Proposition 3.4.
Suppose �x ∈ λ(�y1) such that �x ∈ λ(�x). From �x ∈ λ(�x), we get that �x is the return of a gadget call

that can generate dominant variables itself, namely each share �x[j] of the encoding �x is dominated
by a random variable. By Proposition 4.2, each share �x[j] of the encoding �x has a uniform distri-
bution. Since �x ∈ λ(�y1), we get that each share �y1[j] of the encoding �y1 is dominated by a random
variable and has a uniform distribution.

To prove that the gadget f is If -NI, it suffices to prove that every observable variable x of fin

is I -simulatable for some variable set I ∈ If . We will start by examining the inlined versions of
the variables from the gadgets д and h, then move on to the observable variables defined in the
gadget f :

— Consider an inlined version x@�д of a variable x from the gadget д. Since the gadget д
is Iд-NI, there exists a variable set I ∈ Iд such that the variable x in the gadget д is I -
simulatable. This implies that the variablex@�д in the gadget fin is I [�x1/�a1, · · · , �xm/�am]@�д-
simulatable. The result immediately follows from the fact that I [�x1/�a1, · · · , �xm/�am]@�д ∈
Iд[�x1/�a1, · · · , �xm/�am]@�д ⊆ If .

— Consider an inlined version x@�h of a variable x from the gadget h. We can get that the

variable x@�h in the gadget fin is I [�y1/�b1, �x2/�b2, · · · , �xn/�bn]@�h-simulatable for I ∈ Ih .

Moreover, if the variable set I does not involve any shares of the encoding �b1, then x@�h is

I [∅/�b1, �x2/�b2, · · · , �xn/�bn]@�h-simulatable. Otherwise, the variable set I contains some shares
of the encoding �b1, and since all shares of the encoding �b1 have the same uniform distribution,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:22 P. Gao et al.

we can get that x@�h is I [∅/�b1, �x2/�b2, · · · , �xn/�bn]@�h-simulatable as well. The result follows

from the fact that I [∅/�b1, �x2/�b2, · · · , �xn/�bn]@�h ∈ Ih[∅/�b1, �x2/�b2, · · · , �xn/�bn]@�h ⊆ If .
— Consider an observable variable x defined in the gadget f . The variable x must be an actual

parameter or a return value of one of the gadget call statements �y1 = д(�x1, · · · , �xm) or
�z = h(�y1, �x2, · · · , �xn).

If x is an actual parameter of �y1 = д(�x1, · · · , �xm) or �z = h(�y1, �x2, · · · , �xn), let c be the
corresponding formal parameter of x . Then the variable c in the gadget д is I -simulatable
for some I ∈ Iд or the variable c in the gadget h is I -simulatable for some I ∈ Ih . Sim-

ilarly, if the variable set I does not contain any shares of the encoding �b1, we get that
the variable x in the gadget fin is I ′-simulatable, where I ′ is I [�x1/�a1, · · · , �xm/�am]@�д or

I [∅/�b1, �x2/�b2, · · · , �xn/�bn]@�h , since x and c always have the same value. Otherwise, the

shares of the encoding �b1 contained in the variable set I must have the same uniform distri-
bution, and we get that x in the gadget fin is I ′-simulatable as well.

If x is a return value of �y1 = д(�x1, · · · , �xm) or �z = h(�y1, �x2, · · · , �xn), let c be the corre-
sponding return variable of x in the gadget д or h. We have proved that the variable c@�д
(respectively, c@�h) in the gadget fin is I -simulatable if c is a return variable of д (respec-
tively, h) for some I ∈ If . Since x and c always have the same value, we get that the variable
x in the gadget fin is I -simulatable.

This completes the proof. �

Example 4.15. Let us consider the gadget call to XORMULTI in the running example. Since �a and
�b are return encodings of two calls to the encoding gadget (i.e., Encoding), we have λ(�a) = {�a},
λ(�b) = {�b}, and �a and �b are mutually independent. We show how to compute IXORMULTI in this
context:

(1) For �e = Refresh(�a), as λ(�a) = {�a} andTRefresh = {�a,�c}, we get that Ψ(�a) holds, λ(�e) = {�a,�e},
and IRefresh@8@4 = IRefresh[∅/�a] = ∅ according to Propositions 4.8, 4.10, and 4.14.

(2) For �c = XOR(�b,�e), as λ(�b) = {�b}, λ(�e) = {�a,�e}, and TXOR = {�a, �b}, we get Ψ(�b,�e) holds,

λ(�c) = {�a, �b,�e}, and IXOR@9@4 = IXOR[∅/�a, ∅/�b] = ∅.
(3) For �d = UMA(�e,�c), as λ(�e) = {�a,�e} and λ(�c) = {�a, �b,�e}, we get Ψ(�e,�c) holds, λ(�d) = �d, and

IUMA@10@4 = IUMA[∅/�a, ∅/�b] = ∅.
Finally, we obtain that IXORMULTI = ∅. Thus, XORMULTI is first-order probing secure. Compared

with the result in Example 4.13 where λ(�a) = λ(�b) = ∅, we only deduced that λ(�e) = {�e} and λ(�c) =

∅. Compared with the result in Example 3.5 where IXORMULTI = {{�a[i]}, {�b[i],�e[i]}, {�e[i],�c[j]}|1 ≤
i, j ≤ 2}, IXORMULTI turns to ∅ using the dominant variables of the actual parameters �a and �b. �

5 ALGORITHMIC VERIFICATION

In this section, we first present a sound proof system for checking simulatability. Then we intro-
duce algorithms to infer pre-conditions for simple gadgets and composite gadgets by utilizing the
proof system and composition rules.

5.1 A Sound Proof System for Checking Simulatability

We first show how to use random dominant variables to simplify computations, which is lever-
aged to derive valid judgments in our proof system. Given a sub-expression e ∈ Sub(x) and a ran-
dom variable r ∈ Var(E (x)), let x[r/e] denote the new variable x ′ such that E (x ′) is obtained by

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:23

Fig. 6. Proof rules.

replacing e by r in E (x). (Note that Sub(x) denotes the set of the sub-expressions of E (x).) For each
sub-expression e ∈ Sub(x), if r ∈ DomR(e) and r does not occur anywhere else in E (x), x can be

simplified to x ′ = x[r/e], denoted as x
(e,r)
−→ x ′. This process can be repeated until there does not

exist such random dominant variable r and sub-expression e . By Proposition 4.2, x is I -simulatable
iff x ′ is I -simulatable.

Given a gadget f , the judgment is in the form of

� I � x ,

where I ⊆ X
f
a ∪ X fin and x ∈ X fin . The judgment � I � x is valid iff the variable x in the gadget

f is I -simulatable.
Figure 6 shows two proof rules for deriving valid judgment � I � x . The first rule (i.e., Supp)

exploits syntactic information and states that if the variable x is in I or the support variables of
E (x) are either random variables or in I , then � I � x is valid. Another rule (i.e., Dom) makes use
of semantic information. If a variable x can be simplified to x ′ using the random dominant variable
r and � I � x ′ is valid, then � I � x is valid. This proof system will be used to prove I-NI of
simple gadgets in the next sub-section.

Theorem 5.1. If � I � x can be derived by the proof system, then the variable x in the gadget f
is I -simulatable..

Proof. It suffices to prove the soundness of the preceding two rules:

— Rule (Supp): Suppose the premise x ∈ I ∨ Var(E (x)) ⊆ I ∪ X
fin
r holds. If x ∈ I , since x is

x-simulatable, by Proposition 2.3, we get that x is I -simulatable. If Var(E (x)) ⊆ I ∪X fin
r , then

the values of the variables in Var(E (x)) \X fin
r can be directly obtained from the values of the

variables in I . Since the values of the variables in Var(E (x)) ∩ X
fin
r are uniformly sampled,

knowing the values of I suffices to simulate the distribution of x , hence x is I -simulatable.

— Rule (Dom): Suppose x
(e,r)
−→ x ′. By Proposition 4.2, we have that x is I -simulatable iff x ′ is

I -simulatable. The result immediately follows.

We conclude the proof. �

Example 5.2. Consider the gadget UMA in the running example. From E (t1) = �a[1]
�b[1], E (t2) =

�a[2]
 �b[2], E (t3) = �a[1]
 �b[2], and E (t4) = �a[2]
 �b[1], by applying Rule (Supp), we can deduce

that � {�a[1], �b[1]} � t1, � {�a[2], �b[2]} � t2, � {�a[1], �b[2]} � t3, and � {�a[2], �b[1]} � t4 are valid,
thus t1 is {�a[1], �b[1]}-simulatable, t2 is {�a[2], �b[2]}-simulatable, t3 is {�a[1], �b[2]}-simulatable, and t4
is {�a[2], �b[1]}-simulatable.

Consider a variable x such that E (x) = (a⊕r1⊕r2)
 (b⊕r1), where r1 and r2 are random variables.
Without applying Rule (Dom), we can only deduce that x is {a,b}-simulatable. By applying Rule
(Dom), the sub-expression (a ⊕ r1 ⊕ r2) can be replaced by the random variable r2, leading to the
simplified expression E (x ′) = r2
 (b ⊕ r1), which further can be simplified to E (x ′′) = r2
 r1.
Obviously, � ∅ � x ′′ is valid, thus we deduce that all of x , x ′, and x ′′ are ∅-simulatable. �

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:24 P. Gao et al.

ALGORITHM 1: Checking simple gadget

1: procedure SGadget(f)
2: if storedInfo(f) exists then

3: return storedInfo(f)

4: Let �a1, �a2, · · · , �am be the formal parameters of f
5: Let �o be the output encoding of f

6: I = {I | I = Var(E (x)) ⊆ X
f
a ∧ x ∈ (X

f
a ∪ X f)}

7: T = ∅
8: I = I \ {I ∈ I | ∃I ′ ∈ I.I ⊂ I ′}
9: for each variable x ∈ X f do

10: if �I ∈ I s .t . � I � x then

11: I = I ∪ {{x }}
12: for each �ai ∈ {�a1, �a2, · · · , �am } do

13: if f can transfer dominant variables from �ai to �o then

14: T = T ∪ {�ai }
15: if f can generates dominant variables then

16: T = T ∪ {�o}
17: storedInfo(f) = (I,T)
18: return (I,T)

5.2 Inferring Pre-Conditions of Simple Gadgets

Algorithm 1 shows how to infer pre-conditions I for simple gadgets by leveraging the sound proof
system to check simulatability. SGadget takes a simple gadget f as input, and outputs (I,T) such
that f is I-NI and T is the summary of the gadget f . We use the mapping storedInfo to store
the checking results. Thus, if storedInfo(f) exists, it immediately returns the result stored in
storedInfo. Otherwise, it computes (I, T) for the gadget f .

The pre-condition I is initialized (line 6) by the following set:

{I | I = Var(E (x)) ⊆ X
f
a ∧ x ∈ X

f
a ∪ X f }.

Intuitively, the computation E (x) of a variable x whose support variables are all the shares of
input encodings cannot be simplified. Thus, I = Var(E (x)) should be added into the pre-condition
I. After initializing I, to keep I as small as possible, if there exists a set I ∈ I such that I is the
subset of I ′ ∈ I, then I is removed from I (line 8). For each variable x ∈ X f , if there does not
exist I ∈ I such that � I � x is valid via our proof rules, the set {x } is directly added into the
pre-condition I (lines 9–11). Next, it checks whether f can transfer dominant variables from the
input encoding �ai to the output encoding �o for each �ai ∈ {�a1, �a2, · · · , �am }. By Definition 4.4, if f
can transfer dominant variables from �ai to the output encoding �o, the input encoding �ai is added
into the summaryT (lines 12–14). Whether the input encoding �ai can transfer dominant variables
to the output encoding �o is checked according to Definition 4.1, aimed with the simplification

x
(e,r)
−→ x ′. By Definition 4.5, if f can generate dominant variables itself, the output encoding �o is

added into the summary T (lines 15 and 16). Whether f can generate dominant variables itself is
checked easily by checking if � ∅ � �o[j ′] is valid for each share �o[j ′] of the output encoding �o.
Finally, the result (I,T) is stored in storedInfo and then returned. It is easy to see that f is I-NI

and T is the summary of f .

Example 5.3. Consider the simple gadget Refresh in the running example. Algorithm 1 first
initializes the set I as {{�a[1]}, {�a[2]}} at line 6. The set I cannot be simplified at line 8. At lines 9
through 11, the proof system will prove that � ∅ � �c[1] and � ∅ � �c[2] are valid, thus neither

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:25

�c[1] nor �c[2] is added into the set I. At lines 12 through 14, the input encoding �a is added into
the summary T , because the share �c[i] of the encoding �c is dominated by only the share �a[i] of
the input encoding �a for i = 1, 2. At lines 15 and 16, the output encoding �c is added into the
summary T , because � ∅ � �c[1] and � ∅ � �c[2] are valid. Finally, Algorithm 1 returns the pair
({{�a[1]}, {�a[2]}}, {�a,�c}).

Consider the gadget XOR in the running example. Algorithm 1 first initializes the set I as

{{�a[1]}, {�a[2]}, {�b[1]}, {�b[2]}, {�a[1], �b[1]}, {�a[2], �b[2]}} at line 6. At line 8, the set I is simplified to

{{�a[1], �b[1]}, {�a[2], �b[2]}}. At lines 9 through 11, the proof system will prove that � {�a[1], �b[1]} �
�c[1] and � {�a[2], �b[2]} � �c[2] are valid, thus neither �c[1] nor �c[2] is added into the set I. At lines
12 through 14, the input encodings �a and �b are added into the summaryT , because the share�c[i] of

the encoding �c is dominated by only the share �a[i] of �a and the share �b[i] of �b for i = 1, 2. At lines
15 and 16, the output encoding �c cannot be added into the summaryT , because neither � ∅ � �c[1]

nor � ∅ � �c[2] is valid. Finally, Algorithm 1 returns the pair ({{�a[1], �b[1]}, {�a[2], �b[2]}}, {�a, �b}).
Similarly, Algorithm 1 returns ({{�a[1], �b[1]}, {�a[2], �b[2]}, {�a[1], �b[2]}, {�a[2], �b[1]}}, {(t6, t8)}) for

the gadget UMA.
These results are consistent with the ones given in Example 3.3, namely Refresh is IRefresh-NI,

XOR is IXOR-NI, and UMA is IUMA-NI, where

— IRefresh = {{�a[1]}, {�a[2]}};
— IXOR = {{�a[1], �b[1]}, {�a[2], �b[2]}};
— IUMA = {{�a[1], �b[1]}, {�a[2], �b[2]}, {�a[1], �b[2]}, {�a[2], �b[1]}}. �

5.3 Inferring Pre-Conditions for Composite Gadgets

We propose the two procedures Gadget and CGadget in Algorithm 2, where the procedure Gad-
get takes a gadget f and a function λ as input and outputs the result (I,T) such that f is I-NI and
T is the summary of the gadget f . If f is a simple gadget, then the procedure Gadget calls the
procedure SGadget at line 2 (cf. Algorithm 1) and returns the result immediately. Otherwise, it
calls the procedure CGadget at line 3 that takes a composite gadget f and λ as input and outputs
(I,T) such that the gadget f is I-NI and T is the summary of the gadget f .

Recall that λ is a function used for computing summaries of gadgets (cf. Section 4.2.2). For each
encoding �a, λ(�a) contains all the dominant encodings of �a, and moreover �a ∈ λ(�a) only if �a is
the return of a gadget call that can generate dominant variables. However, λ is unknown in ad-
vance, thus we will compute the function λ during analysis for each composite gadget. We also use
the mapping storedInfo to store the checking result, namely storedInfo(f , λ) records the result
of CGadget(f , λ), where λ initially contains only the dominant encodings of the formal param-
eters of the gadget f and thus can be seen as the calling context of the gadget f . We note that
the same gadget may be called multiple times with different calling contexts, thus λ is involved in
storedInfo.

The procedure CGadget first checks if storedInfo(f , λ) exists or not, and it returns
storedInfo(f , λ) if it exists (line 7). Otherwise, it reasons about the gadget f with the function λ.
First, the pre-condition I is set to ∅ (line 8) and λ1 is set to λ as a backup of calling context λ (line 9).
For each gadget call �y = д(�x1, �x2, · · · , �xm) at call-site �д , it computes the calling context λ′ based

on λ(�xi) (lines 15–17), namely for each formal parameter �bi , λ′(�bi) is {�bi } if ∃�x ∈ λ(�xi) ∩ λ(�x), and
otherwise ∅, where �x ∈ λ(�xi) indicates that the actual parameter �xi is dominated by the encoding
�x and �x ∈ λ(�x) indicates that �x is the return of a gadget call to a gadget that generates dominant
variables.

After constructing λ′, the result (I′,T ′) of the gadget д under λ′ is obtained by invoking
Gadget(д, λ′) (line 18). Then, by Proposition 4.10, if �x1, · · · , �xm are mutually independent and

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:26 P. Gao et al.

ALGORITHM 2: Checking composite gadget

1: procedure Gadget(f , λ)
2: if f is a simple gadget then (I,T) =SGadget(f)
3: else (I,T) =CGadget(f , λ)

4: return (I,T)

5: procedure CGadget(f , λ)
6: if storedInfo(f , λ) exists then

7: return storedInfo(f , λ)

8: I = ∅
9: λ1 = λ

10: Let �a1, �a2, · · · , �an be the formal parameters of f
11: Let �o1 be the output encoding of f
12: for each gadget call �y = д(�x1, �x2, · · · , �xm) at �д from the first to the last do

13: Let �b1, · · · , �bm be the formal parameters of д
14: Let �o2 be the output encoding of д
15: for i ∈ {1, · · · ,m} do

16: if ∃�x ∈ λ(�xi) ∩ λ(�x) then λ′(�bi) = {�bi }
17: else λ′(�bi) = ∅
18: (I′,T ′) = Gadget(д, λ′)
19: if �x1, · · · , �xm are distinct then

20: if Ψ(�x1, . . . , �xm) or �x1 ∈ λ(�x1), . . . , �xm ∈ λ(�xm) then

21: for i ∈ {1, . . . ,m} do

22: if �bi ∈ T ′ then λ(�y) = λ(�y) ∪ λ(�xi)

23: if �o2 ∈ T ′ then

24: λ(�y) = λ(�y) ∪ {�y}
25: for i ∈ {1, · · · ,m} do

26: �x ′i = (∃�x ∈ λ(�xi) ∩ λ(�x) ? ∅ : �xi)

27: I = I ∪ I′[�x ′1/�b1, · · · , �x ′m/�bm]@�д

28: T = λ(�o1)
29: if T \ {�a1, �a2, · · · , �an ,�o1} � ∅ then

30: T = (T ∩ {�a1, �a2, · · · , �an ,�o1}) ∪ {�o1}
31: storedInfo(f , λ1) = (I,T)
32: return (I,T)

(either Ψ(�x1, · · · , �xm) holds or �x1 ∈ λ(�x1), · · · , �xm ∈ λ(�xm)), for each formal parameter �bi ∈ T ′,
the set λ(�xi) is merged into λ(�y) (line 22). Next, by Proposition 4.8, if д can generate dominant
variables itself (i.e., �o2 ∈ T ′), �y is added into λ(�y) too (line 24). After that, the pre-condition I is
computed following Proposition 4.14 (line 27).

After computing I, it continues to compute the summary T of the gadget f that is initialized as

λ(�o1). To ensure that T ⊆ X
f
en ∪ {�o1}, it removes all internal encodings of f from the summary T

and uses �o1 to indicate that f can generate dominant variables itself (cf. Proposition 4.7). Finally,
the result (I,T) is stored in storedInfo and returned. Note that after computing I, λ has been
updated. Thus, we use its backup λ1 to store the result (line 31).

Theorem 5.4. Given a program P with the main gadget

main(a1, · · · ,am){enstmt+ gstmt+ return �b; },

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:27

let д be the gadget д(�a1, · · · , �am){gstmt+ return �b; } with the same gadget calls gstmt+ as main,

where �a1, · · · , �am are the encodings of a1, · · · ,am via calling an encoding gadget (e.g., Encoding).

Let λ be a function such that λ(�ai) = {�ai } for �ai ∈ {�a1, · · · , �am }. If (I,T) =Gadget(д, λ) and each

variable set I ∈ I is Xp -simulatable, then P is first-order probing secure.

Proof. Since (I,T) =Gadget(д, λ), we get that д is I-NI. The result immediately follows from
Proposition 3.2 and the fact that �a1, · · · , �am are the encodings of a1, · · · ,am via calling an encoding
gadget (e.g., Encoding). �

Example 5.5. Consider the composite gadget XORMULTI in the running example that is called
in the main gadget. Procedure CGadget in Algorithm 2 is invoked for the gadget XORMULTI

with λ(�a) = {�a} and λ(�b) = {�b}. During the for-loop at lines 12 through 27, the gadget call
�e = Refresh(�a) is first processed as follows:

— Since λ(�a) = {�a}, we have λ′(�a) = {�a} at lines 15 through 17.
— The pair ({{�a[1]}, {�a[2]}}, {�a,�c}) is returned at line 18 (cf. Example 5.3).
— Since λ(�a) = {�a} and �a ∈ T ′ = {�a,�c}, λ(�e) is set to λ(�e) ∪ λ(�a), that is {�a}, at line 22.
— Since �c ∈ T ′ = {�a,�c}, {�e} is added into λ(�e), leading to λ(�e) = {�a,�e} at line 24.
— Since λ(�a) = {�a}, �x ′i is set to ∅ at line 26.
— Finally, I is set to I ∪ {{�a[1]}, {�a[2]}}[∅/�a]@�д that is ∅ at line 27.

Later, the gadget calls �e = Refresh(�a), �c = XOR(�b,�e), and �d = UMA(�e,�c) are iteratively processed
similar to the gadget call �e = Refresh(�a). At the exit of the for-loop at lines 12 through 27, I is still

∅ and λ(�d) = {�d }. Finally, procedure CGadget returns the pair (∅, {d }).
This result is consistent with the one given in Example 4.15, namely XORMULTI is ∅-NI. �

We remark that pre-conditions of both simple and composite gadgets can always be success-
fully and automatically computed without inlining gadget calls and user interactions. However,
technically speaking, in the worst case, the pre-condition of a simple gadget д may contain all
the input parameters and internal variables. For instance, if the computation E (x) of each inter-
nal variable x uses some random variables but is not dominated by any random variables, then
I = {{a} | a ∈ Xд

a } at line 6 of Algorithm 1 and further the sets {x } for all x ∈ Xд will be added into
the set I at lines 9 through 11 of Algorithm 1. Hence, the set I′ obtained at line 18 of Algorithm 2
will be {{x } | x ∈ Xд

a ∪Xд }. If the worst case occurs for all of the simple gadgets, the pre-condition
I of a composite gadget f will contain all input parameters and internal variables of its inlined
version fin , which is the same as that the pre-condition of f is computed on the inlined version
fin . We should emphasize that the worst case never occurs in our experiments, because the com-
putations E (x) of internal variables typically either depend only on input parameters (in this case,

Var(E (x)) ⊆ X
f
a is added into the set I at line 6 of Algorithm 1) or are perfectly masked by XORing

random variables (in this case, � ∅ � x is valid at lines 9–11 of Algorithm 1 and {x } will not be
added into I).

6 EXPERIMENTS

We have implemented our approach in a tool named MaskCV. Given a masked program and its
security type annotation of input parameters, MaskCV first preprocesses the program by unfold-
ing bounded for-loops and transforming into an intermediate representation in SSA form, then
infers pre-conditions and verifies first-order probing security, all of which are done automatically
without any user interactions. In this section, we thoroughly evaluate MaskCV focusing on the
following research questions:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:28 P. Gao et al.

Table 2. Basic Information of Benchmarks

Name �Gadgets �Gadget Calls �Annotations for QMVerif
Sbox1 10 14 18
Sbox2 10 14 18
Sbox3 11 12 22
Sbox4 11 12 22
Sbox5 10 14 30
Sbox6 10 14 30
Sbox7 10 14 30
Sbox8 10 14 30
Sbox9 11 12 34
Sbox10 11 12 34
AES1 20 3,433 178
AES2 20 3,433 146
AES3 21 3,033 152
AES4 21 3,033 150
AES5 20 3,433 206
AES6 20 3,433 206
AES7 20 3,433 206
AES8 20 3,433 206
AES9 21 3,033 228
AES10 21 3,033 228

bitslicedSbox1 5 125 78
bitslicedSbox2 5 125 78

RQ1: How efficient is our approach compared to the state-of-the-art approaches?
RQ2: How effective are the dominated variables?

We mainly use the publicly available benchmarks from QMVerif [53]: 10 versions of masked
implementations of arithmetic AES Sbox and 10 corresponding masked implementations of full
AES. We also implement two versions of bitsliced AES Sbox. The bitsliced AES Sbox was originally
proposed in the work of Goudarzi and Rivain [57], which contains multiple gadget calls to the
Refresh gadget. Later Belaïd et al. [18] proved that the bitsliced AES Sbox is still secure if all
calls to the Refresh gadget are removed, leading to an efficient and tight bitsliced AES Sbox in
terms of gadget calls to the Refresh gadget. Moreover, we notice that the efficiency in terms of the
randomness of the tight bitsliced AES Sbox can be improved further by replacing the calls to the
SecMult gadget by more efficient secure gadgets (i.e., Para [11] and Comp [14]). Thus, we construct
two implementations of bitsliced AES Sbox bitslicedSbox1 and bitslicedSbox2 by replacing
the calls to SecMult by Comp and Para, respectively. We remark that the first-order security of all
of those benchmarks cannot be verified by any of the existing compositional verifiers, although
some of them support the verification of higher-order security, except for QMVerif. Details of the
benchmarks are shown in Table 2, including the number of gadgets, the number of gadget calls,
and the size of annotations used for QMVerif.

All experiments were conducted on a server with Ubuntu 16.04 and an Intel Xeon CPU E5-2690
v4@2.60 GHz and 256 GB of RAM. The reported verification time includes all computation times
for preprocessing, determining dominated variables, computing pre-conditions, and verifying first-
order probing security based on pre-conditions.

RQ1. We compare with the state-of-the-art compositional verifier QMVerif and the state-of-the-
art non-compositional ones LeakageVerif [77] and SILVER [69], where LeakageVerif uses sym-
bolic analysis and SILVER is based on BDD analysis. Note that SILVER only supports Boolean pro-
grams, thus we evaluate it only on Boolean programs (i.e., bitslicedSbox1 and bitslicedSbox2)
and mark N/A on arithmetic programs. All of the tools QMVerif, LeakageVerif, SILVER, and

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:29

Table 3. Results of Comparison with Existing

Name Result
QMVerif [53]

LeakageVerif [77] SILVER [69] MaskCV
Without Pre-Conditions With Pre-Conditions
Time(s) �checked Time(s) �checked Time(s) �checked Time(s) Time(s) �checked

Sbox1 � 0.01 46 0.01 19 0.04 51 N/A 0.01 22
Sbox2 � 0.01 50 0.01 19 0.07 43 N/A 0.01 23
Sbox3 � 0.01 70 0.01 60 0.08 65 N/A 0.01 68
Sbox4 � 0.01 68 0.01 60 0.09 69 N/A 0.01 67
Sbox5 � 0.01 110 0.01 42 0.15 115 N/A 0.01 45
Sbox6 � 0.01 122 0.01 42 0.10 103 N/A 0.01 48
Sbox7 � 0.01 118 0.01 50 0.17 167 N/A 0.01 48
Sbox8 � 0.01 130 0.01 50 0.19 173 N/A 0.01 51
Sbox9 � 0.01 178 0.01 150 0.16 162 N/A 0.01 174
Sbox10 � 0.01 172 0.01 150 0.16 162 N/A 0.01 171
AES1 � 315 11,142 0.10 2,182 559 10,706 N/A 0.02 29
AES2 � 197 11,942 0.10 2,183 561 10,706 N/A 0.02 30
AES3 � 559 15,942 0.10 2,393 1,836 14,706 N/A 0.02 75
AES4 � 560 15,542 0.10 2,392 2,144 14,706 N/A 0.02 74
AES5 � 2,670 24,724 0.40 4,214 T.O. N/A N/A 0.03 55
AES6 � 3,505 27,124 0.40 4,214 T.O. N/A N/A 0.03 58
AES7 � 2,933 26,324 0.50 4,430 T.O. N/A N/A 0.03 58
AES8 � 3,130 28,724 0.50 4,430 T.O. N/A N/A 0.03 61
AES9 � 2,929 38,324 0.20 3,786 O.O.M. N/A N/A 0.03 184
AES10 � 3,064 37,124 0.20 3,786 O.O.M. N/A N/A 0.04 181

bitslicedSbox1 � 0.02 961 0.02 451 9.30 873 O.O.M. 0.01 27
bitslicedSbox2 � 0.02 1,057 0.02 453 8.47 937 T.O. 0.01 30

Approaches Time(s) denotes the overall verification time in seconds (s), T.O. denotes time-out (6 hours), O.O.M. denotes
out of memory, and �checked denotes the number of checked variables.

MaskCV need loop unfolding and all bounded loops are automatically unfolded. QMVerif, SILVER,
and MaskCV require the SSA form and support automatically SSA transformation, whereas
LeakageVerif does not need the SSA form.

The results are shown in Table 3, in which T.O. stands for “time-out” (6 hours) and O.O.M. stands
for “out of memory.” Column 1 shows the benchmark name, column 2 shows the verification re-
sult, column 3 and column 4 (respectively, column 5 and column 6) show the verification time in
seconds (s) and number of variables checked by QMVerif without pre-conditions (respectively,
with all the pre-conditions), columns 7 and 8 show the verification time and the number of vari-
ables checked by LeakageVerif, and column 9 shows the verification time of SILVER. Columns
10 and 11 show the verification time and number of variables checked by MaskCV with domi-
nated variables (which are the variables checked at lines 9–11 in Algorithm 1 and variables of the
pre-condition I used for checking first-order probing security of the program). Recall that the ver-
ification time reported in Table 3 includes all computation times for preprocessing, determining
dominated variables, computing pre-conditions, and verifying first-order probing security based
on pre-conditions. Since MaskCV is able to solve each benchmark in no more than 0.04 seconds,
we did not report the individual computational time for each step.

We can observe that both MaskCV and QMVerif are able to prove all of those benchmarks.
However, MaskCV is significantly more efficient than QMVerif without pre-conditions on large
benchmarks that have a large number of gadget calls (e.g., AES1–AES10) but is comparable or
slightly better when all pre-conditions are provided to QMVerif. This indicates the effectiveness
of our pre-condition inference approach. By comparing the number of checked variables using
QMVerif with and without user-provided pre-conditions, the number of checked variables (thus
the verification time) is significantly reduced with user-provided pre-conditions. This is because a
gadget call needs not be inlined if the user-provided pre-condition is satisfied by the actual param-
eters of the gadget call (but has to be inlined if the user-provided pre-condition is not satisfied by
the actual parameters of the gadget call). Our tool MaskCV automatically infers pre-conditions of

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:30 P. Gao et al.

Table 4. Results of MaskCV with and without Leveraging Dominated Variables

Name �Gadgets �G-Gadgets �T-Gadgets �G&T-Gadgets
With Dom Without Dom

Time(s) |I| �checked Time(s) |I| �checked
Sbox1 10 5 7 3 0.01 0 22 0.01 28 66
Sbox2 10 5 7 3 0.01 0 23 0.01 28 67
Sbox3 11 6 6 2 0.01 0 68 0.01 20 96
Sbox4 11 6 6 2 0.01 0 67 0.01 20 95
Sbox5 10 5 7 3 0.01 0 45 0.01 54 135
Sbox6 10 5 7 3 0.01 0 48 0.01 54 138
Sbox7 10 5 7 3 0.01 0 48 0.01 54 138
Sbox8 10 5 7 3 0.01 0 51 0.01 54 141
Sbox9 11 6 6 2 0.01 0 174 0.01 36 228
Sbox10 11 6 6 2 0.01 0 171 0.01 36 225
AES1 20 8 13 5 0.02 0 29 60 7,836 12,673
AES2 20 8 13 5 0.02 0 30 48 7,836 12,674
AES3 21 9 12 4 0.02 0 75 51 6,236 9,519
AES4 21 9 12 4 0.02 0 74 55 6,236 9,518
AES5 20 8 13 5 0.03 0 55 262 14,154 23,821
AES6 20 8 13 5 0.03 0 58 262 14,154 23,824
AES7 20 8 13 5 0.03 0 58 266 14,154 23,824
AES8 20 8 13 5 0.03 0 61 284 14,154 23,827
AES9 21 9 12 4 0.03 0 184 211 10,554 16,750
AES10 21 9 12 4 0.04 0 181 236 10,554 16,747

bitslicedSbox1 5 3 2 1 0.01 0 27 0.38 537 1,101
bitslicedSbox2 5 3 2 1 0.01 0 30 0.37 537 1,104

�Gadgets denotes the number of the gadgets, �G-Gadgets denotes the number of the gadgets that can generate
dominant variables, �T-Gadgets denotes the number of the gadgets that can transfer dominant variables,
�G&T-Gadgets denotes the number of the gadgets that can both generate and transfer dominant variables, and |I |
denotes the size of the pre-condition of the program on which the first-order probing security is verified.

all gadgets and thus needs not check whether the inferred pre-conditions are satisfied by the ac-
tual parameters of the gadget calls, which further reduces the number of checked variables. Thus,
MaskCV is comparable or slightly better than QMVerif with all pre-conditions and significantly
more efficient than QMVerif without the pre-conditions on large benchmarks. We should em-
phasize that MaskCV is much easier to use since it is fully automatic, whereas QMVerif needs
user-provided pre-conditions to be efficient.

Compared with the state-of-the-art non-compositional verifiers LeakageVerif and SILVER,
MaskCV is more efficient, particularly on large benchmarks (e.g., AES1–AES10). The reason is
that LeakageVerif checks all observable variables after inlining gadget calls and the number of
observable variables increases quickly (exponentially in the worst case) after inlining gadget calls,
whereas MaskCV can directly verify composite gadgets without inlining them. SILVER fails to
verify both bitslicedSbox1 and bitslicedSbox2 because it fails to construct the BDD models
due to the large number of observable variables and the large size of computations.

Answer to RQ1: Our method is significantly more efficient than the state-of-the-art non-
compositional approaches and state-of-the-art compositional approach without user-defined
pre-conditions while achieving competitive efficiency compared with state-of-the-art compo-
sitional approach with user-defined pre-conditions.

RQ2. Table 4 presents the results of MaskCV with and without leveraging dominated variables.
Column 1 shows the benchmark name; columns 2, 3, 4, and 5 show the number of gadgets
(�Gadgets), the number of gadgets that can generate dominant variables (�G-Gadgets), the num-
ber of gadgets that can transfer dominant variables (�T-Gadgets), and the number of gadgets
that can both generate and transfer dominant variables (�G&T-Gadgets); and columns 6, 7, and 8
(respectively, columns 9, 10, and 11) show the verification time, the size of the automatically in-
ferred pre-condition I of the program on which first-order security is checked, and the number of

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:31

Fig. 7. A composite gadget defined in Sbox1.

variables checked by leveraging dominated variables (respectively, without leveraging dominated
variables).

We can observe that dominated variables can significantly reduce the size of the automatically
inferred pre-condition I of the program, which in turn significantly reduces the number of variables
that need to be checked when verifying first-order probing security of the program using the pre-
condition I. Indeed, all final pre-conditions I of the programs by leveraging dominated variables
become the empty set, because a large number of gadgets can generate dominant variables and/or
transfer dominant variables variables from input parameters to the output encoding. It means
that only the variables of simple gadgets are checked at lines through 11 in Algorithm 1 while
the verification of the first-order probing security of the program based on the pre-condition I
is avoided because of I = ∅. Thus, the verification time is significantly reduced by leveraging
dominated variables.

Case Study.We exemplify the advantage of dominated variables using the composite gadget
power254 shown in Figure 7, which is taken from the benchmark Sbox1. The simple gadgets
power2, power4, and power16 compute an encoding �y for a given encoding �x such that

⊕
�y =

(
⊕

�x)2,
⊕

�y = (
⊕

�x)4, and
⊕

�y = (
⊕

�x)16, respectively, and the simple gadget SecMult com-
putes an encoding �z for two given encodings �x and �y such that

⊕
�z = (

⊕
�x)
 (

⊕
�y).

The sizes of the inferred pre-conditions of the gadgets Refresh, power2, power4, power16, and
SecMult by Algorithm 1 are 2, 2, 2, 2, and 4, respectively. Without leveraging dominated variables,
the size of the inferred pre-condition I of the composite gadget power254 by Algorithm 2 is 26, as
all pre-conditions of the gadgets in the nine gadget calls are added into I.

Since the gadgets Refresh and SecMult are capable of generating dominant variables, and all
of the gadgets Refresh, power2, power4, and power16 can also transfer dominant variables, by
leveraging dominated variables, only the pre-conditions of the gadgets power2 and Refresh and
part of the pre-condition of the gadget SecMult for the first three gadget calls are added into
the pre-condition I of the gadget power254, whereas the pre-conditions of the gadgets power4,
Refresh, power16, and SecMult in the remaining six gadget calls are not added, because �x ′i is ∅ at
line 26 of Algorithm 2. Thus, the size of the inferred pre-condition I of power254 by Algorithm 2
is only 6.

Furthermore, when the gadget power254 is invoked with an actual parameter that is an domi-
nated encoding, the calling context λ of the gadget power254 will be λ(�x) = {�x }. Using this addi-
tional information, the pre-conditions of the gadgets power2, Refresh, and SecMult for the first
three gadget calls are not added into the pre-condition I of power254 either. Thus, the pre-condition
I of the gadget power254 inferred by Algorithm 2 will be ∅.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:32 P. Gao et al.

Answer to RQ2: Dominated variables effectively reduce the size of pre-conditions, hence the
verification time.

Threats to Validity. Our work focuses on cryptographic programs which, unlike general-purpose
software, are structurally simple. The design of the specific program syntax tailored to the masked
implementations of cryptographic algorithms has been thoroughly discussed in Section 2.1. In par-
ticular, we do not consider conditionals (e.g., if-then-else) which often induce timing side-channel
leaks [71, 96], particularly under speculative execution [32, 70]. To avoid such leaks, programs
often follow the constant-time principle to avoid conditionals. Therefore, it is not a real limitation
and actually has been widely adopted in the literature [8, 9, 12, 17, 18, 24, 26, 30, 31, 38, 47, 69, 98].
For convenience, our tool supports bounded for-loops which are automatically and fully unfolded
before verification, so we only present the core language without loops.

We did not compare with the other state-of-the-art compositional approaches (e.g., [9, 10, 18,
31]), because all existing compositional approaches (except for QMVerif) cannot verify the first-
order security of the publicly available benchmarks considered in this work. We did not con-
sider other benchmarks that can be handled by existing compositional approaches, as the main
purpose of the current work is to handle programs that cannot be proved by the existing com-
positional approaches. Essentially, we gain generality of implementations but may sacrifice ver-
ification performance in some cases. For instance, the implementations of cryptographic algo-
rithms only use Boolean operations, and moreover, each encoding is re-masked by using new
random variables (e.g., invoking a refresh gadget) before it is used in the second place. Such
Boolean programs satisfy these implicitly imposed pre-conditions in the stronger security no-
tions [9, 10, 12, 16–19, 25, 26, 69], and thus can be quickly proved using the existing compositional
approaches (e.g., maskVerif [10]), at the cost of the efficiency of the masked implementations.

A limitation of our work is that we only deal with first-order secure programs which may be
still vulnerable against higher-order power side-channel attacks. However, we note that (1) higher-
order attacks are much more difficult to launch successfully, and (2) higher-order secure programs
incur excessive overhead. As a result, first-order security is more suitable especially when the
efficiency is the key. Our work essentially targets at these types of applications run in, for example,
resource-limited devices [20].

7 RELATED WORK

Along with the design of efficient masked implementations, various verification approaches have
been proposed. Non-compositional approaches must inline gadget calls which would increase the
size of the program and thus the verification cost. Some representative works are symbolic analy-
sis [21, 38, 76, 77, 81, 91, 92], the SAT/SMT-based approaches SAT/SMT-based analysis [23, 47–50],
BDD analysis [69], and hybrid approaches combine the symbolic analysis and SAT/SMT-based
approach together [52, 54, 55, 98]. Symbolic analysis based approaches are more efficient than
SAT/SMT-based approaches but only provide soundness, whereas SAT/SMT-based approaches pro-
vide both soundness and completeness in theory but limit in scalability. Hybrid approaches are
aimed to bring the best of both worlds, where an SAT/SMT-based approach is applied only when
the symbolic analysis fails.

Compositional approaches directly check composite gadgets, dating back to the work of Barthe
et al. [9] in which stronger security notions and a sound proof system are proposed. Basically,
when a return encoding is used as actual parameters multiple times, their approach directly sums
up all possible numbers of observable variables, leading to an inaccurate conclusion. We detail
in Appendix 8 why their proof system fails to prove the running example in Figure 5. Along this
direction, various approaches have been proposed to check simple gadgets [10, 12, 26, 38, 69] with

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

Compositional Verification of First-Order Masking Countermeasures 79:33

respect to the security notions of Barthe et al. [9]. SILVER [69] supports probing security but fails
to prove first-order probing security in our experiments. Belaïd et al. [17–19] presented alternative
composition approaches of Barthe et al. [9] via matrix analysis; however, it assumes that all gadgets
are ISW gadgets [12] but some efficient gadgets that are non-ISW, such as the first-order masked
AND gadget [20]. Cassiers et al. [30, 31] proposed an alternative stronger security notion PINI
such that gadgets composed by PINI gadgets are still PINI. Even though all of these compositional
approaches support higher-order security, only bitwise logical operations are focused, except for
that of Coron [38], and the pre-conditions in those security notions are fixed, which cannot be
fulfilled by some efficient gadgets, where that of Coron [38] are semi-automatic. Our approach is
wider (e.g., arithmetic operations and non-ISW gadgets) for the first-order security of composite
gadgets. The approach proposed by Gao et al. [53] is applicable to general first-order masked im-
plementations, but it requires user-defined pre-conditions to be efficient. Our work bridges the gap
that there lacks an efficient compositional approach that is applicable to general gadgets without
user-defined pre-conditions.

Mitigating techniques have been studied to eliminate power side-channel leaks [2, 9, 13, 17, 25,
46, 92]; however, they either do not use formal verification to provide guarantees [2, 13] or rely
on formal verification [9, 17, 25, 46, 92]. We focus on verification, but it could also be extended to
eliminate power side-channel leaks, similar to other works [9, 17].

We note that there are other types of side-channel attacks such as timing side-channel attacks
which have been widely studied, including detection [7, 29, 79, 82, 83], verification [4, 6, 22, 33,
42, 44, 45, 61], and mitigation [75, 95, 96]. The more recent work focuses on timing side-channel
leaks introduced by micro-architectural features [34, 43, 59, 60, 70, 73] and (JIT) compilation [27,
28, 42, 43, 85], and network-based side channel leaks [65, 66, 88] which contain a large number
of observable aspects (e.g., the time, size, and direction of each packet). As different types of side-
channel attacks have their own characteristics, they are orthogonal to our work. However, there
are other power leakage models and security notions [10, 16, 23, 51, 78, 92] which are outside of
the scope of this work. Finally, we remark that this work considers the first-order probing security
of programs written in our domain-specific language while secure programs may become insecure
after compilation [92], the same as in the timing side-channel security setting.

8 CONCLUSION

We proposed a novel approach and algorithms to infer pre-conditions for compositional verifica-
tion of generic and efficient masked implementations. We implemented our approach in a tool and
conducted extensive experiments on publicly available benchmarks. It significantly outperforms
the state of the art on masked implementations of full AES when no pre-conditions are provided
by users.

APPENDIX

A.1 The Type System of Barthe et al. [9]

We explain why the type system of Barthe et al. [9] fails on XORMULTI.

Fig. 8. Input-output relation of XORMULTI.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:34 P. Gao et al.

Figure 8 shows the input-output relation of XORMULTI. It is easy to conclude that Refresh is
1-SNI, XOR is 1-NI, and UMA is 1-SNI. Let O denote the set of observed variables from the output
of XORMULTI. Let Ii denote the set of observed internal variables from the i-th gadget call. Let S j

i

denote the number of input shares needed to simulate further internal nodes. To prove whether
XORMULTI is 1-NI, the global constraint is |I1 | + |I2 | + |I3 | + |O | ≤ 1. Let us get started from right to
left in Figure 8:

(1) The side condition |O | + |I3 | ≤ 1 is satisfied. As UMA is 1-SNI, we can obtain |S1
3 | ≤ |I3 | and

|S2
3 | ≤ |I3 |.

(2) The side condition |S1
3 | + |I2 | ≤ 1 is satisfied. As XOR is 1-NI, we can obtain |S1

2 | ≤ |I2 | + |S1
3 |

and |S2
2 | ≤ |I2 | + |S1

3 |.
(3) The side condition |I1 | + |S2

3 | + |S2
2 | ≤ 1 cannot be proved through the constraints, as we can

only conclude that |I1 | + |S2
3 | + |S2

2 | ≤ |I1 | + 2|I3 | + |I2 |. The proof terminates here.

From the preceding, it is easy to conclude that Barthe’s work can prove neither 1-NI nor 1-SNI of
XORMULTI.

REFERENCES

[1] Figshare. 2022. MASKCV. Retrieved December 14, 2023 from https://figshare.com/s/1fc592780ab44ccfa39e
[2] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2012. A code morphing methodology to automate power

analysis countermeasures. In Proceedings of the 49th Annual Design Automation Conference. 77–82.
[3] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich (Eds.).

2016. Deductive Software Verification—The KeY Book: From Theory to Practice. Vol. 10001. Springer.
[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016. Verifying

constant-time implementations. In Proceedings of the 25th USENIX Security Symposium. 53–70.
[5] Anoud Alshnakat, Dilian Gurov, Christian Lidström, and Philipp Rümmer. 2020. Constraint-based contract inference

for deductive verification. In Deductive Software Verification: Future Perspectives—Reflections on the Occasion of 20

Years of KeY. Springer, 149–176.
[6] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and Shiyi Wei. 2017. Decomposi-

tion instead of self-composition for proving the absence of timing channels. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation. 362–375.
[7] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik Bultan. 2016. String analysis for side

channels with segmented oracles. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering. 193–204.
[8] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, François-Xavier Standaert,

and Pierre-Yves Strub. 2020. Improved parallel mask refreshing algorithms: Generic solutions with parametrized non-
interference and automated optimizations. Journal of Cryptographic Engineering 10, 1 (2020), 17–26.

[9] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and
Rébecca Zucchini. 2016. Strong non-interference and type-directed higher-order masking. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security. 116–129.
[10] Gilles Barthe, Sonia Belaïd, Pierre-Alain Fouque, and Benjamin Grégoire. 2019. maskVerif: Automated verification of

higher-order masking in presence of physical defaults. In Proceedings of the 24th European Symposium on Research

in Computer Security. 300–318.
[11] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Standaert, and Pierre-Yves

Strub. 2017. Parallel implementations of masking schemes and the bounded moment leakage model. In Proceedings

of the 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques. 535–566.
[12] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, and Lars Porth. 2021. Masking

in fine-grained leakage models: Construction, implementation and verification. IACR Transactions on Cryptographic

Hardware and Embedded Systems 2021, 2 (2021), 189–228.
[13] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Standaert, and Paolo Ienne. 2011. A first step

towards automatic application of power analysis countermeasures. In Proceedings of the 48th Design Automation

Conference. 230–235.
[14] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.

2016. Randomness complexity of private circuits for multiplication. In Proceedings of the 35th Annual International

Conference on the Theory and Applications of Cryptographic Techniques. 616–648.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

https://figshare.com/s/1fc592780ab44ccfa39e

Compositional Verification of First-Order Masking Countermeasures 79:35

[15] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.
2017. Private multiplication over finite fields. In Proceedings of the 37th Annual International Cryptology Conference.
397–426.

[16] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul Rahman Taleb. 2020. Random
probing security: Verification, composition, expansion and new constructions. In Proceedings of the 40th Annual

International Cryptology Conference. 339–368.
[17] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and Raphaël Wintersdorff. 2020. Tornado:

Automatic generation of probing-secure masked bitsliced implementations. In Proceedings of the 39th Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques. 311–341.
[18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. 2018. Tight private circuits: Achieving probing security with

the least refreshing. In Proceedings of the 24th International Conference on the Theory and Application of Cryptology

and Information Security. 343–372.
[19] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. 2022. IronMask: Versatile verification of

masking security. In Proceedings of the 43rd IEEE Symposium on Security and Privacy. 142–160.
[20] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. 2017. Optimal first-order Boolean masking for

embedded IoT devices. In Proceedings of the International Conference on Smart Card Research and Advanced Applica-

tions. 22–41.
[21] Elia Bisi, Filippo Melzani, and Vittorio Zaccaria. 2017. Symbolic analysis of higher-order side channel countermea-

sures. IEEE Transactions on Computers 66, 6 (2017), 1099–1105.
[22] Sandrine Blazy, David Pichardie, and Alix Trieu. 2019. Verifying constant-time implementations by abstract inter-

pretation. Journal of Computer Security 27, 1 (2019), 137–163.
[23] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard, and Johannes Winter. 2018. For-

mal verification of masked hardware implementations in the presence of glitches. In Proceedings of the 37th Annual

International Conference on the Theory and Applications of Cryptographic Techniques. 321–353.
[24] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard, and Johannes Winter. 2018. For-

mal verification of masked hardware implementations in the presence of glitches. In Proceedings of the 37th Annual

International Conference on the Theory and Applications of Cryptographic Techniques. 321–353.
[25] Arthur Blot, Masaki Yamamoto, and Tachio Terauchi. 2017. Compositional synthesis of leakage resilient programs.

In Proceedings of the 6th International Conference on Principles of Security and Trust. 277–297.
[26] Nicolas Bordes and Pierre Karpman. 2021. Fast verification of masking schemes in characteristic two. In Proceedings

of the Annual International Conference on the Theory and Applications of Cryptographic Techniques. 283–312.
[27] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. 2020. JIT leaks: Inducing timing side channels through just-in-

time compilation. In Proceedings of the IEEE Symposium on Security and Privacy.
[28] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM fuzzing for JIT-induced side-channel detection. In

Proceedings of the 42nd International Conference on Software Engineering (ICSE’20). 1011–1023.
[29] Tegan Brennan, Seemanta Saha, Tevfik Bultan, and Corina S. Pasareanu. 2018. Symbolic path cost analysis for side-

channel detection. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis.
27–37.

[30] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Standaert. 2021. Hardware private circuits:
From trivial composition to full verification. IEEE Transactions on Computers 70, 10 (2021), 1677–1690.

[31] Gaëtan Cassiers and François-Xavier Standaert. 2020. Trivially and efficiently composing masked gadgets with probe
isolating non-interference. IEEE Transactions on Information Forensics and Security 15 (2020), 2542–2555.

[32] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M. Tullsen, Deian Stefan, Tamara Rezk, and Gilles
Barthe. 2020. Constant-time foundations for the new spectre era. In Proceedings of the 41st ACM SIGPLAN Interna-

tional Conference on Programming Language Design and Implementation (PLDI’20). 913–926.
[33] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise detection of side-channel vulnerabilities using quantitative Cartesian

Hoare logic. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 875–890.
[34] Yueqiang Cheng, Zhi Zhang, Yansong Gao, Zhaofeng Chen, Shengjian Guo, Qifei Zhang, Rui Mei, Surya Nepal, and

Yang Xiang. 2022. Meltdown-type attacks are still feasible in the wall of kernel page-table isolation. Computers &

Security 113 (2022), 102556.
[35] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. 2000. Differential power analysis in the presence of

hardware countermeasures. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded

Systems. 252–263.
[36] Jean-Sébastien Coron. 1999. Resistance against differential power analysis for elliptic curve cryptosystems. In Pro-

ceedings of the 1st International Workshop on Cryptographic Hardware and Embedded Systems. 292–302.
[37] Jean-Sébastien Coron. 2017. High-order conversion from Boolean to arithmetic masking. In Proceedings of the 19th

International Conference on Cryptographic Hardware and Embedded Systems. 93–114.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:36 P. Gao et al.

[38] Jean-Sébastien Coron. 2018. Formal verification of side-channel countermeasures via elementary circuit transforma-
tions. In Proceedings of the 16th International Conference on Applied Cryptography and Network Security. 65–82.

[39] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. 2014. Secure conversion between Boolean
and arithmetic masking of any order. In Proceedings of the 16th International Workshop on Cryptographic Hardware

and Embedded Systems. 188–205.
[40] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. 2007. Side channel cryptanalysis of a higher order

masking scheme. In Proceedings of the 9th International Workshop on Cryptographic Hardware and Embedded Systems.
28–44.

[41] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. 2013. Higher-order side channel se-
curity and mask refreshing. In Proceedings of the 20th International Workshop on Fast Software Encryption. 410–424.

[42] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2020. Binsec/Rel: Efficient relational symbolic execution for
constant-time at binary-level. In Proceedings of the 2020 IEEE Symposium on Security and Privacy.

[43] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the haunter—Efficient relational symbolic
execution for spectre with haunted RelSE. In Proceedings of the 28th Annual Network and Distributed System Security

Symposium.
[44] Goran Doychev and Boris Köpf. 2017. Rigorous analysis of software countermeasures against cache attacks. In Pro-

ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
[45] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2015. CacheAudit: A tool for the static analysis

of cache side channels. ACM Transactions on Information and System Security 18, 1 (2015), Article 4, 32 pages.
[46] Hassan Eldib and Chao Wang. 2014. Synthesis of masking countermeasures against side channel attacks. In Proceed-

ings of the 26th International Conference on Computer Aided Verification. 114–130.
[47] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. Formal verification of software countermeasures against

side-channel attacks. ACM Transactions on Software Engineering and Methodology 24, 2 (2014), 11.
[48] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. SMT-based verification of software countermeasures

against side-channel attacks. In Proceedings of the 20th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems. 62–77.
[49] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. 2014. QMS: Evaluating the side-channel resistance

of masked software from source code. In Proceedings of the ACM/IEEE Design Automation Conference. 1–6.
[50] Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schaumont. 2015. Quantitative masking strength: Quanti-

fying the power side-channel resistance of software code. IEEE Transactions on CAD of Integrated Circuits and Systems

34, 10 (2015), 1558–1568.
[51] Hassan Eldib, Meng Wu, and Chao Wang. 2016. Synthesis of fault-attack countermeasures for cryptographic circuits.

In Proceedings of the 28th International Conference Computer Aided Verification. 343–363.
[52] Pengfei Gao, Hongyi Xie, Fu Song, and Taolue Chen. 2021. A hybrid approach to formal verification of higher-order

masked arithmetic programs. ACM Transactions on Software Engineering and Methodology 30, 3 (2021), Article 26,
42 pages.

[53] Pengfei Gao, Hongyi Xie, Pu Sun, Jun Zhang, Fu Song, and Taolue Chen. 2022. Formal verification of mask-
ing countermeasures for arithmetic programs. IEEE Transactions on Software Engineering 48, 3 (2022), 973–1000.
https://doi.org/10.1109/TSE.2020.3008852

[54] Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. 2019. Quantitative verification of masked arithmetic
programs against side-channel attacks. In Proceedings of the 25th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems. 155–173.
[55] Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. 2019. Verifying and quantifying side-channel resistance of masked

software implementations. ACM Transactions on Software Engineering and Methodology 28, 3 (2019), Article 16, 32
pages. https://doi.org/10.1145/3330392

[56] Louis Goubin and Jacques Patarin. 1999. DES and differential power analysis (the “Duplication” method). In Proceed-

ings of the 1st International Workshop on Cryptographic Hardware and Embedded Systems. 158–172.
[57] Dahmun Goudarzi and Matthieu Rivain. 2017. How fast can higher-order masking be in software? In Proceedings of

the 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques. 567–597.
[58] Hannes Groß and Stefan Mangard. 2018. A unified masking approach. Journal of Cryptographic Engineering 8, 2

(2018), 109–124.
[59] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu, and Zhiqiang Zuo. 2020. SpecuSym:

Speculative symbolic execution for cache timing leak detection. In Proceedings of the 42nd International Conference

on Software Engineering (ICSE’20). 1235–1247.
[60] Shengjian Guo, Yueqi Chen, Jiyong Yu, Meng Wu, Zhiqiang Zuo, Peng Li, Yueqiang Cheng, and Huibo Wang. 2020.

Exposing cache timing side-channel leaks through out-of-order symbolic execution. Proceedings of the ACM on Pro-

gramming Languages 4, OOPSLA (2020), Article 147, 32 pages.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

https://doi.org/10.1109/TSE.2020.3008852
https://doi.org/10.1145/3330392

Compositional Verification of First-Order Masking Countermeasures 79:37

[61] Shengjian Guo, Meng Wu, and Chao Wang. 2018. Adversarial symbolic execution for detecting concurrency-related
cache timing leaks. In Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 377–388.
[62] Reiner Hähnle, Ina Schaefer, and Richard Bubel. 2013. Reuse in software verification by abstract method calls. In

Proceedings of the 24th International Conference on Automated Deduction. 300–314.
[63] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private circuits: Securing hardware against probing attacks. In

Proceedings of the 23rd Annual International Cryptology Conference. 463–481.
[64] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. 2002. Address-bit differential power analysis of cryptographic

schemes OK-ECDH and OK-ECDSA. In Proceedings of the 4th International Workshop on Cryptographic Hardware and

Embedded Systems: Revised Papers. 129–143.
[65] Ismet Burak Kadron and Tevfik Bultan. 2022. TSA: A tool to detect and quantify network side-channels. In Proceedings

of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE’22). 1760–1764.
[66] Ismet Burak Kadron, Nicolás Rosner, and Tevfik Bultan. 2020. Feedback-driven side-channel analysis for networked

applications. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA’20). 260–271.
[67] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and Johannes Buchmann. 2018. Differential

power analysis of XMSS and SPHINCS. In Proceedings of the 9th International Workshop on Constructive Side-Channel

Analysis and Secure Design. 168–188.
[68] Pierre Karpman and Daniel S. Roche. 2018. New instantiations of the CRYPTO 2017 masking schemes. In Proceedings

of the International Conference on the Theory and Application of Cryptology and Information Security. 285–314.
[69] David Knichel, Pascal Sasdrich, and Amir Moradi. 2020. SILVER—Statistical independence and leakage verification. In

Proceedings of the 26th International Conference on the Theory and Application of Cryptology and Information Security.
787–816.

[70] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative
execution. In Proceedings of the IEEE Symposium on Security and Privacy.

[71] Paul C. Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Pro-

ceedings of the 16th Annual International Cryptology Conference. 104–113.
[72] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In Proceedings of the 19th Annual

International Cryptology Conference. 388–397.
[73] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Man-

gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading kernel memory from
user space. In Proceedings of the 27th USENIX Security Symposium.

[74] Chao Luo, Yunsi Fei, and David R. Kaeli. 2018. Effective simple-power analysis attacks of elliptic curve cryptography
on embedded systems. In Proceedings of the International Conference on Computer-Aided Design. 115.

[75] Heiko Mantel and Artem Starostin. 2015. Transforming out timing leaks, more or less. In Proceedings of the 20th

European Symposium on Research in Computer Security.
[76] Quentin L. Meunier, Inès Ben El Ouahma, and Karine Heydemann. 2020. SELA: A symbolic expression leakage ana-

lyzer. In Proceedings of the International Workshop on Security Proofs for Embedded Systems.
[77] Quentin L. Meunier, Etienne Pons, and Karine Heydemann. 2021. LeakageVerif: Scalable and Efficient Leakage Verifi-

cation in Symbolic Expressions. Report 2021/1468. Cryptology ePrint Archive.
[78] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert. 2019. Glitch-resistant masking re-

visited or why proofs in the robust probing model are needed. IACR Transactions on Cryptographic Hardware and

Embedded Systems 2019, 2 (2019), 256–292.
[79] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2019. DifFuzz: Differential fuzzing for side-channel analysis.

In Proceedings of the 41st International Conference on Software Engineering.
[80] Siddika Berna Örs, Elisabeth Oswald, and Bart Preneel. 2003. Power-analysis attacks on an FPGA—First experimental

results. In Proceedings of the 5th International Workshop on Cryptographic Hardware and Embedded Systems. 35–50.
[81] Inès Ben El Ouahma, Quentin Meunier, Karine Heydemann, and Emmanuelle Encrenaz. 2017. Symbolic approach

for side-channel resistance analysis of masked assembly codes. In Proceedings of the 6th International Workshop on

Security Proofs for Embedded Systems.
[82] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run side-channel analysis using symbolic

execution and Max-SMT. In Proceedings of the IEEE 29th Computer Security Foundations Symposium.
[83] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tevfik Bultan. 2017. Synthesis of adaptive

side-channel attacks. In Proceedings of the 30th IEEE Computer Security Foundations Symposium. 328–342.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

79:38 P. Gao et al.

[84] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. 2009. Statistical analysis of second order differential power
analysis. IEEE Transactions on Computers 58, 6 (2009), 799–811.

[85] Qi Qin, JulianAndres JiYang, Fu Song, Taolue Chen, and Xinyu Xing. 2022. DeJITLeak: Eliminating JIT-induced tim-
ing side-channel leaks. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE’22), Abhik Roychoudhury, Cristian Cadar, and Miryung Kim
(Eds.). ACM, New York, NY, 872–884. https://doi.org/10.1145/3540250.3549150

[86] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. 2020. Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR Transactions on Cryptographic Hardware and Embedded Systems

2020, 3 (2020), 307–335.
[87] Matthieu Rivain and Emmanuel Prouff. 2010. Provably secure higher-order masking of AES. In Proceedings of the

12th International Workshop on Cryptographic Hardware and Embedded Systems. 413–427.
[88] Nicolás Rosner, Ismet Burak Kadron, Lucas Bang, and Tevfik Bultan. 2019. Profit: Detecting and quantifying side

channels in networked applications. In Proceedings of the 26th Annual Network and Distributed System Security Sym-

posium (NDSS’19).
[89] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh. 2020. A power side-channel attack on

the CCA2-Secure HQC KEM. In Proceedings of the 19th International Conference on Smart Card Research and Advanced

Applications. 119–134.
[90] Kai Schramm and Christof Paar. 2006. Higher order masking of the AES. In Proceedings of the RSA Conference Cryp-

tographers’ Track. 208–225.
[91] Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. 2021. Data-driven synthesis of provably

sound side channel analyses. In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering.
810–822.

[92] Jingbo Wang, Chungha Sung, and Chao Wang. 2019. Mitigating power side channels during compilation. In Proceed-

ings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 590–601.
[93] Weijia Wang, Chun Guo, François-Xavier Standaert, Yu Yu, and Gaëtan Cassiers. 2020. Packed multiplication: How

to amortize the cost of side-channel masking? In Proceedings of the International Conference on the Theory and Appli-

cation of Cryptology and Information Security. 851–880.
[94] Weijia Wang, Yu Yu, François-Xavier Standaert, Junrong Liu, Zheng Guo, and Dawu Gu. 2018. Ridge-based DPA: Im-

provement of differential power analysis for nanoscale chips. IEEE Transactions on Information Forensics and Security

13, 5 (2018), 1301–1316.
[95] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. 2019. CT-wasm: Type-driven secure

cryptography for the web ecosystem. Proceedings of the ACM on Programming Languages 3, POPL (2019), Article 77,
29 pages.

[96] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminating timing side-channel leaks using
program repair. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis.
15–26.

[97] Jiaming Xu, Ao Fan, Minyi Lu, and Weiwei Shan. 2018. Differential power analysis of 8-bit datapath AES for IoT
applications. In Proceedings of the17th IEEE International Conference on Trust, Security, and Privacy in Computing and

Communications and the 12th IEEE International Conference on Big Data Science and Engineering. 1470–1473.
[98] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-based verification of software coun-

termeasures against side-channel attacks. In Proceedings of the 30th International Conference on Computer Aided

Verification. 157–177.

Received 14 November 2022; revised 10 October 2023; accepted 22 November 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 79. Pub. date: March 2024.

https://doi.org/10.1145/3540250.3549150

