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Power side-channel attacks, capable of deducing secret data using statistical analysis, have become a serious

threat. Random masking is a widely used countermeasure for removing the statistical dependence between

secret data and side-channel information. Although there are techniques for verifying whether a piece of

software code is perfectly masked, they are limited in accuracy and scalability. To bridge this gap, we propose

a refinement-based method for verifying masking countermeasures. Our method is more accurate than prior

type-inference-based approaches and more scalable than prior model-counting-based approaches using SAT

or SMT solvers. Indeed, our method can be viewed as a gradual refinement of a set of type-inference rules

for reasoning about distribution types. These rules are kept abstract initially to allow fast deduction and then

made concrete when the abstract version is not able to resolve the verification problem. We also propose

algorithms for quantifying the amount of side-channel information leakage from a software implementation

using the notion of quantitative masking strength. We have implemented our method in a software tool and

evaluated it on cryptographic benchmarks including AES and MAC-Keccak. The experimental results show

that our method significantly outperforms state-of-the-art techniques in terms of accuracy and scalability.
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1 INTRODUCTION

Cryptographic algorithms are widely used in embedded computing devices, including SmartCards,
to form the backbone of their security mechanisms. In general, security is established by assum-
ing that the adversary may have access to the input, output, and internal structure of the imple-
mentation but not the secret data (e.g., cryptographic keys and random numbers). Unfortunately,
in practice, attackers may recover the secret data by analyzing physical information leaked through
side channels. These so-called side-channel attacks exploit the statistical dependence between se-
cret data and non-functional properties of a computing device such as the execution time [54],
power consumption [55], and electromagnetic radiation [73]. Among them, differential power anal-

ysis is a popular and effective class of attacks [44, 60]. For example, the power consumption of a
device executing the instruction c = p ∧ k , where ∧ denotes the logical AND, depends on the value
of the secret k , which can be reliably deduced using differential power analysis.

Numerous countermeasures have been developed to thwart side-channel attacks; for power
analysis-based attacks, in particular, masking remains the most widely used technique. Masking
is a randomization technique aimed to remove the statistical dependence between secret data and
the power consumption. In principle, given a masking order d , masking makes use of a secret-
sharing scheme to split the secret data into d + 1 shares such that any subset of at most d shares
is statistically independent on the secret data. Here, d is a security parameter: order-d masking
is secure against order-d attacks, where the adversary may have access to at most d shares,
but the knowledge of all (d + 1) shares still allows for recovery of the secret data. For example,
the masked value of a secret bit, k , can be computed using an exclusive-or (⊕) operation and
a random bit, r , in the form of k ⊕ r ; correspondingly, the bit can be recovered by demasking:
(k ⊕ r ) ⊕ r = k ⊕ (r ⊕ r ) = k .

Many masked implementations have been proposed over the years, e.g., for AES or its non-linear
S-boxes [22, 53, 75, 76]. In general, masking for linear functions, where linear is defined in terms of
the exclusive-or (⊕) operation, is straightforward [40]. However, masking for non-linear functions,
which are actually used in almost all cryptographic algorithms, is difficult, because the process is
both labor intensive and error prone. Indeed, there have been published implementations [75, 76]
later shown to be incorrect [34, 35]. Therefore, formally verifying and quantifying the side-channel
resistance of these masking countermeasures are important.

Previously, there are two types of formal verification methods for masking countermea-
sures [82]: One is type-inference based [15, 62] and the other is model-counting based [39, 40].
Type-inference-based methods [15, 62] are fast and sound, meaning that they can quickly prove
that the computation is leakage free, e.g., when the result is syntactically independent of the secret
data or has been masked by fresh random variables—random variables that are not used elsewhere
in cryptographic software. However, syntactic type inference is not complete in that it may report
false positives. In contrast, model-counting-based methods [39, 40] are both sound and complete:
They can decide, with certainty, whether the computation is statistically independent of the secret
data [22]. However, due to the inherent complexity of the model-counting approach, they can be
slow in practice.

The aforementioned gap, in terms of accuracy and scalability, has not yet been bridged by more
recent approaches [8, 9, 20, 33, 65]. For example, Barthe et al. [8, 9] proposed some inference
rules to prove masking countermeasures based on the observation that certain operators (e.g.,
XOR) are invertible: Purely algebraic laws can be used to normalize expressions of computation
results to apply the rules of invertible functions. However, since this normalization is costly, it is
applied to each expression only once. Coron [33] proposed two alternative approaches to improve
efficiency, using elementary circuit transformations instead of expression normalization. Ouahma
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Fig. 1. Overview of our refinement-based approach QMSInfer, where “ICR” denotes the intermediate com-
putation result.

et al. [65] introduced a similar, linear-time algorithm based on finer-grained syntactic inference
rules. Another similar idea was explored by Bisi et al. [20] for analyzing higher-order masking; like
the methods in References [8, 33, 65], however, the method is not complete and does not consider
non-linear operators that are common in cryptographic software.

Furthermore, all the existing approaches mentioned above focus on verifying whether imple-
mentations are perfectly masked. Although perfect masking is ideal, it is not always achievable in
practice, e.g., when only a limited number of random variables are allowed for efficiency consider-
ations [63]. In such cases, there will be negative impact on side-channel resistance, and, naturally,
one wants to quantify how severe the impact is. For instance, one possible measure is the resource
the attacker needs to invest to infer the secret data from the side channel. For this purpose, we
adopt the notion of Quantitative Masking Strength (QMS), with which a correlation of the num-
ber of power measurement traces needed for attackers to deduce secret data has been established
empirically [41, 42].

Our contribution. We propose a refinement-based approach, named QMSInfer, to bridge the
gap between prior techniques that are either fast but inaccurate or accurate but slow. Figure 1
depicts the overall flow, where the input of QMSInfer consists of the masked program and its input
variables marked as public, private, or random, and the output of QMSInfer is a security report.
Inside QMSInfer, there are two main components: perfect masking verifier and QMS calculator. To
verify perfect masking, we first transform the program to an intermediate representation: the data
dependency graph (DDG). Then, we traverse the DDG in a topological order to infer a distribution

type for each intermediate computation result to prove that it is leakage free.
If perfect masking cannot be proved this way using the distribution type, then we invoke an SMT

solver-based refinement procedure, which leverages either satisfiability-checking (SAT) or model-
counting (SAT#) to prove the leakage-free property. The model-counting-based method is complete
in that it can decide, with certainty, whether the result is perfectly masked. Regardless of whether
it is perfectly masked, the result is fed back to improve the type-inference system. Finally, based
on the refined type-inference result, we continue to analyze the side-channel resistance property
of other intermediate computation results. If any of the intermediate computation results is not
perfectly masked, then we compute its QMS value [41, 42] via the SMT solver-based approach to
quantify the amount of information leakage through the power side channel.

Thus, QMSInfer can be viewed as a synergistic integration of a rule-based approach for infer-
ring distribution types and an SMT-based approach for refining these types. Our type-inference
rules (Section 3) are inspired by Barthe et al. [8] and Ouahma et al. [65], who also infer distribution
types, but there is a crucial difference: Their inference rules are syntactic with fixed accuracy, i.e.,
relying solely on syntactic information of the program, whereas ours are semantic and the accu-
racy can be gradually improved with the aid of our SMT solver-based analysis. At a high level, our
gradually refined semantic type-inference rules subsume their syntactic type-inference rules.
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The main advantage of using type inference is the ability to quickly obtain sound proofs: When
there is no leak in the computation, often the type system can produce a proof quickly; further-
more, the result is always conclusive. However, if type inference fails to produce a proof, the
verification problem remains unresolved. Thus, to be complete, we leverage the SMT-based model-
counting approach to resolve these left-over verification problems. Here, solvers are used to check
either the satisfiability (SAT) of a logical formula or counting its satisfying solutions (SAT#), the
later of which, although expensive, is powerful enough to completely decide whether the compu-
tation is leakage free. Finally, by feeding solver results back to the type system, we can gradually
improve its accuracy. Thus, overall, our method is both sound and complete.

Our QMS calculator is inspired by Eldib et al. [41, 42], who showed empirically that the number
of measurement traces required by a differential power analysis– (DPA) based attack to success-
fully deduce the secret key is reflected by the QMS value. However, there are two crucial differences
between our work and that of Eldib et al. [41, 42]: First, our approach computes the accurate QMS
value of each intermediate computation result, while their approach only computes an approx-
imation of the QMS value; second, our approach is tightly integrated with our perfect masking
verifier, which allows us to skip the computation of QMS values for all the perfectly masked inter-
mediate computation results, while their approach may compute, unnecessarily, the QMS values
of perfectly masked intermediate computation results.

We have evaluated QMSInfer on a set of publicly available benchmarks [39, 40], which imple-
ment various cryptographic algorithms such as AES and MAC-Keccak. Our experiments show that
QMSInfer is both effective in obtaining proofs quickly and scalable for handling realistic applica-
tions. Specifically, it can resolve most of the verification subproblems using type inference and, as
a result, satisfiability-checking- (SAT) based analysis is needed only for a few left-over cases. Only
in rare cases, the most heavyweight, model-counting-based analysis (SAT#) needs to be invoked.

To sum up, the main contributions of this work are as follows:

• We propose a new semantic type-inference approach for verifying masking countermea-
sures. It is sound and efficient for obtaining proofs.

• We propose a novel method for refining the type-inference system using an SMT solver-
based analysis to ensure that the overall method is both sound and complete.

• We propose a new algorithm to compute, for intermediate results that are not perfectly
masked, their quantitative masking strength (QMS) values.

• We implement the proposed techniques in a tool named QMSInfer and demonstrate its
effectiveness on cryptographic software benchmarks.

The source code of QMSInfer and the benchmarks used in this work have been made available
at http://faculty.sist.shanghaitech.edu.cn/faculty/songfu/Projects/SCInfer/qmsInfer-master.zip.

The remainder of this article is organized as follows. After reviewing the basics in Section 2,
we present our semantic type-inference system in Section 3. We present our refinement-based
method for verifying perfect masking and computing QMS values in Section 4 and Section 5, re-
spectively. We present our experimental results in Section 6 and comparison with the related work
in Section 7. Finally, we give our conclusions in Section 8.

2 PRELIMINARIES

In this section, we define the type of programs considered in this work and then review the basics
of side-channel attacks and masking countermeasures.
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2.1 Probabilistic Boolean Programs

Following the notation used in References [22, 39, 40], we assume that the program P for imple-
menting a cryptographic function is in the form of

Xc ← P (Xp ,Xk ),

where Xp is the plaintext, Xk is the secret key, and Xc is the ciphertext. Inside P , random vari-
able Xr may be used to mask the secret key while maintaining the input-output behavior of P .
Therefore, P can be regarded as a probabilistic program. Since loops, function calls, and branches
in cryptographic implementations can be removed via automated program rewriting [39, 40] and
integer variables can be represented by bit-vectors, for verification purposes, we assume that P
is a straight-line probabilistic Boolean program, where each instruction has a unique label and at
most two operands.

Let X = Xk � Xr � Xp � Xc be the set of Boolean variables used in P , where Xk are the secret
bits, Xr are the random bits, Xp are the public bits, and Xc are the variables storing intermedi-
ate results. In addition, the program uses a set of operators including negation (¬), and (∧), or
(∨), and exclusive-or (⊕). A computation of P is a sequence of intermediate computation results:
c1 ← I1 (Xp ,Xk ,Xr ); . . . ; cn ← In (Xp ,Xk ,Xr ), where, for each 1 ≤ i ≤ n, the computation of Ii is
expressed in terms of Xp , Xk , and Xr . Each random bit in Xr is uniformly distributed in {0, 1}; the
sole purpose of using them in P is to ensure that c1, . . . cn are statistically independent of the secret
Xk .

Data dependency graph (DDG). Our internal representation of a program P is a graph GP =

(N ,E, λ), where N is the set of nodes, E is the set of edges, and λ is a labeling function.

• N = L � LX , where L is the set of instruction labels and LX is the set of terminal nodes:
lx ∈ LX corresponds to a variable or constant x ∈ Xk ∪ Xr ∪ Xp ∪ {0, 1}.

• E ⊆ N × N contains edge (l , l ′) ∈ L × L if and only if l : c = x ◦ y, where either x or y is
defined by l ′ (i.e., use-define relation) or l : c = ¬x , where x is defined by l ′, and contains
edge (l , lx ) ∈ L × Lx if and only if l : c = e and the input variable or constant x is used in e;

• λ maps each l ∈ N to a pair (val ,op): λ(l ) = (c, ◦) for l : c = x ◦ y; λ(l ) = (c,¬) for l : c = ¬x ;
and λ(lx ) = (x ,⊥) for each terminal node lx .

We may use λ1 (l ) = c and λ2 (l ) = ◦ to denote the first and second elements of the pair λ(l ) =
(c, ◦), respectively. We may also use l .lft to denote the left child of l , and l .rgt to denote the right
child if it exists. A subtree rooted at node l corresponds to an intermediate computation result.
When the context is clear, we may use the following terms exchangeably: a node l , the subtree T
rooted at l , and the intermediate computation result c such that c is λ1 (l ). Let |P | denote the total
number of nodes in the DDG GP .

Example 2.1. Figure 2 shows an example where Xk = {k }, Xr = {r1, r2, r3}, Xc = {c1, c2, c3,
c4, c5, c6}, and Xp = ∅. The left-hand part is the original program written in a C-like language,
except that ⊕ denotes XOR and ∧ denotes AND. The right-hand part is the corresponding DDG.
It is easy to see that:

c3 = c2 ⊕ c1 = k ⊕ r1

c4 = c3 ⊕ c2 = k ⊕ r2

c5 = c4 ⊕ r1 = k ⊕ r1 ⊕ r2

c6 = c5 ∧ r3 = (k ⊕ r1 ⊕ r2) ∧ r3
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Fig. 2. An example for masking countermeasure: left-hand part is a C-like program and right-hand part is its
DDG, where r1, r2, and r2 are random variables, k is a secret variable, ⊕ denotes logical XOR, and ∧ denotes
logical AND.

Let Supp : N → Xk ∪ Xr ∪ Xp be a supporting variable function mapping each node l to its sup-
port variables. That is, Supp(l ) = ∅ if λ1 (l ) ∈ {0, 1}; Supp(l ) = {x } if λ1 (l ) = x ∈ Xk ∪ Xr ∪ Xp ; and
Supp(l ) = Supp(l .lft) ∪ Supp(l .rgt) otherwise. The function returns a set of variables that λ1 (l )
depends upon syntactically. We define the supporting random variable function SuppR : N → Xr

such that SuppR(l ) = Supp(l ) ∩ Xr for each l ∈ N .
Given an intermediate computation result c ← I(Xp ,Xk ,Xr ), we say that it is semantically depen-

dent on a variable r ∈ X if and only if there exist two assignments, π1 and π2, such that π1 (r ) � π2 (r )
and π1 (x ) = π2 (x ) for every x ∈ X \ {r }, and the values of I(Xp ,Xk ,Xr ) differ under π1 and π2.

Let SemdR : N → Xr be a semantically dependent random variable function such that SemdR(l )
denotes the set of random variables upon which the intermediate computation result c ←
I(Xp ,Xk ,Xr ) of l semantically depends. Thus, SemdR(l ) ⊆ SuppR(l ), and for each r ∈ SuppR(l ) \
SemdR(l ), we know λ1 (l ) is semantically independent of r . More importantly, there is often a gap
between SuppR(l ) and SemdR(l ), namely SemdR(l ) ⊂ SuppR(l ), which is why our gradual refine-
ment of semantic type inference rules can outperform methods based solely on syntactic type
inference.

Example 2.2. Consider the node c4 in Figure 2: We have Supp(c4) = {r1, r2,k }, SemdR(c4) = {r2},
and SuppR(c4) = {r1, r2}. Furthermore, if the random bits are uniformly distributed in {0, 1}, then
c4 is both uniformly distributed and statistically secret independent (cf. Section 2.2).

2.2 Side-channel Attacks and Perfect Masking

We assume that the adversary has access to the public input Xp and output Xc , but not the secret
Xk and random variable Xr , of the program Xc ← P (Xp ,Xk ). However, the adversary may have
access to side-channel leaks that reveal the joint distribution of at mostd intermediate computation
results c1, . . . cd (e.g., via differential power analysis [55]). Under these assumptions, the goal of the
adversary is to deduce information of Xk . To model the leakage of each instruction, we consider
a widely used, value-based model, called the Hamming Weight (HW) model; other power leakage
models such as the Hamming Distance model [6] can be used similarly [8].

Let [n] denote the set {1, . . . ,n} of natural numbers where n ≥ 1. We call a set with d ele-
ments a d-set. Given concrete values (Vp ,Vk ) for (Xp ,Xk ) and a d-set {c1, . . . , cd } of interme-
diate computation results, we use DVp,Vk

(c1, . . . cd ) to denote the joint distribution of c1, . . . , cd

induced by instantiating Xp and Xk with concrete values Vp and Vk , respectively. We use
DVp,Vk

(c1, . . . cd ) (v1, . . . ,vd ) to denote the probability of the intermediate computation results
c1, . . . cd , respectively, being evaluated tov1, . . . ,vd . Formally, for each vector of valuesv1, . . . ,vd
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in the probability space {0, 1}d , we have DVp,Vk
(c1, . . . cd ) (v1, . . . ,vd ) =

�������

⎧⎪⎪⎨⎪⎪⎩
Vr ∈ {0, 1} |Xr | :

v1 = I1 (Xp = Vp ,Xk = Vk ,Xr = Vr ),
. . . ,

vd = Id (Xp = Vp ,Xk = Vk ,Xr = Vr )

⎫⎪⎪⎬⎪⎪⎭

�������
2 |Xr |

,

where for every 1 ≤ j ≤ d , the predicatevj = Ij (Xp = Vp ,Xk = Vk ,Xr = Vr ) holds if and only if the
intermediate computation result Ij (Xp ,Xk ,Xr ) is evaluated to vj when instantiating Xp , Xk , and
Xr with concrete values Vp , Vk , and Vr , respectively.

Definition 2.3. We say a d-set {c1, . . . , cd } of intermediate computation results is

• uniformly distributed if DVp,Vk
(c1, . . . , cd ) is a uniform distribution for any concrete values

Vp and Vk .
• (statistically) secret independent if DVp,Vk

(c1, . . . , cd ) = DVp,V
′

k
(c1, . . . , cd ) for any pairs of

concrete values (Vp ,Vk ) and (Vp ,V
′

k
).

Note that there is a difference between them: An uniformly distributed d-set is always secret
independent but a secret independent d-set is not always uniformly distributed.

Definition 2.4. A program P is order-d perfectly masked if every d ′-set of intermediate compu-
tation results of P such that d ′ ≤ d is secret independent. When P is first-order perfectly masked,
we may simply say it is perfectly masked.

To decide whether P is order-d perfectly masked, the assumption of masking is invali-
dated if there exist a d ′-set and two pairs (Vp ,Vk ) and (Vp ,V

′
k

) such that DVp,Vk
(c1, . . . , cd ′ ) �

DVp,V
′

k
(c1, . . . , cd ′ ) for some d ′ ≤ d . In this context, the main challenge is computing

DVp,Vk
(c1, . . . , cd ′ ), which is essentially a model-counting (SAT#) problem. In the remainder of this

article, we mainly focus on (first-order) perfect masking.

Gap in current state of knowledge. Existing methods for verifying masking countermeasures
are either fast but inaccurate, e.g., when they rely solely on syntactic type inference (syntactic
information provided by SuppR in Section 2.1) or accurate but slow, e.g., when they rely solely on
model-counting. In contrast, our method gradually refines a set of semantic type inference rules
(i.e., using SemdR instead of SuppR as defined in Section 2.1), where constraint solvers (SAT and
SAT#) are used on demand to resolve ambiguity and improve the accuracy of type inference. As a
result, it can achieve the best of both worlds.

2.3 Quantitative Masking Strength

When a program is leaky, it is important to quantify the amount of information leakage from the
software through the side channel. In this work, we adopt a notion proposed by Eldib et al. [41,
42], named Quantitative Masking Strength (QMS), to quantify the strength of a masking counter-
measure against first-order, DPA-based attacks.

Definition 2.5. The quantitative masking strength (QMS) of an intermediate computation result
I(Xp ,Xk ,Xr ) in a program P , denoted QMSI, is defined as follows:

1 − max
Vp,Vk ,V

′
k

(
E (I(Vp/Xp ,Vk/Xk )) − E (I(Vp/Xp ,V

′
k/Xk ))

)
,

where E (◦) is the expected value of random event ◦. Intuitively, the larger QMSI is, the less infor-
mation is leaked.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 3, Article 16. Pub. date: July 2019.



16:8 P. Gao et al.

Fig. 3. An example for illustrating QMS: left-hand part is the C-like program and right-hand part is its data
dependency graph, where r1 and r2 are random variables, k1 and k2 are secret variables.

It is easy to observe that the notion of QMS subsumes the notion of (first-order) perfect masking,
namely, an intermediate computation result c ← I(Xp ,Xk ,Xr ) is perfectly masked iff QMSI = 1.

For intermediate computation results that are not perfectly masked, QMS can be used to quantify
the amount of information leakage through side channels. It is also an estimation of the degree of
security of the program against side-channel attacks. The correlation between the QMS value and
the number of measurement traces required by DPA-based attacks has been validated empirically
by Eldib et al. [41, 42]. Specifically, they showed that the number of traces needed to deduce the
secret key is exponentially dependent on the QMS value. Therefore, we use QMS as a formal
quantitative measure.

In this work, when given a program P with some leaky nodes, we want to compute the actual
QMS values of these nodes.

Example 2.6. Consider the program shown in Figure 3, which is taken from Reference [40].
This program is a masked version of c ← k1 ∧ k2 using the masking scheme of Blömer et al. [22],
where k1 and k2 are the secrets, r1 and r2 are random variables that are used to make the power
consumption of the computation of c statistically independent of the values of k1 and k2. The
result c is logically equivalent to (k1 ∧ k2) ⊕ (r1 ∧ r2). The desired value k1 ∧ k2 could be obtained
by applying the demasking function c ⊕ (r1 ∧ r2) (not shown in Figure 3), as ((k1 ∧ k2) ⊕ (r1 ∧
r2)) ⊕ (r1 ∧ r2) ≡ k1 ∧ k2.

It is easy to see thatni is first-order perfectly masked for all i ∈ {1, . . . , 7} (implying that QMSni
=

1). The probability for n8 to be logical one is 0 if k1k2 = 00 and is 1
2 otherwise. Therefore, n8 is a

leaky node, and QMSn8
= 1

2 . Similarly, we can deduce that c is a leaky node and QMSc =
1
2 .

3 THE SEMANTIC TYPE INFERENCE SYSTEM

In this section, we present our semantic type-inference system. We first introduce our distribution
types together with some auxiliary data structures; then, we present our inference rules.

3.1 The Type System

Let T = {CST, RUD, SID, NPM, UKD} be the set of (distribution) types for intermediate computation
results, where �c� denotes the type of c ← I(Xp ,Xk ,Xr ). Specifically,

• �c� = CST means c is a constant, which implies that it is side-channel leak-free;
• �c� = RUD means c is randomized to uniform distribution, and hence leak-free;
• �c� = SID means c is statistically secret independent, i.e., leak-free;
• �c� = NPM means c is not perfectly masked and thus has leaks; and
• �c� = UKD means c has an unknown distribution.
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Definition 3.1. Let unq : N → Xr and dom : N → Xr , respectively, be unique supporting random

variable function and dominant random variable function such that (i) for each terminal node l ∈ LX

if λ1 (l ) ∈ Xr , then unq(l ) = dom(l ) = λ1 (l ); otherwise, unq(l ) = dom(l ) = ∅; and (ii) for each internal
node l ∈ L, we have

• unq(l ) = (unq(l .lft) ∪ unq(l .rgt)) \ (SuppR(l .lft) ∩ SuppR(l .rgt));
• dom(l ) = (dom(l .lft) ∪ dom(l .rgt)) ∩ unq(l ) if λ2 (l ) = ⊕; but dom(l ) = ∅ otherwise.

Intuitively, the function unq that returns, for each l ∈ N , the set of random variables to which
the DDG has a unique path from l and the function dom returns the set of random variables, each
of which guarantees λ1 (l ) has been perfectly masked. Both unq(l ) and dom(l ) are computable in
time that is linear in |P | [65]. Following the proofs in References [8, 65], it is easy to reach this
observation: Given an intermediate computation result c ← I(Xp ,Xk ,Xr ) that corresponds to a
subtree rooted at l , the following statements hold:

(1) if |dom(l ) | � ∅, then �c� = RUD;
(2) if �c� = RUD, then �¬c� = RUD;
(3) if �c� = SID, then �¬c� = SID;
(4) if r � SemdR(l ) for a bit r ∈ Xr , then �r ⊕ c� = RUD;
(5) for every c ′ ← I

′(Xp ,Xk ,Xr ) that corresponds to a subtree rooted at l ′, if SemdR(l ) ∩
SemdR(l ′) = ∅ and �c� = �c ′� = SID, then �c ◦ c ′� = SID.

When the context is clear, we may use �l� and �c� exchangeably for an intermediate computa-
tion result c ← I(Xp ,Xk ,Xr ) that corresponds to a subtree rooted at the node l .

Figure 4 shows our type inference rules that concretize this observation. Each rule is given in
the form of

RuleName
Hypothesis1 · · · Hypothesisk

Conclusion

where RuleName denotes the name of the rule, Hypothesis1 · · · Hypothesisk are hypothesises of
the rule, and Conclusion, which holds if all the hypothesises hold.

When multiple rules could be applied to a node l ∈ N , we always choose the rules that can lead
to �l� = RUD. If no rule is applicable at l , then we set �l� = UKD. The correctness of these inference
rules is obvious by definition.

Remark that our type proof system currently will not annotate NPM to nodes. We will resolve
UKD into either SID or NPM in Section 4 using the SMT-based analyses.

Theorem 3.2. For every intermediate computation result c ← I(Xp ,Xk ,Xr ),

• if �c� = RUD, then c is uniformly distributed, and hence perfectly masked;

• if �c� = SID, then c is guaranteed to be leakage-free.

To improve efficiency, our inference rules may be applied twice, first using the SuppR func-
tion, which extracts syntactic information from the program (cf. Section 2.1) and then using the
SemdR function, which is slower to compute but also significantly more accurate. Since SemdR(l ) ⊆
SuppR(l ) for all l ∈ N , this is always sound. Moreover, the type inference is invoked for the second
time only if, after the first time, �l� remains UKD.

Example 3.3. When using type inference with SuppR on the example in Figure 2, we have

�r1� = �r2� = �r3� = �c1� = �c2� = �c3� = RUD, �k� = �c4� = �c5� = �c6� = UKD.

When using type inference with SemdR (for the second time), we have

�r1� = �r2� = �r3� = �c1� = �c2� = �c3� = �c4� = �c5� = RUD, �k� = UKD, �c6� = SID.
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Fig. 4. Semantic type-inference rules. The NPM type is not yet used here; its inference rules will be added in
Figure 6, since they rely on the SMT solver-based analyses.

3.2 Checking Semantic Independence

Unlike SuppR(l ), which only extracts syntactic information from the program and hence may be
computed syntactically, SemdR(l ) is more expensive to compute. In this subsection, we present
a method that leverages the SMT solver to check, for any intermediate computation result c ←
I(Xp ,Xk ,Xr ) and any random bit r ∈ Xr , whether c is semantically dependent of r . Specifically,
we formulate it as a satisfiability (SAT) problem (formula Φr

s ) defined as follows:

Φr
s ≡ Θr=0

s (c0,Xp ,Xk ,Xr \ {r }) ∧ Θr=1
s (c1,Xp ,Xk ,Xr \ {r }) ∧ Θ�s (c0, c1),

where Θr=0
s (respectively, Θr=1

s ) encodes the relation I(Xp ,Xk ,Xr ) with r replaced by 0 (respec-
tively, 1); c0 and c1 are copies of c and Θ�s asserts that the outputs differ even under the same
inputs.

In logic synthesis and optimization, when r � SemdR(l ), r will be called the don’t care vari-
able [52]. Therefore, it is easy to see why the following theorem holds.

Theorem 3.4. Φr
s is unsatisfiable iff the value of r does not affect the value of c , i.e., c is semantically

independent of r . Moreover, the formula size of Φr
s is linear in |P |.

3.3 Verifying Higher-Order Masking

The type system so far targets first-order masking. We now outline how it extends to verify higher-
order masking. Generally speaking, we have to check, for any d ′-set {c1, . . . , cd ′ } of intermediate
computation results such that d ′ ≤ d , the joint distribution is either randomized to uniform distri-
bution (RUD) or statistically secret independent (SID).
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Fig. 5. Composition rules for handling sets of intermediate computation results, i.e., higher-order masking.

To tackle this problem, we lift SuppR and SemdR to sets of computation results as follows: for
each d ′-set {c1, . . . , cd ′ },

• SuppR(c1, . . . , cd ′ ) =
⋃

i ∈[d ′] SuppR(ci );
• SemdR(c1, . . . , cd ′ ) =

⋃
i ∈[d ′] SemdR(ci ).

Our inference rules are extended by adding the composition rules shown in Figure 5.

Theorem 3.5. For every d ′-set {c1, . . . , cd ′ } of intermediate computation results,

• if �c1, . . . , cd ′� = RUD, then {c1, . . . , cd ′ } is guaranteed to be uniformly distributed, and hence

perfectly masked;

• if �c1, . . . , cd ′� = SID, then {c1, . . . , cd ′ } is guaranteed to be perfectly masked.

We remark that the SemdR function in these composition rules could also be safely replaced by
the SuppR function, just as before.

4 THE GRADUAL REFINEMENT APPROACH FOR VERIFYING PERFECT MASKING

In this section, we present our method for gradually refining the type system by leveraging SMT
solver-based techniques. Adding solvers to the sound type system makes it complete as well, thus
allowing it to detect side-channel leaks whenever they exist, in addition to proving the absence of
such leaks.

4.1 SMT-based Approach

For a given computation c ← I(Xp ,Xk ,Xr ), the verification of perfect masking (Definition 2.4) can
be reduced to the satisfiability problem of the logical formula (Ψ) defined as follows:

Ψ ≡ ∃Vp .∃Vk .∃V ′k .

�
�

∑
Vr ∈{0,1}|Xr |

I(Vp/Xp ,Vk/Xk ,Vr /Xr ) �
∑

Vr ∈{0,1}|Xr |

I(Vp/Xp ,V
′

k/X
′
k ,Vr /Xr )
�

�
.

Intuitively, given values (Vp ,Vk ) of (Xp ,Xk ), count =
∑

Vr ∈{0,1}|Xr | I(Vp/Xp ,Vk/Xk ,Vr /Xr ) de-
notes the number of assignments of the random variableXr under which I(Vp/Xp ,Vk/Xk ,Vr /Xr ) is

evaluated to logical 1. When random bits inXr are uniformly distributed in the domain {0, 1}, count
2|Xr |
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is the probability of I(Vp/Xp ,Vk/Xk ,Vr /Xr ) being logical 1 for the given pair (Vp ,Vk ). Therefore,
Ψ is unsatisfiable if and only if c is perfectly masked.

Following Eldib et al. [39, 40], we encode the formula Ψ as a quantifier-free first-order logic
formula Θ to be solved by an off-the-shelf SMT solver (e.g., Z3 [36]):

Θ ≡ 
�
�

2|Xr |−1∧
Vr=0

ΘVr

Xk


�
�
∧ 
�
�

2|Xr |−1∧
Vr=0

ΘVr

X ′
k


�
�
∧ Θb2i ∧ Θ�,

where

• ΘVr

Xk
(respectively, ΘVr

X ′
k

) for eachVr ∈ {0, . . . , 2 |Xr | − 1}: encodes a copy of the input-output

relation of I(Xp/Xp ,Xk/Xk ,Vr /Xr ) (respectively, I(Xp/Xp ,X
′
k
/Xk ,Vr /Xr )) by replacing Xr

with concrete values Vr . There are 2 |Xr | distinct copies but share the same plaintext Xp .
• Θb2i : converts Boolean outputs of these copies to integers (true becomes 1 and false becomes

0) so that the number of assignments can be counted.
• Θ�: asserts the two summations, for Xk and X ′

k
, differ.

Example 4.1. For the example in Figure 2, verifying whether node c4 is perfectly masked re-
quires the SMT-based analysis. By instantiating (r1, r2) to values from {0, 1}2, we can get the SMT
encoding Θ, where the four components are given below:

Θk ≡

����
�

(c41 = ((0 ⊕ 0) ⊕ (k ⊕ 0)) ⊕ (0 ⊕ 0))∧
(c42 = ((1 ⊕ 0) ⊕ (k ⊕ 0)) ⊕ (1 ⊕ 0))∧
(c43 = ((0 ⊕ 1) ⊕ (k ⊕ 1)) ⊕ (0 ⊕ 1))∧
(c44 = ((1 ⊕ 1) ⊕ (k ⊕ 1)) ⊕ (1 ⊕ 1))


����
�

Θk ′ ≡

����
�

(c ′41 = ((0 ⊕ 0) ⊕ (k ′ ⊕ 0)) ⊕ (0 ⊕ 0))∧
(c ′42 = ((1 ⊕ 0) ⊕ (k ′ ⊕ 0)) ⊕ (1 ⊕ 0))∧
(c ′43 = ((0 ⊕ 1) ⊕ (k ′ ⊕ 1)) ⊕ (0 ⊕ 1))∧
(c ′44 = ((1 ⊕ 1) ⊕ (k ′ ⊕ 1)) ⊕ (1 ⊕ 1))


����
�

Θb2i ≡


�������������
�

(((n1 = 1) ∧ c41) ∨ ((n1 = 0) ∧ ¬c41))∧
(((n2 = 1) ∧ c42) ∨ ((n2 = 0) ∧ ¬c42))∧
(((n3 = 1) ∧ c43) ∨ ((n3 = 0) ∧ ¬c43))∧
(((n4 = 1) ∧ c44) ∨ ((n4 = 0) ∧ ¬c44))∧
(((n′1 = 1) ∧ c ′41) ∨ ((n′1 = 0) ∧ ¬c ′41))∧
(((n′2 = 1) ∧ c ′42) ∨ ((n′2 = 0) ∧ ¬c ′42))∧
(((n′3 = 1) ∧ c ′43) ∨ ((n′3 = 0) ∧ ¬c ′43))∧
(((n′4 = 1) ∧ c ′44) ∨ ((n′4 = 0) ∧ ¬c ′44))


�������������
�

Θ� ≡ (n1 + n2 + n3 + n4) � (n′1 + n
′
2 + n

′
3 + n

′
4)

We convert Boolean to integer by adding predicates of the form ((n = 1) ∧ c ) ∨ ((n = 0) ∧ ¬c ),
which ensures that if the Boolean variable c is true, then the integer n must be 1; otherwise, n must
be 0.

By invoking the SMT solver six times, one can get the following result: �c1� = �c2� = �c3� =
�c4� = �c5� = �c6� = SID.

Although the SMT formula size is linear in |P |, the number of distinct copies is exponential of
the number of random bits used in the computation. Thus, the approach cannot be applied to large
programs. To overcome the problem, incremental algorithms [39, 40] were proposed to reduce the
formula size using partitioning and heuristic reduction.

Incremental SMT-based approach. Given a computation c ← I(Xp ,Xk ,Xr ) that corresponds to
a subtree T rooted at l in the DDG, we search for an internal node ls in T (a cut-point) such that
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Fig. 6. Complementary rules used during refinement of the type inference (Figure 4).

dom(ls ) ∩ unq(l ) � ∅. A cut-point is maximal if there is no other cut-point from l to ls . Let T̂ be the
simplified tree obtained from T by replacing every subtree rooted at a maximal cut-point with a

random variable from dom(ls ) ∩ unq(l ). Then, �c� in T̂ is SID iff �c� in T is SID.
The main observation is that if ls is a cut-point, then there is a random variable r ∈ dom(ls ) ∩

unq(l ), which implies �ls � is RUD. Here, r ∈ unq(l ) implies λ1 (ls ) can be seen as a fresh random
variable when we evaluate l . Consider the node c3 in the example in Figure 2, it is easy to see
r1 ∈ dom(c2) ∩ unq(c3). Therefore, for the purpose of verifying c3, the entire subtree rooted at c2

can be replaced by the random variable r1.
In addition to partitioning, heuristics rules [39, 40] can be used to simplify or avoid the SMT

solving. (1) When constructing formula Θ of c , all random variables in SuppR(l ) \ SemdR(l ), which
are don’t cares, can be replaced by constant 1 or 0. (2) The No-Key and Sid rules in Figure 4 with
the SuppR function are used to skip some checks by SMT solving in References [39, 40].

Example 4.2. When applying incremental SMT-based approach to the example in Figure 2, c1

has to be decided by SMT solving, but c2 is skipped due to No-Key rule.
As for c3, since r1 ∈ dom(c2) ∩ unq(c3), c2 is a cut-point and the subtree rooted at c2 can be

replaced by r1, leading to the simplified computation r1 ⊕ (r2 ⊕ k )—subsequently, it is skipped by
the Sid rule with SuppR. Note that the above Sid rule is not applicable to the original subtree,
because r2 occurs in the support of both children of c3.

There is no cut-point for c4, so it is checked using the SMT solver. But since c4 is semantically
independent of r1 (a don’t care variable), to reduce the SMT formula size, we replace r1 by 1 (or 0)
when constructing the SMT formula Θ.

4.2 Feeding SMT-based Analysis Results Back to Type System

Consider a scenario where initially the type system (cf. Section 3) failed to resolve a node l , i.e.,
�l� = UKD, but the SMT-based approach resolved it as either NPM or SID. Such results should be
fed back to improve the type system, which may lead to the following two favorable outcomes:
(1) marking more nodes as perfectly masked (RUD or SID) and (2) marking more nodes as leaky
(NPM), which means we can avoid expensive SMT calls for these nodes. More specifically, if SMT-
based analysis shows that l is perfectly masked, then the type of l can be refined to �l� = SID; feed-
ing it back to the type system allows us to infer more types for nodes that syntactically depend on l .

However, if SMT-based analysis shows l is not perfectly masked, then the type of l can be refined
to �l� = NPM; feeding it back allows the type system to infer that other nodes may be NPM as well.
To achieve what is outlined in the second case above, we add the NPM-related type inference rules
shown in Figure 6. When they are added to the type system outlined in Figure 4, more NPM-typed
nodes will be deduced, which allows our method to skip the (more expensive) checking of some
nodes using the SMT-based analysis.
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Fig. 7. An example for feeding back: left-hand part is the C-like program and right-hand part is its data
dependency graph, where r1 − r5 are random variables, and k1 is a secret variable.

ALGORITHM 1: Procedure SCInfer(P ,Xp ,Xk ,Xr ,π )

Procedure SCInfer(P ,Xp ,Xk ,Xr ,π )

foreach l ∈ N in a topological order from leaf to root do

if l is a leaf then π (l ) := �l�;
else

TypeInfer(l , P ,Xp ,Xk ,Xr ,π , SuppR);

if π (l ) = UKD then

let P̂ be the simplified tree of the subtree rooted at l in P ;

TypeInfer(l , P̂ ,Xp ,Xk ,Xr ,π , SemdR);

if π (l ) = UKD then

res:=CheckBySMT(P̂ ,Xp ,Xk ,Xr );

if res=Not-Perfectly-Masked then

π (l ) := NPM;

else if res=Perfectly-Masked then

π (l ) := SID;

else π (l ) := UKD;

Example 4.3. Consider the program in Figure 7; by applying the original type inference approach
with either SuppR or SemdR, we have
�c1� = �c4� = RUD, �c2� = �c3� = �c6� = SID, �c5� = �c7� = UKD.
In contrast, by applying SMT-based analysis to c5, we can deduce �c5� = SID. Feeding �c5� =

SID back to the original type system, and then applying the Sid rule to c7 = c5 ⊕ c6, we are able to
deduce �c7� = SID. Without refinement, this was not possible.

4.3 The Overall Algorithm for Verifying Perfect Masking

Having presented all the components, we now present the overall procedure for verifying perfect
masking, which integrates the semantic type system and SMT-based method for gradual refine-
ment. Algorithm 1 shows the pseudo code. Given the program P , the sets of public (Xp ), secret
(Xk ), random (Xr ) variables and an empty map π , it invokes SCInfer(P ,Xp ,Xk ,Xr ,π ) to traverse
the DDG in a topological order and annotate every node l with a distribution type from T. The sub-
routine TypeInfer implements the type inference rules outlined in Figure 4 and Figure 6, where
the parameter f can be either SuppR or SemdR.

SCInfer first deduces the type of each node l ∈ N by invoking TypeInfer with f = SuppR.

Once a node l is annotated as UKD, a simplified subtree P̂ of the subtree rooted at l is constructed.
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ALGORITHM 2: Procedure TypeInfer(l , P ,Xp ,Xk ,Xr , π , f )

Procedure TypeInfer(l , P ,Xp ,Xk ,Xr ,π , f )
if λ2 (l ) = ¬ then π (l ) := π (l .lft) ;

else if λ2 (l ) = ⊕ then

if π (l .lft) = RUD ∧ dom(l .lft) \ f (l .rgt) � ∅ then

π (l ) := RUD;

else if π (l .rgt) = RUD ∧ dom(l .rgt) \ f (l .lft) � ∅ then

π (l ) := RUD;

else if π (l .rgt) = π (l .lft) = SID ∧ f (l .lft) ∩ f (l .rgt) ∩ Xr = ∅ then

π (l ) := SID;

else if Supp(l ) ∩ Xk = ∅ then

π (l ) := SID;

else π (l ) := UKD;

else

if


����
�

(
(π (l .lft) = RUD ∧ π (l .rgt) � {UKD, NPM})∨

(π (l .rgt) = RUD ∧ π (l .lft) � {UKD, NPM})
)
∧

f (l .lft) ∩ f (l .rgt) ∩ Xr = ∅


����
�

then

π (l ) := SID;

else if

(
(dom(l .rgt) \ f (l .lft)) ∪ (dom(l .lft) \ f (l .rgt)) � ∅

∧π (l .lft) = RUD ∧ π (l .rgt) = RUD

)
then

π (l ) := SID;

else if

(
(π (l .lft) = RUD ∧ π (l .rgt) = NPM ∧ dom(l .lft) \ f (l .rgt) � ∅)∨
(π (l .rgt) = RUD ∧ π (l .lft) = NPM ∧ dom(l .rgt) \ f (l .lft) � ∅)

)
then

π (l ) := NPM;

else if (π (l .lft) = π (l .rgt) = SID) ∧ f (l .lft) ∩ f (l .rgt) ∩ Xr = ∅ then

π (l ) := SID;

else if SuppR(l ) ∩ Xk = ∅ then

π (l ) := SID;

else π (l ) := UKD;

Next, TypeInfer with f = SemdR is invoked to resolve the UKD node in P̂ . If π (l ) becomes non-UKD
afterward, then TypeInfer with f = SuppR is invoked again to quickly deduce the types of the
fan-out nodes in P . But if π (l ) remains UKD, then SCInfer invokes the incremental SMT-based
approach to decide whether l is either SID or NPM. This is sound and complete, unless the SMT
solver runs out of time/memory, in which case UKD is assigned to l .

Theorem 4.4. For every intermediate computation result c ← I(Xp ,Xk ,Xr ) corresponding to a

subtree rooted at l , our method in QMSInfer guarantees to return sound and complete results:

• π (l ) = RUD iff c is uniformly distributed, and hence perfectly masked;

• π (l ) = SID iff c is statistically secret independent, i.e., perfectly masked;

• π (l ) = NPM iff c is not perfectly masked (leaky);

If timeout or memory out is used to bound the execution of the SMT solver, then it is also
possible that π (l ) = UKD, meaning c has an unknown distribution (it may or may not be perfectly
masked). It is interesting to note that if we regard UKD as potential leak and at the same time bound
(or even disable) SMT-based analysis, then Algorithm 1 degenerates to a sound type system that is
both fast and potentially accurate.
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5 THE GRADUAL REFINEMENT APPROACH FOR COMPUTING QMS VALUES

In this section, we present our approach for computing QMS values. We first recall the SMT-
based approach for checking a QMS requirement for each intermediate computation result from
References [41, 42]. Then, we propose a binary search-based approach to compute the accurate
QMS value of each intermediate computation result.

5.1 Checking a QMS Requirement

The SMT-based approach for checking a QMS requirement is a generalization of the one for check-
ing perfect masking. Given an intermediate computation result c ← I(Xp ,Xk ,Xr ) and a QMS
requirement q, we reduce the problem of checking QMSI ≥ q to the satisfiability problem of a
(quantifier-free) first-order logic formula. Recall that QMSI = 1 −maxVp,V

′
p,V

′
k

(E (I(Vp/Xp ,Vk/Xk )) −
E (I(Vp/Xp ,V

′
k
/Xk ))). To check whether QMSI ≥ q, it suffices to check the unsatisfiability of the fol-

lowing formula:

∃Vp ,Vk ,V
′

k .
(
�(I(Vp/Xp ,Vk/Xk )) − �(I(Vp/Xp ,V

′
k/Xk ))

)
> Δ

q

I
,

where �(I(Vp/Xp ,Vk/Xk )) and �(I(Vp/Xp ,V
′

k
/Xk )) denote the number of satisfying assignments of

I(Vp/Xp ,Vk/Xk ) and I(Vp/Xp ,V
′

k
/Xk ), respectively, and Δ

q

I
= (1 − q) × 2 |Xr | .

We encode it as a logic formula Ψ
q

I
to be solved by an off-the-shelf SMT solver (e.g., Z3):

Ψ
q

I
≡ 
�
�

2|Xr |−1∧
Vr=0

ΘVr

Xk


�
�
∧ 
�
�

2|Xr |−1∧
Vr=0

ΘVr

X ′
k


�
�
∧ Θb2i ∧ Θ

q

diff,

where

• ΘVr

Xk
(respectively, ΘVr

X ′
k

) forVr ∈ {0, . . . , 2 |Xr | − 1}: encodes a copy of the input-output rela-

tion of I(Xk/Xk ,Vr /Xr ) (respectively, I(X ′
k
/Xk ,Vr /Xr )) by replacingXr with concrete values

Vr and variable Xk with Xk (respectively, X ′
k

). There are 2 |Xr | distinct copies, but share the
same plaintext Xp .

• Θb2i: converts Boolean outputs of these copies to integers (true becomes 1 and false becomes
0) so that the number of assignments can be counted.

• Θ
q

diff: asserts the difference of the two sums for Xk and X ′
k

is larger than Δ
q

I
.

Theorem 5.1. Ψ
q

I
is unsatisfiable iff QMSI ≥ q, and the size of Ψ

q

I
is polynomial in |P | and expo-

nential in number of random bits in the intermediate computation result c ← I(Xp ,Xk ,Xr ).

Example 5.2. Consider the node n7 = r2 ∧ (k1 ⊕ r1) of the example program in Figure 3, the SMT
encoding Ψ0.5

n7
is given as follows:(

(b00 = (0 ∧ (k1 ⊕ 0))) ∧ (b01 = (0 ∧ (k1 ⊕ 1)))∧
(b10 = (1 ∧ (k1 ⊕ 0))) ∧ (b11 = 1(∧(k1 ⊕ 1)))∧

)
∧(

(b ′00 = (0 ∧ (k ′1 ⊕ 0))) ∧ (b ′01 = (0 ∧ (k ′1 ⊕ 1)))∧
(b ′10 = (1 ∧ (k ′1 ⊕ 0))) ∧ (b ′11 = (1 ∧ (k ′1 ⊕ 1)))

)
∧


����
�

(d1 = (b00 ? 1 : 0)) ∧ (d2 = (b01 ? 1 : 0))∧
(d3 = (b10 ? 1 : 0)) ∧ (d4 = (b11 ? 1 : 0))∧
(d ′1 = (b ′00 ? 1 : 0)) ∧ (d ′2 = (b ′01 ? 1 : 0))∧
(d ′3 = (b ′10 ? 1 : 0)) ∧ (d ′4 = (b ′11 ? 1 : 0))


����
�
∧

(d1 + d2 + d3 + d4) − (d ′1 + d
′
2 + d

′
3 + d

′
4) > 0.5 ∗ 22.

Based on the above SMT encoding, we present an algorithm for checking a program against a
QMS requirement, which is more general than verifying perfect masking.
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ALGORITHM 3: Procedure CheckQMS(P ,Xp ,Xk ,Xr ,q)

Procedure CheckQMS(P ,Xp ,Xk ,Xr ,q)

SCInfer(P ,Xp ,Xk ,Xr ,π );

forall the l ∈ N such that π (l ) = NPM and I(Xp ,Xk ,Xr ) is its computation do

if SMTSolver(Ψ
q
I

) =SAT then

return False;

return True;

ALGORITHM 4: Procedure QMSInfer(P ,Xp ,Xk ,Xr )

Procedure QMSInfer(P ,Xp ,Xk ,Xr )

SCInfer(P ,Xp ,Xk ,Xr ,π );

foreach l ∈ N with I(Xp ,Xk ,Xr ) being corresponding computation do

if π (l ) ∈ {SID, RUD, CST} then QMSI := 1;

else

if SemdR(l ) = ∅ then

QMSI := 0;

else

low := 0;

high := 2 |SemdR(l ) | ;
while low < high do

mid := � low+high2 �;
q := mid

2|SemdR(l ) | ;

if SMTSolver(Ψ
q
I

) =SAT then

high := mid − 1;

else low := mid;

QMSI := low
2|SemdR(l ) | ;

Given a program P , the set of public (Xp ), secret (Xk ), random (Xr ) variables and a QMS re-
quirement q, CheckQMS in Algorithm 3 returns True if QMSI ≥ q holds for every intermediate
computation result c ← I(Xp ,Xk ,Xr ) and returns False otherwise. Inside CheckQMS, it first in-
vokes SCInfer to check whether c ← I(Xp ,Xk ,Xr ) is perfectly masked. If it is perfectly masked,
then the corresponding QMSI is set to 1 directly. Otherwise, for each c ← I(Xp ,Xk ,Xr ) that is not
perfectly masked, the SMT-based approach is used to check whether QMSI ≥ q.

5.2 Computing the QMS

In this subsection, we present our algorithm for computing the QMS value of an intermediate
computation result instead of checking for a fixed QMS requirement. Given the program P and
the set of public (Xp ), secret (Xk ), and random (Xr ) variables, QMSInfer first invokes SCInfer to
check perfect masking. For each l with intermediate computation result I, if it is perfectly masked,
we can directly get that QMSI is 1. Otherwise, we first check whether SemdR(l ) is empty or not.
If SemdR(l ) is empty, then we can conclude that QMSI = 0. Otherwise, we use a binary search to
compute QMSI based on the following observation:

QMSI ∈
{ i

2 |SemdR(l ) | : 0 ≤ i ≤ 2 |SemdR(l ) |
}
.

Algorithm 4 shows the pseudo code for computing the QMS values of all nodes in the DDG. Note
that the while-loop executes at most O( |SemdR(l ) |) times for each node l .
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ALGORITHM 5: Procedure MinQMSInfer(P ,Xp ,Xk ,Xr )

Procedure MinQMSInfer(P ,Xp ,Xk ,Xr )

minQMS := 1;

SCInfer(P ,Xp ,Xk ,Xr ,π );

foreach l ∈ N with I(Xp ,Xk ,Xr ) being corresponding computation do

if π (l ) � {SID, RUD, CST} then

if SemdR(l ) = ∅ then

return 0;

else

low := 0;

high := �minQMS × 2 |SemdR(l ) | �;
while low < high do

mid := � low+high2 �;
q := mid

2|SemdR(l ) | ;

if SMTSolver(Ψ
q
I

) =SAT then

high := mid − 1;

else low := mid;

minQMS := min(minQMS, low
2|SemdR(l ) | );

if minQMS = 0 then

return minQMS;

return minQMS;

Our algorithm for computing QMS values is different from the one proposed by Eldib et al. [41,
42]. Their algorithm computes QMS values by directly searching for the QMS requirement q be-
tween 0 to 1 with step 0.01. Hence, it computes only an approximation of the QMS value and the
search iterates at most 10 times for each intermediate computation result. In contrast, our approach
takes into account the number of random variables in the intermediate computation result, and it
computes the accurate QMS values. Furthermore, our approach more efficient when the number
of random variables in intermediate computation results is small.

QMSInfer is able to compute the QMS values of all the intermediate computation results, which
quantify the amount of information leakage through the side channel. In practice, one may be more
interested in computing the minimal QMS value of all the intermediate computation results, which
can be regarded as the weakest part of the masking countermeasure. Although one can compute
the minimal QMS value by first computing all the QMS values using QMSInfer, we propose a
more efficient algorithm, shown in Algorithm 5.

Algorithm 5 is a modification of Algorithm 4. Given the program P and the set of public (Xp ),
secret (Xk ), and random (Xr ) variables, MinQMSInfer first initializes the variable minQMS as 1,
which will be updated if a smaller QMS value is obtained. MinQMSInfer then invokes SCInfer
to check perfect masking. Next, for each leaky node l with the corresponding intermediate com-

putation result I, it uses a binary search to compute QMSI with upper bound �minQMS × 2 |SemdR(l ) | �,
instead of 2 |SemdR(l ) | , as it suffices to consider QMS requirements that are smaller than the current
minimal QMS value minQMS.

6 EXPERIMENTS

We have implemented our method in a verification tool named QMSInfer, which uses Z3 [36]
as the underlying SMT solver. We also implemented the syntactic type inference approach [65],
the incremental SMT-based verification approach [39, 40], and the SMT-based QMS computing
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Table 1. Benchmark Statistics, Where Column Name Denotes the Name of the Benchmark, Column
Description Gives a Briefly Description of the Benchmark, Column �Loc Presents the Number of Locations

in the Benchmark, Column �Nodes Denotes the Number of Internal Nodes in DDG, and Columns |Xk |,
|Xp |, and |Xr |, Respectively, Give the Number of Secret Variables, Public Variables,

and Random Variables in the Benchmark

Name Description �Loc �Nodes |Xk | |Xp | |Xr |
P1 CHES13 Masked Key Whitening 79 32 16 16 16

P2 CHES13 De-mask and then Mask 67 38 8 0 16

P3 CHES13 AES Shift Rows 21 6 2 0 2

P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 6 2 0 2

P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 8 1 0 2

P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2

P7 Logic Design for AES S-Box (2nd implementation) 40 11 2 0 3

P8 Masked Chi function MAC-Keccak (1st implementation) 59 18 3 0 4

P9 Masked Chi function MAC-Keccak (2nd implementation) 60 18 3 0 4

P10 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 28 3 0 4

P11 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 28 3 0 4

P12 MAC-Keccak 512b Perfect masked 426k 197k 288 288 3205

P13 MAC-Keccak 512b De-mask and then mask (compiler error) 426k 197k 288 288 3205

P14 MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 426k 197k 288 288 3205

P15 MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 429k 198k 288 288 3205

P16 MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 426k 197k 288 288 3205

P17 MAC-Keccak 512b Unmasking of Pi function 442k 205k 288 288 3205

approach [41, 42] in the same tool for experimental comparison purposes. We conducted experi-
ments on publicly available cryptographic software implementations, including fragments of AES
and MAC-Keccak [39, 40]. Our experiments were conducted on a machine with 64-bit Ubuntu
12.04 LTS, Intel Xeon(R) CPU E5-2603 v4, and 32GB RAM.

Overall, results of our experiments show that

• QMSInfer is significantly more accurate than prior syntactic type inference approach [65]
for checking perfect masking; indeed, it solved thousands of UKD cases reported by the prior
technique;

• QMSInfer is almost twice faster than prior SMT-based approach [39, 40] for checking per-
fect masking on the large programs while maintaining the same accuracy; for example,
QMSInfer verified the benchmark named P12 in a few seconds, whereas the prior SMT-
based method took more than an hour.

• QMSInfer is significantly more accurate and faster than prior SMT-based approach for
computing the QMS values [41, 42].

6.1 Benchmarks

Table 1 shows the detailed statistics of the benchmarks, including 17 examples (P1–P17), all of
which have nonlinear operations. Columns 1 and 2 show the name of the program and a short
description. Column 3 shows the number of instructions in the probabilistic Boolean program.
Column 4 shows the number of internal nodes in DDG denoting intermediate computation re-
sults. The remaining columns show the number of bits in the secret, public, and random variables,
respectively. Remark that the number of random variables in each intermediate computation result
is far less than the one of the program. All these programs are transformed into Boolean programs
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Table 2. Experimental Results: Comparison of Three Perfect Masking Verification Approaches, Where
Column Masked Gives the Ground Truth (Yes Denoting Perfectly Masked, Otherwise No), Column �UKD

Gives the Number of UKD-typed Nodes, Column �NPM Gives the Number of NPM-typed Nodes, and Column
�By SMT Denotes the Number of Nodes That Are Checked by Invoking the SMT-based Approach

Name Masked
Syn. Infer [65] SMT App [39, 40] QMSInfer

�UKD Time �NPM �By SMT Time �NPM �By SMT Time

P1 No 16 ≈0s 16 16 0.39s 16 16 0.41s

P2 No 8 ≈0s 8 8 0.28s 8 8 0.73s

P3 Yes 0 ≈0s 0 0 ≈0s 0 0 0s

P4 Yes 3 ≈0s 0 3 0.16s 0 0 0.13s

P5 Yes 3 ≈0s 0 3 0.15s 0 2 0.36s

P6 No 2 ≈0s 2 2 0.11s 2 2 0.27s

P7 No 2 0.01s 1 2 0.11s 1 1 0.20s

P8 No 3 ≈0s 3 3 0.15s 3 3 0.31s

P9 No 2 ≈0s 2 2 0.11s 2 2 0.27s

P10 No 3 ≈0s 1 2 0.15s 1 2 0.28s

P11 No 4 ≈0s 1 3 0.2s 1 3 0.37s

P12 Yes 0 1m 5s 0 0 92m 8s 0 0 4.44s

P13 No 4800 1m 11s 4800 4800 95m 30s 4800 4800 47m 16s

P14 No 3200 1m 11s 3200 3200 118m 1s 3200 3200 55m 25s

P15 No 3200 1m 21s 1600 3200 127m 45s 1600 3200 58m 35s

P16 No 4800 1m 13s 4800 4800 123m 54s 4800 4800 63m 26s

P17 No 17600 1m 14s 17600 16000 336m 51s 17600 12800 109m 16s

where each instruction has at most two operands. Since the statistics were collected from the
transformed code, they may have minor differences from statistics reported in prior work [39, 40].

In particular, P1–P5 are masking examples originated from Reference [15], P6 and P7 are origi-
nated from Reference [22], P8 and P9 are the MAC-Keccak computation reordered examples orig-
inated from Reference [16], and P10 and P11 are two experimental masking schemes for the Chi
function in MAC-Keccak. Among the larger programs, P12–P17 are the regenerations of MAC-
Keccak reference code submitted to the SHA-3 competition held by NIST, where P13–P16 im-
plement the masking of Chi functions using different masking schemes and P17 implements the
de-masking of Pi function.

6.2 Experimental Results on Verifying Perfect Masking

We compare the performance of QMSInfer, the purely syntactic type inference method (denoted
Syn. Infer) and the incremental SMT-based method (denoted by SMT App). Table 2 shows the
results. Column 1 shows the name of each benchmark. Column 2 shows whether it is perfectly
masked (ground truth). Columns 3 and 4 show the results of the purely syntactic type inference
method, including the number of nodes inferred as UKD type and the time. Columns 5–7 (respec-
tively, Columns 8–10) show the results of the incremental SMT-based method (respectively, our
method QMSInfer), including the number of leaky nodes (NPM type), the number of nodes actually
checked by the SMT-based approach, and the time.

Compared with syntactic type inference method, our approach is significantly more accurate
(e.g., see P4, P5, and P15), where many of UKD-typed nodes are refined to either NPM type or SID
type. Furthermore, the time taken by both methods are comparable on small programs. On the large
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programs that are not perfectly masked (i.e., P13–P17), our method is slower since QMSInfer has
to resolve the UKD nodes reported by syntactic inference. However, it is interesting to note that,
on the perfectly masked large program (P12), our method is faster. Indeed, every intermediate
computation result in P12 is syntactically masked by a unique random variable that allow us to
prove it using the syntactic type inference system. Masking each intermediate computation result
by a unique random variable is a possible solution, but not efficient in practice, as generation of
random values is very time-consuming.

Moreover, the UKD-typed nodes in P4, reported by the purely syntactic type inference method,
are all proved to be perfectly masked by our semantic type inference system, without calling the
SMT solver at all. As for the three UKD-typed nodes in P5, our method proves them all by invoking
the SMT solver only twice; it means that the feedback of the new SID types (discovered by SMT-
based approach) allows our type system to improve its accuracy, which turns the third UKD-type
node to SID type.

Finally, compared with the original SMT-based approach, our method is almost twice faster on
the large programs (e.g., P12–P17). Furthermore, the number of nodes actually checked by invoking
the SMT solver is also lower than in the original SMT-based approach (e.g., P4 and P5, and P17).
In particular, there are 3,200 UKD-typed nodes in P17, which are refined into NPM type by our new
inference rules (cf. Figure 6), and thus avoid the more expensive SMT calls.

To summarize, results of our experiments show that QMSInfer is fast in obtaining proofs in
perfectly masked programs, while retaining the ability to detect real leaks in not perfectly masked
programs and is scalable for handling realistic applications.

Detailed Statistics. Table 3 and Table 4 show more detailed statistics of our approach on verifying
perfect masking.

In Table 3, Columns 2–5 show the number of nodes in each distribution type deduced by our
method. Column 6 and Column 7 show the number of UKD-typed nodes that are proved by the
SMT-based approach and the semantic type inference, respectively. Column 8 and Column 9 show
the number of UKD-typed nodes that are refined to NPM type and SID type, respectively.

Results in Table 3 indicate that most of the DDG nodes in these benchmark programs are either
RUD or SID, and almost all of them can be quickly deduced by our type system. Column 4 shows
that, at least in these benchmark programs, Boolean constants are rare. Column 6 and Column 7
indicate that most of UKD-typed nodes are resolved by the SMT-based approach, and the semantic
type system works in some cases. Columns 8 and 9 show that if our refined type system fails
to prove perfect masking, it is usually not perfectly masked. One may notice that type inference
with SemdR does not make sense on benchmarks P12-P17. We argue that all of P12-P17 are the
regenerations of MAC-Keccak reference code. We plan to analyze more benchmarks in future.

In Table 4, Column 2 shows the number of SMT calls for computing SemdR, and Column 3 shows
the corresponding time. Column 4 shows the number of SMT calls for checking don’t care variables
used to reduce SMT formula size, and Column 5 shows the corresponding time for computing all
the don’t care variables. Column 6 shows the number of SMT calls used by SMT-based perfect
masking checking and Column 7 shows the time for SMT-based perfect masking checking.

Results in Table 4 indicate that most of the time is spent on computing don’t care variables and
SemdR, while the time taken by the SMT solver to conduct model-counting (SAT#) is relatively
small. In contrast, the original SMT-based approach spent a large amount of time on the static
analysis part, which performs code partitioning and applies the heuristic rules (cf. Section 4.1).
This explains why our new method is more efficient than the original SMT-based approach. More-
over, the time of our new method can be improved further by disabling the SemdR computing on
P12-P17.
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Table 3. Statistics: Number of Nodes in Different Distribution Types, Where Column �T for Each
T ∈ {RUD, SID, CST, NPM} Denotes the Number of T -typed Nodes, Column �Resolved UKD By SMT

(Respectively, �Resolved UKD By SemdR) Denotes the Number of UKD-typed Nodes That Are
Resolved by the SMT-based Approach (Respectively, Semantic Type inference), and Column
�UKD to NPM (Respectively, �UKD to SID) Denotes the Number of UKD-typed Nodes That

Are Refined to NPM Type (Respectively, SID Type)

Name �RUD �SID �CST �NPM
�Resolved UKD �Resolved UKD �UKD �UKD

by SMT by SemdR to NPM to SID
P1 16 0 0 16 16 0 16 0
P2 16 0 0 8 8 0 8 0
P3 6 0 0 0 0 0 0 0
P4 6 0 0 0 0 1 0 0
P5 6 2 0 0 2 1 0 2
P6 4 3 0 2 2 0 2 0
P7 5 5 0 1 1 1 1 0
P8 11 4 0 3 3 0 3 0
P9 12 4 0 2 2 0 2 0
P10 20 6 1 1 2 1 1 1
P11 19 7 1 1 3 1 1 2
P12 190400 6400 0 0 0 0 0 0
P13 185600 6400 0 4800 4800 0 4800 0
P14 187200 6400 0 3200 3200 0 3200 0
P15 188800 8000 0 1600 3200 0 1600 1600
P16 185600 6400 0 4800 4800 0 4800 0
P17 185600 1600 0 17600 12800 0 12800 0

6.3 Experimental Results on Checking a QMS Requirement

In the previous subsection, we have shown results of verifying perfect masking, which can be seen
as a special case of checking the QMS requirement of 1. In this subsection, we report the results of
two more experiments on checking the more general QMS requirements to understand how the
QMS requirements affect performance.

In the first experiment, we check all benchmark programs against the QMS requirement 0.5.
Table 5 shows the result. Column 2 and Column 3 show the number of nodes that satisfy and dis-
satisfy the QMS requirement, respectively. Columns 4 and 5 show the results of the SMT-based
approach from Reference [41], including the number of nodes that are checked by the SMT-based
approach and the corresponding time. Similarly, Columns 6–8 show the results of QMSInfer in-
cluding the number of nodes that are checked by calling the SMT solver, the number of nodes that
skipped due to perfect masking proved by calling the SMT solver, and the corresponding time.

Columns 2 and 3 show that six programs in our benchmarks do not satisfy the QMS requirement
0.5, which is significantly different from the results of checking the QMS requirement 1 (cf. Table 3).
Compared with the SMT-based approach [41], CheckQMS takes less time on the large programs
(i.e. P12–P17), which confirms that our refinement-based approach significantly improves the ef-
ficiency. Columns 4, 6, and 7 show that perfectly masked nodes can be skipped for checking the
QMS requirements.

In the second experiment, we check the larger programs, P14, P15, and P16, against the QMS
requirement values ranged from 0.1 to 1.0 with step 0.1. Figure 8 shows the number of unsat nodes
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Table 4. Statistics: Where Column �SMT Calls and time in Column Computing SemdR
(Respectively, Columns Computing don’t care and Checking Perfect Masking) Denote the

Number of Calls to SMT Solver and Corresponding Execution Time During the Computation
of SemdR (don’t Care Random Variables and Checking Perfect Masking

by the SMT-based Approach)

Name
Computing SemdR Computing don’t care Checking perfect masking
�SMT Calls Time �SMT Calls Time �SMT Calls Time

P1 0 0s 0 0s 16 0.41s
P2 16 0.38s 8 0.15s 8 0.20s
P3 0 0s 0 0s 0 0s
P4 3 0s 1 0s 0 0s
P5 6 0.11s 5 0.10s 2 0.06s
P6 8 0.13s 0 0.10s 2 0.04s
P7 8 0.06s 1 0.03s 1 0.02s
P8 12 0.17s 2 0.10s 3 0.04s
P9 12 0.17s 0 0.06s 2 0.04s
P10 11 0.14s 1 0.10s 2 0.04s
P11 15 0.16s 2 0.15s 3 0.06s
P12 0 0s 0 0s 0 0s
P13 105600 29m 42s 52800 16m 3s 4800 1m 25s
P14 19200 27m 51s 148416 26m 13s 3200 1m 15s
P15 17600 21m 7s 148288 35m 35s 3200 1m 47s
P16 16000 27m 40s 174016 34m 3s 4800 1m 37s
P17 6403 19m 8s 317760 85m 57s 12800 4m 4s

(i.e., nodes that do not satisfy the QMS requirement) and the corresponding time. In the first part
of Figure 8, the x-axis is the QMS requirement, and the y-axis is the number of unsat nodes. The
result shows that the three programs have the same numbers of unsat nodes when the QMS value
is less than or equal to 0.5 or greater than 0.6. Furthermore, there is a significantly increase from
0.5 to 0.6. In the second part of Figure 8, the x-axis is the QMS requirement, and the y-axis is the
time. The result shows that there is no explicit corelation between the time and the number of
unsat nodes.

6.4 Experimental Results on Computing the QMS Value

In this subsection, we conduct two experiments. The first experiment computes the QMS values
for all intermediate computation results of each program, and the second experiment computes
only the minimal QMS value.

Table 6 shows the experimental results of computing the QMS values. Columns 2–6 (respec-
tively, Columns 7–11) show the statistics of the SMT-based approach [41] (respectively, our QM-
SInfer approach), including the total number of iterations during the computation of QMS values,
the total time, as well as the minimal, maximal, and average of the QMS values. Columns 12–14
show the difference of the minimal, maximal, and average QMS values between two approaches,
respectively.

Compared with the SMT-based approach [41], our approach QMSInfer takes significant fewer
iterations and less time, especially on the larger programs (i.e., P12–P17), as our binary search
depends on the number of semantically dependent random variables and thus can be more
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Table 5. Experimental Results of Checking the Benchmark Programs Against the QMS Requirement ≥ 0.5,
Where the Column �SAT (Respectively, �UNSAT) Denotes the Number of Nodes That Satisfies

(Respectively, Does Not Satisfy) the QMS Requirement 0.5, Column �QMS By SMT Denotes the Number
of Nodes That Are Checked by the SMT-based Approach, and Column �P.M. By SMT Denotes the Number

of Nodes That Skipped Due to Perfect Masking Proved by Calling the SMT Solver

Name
�Nodes SMT-based [41] CheckQMS

�SAT �UNSAT �QMS By SMT Time �QMS By SMT �P.M. By SMT Time
P1 16 16 16 0.69s 16 0 0.66s
P2 16 8 8 0.39s 8 0 0.64s
P3 6 0 0 0s 0 0 0s
P4 6 0 3 0.20s 0 0 ≈0s
P5 8 0 3 0.21s 0 2 0.20s
P6 9 0 2 0.13s 2 0 0.20s
P7 11 0 2 0.15s 1 0 0.19s
P8 17 1 3 0.21s 3 0 0.33s
P9 18 0 2 0.15s 2 0 0.28s
P10 28 0 2 0.19s 1 1 0.26s
P11 28 0 3 0.28s 1 2 0.37s
P12 196800 0 0 91m 42s 0 0 4.34s
P13 192000 4800 4800 97m 2s 4800 0 47m 57s
P14 196800 0 3200 116m 59s 3200 0 53m 23s
P15 198400 0 3200 129m 24s 1600 1600 55m 33s
P16 195200 1600 4800 127m 44s 4800 0 60m 59s
P17 192000 12800 16000 351m 50s 12800 0 109m 4s

efficient than the step of 0.01 used in the SMT-based approach [41]. Columns 12–14 indicate that
the difference on the minimal QMS and average QMS between two approaches are not larger than
0.01, which explains why the two approaches obtain almost the same results. Since the number
of semantically dependent random variables for each intermediate computation result is usually
small, the step 0.01 in the SMT-based approach [41] is accurate enough to approach the real QMS
value.

Table 7 shows the experimental results of computing the minimal QMS value. Columns 2–4
(respectively, Columns 5–7) show statistics of MinQMSInfer approach (respectively, QMSInfer
approach), including the total number of iterations to obtain the minimal QMS value, the time for
computing the minimal QMS value (excluding perfect masking checking), and the total time. Com-
pared with QMSInfer, MinQMSInfer takes significant fewer iterations and less time to obtain the
minimal QMS value. Column 8 shows the minimal QMS value computed.

7 RELATED WORK

In this section, we review related work on masking countermeasures in general, as well as existing
techniques on the verification of perfect masking, quantitative estimation of information leakage,
and the detection/mitigation of other types of side-channel leaks.

7.1 Masking

Many masking countermeasures [22, 26, 49, 53, 59, 61, 64, 72, 74–76] have been published in the
past two decades: Although they differ in adversary models, masking schemes, cryptographic
algorithms, and compactness, these countermeasures are often manually designed for specific
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Fig. 8. The number of unsatisfiable nodes (above figure) and the time (below figure) with respect to the QMS
requirements.

cryptographic algorithms. In this context, the common problem is the lack of efficient and au-
tomated tools for proving their correctness [34, 35]. Our work aims to bridge the gap.

Another line of existing work is mitigating side-channel attacks automatically [1, 9, 14, 23, 38,
62, 82]. For example, techniques proposed in References [1, 9, 14, 62] rely on compiler-like pattern
matching, whereas the ones proposed in References [23, 38, 82] use inductive program synthesis.
Both types of techniques, however, are orthogonal to our work reported in this article. Thus, it
would be interesting to investigate whether our new method can aid in the synthesis of better
masking countermeasures, as done in Reference [38].

7.2 Perfect Masking Verification

There are two types of existing methods for verifying perfect masking. One type is simulation-
based methods [4, 48, 78], which are able to detect side-channel leaks but not prove their absence.
The other type is formal verification methods [8, 9, 15, 17, 20, 21, 33, 39, 40, 45, 65], which are able
to prove the absence of side-channel leaks. However, as we have explained earlier, these existing
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Table 6. Experimental Results of Computing the QMS Values, Where Column �Iter Gives the Total Number
of Iterations during Binary Search, Columns Min, Max, and Arg Give the Minimal, Maximal, and Average
QMS Values, and Columns Min Diff, Max Diff, and Arg Diff Give the Difference of Minimal, Maximal, and

Average QMS Values between the Prior SMT-based Method [41] and Our QMSInfer

Name
SMT-based [41] QMSInfer Min Max Avg

�Iter Time Min Max Arg �Iter Time Min Max Arg Diff Diff Diff

P1 1600 27.40s 0.00 1.00 0.50 0 0.36s 0.00 1.00 0.50 0.0 0.0 0.0

P2 800 13.94s 0.00 1.00 0.67 0 0.60s 0.00 1.00 0.67 0.0 0.0 0.0

P3 0 0s 1.00 1.00 1.00 0 0s 1.00 1.00 1.00 0.0 0.0 0.0

P4 0 0.15s 1.00 1.00 1.00 0 0.06s 1.00 1.00 1.00 0.0 0.0 0.0

P5 0 0.15s 1.00 1.00 1.00 0 0.21s 1.00 1.00 1.00 0.0 0.0 0.0

P6 100 1.90s 0.51 1.00 0.89 6 0.27s 0.50 1.00 0.89 0.01 0.0 0.0

P7 50 0.98s 0.51 1.00 0.96 2 0.20s 0.50 1.00 0.95 0.01 0.0 0.01

P8 200 3.69s 0.00 1.00 0.89 6 0.39s 0.00 1.00 0.89 0.0 0.0 0.0

P9 100 1.92s 0.51 1.00 0.95 6 0.34s 0.50 1.00 0.94 0.01 0.0 0.01

P10 50 1.07s 0.51 1.00 0.98 3 0.30s 0.50 1.00 0.98 0.01 0.0 0.0

P11 50 1.23s 0.51 1.00 0.98 3 0.40s 0.50 1.00 0.98 0.01 0.0 0.0

P12 0 93m 4s 1.00 1.00 1.00 0 4.50s 1.00 1.00 1.00 0.0 0.0 0.0

P13 480000 239m 44s 0.00 1.00 0.98 0 45m 55s 0.00 1.00 0.98 0.0 0.0 0.0

P14 160000 181m 27s 0.51 1.00 0.99 9600 55m 18s 0.50 1.00 0.99 0.01 0.0 0.0

P15 80000 170m 30s 0.51 1.00 1.00 4800 56m 46s 0.50 1.00 1.00 0.01 0.0 0.0

P16 320000 232m 33s 0.00 1.00 0.98 6400 61m 32s 0.00 1.00 0.98 0.0 0.0 0.0

P17 1440000 1057m 1s 0.00 1.00 0.93 4800 111m 4s 0.00 1.00 0.94 0.0 0.0 0.01

formal verification methods are either fast but inaccurate (e.g., type-inference-based techniques)
or accurate but slow (e.g., model-counting-based techniques).

More specifically, Bayrak et al. [15] developed a leak detector, which checks if a computation
result is logically dependent of the secret data and, at the same time, logically independent of any
random variable used for masking the secret data. Their method is fast, but not accurate, in that
many leaky nodes could be incorrectly classified as leakage free [39, 40].

Barthe et al. leveraged the notion of t-noninterference [8] from probabilistic programs to verify
perfect masking, and they proposed a syntactic type-inference method to prove t-noninterference
by exploiting the unique characteristics of invertible operations such as ⊕. Purely algebraic laws
were used to normalize expressions of intermediate computation results, so that the rules of in-
vertible functions can be applied. However, since expression normalization is costly, it is applied
only once for each intermediate computation result.

The notion of t-noninterference was extended later [9] for compositional verification of per-
fect masking. That is, it allows the authors to prove the security of smaller code sequences
(called gadgets) when composed with other code parts (gadgets satisfying a stronger version of
t-noninterference can be freely composed with other gadgets without interfering). More recently,
(strong) t-noninterference was also extended with glitches [10]. However, the problem is that not
all masking algorithms are composable and thus can be verified using this technique. Follow-
ing [8], Bisi et al. [20] proposed a technique for verifying higher-order masking, but the technique
was limited to linear operations only. Ouahma et al. also generalized the approach of Reference [8]
to verify assembly-level code [21].

Coron proposed two alternative approaches to prove (strong) t-noninterference [33]. The
first one is similar to Reference [8] but uses the Common Lisp language. The second one uses
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Table 7. Experimental Results of Computing the Minimal QMS Value, Where Column �Iter Gives
the Total Number of Iterations during Binary Search, Columns Time4QMS Give the Time Used
for Computing QMS Values (Excluding the Verification of Perfect Masking), and Column Min

QMS Value Gives the Minimal QMS Value Computed

Name
MinQMSInfer QMSInfer Min QMS

�Iter Time4QMS Total time �Iter Time4QMS Total time Value
P1 0 0s 0.02s 0 0s 0.36s 0.00
P2 0 0s 0.09s 0 0s 0.60s 0.00
P3 0 0s 0s 0 0s 0s 1.00
P4 0 0s 0.25s 0 0s 0.06s 1.00
P5 0 0s 0.28s 0 0s 0.21s 1.00
P6 4 0.08s 0.24s 6 0.10s 0.27s 0.50
P7 2 0.03s 0.20s 2 0.03s 0.20s 0.50
P8 4 0.07s 0.35s 6 0.11s 0.39s 0.00
P9 4 0.07s 0.31s 6 0.11s 0.34s 0.50
P10 3 0.06s 0.29s 3 0.06s 0.30s 0.50
P11 3 0.07s 0.37s 3 0.06s 0.40s 0.50
P12 0 0s 4.11s 0 0s 4.50s 1.00
P13 0 0s 0.76s 0 0s 45m 55s 0.00
P14 3202 1m 24s 53m 37s 9600 3m 49s 55m 18s 0.50
P15 1602 59.43s 54m 57s 4800 2m 33s 56m 46s 0.50
P16 3 0.05s 2.54s 6400 2m 4s 61m 32s 0.00
P17 0 0s 0.66s 4800 1m 14s 111m 4s 0.00

elementary transformations to make the targeted program verifiable using (strong) t-
noninterference. Faust et al. also generalized the notion of (strong) t-noninterference with glitches
[45] for hardware, but, to our knowledge, no implementation or evaluation exists.

Bhasin et al. [17] proposed a Fourier transform-based approach to estimate the side-channel
attack resistance of circuits. Their approach uses a SAT solver to construct low-weight functions
of a certain resistance order, but has not been used to evaluate existing implementations of cryp-
tographic functions. A similar idea was proposed by Bloem at al. [21], which takes glitches into
account and proves perfect masking by estimating the non-zero Fourier coefficients of the func-
tions in hardware.

It is worth noting that all the above formal verification methods are incomplete in that it is
possible for programs to be secure and, at the same time, cannot be verified by these methods.
In contrast, the model-counting-based method proposed by Eldib et al. [39, 40] is both sound and
complete, but also significantly less scalable, because the size of the first-order logic formulas that
they need to construct and solve are exponential in the number of random variables used for
masking the secret data.

Our gradual refinement of type-inference rules was inspired by recent works on proving prob-
abilistic non-interference [8, 9, 21, 33, 65]. However, our method differs from them in that their
type-inference rules are always syntactic and fixed, whereas our type-inference rules are both
semantic and can be gradually refined using SMT solver-based satisfiability-checking and model-
counting (SAT and SAT#).

An alternative way of solving the model-counting problem [5, 27, 28, 47] is to use satisfiability
modulo counting, which is a generalization of the satisfiability problem of SMT with counting
constraints [46]. Toward this end, Fredrikson and Jha [46] have developed an efficient decision
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procedure for linear integer arithmetic (LIA) based on Barvinok’s algorithm [13] and also applied
their approach to differential privacy. However, more research is needed to apply similar tech-
niques to cryptographic algorithms, where non-linear functions are widely used.

7.3 Quantitative Estimation of Information Leakage

The notion of QMS was proposed by Eldib et al. in References [41, 42] for quantifying the re-
sistance against power side-channel attacks. As mentioned earlier, their algorithm computes an
approximation of the QMS by directly searching for a value between 0 to 1 with step 0.01, whereas
our new method computes the more accurate QMS value using a binary search that takes into
account the number of random variables in the intermediate computation results.

There exist other security metrics for quantitative information flow analysis such as Shannon-
entropy, mutual information, and min-entropy from information theory [19, 31, 57, 70, 71, 77, 81].
The quantitative information flow framework has also been specialized to perform side-channel
analysis [58, 66, 68, 79]. In general, these metrics are used to quantify how much information
is being leaked and the success rate or guessing entropy, while QMS is used to quantify how
many power measurement traces are required to successfully break the countermeasure. Moreover,
in the context of QMS, program inputs are partitioned into public and private variables, which
means the leakage should be understood as conditional mutual information as mentioned in, e.g.,
Reference [58].

7.4 Other Types of Side Channels

In addition to detecting and mitigating power side-channel attacks, there are techniques for miti-
gating other types of side-channel attacks, where the side channels can be in the form of the CPU
time [2, 3, 7, 25, 30, 54, 67, 69, 84], faults [11, 18, 24, 43] and cache behaviors [12, 29, 32, 37, 50, 51,
56, 80, 83, 85]. Since each type of side-channel has unique characteristics, in general, these exist-
ing techniques are orthogonal to our work. Nevertheless, it remains an open problem whether our
refinement-based techniques, in principle, can be used to improve the accuracy and scalability of
verification in these contexts.

8 CONCLUSIONS AND FUTURE WORK

We have presented a refinement-based approach for verifying and quantifying of side-channel re-
sistance of masked software implementations. Our method relies on a set of semantic inference
rules to reason about distribution types of intermediate computation results, coupled with an SMT
solver-based procedure for gradually refining these types to increase accuracy. We have imple-
mented our approach in a tool and demonstrated its efficiency and effectiveness on cryptographic
benchmarks. Our results show that it outperforms state-of-the-art techniques.

For future work, we plan to evaluate our type inference systems for higher-order masking, ex-
tend it to handle integer programs as opposed to bit-blasting them to Boolean programs, and in-
vestigate the synthesis of masking countermeasures based on our verification method.

REFERENCES

[1] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2012. A code morphing methodology to automate power

analysis countermeasures. In Proceedings of the ACM/IEEE Design Automation Conference. 77–82.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016. Verifying

constant-time implementations. In Proceedings of the USENIX Security Symposium. 53–70.

[3] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and Shiyi Wei. 2017. Decompo-

sition instead of self-composition for proving the absence of timing channels. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation. 362–375.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 3, Article 16. Pub. date: July 2019.



Verifying and Quantifying Side-channel Resistance of Masked Software Implementations 16:29

[4] Victor Arribas, Svetla Nikova, and Vincent Rijmen. 2017. VerMI: Verification tool for masked implementations. In

Proceedings of the IACR Cryptology ePrint Archive (2017), 1227.

[5] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-based model counting for string constraints. In

Proceedings of the International Conference on Computer Aided Verification. 255–272.

[6] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier Standaert. 2014. On the cost

of lazy engineering for masked software implementations. In Proceedings of the International Conference on Smart

Card Research and Advanced Applications (CARDIS’14). 64–81.

[7] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik Bultan. 2016. String analysis for

side channels with segmented oracles. In Proceedings of the ACM SIGSOFT Symposium on Foundations of Software

Engineering. 193–204.

[8] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub. 2015.

Verified proofs of higher-order masking. In Proceedings of the 34th Annual International Conference on the Theory and

Applications of Cryptographic (EUROCRYPT’15). 457–485.

[9] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and

Rébecca Zucchini. 2016. Strong non-interference and type-directed higher-order masking. In Proceedings of the ACM

Conference on Computer and Communications Security. 116–129.

[10] Gilles Barthe, Sonia Belaïd, Pierre-Alain Fouque, and Benjamin Grégoire. 2018. maskVerif: A formal tool for analyzing

software and hardware masked implementations. IACR Cryptology ePrint Archive 2018 (2018), 562.

[11] Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Jean-Christophe Zapalowicz. 2014.

Synthesis of fault attacks on cryptographic implementations. In Proceedings of the ACM SIGSAC Conference on Com-

puter and Communications Security. 1016–1027.

[12] Gilles Barthe, Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2014. Leakage resilience against concurrent cache

attacks. In Proceedings of the 3rd International Conference on Principles of Security and Trust, Held as Part of the European

Joint Conferences on Theory and Practice of Software. 140–158.

[13] Alexander I. Barvinok. 1994. A polynomial time algorithm for counting integral points in polyhedra when the di-

mension is fixed. Mathematics of Operations Research 19, 4 (1994), 769–779.

[14] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Standaert, and Paolo Ienne. 2011. A first step

towards automatic application of power analysis countermeasures. In Proceedings of the ACM/IEEE Design Automation

Conference. 230–235.

[15] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. 2013. Sleuth: Automated verification of software

power analysis countermeasures. In Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems.

293–310.

[16] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, and Ronny Van Keer. 2013. Keccak implementation

overview. https://keccak.team/files/Keccak-implementation-3.2.pdf.

[17] Shivam Bhasin, Claude Carlet, and Sylvain Guilley. 2013. Theory of masking with codewords in hardware: Low-

weight dth-order correlation-immune Boolean functions. IACR Cryptology ePrint Archive 2013 (2013), 303.

[18] Eli Biham and Adi Shamir. 1997. Differential fault analysis of secret key cryptosystems. In Proceedings of the Interna-

tional Cryptology Conference on Advances in Cryptology (CRYPTO’97). 513–525.

[19] Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay, Kuldeep S. Meel, and Jean Quilbeuf. 2018. Scalable

approximation of quantitative information flow in programs. In Proceedings of the 19th International Conference on

Verification, Model Checking, and Abstract Interpretation (VMCAI’18). 71–93.

[20] Elia Bisi, Filippo Melzani, and Vittorio Zaccaria. 2017. Symbolic analysis of higher-order side channel countermea-

sures. IEEE Trans. Comput. 66, 6 (2017), 1099–1105.

[21] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard, and Johannes Winter. 2018. For-

mal verification of masked hardware implementations in the presence of glitches. In Proceedings of the 37th Annual

International Conference on the Theory and Applications of Cryptographic Techniques, Advances in Cryptology. 321–353.

[22] Johannes Blömer, Jorge Guajardo, and Volker Krummel. 2004. Provably secure masking of AES. In Proceedings of the

International Workshop on Selected Areas in Cryptography. Springer, 69–83.

[23] Arthur Blot, Masaki Yamamoto, and Tachio Terauchi. 2017. Compositional synthesis of leakage resilient programs.

In Proceedings of the International Conference on Principles of Security and Trust. 277–297.

[24] Jakub Breier, Xiaolu Hou, and Yang Liu. 2017. Fault Attacks Made Easy: Differential Fault Analysis Automation on

Assembly Code. Cryptology ePrint Archive, Report 2017/829.

[25] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2018. Symbolic path cost analysis for side-channel detection. In

Proceedings of the International Conference on Software Engineering. 424–425.

[26] D. Canright and Lejla Batina. 2008. A very compact “perfectly masked” S-Box for AES. In Proceedings of the Interna-

tional Conference on Applied Cryptography and Network Security. 446–459.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 3, Article 16. Pub. date: July 2019.

https://keccak.team/files/Keccak-implementation-3.2.pdf


16:30 P. Gao et al.

[27] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y. Vardi. 2014. Distribution-

aware sampling and weighted model counting for SAT. In Proceedings of the AAAI Conference on Artificial Intelligence.

1722–1730.

[28] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2013. A scalable approximate model counter. In Proceed-

ings of the International Conference on Principles and Practice of Constraint Programming. 200–216.

[29] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. 2017. Quantifying the information leak in

cache attacks via symbolic execution. In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods

and Models for System Design. 25–35.

[30] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise detection of side-channel vulnerabilities using quantitative cartesian

hoare logic. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 875–890.

[31] Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. 2014. LeakWatch: Estimating information leakage from java

programs. In Proceedings of the 19th European Symposium on Research in Computer Security. 219–236.

[32] Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. 2016. Precise cache timing analysis via symbolic execution. In

Proceedings of the IEEE Symposium on Real-Time and Embedded Technology and Applications. 293–304.

[33] Jean-Sébastien Coron. 2018. Formal verification of side-channel countermeasures via elementary circuit transforma-

tions. In Proceedings of the 16th International Conference on Applied Cryptography and Network Security. 65–82.

[34] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. 2007. Side channel cryptanalysis of a higher order

masking scheme. In Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems. 28–44.

[35] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. 2013. Higher-order side channel secu-

rity and mask refreshing. In Proceedings of the International Workshop on Fast Software Encryption (FSE’13). 410–424.

[36] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the Interna-

tional Conference on Tools and Algorithms for Construction and Analysis of Systems. 337–340.

[37] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2013. CacheAudit: A tool for the

static analysis of cache side channels. In Proceedings of the USENIX Security Symposium. 431–446.

[38] Hassan Eldib and Chao Wang. 2014. Synthesis of masking countermeasures against side channel attacks. In Proceed-

ings of the International Conference on Computer Aided Verification. 114–130.

[39] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. Formal verification of software countermeasures against

side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24, 2 (2014), 11.

[40] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. SMT-based verification of software countermeasures against

side-channel attacks. In Proceedings of the International Conference on Tools and Algorithms for Construction and Anal-

ysis of Systems. 62–77.

[41] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. 2014. QMS: Evaluating the side-channel resistance

of masked software from source code. In Proceedings of the ACM/IEEE Design Automation Conference. 209:1–6.

[42] Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schaumont. 2015. Quantitative masking strength: Quanti-

fying the power side-channel resistance of software code. IEEE Trans. CAD Integr. Circ. Syst. 34, 10 (2015), 1558–1568.

[43] Hassan Eldib, Meng Wu, and Chao Wang. 2016. Synthesis of fault-attack countermeasures for cryptographic circuits.

In Proceedings of the International Conference on Computer Aided Verification. 343–363.

[44] Christophe Clavier et al. 2014. Practical improvements of side-channel attacks on AES: Feedback from the 2nd DPA

contest. J. Cryptogr. Eng. 4, 4 (2014), 259–274.

[45] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and François-Xavier Standaert. 2017.

Composable masking schemes in the presence of physical defaults and the robust probing model. IACR Cryptology

ePrint Archive 2017 (2017), 711.

[46] Matthew Fredrikson and Somesh Jha. 2014. Satisfiability modulo counting: A new approach for analyzing privacy

properties. In Proceedings of the ACM/IEEE Symposium on Logic in Computer Science. 42:1–42:10.

[47] Daniel J. Fremont, Markus N. Rabe, and Sanjit A. Seshia. 2017. Maximum model counting. In Proceedings of the AAAI

Conference on Artificial Intelligence. 3885–3892.

[48] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011. A testing methodology for side channel resis-

tance validation. In Proceedings of the NIST Non-invasive Attack Testing Workshop.

[49] Louis Goubin. 2001. A sound method for switching between boolean and arithmetic masking. In Proceedings of the

Workshop on Cryptographic Hardware and Embedded Systems. 3–15.

[50] Philipp Grabher, Johann Großschädl, and Dan Page. 2007. Cryptographic side-channels from low-power cache mem-

ory. In Proceedings of the IMA International Conference on Cryptography and Coding. 170–184.

[51] Shengjian Guo, Meng Wu, and Chao Wang. 2018. Adversarial symbolic execution for detecting concurrency-related

cache timing leaks. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering.

[52] Gary D. Hachtel and Fabio Somenzi. 1996. Logic Synthesis and Verification Algorithms. Kluwer.

[53] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private circuits: Securing hardware against probing attacks. In

Proceedings of the International Cryptology Conference on Advances in Cryptology (CRYPTO’03). 463–481.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 3, Article 16. Pub. date: July 2019.



Verifying and Quantifying Side-channel Resistance of Masked Software Implementations 16:31

[54] Paul C. Kocher. 1996. Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In Proceed-

ings of the International Cryptology Conference on Advances in Cryptology (CRYPTO’96). 104–113.

[55] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In Proceedings of the International

Cryptology Conference on Advances in Cryptology (CRYPTO’99). 388–397.

[56] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2012. Automatic quantification of cache side-channels. In Pro-

ceedings of the International Conference on Computer Aided Verification. 564–580.

[57] Pasquale Malacaria and Jonathan Heusser. 2010. Information theory and security: Quantitative information flow.

In Proceedings of the 10th International School on Formal Methods for the Design of Computer, Communication and

Software Systems (SFM’10). 87–134. DOI:https://doi.org/10.1007/978-3-642-13678-8_3

[58] Pasquale Malacaria, M. H. R. Khouzani, Corina S. Pasareanu, Quoc-Sang Phan, and Kasper Søe Luckow. 2018. Sym-

bolic side-channel analysis for probabilistic programs. IACR Cryptology ePrint Archive 2018 (2018), 329.

[59] Thomas S. Messerges. 2000. Securing the AES finalists against power analysis attacks. In Proceedings of the Interna-

tional Workshop on Fast Software Encryption. 150–164.

[60] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. 2011. On the vulnerability of FPGA bitstream

encryption against power analysis attacks: Extracting keys from xilinx Virtex-II FPGAs. In Proceedings of the ACM

Conference on Computer and Communications Security. 111–124.

[61] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. 2011. Pushing the limits: A very com-

pact and a threshold implementation of AES. In Proceedings of the International Conference on the Theory and Appli-

cations of Cryptographic Techniques (EUROCRYPT’11). 69–88.

[62] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2012. Compiler assisted masking. In Proceedings of

the Workshop on Cryptographic Hardware and Embedded Systems. 58–75.

[63] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. 2012. RSM: A small and fast countermeasure

for AES, secure against 1st and 2nd-order zero-offset SCAs. In Proceedings of the Design, Automation & Test in Europe

Conference & Exhibition (DATE’12). 1173–1178.

[64] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. 2005. A side-channel analysis resistant

description of the AES S-Box. In Proceedings of the International Workshop on Fast Software Encryption. 413–423.

[65] Inès Ben El Ouahma, Quentin Meunier, Karine Heydemann, and Emmanuelle Encrenaz. 2017. Symbolic approach for

side-channel resistance analysis of masked assembly codes. In Security Proofs for Embedded Systems.

[66] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run side-channel analysis using symbolic

execution and max-SMT. In Proceedings of the IEEE 29th Computer Security Foundations Symposium (CSF’16). 387–400.

[67] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run side-channel analysis using symbolic

execution and max-SMT. In Proceedings of the IEEE Computer Security Foundations Symposium. 387–400.

[68] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tevfik Bultan. 2017. Synthesis of adaptive

side-channel attacks. In Proceedings of the 30th IEEE Computer Security Foundations Symposium (CSF’17). 328–342.

DOI:https://doi.org/10.1109/CSF.2017.8

[69] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tevfik Bultan. 2017. Synthesis of adaptive

side-channel attacks. In Proceedings of the IEEE Computer Security Foundations Symposium. 328–342.

[70] Quoc-Sang Phan and Pasquale Malacaria. 2014. Abstract model counting: A novel approach for quantification of

information leaks. In Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security

(ASIA CCS’14). 283–292. DOI:https://doi.org/10.1145/2590296.2590328

[71] Quoc-Sang Phan, Pasquale Malacaria, Corina S. Pasareanu, and Marcelo d’Amorim. 2014. Quantifying information

leaks using reliability analysis. In Proceedings of the 2014 International Symposium on Model Checking of Software

(SPIN’14). 105–108. DOI:https://doi.org/10.1145/2632362.2632367

[72] Emmanuel Prouff and Matthieu Rivain. 2013. Masking against side-channel attacks: A formal security proof. In Pro-

ceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’13).

142–159.

[73] Jean-Jacques Quisquater and David Samyde. 2001. ElectroMagnetic analysis (EMA): Measures and counter-measures

for smart cards. In Proceedings of the International Conference on Research in Smart Cards (E-smart’01). 200–210.

[74] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Verbauwhede. 2015. Consolidating mask-

ing schemes. In Proceedings of the Annual Cryptology Conference on Advances in Cryptology (CRYPTO’15). 764–783.

[75] Matthieu Rivain and Emmanuel Prouff. 2010. Provably secure higher-order masking of AES. In Proceedings of the

Workshop on Cryptographic Hardware and Embedded Systems. 413–427.

[76] Kai Schramm and Christof Paar. 2006. Higher order masking of the AES. In Proceedings of the RSA Conference on

Topics in Cryptology (CT-RSA’06). 208–225.

[77] Geoffrey Smith. 2009. On the foundations of quantitative information flow. In Proceedings of the 12th International

Conference on Foundations of Software Science and Computational Structures, Held as Part of the Joint European Con-

ferences on Theory and Practice of Software. 288–302.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 3, Article 16. Pub. date: July 2019.

https://doi.org/10.1007/978-3-642-13678-8_3
https://doi.org/10.1109/CSF.2017.8
https://doi.org/10.1145/2590296.2590328
https://doi.org/10.1145/2632362.2632367


16:32 P. Gao et al.

[78] François-Xavier Standaert. 2017. How (not) to use welch’s T-test in side-channel security evaluations. IACR Cryptol-

ogy ePrint Archive 2017 (2017), 138.

[79] François-Xavier Standaert, Tal Malkin, and Moti Yung. 2009. A unified framework for the analysis of side-channel

key recovery attacks. In Proceedings of 28th Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques (EUROCRYPT’09). 443–461.

[80] Chungha Sung, Brandon Paulsen, and Chao Wang. 2018. CANAL: A cache timing analysis framework via LLVM

transformation. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering.

[81] Celina G. Val, Michael A. Enescu, Sam Bayless, William Aiello, and Alan J. Hu. 2016. Precisely measuring quantitative

information flow: 10K lines of code and beyond. In Proceedings of the IEEE European Symposium on Security and Privacy

(EuroS&P’16). 31–46.

[82] Chao Wang and Patrick Schaumont. 2017. Security by compilation: An automated approach to comprehensive side-

channel resistance. SIGLOG News 4, 2 (2017), 76–89.

[83] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. 2017. CacheD: Identifying cache-based timing

channels in production software. In Proceedings of the USENIX Security Symposium. 235–252.

[84] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminating timing side-channel leaks using

program repair. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis.

15–26.

[85] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminating timing side-channel leaks using

program repair. In Proceedings of the International Symposium on Software Testing and Analysis.

[86] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-based verification of software coun-

termeasures against side-channel attacks. In Proceedings of the 30th International Conference on Computer Aided Ver-

ification, Held as Part of the Federated Logic Conference. 157–177.

Received August 2018; revised January 2019; accepted April 2019

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 3, Article 16. Pub. date: July 2019.


