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Abstract—Speaker recognition systems (SRSs) have recently been shown to be vulnerable to adversarial attacks, raising significant

security concerns. In this work, we systematically investigate transformation and adversarial training based defenses for securing

SRSs. According to the characteristic of SRSs, we present 22 diverse transformations and thoroughly evaluate them using 7 recent

promising adversarial attacks (4 white-box and 3 black-box) on speaker recognition. With careful regard for best practices in defense

evaluations, we analyze the strength of transformations to withstand adaptive attacks. We also evaluate and understand their

effectiveness against adaptive attacks when combined with adversarial training. Our study provides thirteen useful insights and

findings, many of them are new or inconsistent with the conclusions in the image and speech recognition domains, e.g., variable and

constant bit rate speech compressions have different performance, and some non-differentiable transformations remain effective

against current promising evasion techniques which often work well in the image domain. We demonstrate that the proposed novel

feature-level transformation combined with adversarial training is rather effective compared to the sole adversarial training in a

complete white-box setting, e.g., increasing the accuracy by 13.62% and attack cost by two orders of magnitude, while other

transformations do not necessarily improve the overall defense capability. This work sheds further light on the research directions in

this field. We also release our evaluation platform SPEAKERGUARD to foster further research.

Index Terms—Adversarial defenses, adversarial examples, adversarial training, input transformation, speaker recognition

Ç

1 INTRODUCTION

SPEAKER recognition (SR) is the process of automatically
recognizing individual speakers by extracting and ana-

lyzing their unique acoustic characteristics. State-of-the-art
speaker recognition systems (SRSs), based on machine
learning (including deep learning), have been adopted by
open-source platforms (e.g., Kaldi [1]) and commercial
products (e.g., Microsoft Azure [2]), and used in safety-criti-
cal applications, e.g., remote voice authentication in finan-
cial transaction [3].

The popularity of SRSs has brought new security con-
cerns. Recent studies have shown that both open-source and
commercial SRSs are vulnerable to adversarial attacks [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], where the
adversary adds an imperceptible noise to a voice from a
source speaker such that the crafted adversarial voice is rec-
ognized as another speaker by the SRS. To thwart adversarial
attacks, five input transformations [12], [13], [16], [17] (that
transform inputs to disrupt adversarial perturbation before
feeding them to models) and two adversarial training [6]
(that augments the training data with adversarial examples
to improve the robustness), derived from other domains,
have been studied. However, these defenses are only evalu-
ated against a few non-adaptive attacks. Thus, it is impossi-
ble to fairly compare their performance and also may lead to
a false sense of robustness improvement [18], limiting their
usage in practice. Indeed, these defenses become ineffective
against adaptive attacks where the adversary is aware of the
defenses and intends to circumvent themusing evasion tech-
niques from the image domain.

In this work, to secure SRSs against adversarial attacks,
we systematically investigate transformation and adversar-
ial training based defenses and thoroughly evaluate their
effectiveness using both non-adaptive and adaptive attacks
under the same settings.

To make the investigation comprehensive and system-
atic, and provide system maintainers more freedom and
options to choose suitable defenses, we should cover as
many diverse transformations as possible. To address this
challenge, we study transformations according to the char-
acteristics of audio signals and SRS’s architecture. Different
from images and image recognition systems, audio can be
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transformed at both waveform-level and feature-level,
where at the waveform-level, audio can be transformed in
the time- and frequency-domain while at the feature-level,
different types of features in acoustic feature extraction
pipeline can be transformed. To be diverse and comprehen-
sive, we consider 22 diverse transformations (4 time-
domain and 3 frequency-domain transformations, 7 audio
compressions that transform audio at both time- and fre-
quency-domains, and 8 novel feature compressions), cover-
ing all the 5 transformations studied in [12], [13], [16], [17].
Furthermore, from the respective of adaptive attacks for
evasion, these transformations cover all the differentiable,
non-differentiable, deterministic, and randomized types.

To thoroughly evaluate the defenses, we extend and imple-
ment all the recent promising adversarial attacks [4], [5], [6],
[7], [12], [13], [14], [15], including 4 white-box attacks and 3
black-box attacks. The evaluation on 22 concrete attacks shows
that the effectiveness of transformations does not necessarily
decrease with increase of both distortion and attack strength,
and their effectiveness varies with attacks, e.g., two time-
domain transformations are more effective than others against
L1 attacks (i.e., perturbations are limited inL1 norm) and fea-
ture-level transformations are often more effective than others
againstL2 white-box attacks.

However, this evaluation does not provide security guaran-
tees against a future adaptive adversarywho has knowledge of
defenses, so-called the adaptive attacks [18]. The challenge
here is the design of the adaptive attacks. To avoid a possible
false sense of robustness, adaptive attacks should be designed
carefully to tailor to the specification of each defense [18]. We
address this by taking into account the differentiability and ran-
domness of transformations and utilizing Backward Pass Dif-
ferentiable Approximation (BPDA) [19], Natural Evolution
Strategy (NES) [20], and Expectation over Transformation
(EOT) [21] to bypass non-differentiable and randomized trans-
formations, respectively.We also design the Replicate adaptive
attack targeting the compression operation of our proposed
feature-level transformation. We remark that these evasion
techniques have never been considered in the speaker recogni-
tiondomain except thatNESwas adopted to estimate gradients
by the black-box attack FAKEBOB [12]. The evaluation shows
that (1)most transformations including the ones from [12], [13],
[16], [17] become ineffective, (2) some non-differentiable audio
compressions cannot be broken by BPDAwhich is promising in
the image domain, (3) AAC and MP3 with variable bit rate are
more difficult (resp. easier) to be bypassed than themwith con-
stant bit rate in the black-box (resp. white-box) setting; and (4)
most of the randomized transformations remain resistant to
black-box adaptive attacks.

To explore the effectiveness of transformations combined
with adversarial training, we consider the promising adver-
sarial training of [6] and evaluate the combined defenses
under adaptive attacks. The evaluation shows that while
the combination of a transformation and adversarial train-
ing does not necessarily bring the best of both worlds, the
proposed feature-level transformation combined with
adversarial training is very effective, improving the accu-
racy of both benign and adversarial examples in a complete
white-box setting. We further evaluate this combined
defense by varying various attack parameters. The results
show that it is still effective, improving the accuracy by

13.62%, attack cost by two orders of magnitude, and distor-
tion of adversarial examples, compared over vanilla adver-
sarial training.

Throughout our study, another challenge is the lack of
suitable and domain-specific platforms to enable large-
scale, comprehensive, and rigorous evaluation. While there
do exist platforms, e.g., Cleverhans [22] and ART [23], they
focus on computer vision and cannot be well incorporated
with SR models and datasets due to the special architecture
(e.g., the acoustic feature extraction module) and the special
pipeline (e.g., the enrollment phase) of SRSs. In addition,
they do not provide any audio-specific defenses or imper-
ceptibility metrics. To address this challenge, we built a
platform SPEAKERGUARD.

In summary, we make the following main contributions.

� We perform the most comprehensive investigation
of transformation based defenses for securing SRSs
according to the characteristic of audio signals and
SRS’s architecture and study the impact of their
hyper-parameters for mitigating adversarial voices
without incurring too much negative impact on the
benign voices.

� We thoroughly evaluate the proposed transforma-
tions for mitigating recent promising adversarial
attacks on SRSs. With regard for best practices in
defense evaluations, we carefully analyze their
strength, on both models trained naturally and
adversarially, to withstand adaptive attacks.

� Our study provides thirteen useful insights and find-
ings, either newly reported or inconsistent with
existing findings in other domains, which could
advance research on adversarial examples in SR
domain and assist the maintainers of SRSs to deploy
suitable defense solutions to enhance their systems.
Particularly, we find that our novel feature-level
transformations combined with adversarial training
is the most robust one against adaptive attacks.

� We develop the first platform SPEAKERGUARD for sys-
tematic and comprehensive evaluation of adversarial
attacks and defenses on SRSs. It features mainstream
SRSs, datasets, white- and black-box attacks, widely-
used evasion techniques for adaptive attacks, evalua-
tion metrics, and diverse defense solutions. We
release our platform to foster further research in this
direction (https://speakerguard.github.io).

2 BACKGROUND

Speaker Recognition Systems (SRSs). State-of-the-art SRSs use
speaker embedding to represent acoustic characteristics of
speakers as fixed-dimensional vectors. The typical speaker
embedding is identity-vector (ivector) [24] based on the
Gaussian Mixture Model (GMM) [25]. Recently, deep
embedding was also proposed to compete with ivector. It
uses deep learning to train a deep neural network from
which speaker characteristics are extracted and represented
as vectors, e.g., AudioNet [6], [26] and DeepSpeaker [27].

A generic architecture of SRSs is shown in Fig. 1, consist-
ing of: training, enrollment, and recognition phases. In the
training phase, a background model is trained using lots of
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voices from a large number of training speakers, represent-
ing the speaker-independent distribution of acoustic fea-
tures. In the enrollment phase, the background model maps
the voice uttered by each enrolling speaker to an enrollment
embedding, regarded as the unique identity. In the recogni-
tion phase, given a voice of an unknown speaker, the voice
embedding is extracted from the background model. The
scoring module measures the similarity between the enroll-
ment embedding and voice embedding based on which the deci-
sion module outputs the result. There are two typical
scoring approaches: Probabilistic Linear Discriminant Anal-
ysis (PLDA) [28] and cosine similarity [29], where PLDA
works well in most situations but needs to be trained using
voices while cosine similarity is a reasonable substitution of
PLDA without requiring training.

The acoustic feature extraction module converts the raw
audio signals to acoustic features carrying characteristics of
the rawaudio signals. Common feature extraction algorithms
include Mel-Frequency Cepstral Coefficients (MFCC) [30]
and Filter-Bank [30].

Recognition Task. There are three main tasks: close-set
identification (CSI), speaker verification (SV), and open-set
identification (OSI). CSI identifies a speaker from a group of
speakers. SV verifies if an input voice is uttered by the
unique enrolled speaker, according to a preset threshold,
where the input voice may be rejected by regarding the
speaker as an imposter. OSI utilizes the scores and a preset
threshold to identify which enrolled speaker utters the
input voice, where if the highest score is less than the
threshold, the input voice is rejected by regarding the
speaker as an imposter. Moreover, CSI could be classified
into two sub-tasks: CSI with enrollment (CSI-E) and CSI
without enrollment (CSI-NE). CSI-E exactly follows the
above description. In contrast, CSI-NE does not have the
enrollment phase and the background model is directly uti-
lized to identify speakers. Thus, ideally, a recognized
speaker in CSI-NE task is involved in the training phase,
while a recognized speaker in the CSI-E task should have
enrolled in the enrollment phase but may not be involved in
the training phase.

Threat Model. An adversarial attack on an SRS aims to
craft an adversarial voice by adding an imperceptible per-
turbation to a given voice uttered by a source speaker, so
that the SRS under attack misclassifies it as another speaker.
According to the adversary’s knowledge about the SRS
under attack, we classify attacks into white-box and black-box
attacks. The adversary for a white-box attack has full access
to SRS architecture, parameters, etc., while the adversary
for a black-box attack does not have any information about
the SRS but can access the target model as an oracle, i.e.,
providing a series of carefully crafted inputs to the SRS and

observing its outputs. According to the adversary’s knowl-
edge about the deployed defenses, we classify attacks into
non-adaptive and adaptive attacks. The adversary for the non-
adaptive attack is unaware of the deployed defense, so he
crafts adversarial voices without consideration for the
defense, while the adversary for the adaptive attack has
complete knowledge of the defense (e.g., its implementation
detail and concrete values for any tunable parameter) and
intends to bypass it. Different combinations of knowledge
about the SRS and deployed defense leads to four attack sce-
narios considered in this work, namely, white-box non-adap-
tive, black-box non-adaptive, white-box adaptive, and black-box
adaptive attacks.

3 DEFENSES

3.1 Motivation

Recently, adversarial attacks on speaker recognition have
been extensively studied [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. Results show that both state-of-the-art open-
source and commercial SRSs can be fooled by adding small
perturbations to the original voice, even playing over the air
in the physical world.

In the image and speech recognition domains, studies
have proposed transformation based defenses that apply
certain transformations to inputs before feeding them to the
model for recognition in order to recover benign counter-
parts from adversarial examples, e.g., [31], [32]. While such
defenses are effective for defending against non-adaptive
attacks, they may be evaded by adaptive attacks [18]. Nev-
ertheless, some transformations (but not all) achieve prom-
ising results when combined with adversarial training even
in a complete white-box setting [18], [33]. However, the
same conclusion cannot be drawn on speaker recognition
without a careful and rigorous evaluation, because of the
difference between speaker recognition and image/speech
recognitions. Compared with image recognition systems,
SRSs have complicated architectures and individual compo-
nents, in particular, the acoustic feature extraction pipeline.
Also, while the well-trained vision model is directly
exploited to classify input images into one of the training
classes, the well-trained background model of SRSs is
adapted to speaker-specific models during enrollment and
used to map input utterances into identity embeddings dur-
ing recognition, since the enrolled and inference speakers
are not necessarily involved in the training phase. While
speech recognition minimizes speaker-dependent variations
to determine the underlying text or command, speaker rec-
ognition treats the phonetic variations as extraneous noise
to determine the source of the speech signal. All these dif-
ferences may lead to inconsistent conclusions in the speaker
recognition domain with other domains. In fact, we indeed
found such inconsistent findings (cf. Section 7).

Therefore, in the speaker recognition domain, five input
transformation [12], [13], [16], [17] and two adversarial
training [6] based defenses have been studied. Though
promising, these defenses are only evaluated against few
attacks on different models, recognition tasks, and datasets,
let alone adaptive attacks [18] and combinations of transfor-
mation and adversarial training. Thus, it is impossible to
fairly compare their performance and also may lead to a

Fig. 1. Architecture of SRSs.
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false sense of robustness improvement brought by defenses
without considering adaptive attacks, limiting their usage
in practice. It is also unclear if combining a transformation
with adversarial training results in a more effective defense,
as many existing defenses combined with adversarial train-
ing result in lower robustness than adversarial training on
its own in the image domain [18]. Therefore, there is a lack of
comprehensive investigation and rigorous quantitative under-
standing of defenses on speaker recognition, in particular, effective
defenses. This work is aimed at filling this gap.

3.2 Design Overview

According to the architecture of SRSs (cf. Fig. 1), we should
consider both robust training and input transformation,
where the former is conducted during the training phase
and the latter takes effect in the recognition phase. When
combined, they may lead to a more robust defense. For
input transformation, we design audio transformations
based on the following two key characteristics of speaker
recognition, compared over image recognition.

Architecture Characteristic. For state-of-the-art neural net-
work based image recognition, an image is directly fed to a
system without feature engineering. Due to the time-vary-
ing non-stationary property of voices, voices are not resil-
ient enough to noises and other variations, and audio
waveform signals themselves cannot effectively represent
speaker characteristics [34]. Hence, to achieve better feature
representative capacity and system performance [35], a
modern SRS has an acoustic feature extraction pipeline for
extracting acoustic feature from waveforms (cf. Fig. 1). This
gives rise to waveform-level input transformations (W-
transformations) and feature-level input transformations (F-
transformations).

Audio Signal Characteristic. While images are naturally
two-dimensional, raw audio samples form a one-dimen-
sional time series signal [36]. Even though audio signals are
often transformed into two-dimensional time-frequency
representations, the two axes, time and frequency, funda-
mentally differ from the horizontal and vertical axes in an
image. Furthermore, images are commonly analyzed as a
whole or in patches with little order constraints while audio
signals have to be analyzed sequentially in chronological
order. These properties give rise to audio-specific W-trans-
formations that can be performed either in time-domain or
frequency-domain.

Based on the above characteristics, to be diverse and
comprehensive, we investigate both W-transformations and
F-transformations, while for the former, we consider both
time-domain and frequency-domain ones. When necessary
and possible, we also evaluate the effectiveness of transfor-
mations combined with robust training. When devising an
input transformation based defense, it is also important to
consider if it is differentiable1 and deterministic, due to the
fact that most white-box attacks leverage gradient to craft
adversarial examples. In general, non-differentiable input

transformations are more difficult to evade than differentia-
ble ones, and randomized input transformations are more
difficult to evade than deterministic ones. Thus, all the types
should be addressed to understand their effectiveness. All
the transformations we considered are summarized in
Table 1, covering differentiable, non-differentiable, deter-
ministic, and randomized types.

3.3 Robust Training

Robust training strengthens the resistance of a model to
adversarial examples during training. We adopt adversarial
training, one of the most effective techniques in the image
domain, which augments the training data with adversarial
examples. Formally, adversarial training intends to find the
model parameter u which minimizes the following loss:

Eðx;yÞ�D½maxd2Sfðu; xþ d; yÞ� � 1

n

Xn

i¼1
maxd2Sfðu; xi þ d; yiÞ;

where S is the set of allowed perturbations, D is the under-
lying data distribution over pairs of samples x and corre-
sponding labels y, fðxi; yiÞgni¼1 is the training dataset that
mimics the data distribution D, and f is the training loss
function, typically the cross-entropy loss. Efficient adversar-
ial attacks such as FGSM [38] and PGD [39] are widely used
to solve the above maximization problem.

3.4 W-Transformations

For W-transformations, we consider both time-domain and
frequency-domain ones. We also consider various speech
compression which can be seen as W-transformations per-
formed both in the time- and frequency-domains.

Time-Domain W-Transformations. We study four time-
domain W-transformations, inspired by image input trans-
formations [31]. (1) Quantization (QT) rounds the amplitude
of each sample point of a voice to the nearest integer multi-
ple of a factor q, intended to disrupt the adversarial pertur-
bation since its amplitude is usually small in the input
space. (2) Audio turbulence (AT) adds random noise to an
input voice in an element-wise way to disrupt the adversar-
ial perturbation which is assumed to be sensitive to noise.
The magnitude of the noise is adjusted by signal-to-noise
ratio (SNR) 10log 10

PI
Pn

where PI (resp. Pn) is the power of

TABLE 1
Transformations

1. Differentiable here means that a transformation can be imple-
mented in frameworks (e.g., Pytorch) that supports auto-differentia-
tion [37], i.e., enabling back-propagation of gradients and providing
informative gradients for adversarial example generation. Though it is
non-rigorous, we use it to keep consistent with [18].
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input voice (resp. random noise). (3) Average smoothing
(AS) and (4) median smoothing (MS) mitigate adversarial
examples by smoothing the waveform of the input voice. A
mean (resp. median) smooth with kernel size k (must be
odd) replaces each element xk with the mean (resp. median)
value of its k neighbors. We remark that QT is non-differen-
tiable due to the round operation while the others are differ-
entiable, and AT is randomized while the others are
deterministic.

Frequency-Domain W-Transformations. We consider three
W-transformations in frequency-domain, all of which are
differentiable and deterministic. (1) Down sampling (DS)
down-samples voices and applies signal recovery to disrupt
adversarial perturbations. The down-sample frequency is
determined by the ratio, denoted by t, between the new and
original sampling frequencies. (2) Low pass filter (LPF)
assumes that human voices are within relatively lower fre-
quencies than adversarial perturbation, and applies a low-
pass filter to remove the high-frequent perturbations. A
low-pass filter has two parameters: the edge frequencies of
the passband (fp) and the stopband (fs). (3) Band pass filter
(BPF) combines LPF with a high-pass filter to remove both
high-frequent and low-frequent perturbations. BPF has four
parameters: the lower and upper edge frequencies of the
passband (fpl and fpu), the lower and upper cutoff frequen-
cies of the stopband (fsl and fsu). We remark that these
transformations are derived from the speech recognition
domain [31], [41], [42], but only DS has been applied in the
speaker recognition against two black-box attacks FAKE-
BOB [12] and SirenAttack [13].

Speech Compression. Based on the psychoacoustic princi-
ple, speech compression aims to suppress redundant infor-
mation within a speech to improve storage or transmission
efficiency. When an adversarial perturbation is redundant,
it can be eliminated by speech compression. Speech com-
pression achieves the aforementioned purpose by reducing
the bit rate, thus can be seen as transformations performed
both in the time- and frequency-domains. We investigate 7
standard lossy speech compression techniques, grouped
into two categories: Constant Bit Rate (CBR) and Variable
Bit Rate (VBR). The former uses a fixed bit rate and the latter
exploits a dynamic bit rate schedule controlled by the qual-
ity parameter. We consider OPUS [43], SPEEX [44],
AMR [45], AAC-C [46], and MP3-C [47] for CBR, and AAC-
V [46] and MP3-V [47] for VBR. These transformations are
non-differentiable and deterministic.

3.5 F-Transformations

The design of F-transformations is motivated by the follow-
ing research questions: (Q1) What kind of acoustic features can
be transformed? and (Q2) How to transform them?.

To address Q1, we have to understand what kind of fea-
tures are used in SRSs. Fig. 2 shows a typical flow of feature
processing. First, the original features (e.g., MFCC or Filter-
Bank) are extracted from an input raw waveform. Next, to
capture temporal information, time-derivative features [35]
are successively extracted from and added into the original
features, leading to the delta features. After that, cepstral mean
and variance normalization (CMVN) [48] is applied to reduce
channel and reverberation effects, resulting in cmvn features.

Finally, voice activity detection (VAD) [49] is utilized to
remove the unvoiced frames, resulting in final features. There-
fore, four types of features could be transformed.

To address Q2, a straightforward idea is to extend
W-transformations. However, (1) W-transformations
work on audio waveforms in two-dimensional time-fre-
quency representations, while acoustic features are rep-
resented by a matrix, one row of features per frame. It
prevents frequency-domain W-transformations and
speech compression from being extended. (2) The map-
ping from waveforms to features is not linear, and a
small perturbation in the input voice may lead to a
large perturbation at the feature level. This difference
refuses time-domain W-transformations where adver-
sarial perturbations are assumed to be small and/or
sensitive to noise.

We propose FEATURE COMPRESSION (FeCo) to disrupt
adversarial perturbations at the feature level. We regard
each feature matrix M with N frames and each frame ai
consisting of d features as N data points in d-dimensional
space and compute a compressed feature matrix with K
frames for K < N . Our idea is described in Algorithm 1.
The number K of clusters is first computed according to the
given cluster ratio clr (line 1). Then, we partition N frames
into K clusters by invoking the cluster oracle O (line 2),
which returns a list of indices b1; . . . ; bN such that each
frame ai is assigned to the bith cluster. Next, each cluster Ci

is represented by a representative vector mi (line 5). Finally,
K representative vectors are combined to form the new fea-
ture matrixM0.

To partition N frames into K clusters, various clustering
methods, e.g., kmeans [50] and fuzzy-kmeans [50], could be
leveraged. In this work, we use kmeans and its variant
warped-kmeans [51] and leave others as future work. Com-
pared to kmeans, warped-kmeans preserves the temporal
dependency of the data by imposing some constraints on
the partition operation, thus is more suitable to cluster
sequential data. Both kmeans and warped-kmeans use the
average of all the frames in one cluster as the representative.

Algorithm 1 could be applied to any of original, delta,
cmvn, and final features. We use FeCo-o, FeCo-d, FeCo-c,
and FeCo-f to denote these four concrete F-transforma-
tions, all of which are randomized and differentiable. The
randomness of FeCo lies in the initialization of kmeans
and warped-kmeans algorithms. At the beginning, they
randomly select K vectors from N vectors as the initial
cluster centers, which will be used in the later clustering
operations. Different initialization may produce different
clustering results (Line 2), thus leading to different fea-
ture matrixM0.

Fig. 2. A typical flow of feature processing.
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Algorithm 1. FeCo

Input: feature matrixM¼ ½a1; . . . ; aN �; cluster ratio 0 < clr <
1; cluster oracle O ¼ kmeans or warped-kmeans
Output: compressed feature matrixM0

1: K  dN � clre ⊳K ¼ number of clusters
2: ½b1; . . . ; bN �  OðM;KÞ ⊳ ai is assigned to the bith cluster
3: for ði ¼ 1; i � K; iþþÞ do
4: Ci  fak j bk ¼ ig ⊳ compute the ith cluster
5: mi  1

jCij
P

a2Ci
a ⊳ compute the representative vector

6: M0  ½m1; . . . ;mK � ⊳ concatenate the representative vectors
7: returnM0

4 EVALUATION SETUP AND METRICS

4.1 Main Evaluation Setup

To evaluate defenses against adversarial voices on SRSs, we
developed a platform, named SPEAKERGUARD.

Models. We use two mainstream SRSs: a pre-trained
model ivector-PLDA [52] from the popular open-source
platform KALDI having 11.5 k stars and 4.9 k forks on
GitHub [1] and a one-dimension convolution neural net-
work based model AudioNet [26]. Both ivector-PLDA and
AudioNet were used as the SRS under attack in many prior
works, e.g., [5], [12], [53], [54], [55] for ivector-PLDA
and [6], [53], [56] for AudioNet. Both of them have excellent
performance on benign voices (cf. Baselines in Tables 4
and 7). Details of two models are shown in Table 2. Due to
the massive experiments, we only target the CSI task (i.e.,
CSI-E and CSI-NE). The results on the SV and OSI tasks
could be similar, as demonstrated in [12].

Datasets. We use four datasets derived from Libri-
speech [57]: Spk10-enroll, Spk10-test, Spk251-train, and
Spk251-test. The datasets are summarized in Table 3 (details
refer to Supplemental Material A.1, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TDSC.2022.3220673.)

Attacks. To thoroughly evaluate the defenses, we imple-
ment 4 promising white-box attacks (i.e., FGSM [38],
PGD [39], CW1111111, and CW2 [58]), and 3 state-of-the-art black-
box attacks (i.e., FAKEBOB [12], SirenAttack [13], andKenans-
ville [15]). All of them craft adversarial voices via solving opti-
mization problems using L1 norm to limit perturbations,
except that Kenansville is a signal processing-based decision-
only attack and CW2 minimizes adversarial perturbations in
the loss function using L2 norm. To solve the optimization

problems, FGSM, PGD, CW1111111, andCW2 use gradients, FAKE-
BOB uses gradient-estimation, and SirenAttack uses the gra-
dient-free particle swarm optimization. Note that CW1111111 uses
the loss function of the CW attack but optimized by PGD, the
same as [39], to improve the attack efficiency. Details refer to
SupplementalMaterial A.2, available online.

To avoid fake adversarial voices due to the discretization
problem [59], i.e., adversarial voices become benign after
being transformed into concrete voices, they are evaluated
after storing back into the 16-bit PCM form. We only con-
sider untargeted attacks which are more challenging to be
defeated than targeted attacks [19]. Since SRSs only take
waveforms as input in practice, we implement all the
attacks to add perturbations directly to the waveforms
rather than the acoustic features as in [5] where the adver-
sarial acoustic features must be reconstructed back to wave-
forms, which is a lossy procedure, thus weakening the
attack’s effectiveness and imperceptibility [60].

We use a machine with Ubuntu 18.04, an Intel Xeon E5-
2697 v2 2.70 GHz CPU, 376GiB memory, and a GeForce
RTX 2080Ti GPU.

4.2 Evaluation Metrics

Attack Effectiveness. To evaluate the effectiveness of an
attack, we use model accuracy on adversarial examples
(Aa), i.e., the proportion of adversarial examples that are
correctly classified by the model. Thus, smaller Aa indicates
better attack. Note that 100%�Aa is the untargeted attack
success rate.

Defense Effectiveness. A usable defense should not only
improves resistance to adversarial examples, but also sacri-
fices accuracy on benign examples as little as possible.
Thus, we measure the effectiveness of a defense using
model accuracy on adversarial examples (Aa) and model
accuracy on benign examples (Ab), respectively, where the
larger Aa (resp. Ab) is, the better the defense is. We also use
the R1 score, R1 ¼ 2�Ab�Aa

AbþAa
[42], which assigns equal impor-

tance to Ab and Aa, to quantify the usability of a defense.
Imperceptibility. To measure the imperceptibility, we use

Signal-to-Noise Ratio (SNR) [40] and Perceptual Evaluation
of Speech Quality (PESQ) [61]. SNR is defined as 10log 10

Px
Pd
,

where Px (resp. Pd) is the power of the original voice (resp.
perturbation). PESQ is one of the objective perceptual meas-
ures, simulating human auditory system [62]. The calcula-
tion of PESQ is more involved. It first applies an auditory
transform to obtain the loudness spectra of the original and
adversarial voices, and then compares two loudness spectra

TABLE 2
SR Models

ivector-
PLDA [52]

AudioNet [26]

Embedding & Feature types T &MFCC D & Filter-
Bank

Add 1st & 2nd time-
derivative

✓ ✗

Apply CMVN& VAD ✓ ✗
#Feature dim 72 32
Training algorithm US S
Scoring method PLDA -

Note: T/D means GMM/deep model and (U)S means (un)supervised learning.

TABLE 3
Voice Datasets

Spk10-enroll Spk10-test Spk251-train Spk251-test

Task CSI-E/SV/OSI CSI-NE

#Speakers 10
(5 M,5F)

10
(5 M,5F)

251
(126 M,125F)

251
(126 M,125F)

#Voices 10�10 100�10 25652 2887

Length 3–21 s
(7.2 s)

1–15 s
(4.3 s)

1–24 s
(12.3 s)

1–19 s
(11.7 s)

Note: x-y (z) denotes that the minimal, maximal and average length of voices,
and nM/mF denotes that the number of male/female speakers is n/m.
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to obtain a metric score whose value is in the range of -0.5 to
4.5. We refer readers to [61] for more details. Larger SNR
and higher PESQ indicate better imperceptibility.

5 EVALUATION OF TRANSFORMATIONS

5.1 Evaluation Setup

We limit the perturbation budget � to 0.002 for L1 attacks,
the same as [6], [12], unless explicitly stated. The number of
steps for PGD and CW1111111 range from 10 to 50 with step_size
a ¼ �

5 ¼ 0:0004 for each step. For CW2, we set the initial
trade-off constant c to 0.001, use 9 binary search steps to
minimize perturbations, run 900-9000 iterations to con-
verge, and vary the confidence parameter k from 0, 2, 5, 10,
20 to 50. For FAKEBOB, we limit the number of iterations to
200 with the parameter samples_per_draw of NES m ¼ 50
and k ¼ 0:5. For SirenAttack, we use the optimal parameters
reported in [13], i.e., the maximum number of epochs
epochmax ¼ 300, the iteration limit of the PSO subroutine
itermax ¼ 30, and the number of particles n particles ¼ 25.
For Kenansville, we use the SSA method to perturb a voice
and set the maximal attack factor max attack factor to 100
and maximal number of iterations max iteration to 30,
which is sufficient for the attack to converge according to
our experiments. FFT method is not considered since it is
much less effective than the SSA method [63].

We consider the ivector-PLDA model for the CSI-E task
which is enrolled with 10 speakers using the Spk10-enroll
dataset. We use the Spk10-test dataset to test the model,
resulting in 99.8% accuracy on benign examples. We also
use the Spk10-test dataset to craft adversarial examples.
Though the ivector-PLDA model is pre-trained without any
transformations, it still produces sufficient accuracy on
benign examples, as shown in column (Ab) of Table 4. Thus,
we do not re-train it when transformations are deployed. As
each transformation contains at least one tunable parameter
which may affect the effectiveness, we tune parameters and
choose the best ones according to their R1 scores for the
remaining experiments. Details are given in Supplemental
Material A.3, available online.

5.2 Results

The results are reported in Table 4, where row (Baseline)
shows the accuracy without any defense, indicating the
effectiveness of attacks. In general, the effectiveness of
transformations significantly varies with attacks. The results
provide many interesting and useful findings, including but
not limited to the following ones.

Effectiveness versus Level/Domain. Time-domain W-trans-
formations (e.g., QT, AT and MS) are often more effective
than others on L1 attacks, while F-transformations are often
more effective than others on L2 attacks. Among W-trans-
formations, FeCo-o and FeCo-d often perform slightly better
than others, as transformation on preceding features also
affects succeeding features. Between kmeans and warped-
kmeans, the effectiveness varies with attacks and in general
they are almost comparable. In terms of R1 score, FeCo-o
with kmeans, i.e., FeCo-o(k), ranks the first place.

Findings 1. Time-domain (resp. feature-level) transforma-
tions are often more effective than others on L1 (resp.
L2) attacks.

Effectiveness versus Distortion. Almost all the transforma-
tions perform better against FGSM, FAKEBOB, Kenansville
and SirenAttack attacks than PGD, CW1, and CW2-50
attacks. To find out the reason for this difference, we report
the imperceptibility and strength of non-adaptive attacks in
Table 5. According to the imperceptibility metrics SNR and
PESQ, we observe that FGSM, SirenAttack, and Kenansville
(resp. FAKEBOB) attacks introduce larger (resp. compara-
ble) levels of distortion than PGD, CW1, and CW2 attacks.
This indicates that there is no direct correlation between the
distortion of adversarial voices and the effectiveness of
input transformations. In contrast, according to the loss val-
ues of LCE and LM, we observe that the single-step attack
FGSM and the black-box attacks (i.e., FAKEBOB, SirenAt-
tack, and Kenansville) are much weaker than PGD, CW1,
and CW2 attacks. In fact, FGSM is a single-step attack,
FAKEBOB and SirenAttack adopt an early-stop strategy,
and Kenansville is a decision-based attack, so adversarial

TABLE 4
Results of Transformations Against Non-Adaptive Attacks
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examples crafted by them are weak (i.e., close to the deci-
sion boundary), while PGD, CW1111111, and CW2-50 continue
searching for strong adversarial examples (i.e., far from the
decision boundary) even if an adversarial example has been
found.

Findings 2. The effectiveness of input transformations
does not necessarily decrease with increase of distortion,
since large distortion does not imply stronger adversarial
voices.

Findings 2 is based on the comparison between different
attacks with the same perturbation budget. To be compre-
hensive, we also evaluate the effectiveness of transforma-
tions on the same attack with different perturbation
budgets. We find that the adversarial accuracy drops with
the increase of the perturbation budget. This is not surpris-
ing since the strength of adversarial voices improves with
the increase of the perturbation budget, at the cost of distor-
tion. More details refer to Supplemental Material A.4.2,
available online.

Effectiveness versus Attack Strength. With increase of k in
CW2 (i.e., attack strength), unsurprisingly, the effectiveness
of all the transformations decreases. However, though the
attack strength of PGD and CW1 attacks increase with
#Steps (cf. Table 5), the effectiveness of the input transfor-
mations (e.g., QT, AT, MS, OPUS, SPEEX and FeCo-o) does
not decrease monotonically. To understand this, we analyze
the strength of adversarial voices before/after applying MS
in Fig. 3 and find that the strength of the adversarial

examples crafted by CW2 remains monotonic after applying
MS with increase of k, while the strength of the adversarial
examples crafted by PGD becomes non-monotonic after
applying MS with increase of #Steps. It is probably because
PGD uses the L1 bound while CW2 does not, hence CW2

introduces larger distortion with increase of k, but PGD
does not introduce obviously larger distortion with increase
of #Steps, as shown in Table 5.

Since the step size a may impact the capacity of the PGD
attack, we also adopt another three dynamic strategies a ¼

�

5�#Steps
, a ¼ �

#Steps
, and a ¼ 10��

#Steps
which reduces the

step size a with increase of #Steps (Recall that previously
we set a ¼ �

5). The same phenomenon also occurs (cf.
Table 9 in Supplemental Material A.4.1, available online),
indicating this phenomenon is not due to unsuitable step
size.

Findings 3. The effectiveness of input transformations
does not necessarily decrease with increase of attack
strength.

Overall Effectiveness. Transformations are often more
effective against L2 white-box, L1 black-box, and signal
processing attacks than L1 white-box attacks. For instance,
AS, LPF, AAC-V, and MP3-V cannot improve any robust-
ness against the PGD and CW1 attacks regardless of #Steps,
and the CW2-50 attack. By analyzing the strength of adver-
sarial voices in Table 5, we found that:

Findings 4. AS, LPF, AAC-V, and MP3-V are completely
ineffective against attacks that craft high-confidence
adversarial voices (i.e., PGD, CW1 and CW2 with
k ¼ 50), in non-adaptive setting.

VBR and CBR in Speech Compression. We noticed signifi-
cant difference of effectiveness between VBR speech com-
pression (e.g., AAC-V and MP3-V) and CBR speech
compression (OPUS, SPEEX, AMR, AAC-C, and MP3-C).
For instance, the accuracy of MP3-C (resp. AAC-C) against
CW2-10 is 212 (resp. 11) times larger than that of MP3-V
(resp. AAC-V). Compared to CBR speech compression,
VBR speech compression dynamically adjusts the bit rate of
the voices to better fit to the psychoacoustic perception of

TABLE 5
Imperceptibility and Strength of Non-Adaptive Attacks

Attack Imperceptibility Loss

SNR PESQ LCE LM

FGSM 28.53 2.23 3.91 -1.66

PGD-x

x=10 32.77 2.85 45.88 -45.87
x=20 31.57 2.72 54.50 -54.50
x=30 31.42 2.70 58.38 -58.38
x=40 31.45 2.71 60.52 -60.52
x=50 31.31 2.69 62.23 -62.23
x=100 31.29 2.70 67.10 -67.10

CW1-x

x=10 32.74 2.85 44.59 -44.56
x=20 31.88 2.76 53.21 -53.19
x=30 31.62 2.73 57.36 -57.35
x=40 31.51 2.72 59.94 -59.93
x=50 31.45 2.71 61.04 -61.03
x=100 31.38 2.71 66.36 -66.36

CW2-k

kkkkkkk=0 52.99 4.24 1.54 -1.12
kkkkkkk=2 51.42 4.19 2.94 -2.87
kkkkkkk=5 49.73 4.10 6.42 -6.35
kkkkkkk=10 47.09 3.95 11.28 -11.31
kkkkkkk=20 42.14 3.60 21.70 -21.25
kkkkkkk=50 30.44 2.46 51.88 -51.43

FAKEBOB 31.40 2.71 0.91 -0.10
SirenAttack 31.03 2.66 0.91 -0.10
Kenansville 8.73 1.87 3.32 -2.82

Note: LCE and LM respectively denote cross entropy loss and margin loss. The
larger LCE (resp. the smaller LM), the stronger the attack.

Fig. 3. The loss values (i.e., strength) of the adversarial voices on the
model without/with the MS input transformation versus #Steps of PGD
and k of CW2. The larger the loss of PGD (resp. the smaller the loss of
CW2), the stronger the adversarial examples. The loss of PGD is scaled
for better visualization.
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the human ear and thus achieves better quality. As a result,
although they incur less side effect on the benign voices (Ab

of AAC-V andMP3-V only drops by 0% and 0.2% compared
to the Baseline), they are limited in disrupting the adversar-
ial perturbation.

Findings 5. VBR speech compression has less side-effect,
but are less effective in mitigating adversarial voices.

More findings in the non-adaptive setting refer to Sup-
plemental Material A.4.3, available online.

6 ADAPTIVE ATTACKS

To evaluate the robustness of transformations in the adap-
tive setting where the adversary has complete knowledge of
defense and attempts to bypass the defense, we design
adaptive attacks tailored to input transformations, follow-
ing the suggestions of [18], i.e., being as simple as possible
while resolving any potential optimization difficulties.

To bypass a certain input transformation gð	Þ, the adver-
sary attempts to find an adversarial voice xadv from a benign
voice x such that xadv remains adversarial after being trans-
formed by gð	Þ, namely, solving the following optimization
problem:

argmin
xadv

LðgðxadvÞ; yÞ such that kxadv � xkp � �;

where L is the loss function used in non-adaptive attack
(cross-entropy loss for FGSM, PGD, and margin loss for
CW1, CW2, FAKEBOB, and SirenAttack), p ¼ 2;1 is the Lp

norm-based distance, and y is the ground-truth label of x
for untargeted attack.

FAKEBOB, SirenAttack, and Kenansville solve the opti-
mization problem without gradient back-propagation, thus
can be directly mounted, except that the adaptive version
goes through the deployed transformation when querying
the model, while the non-adaptive one does not. For differ-
entiable and deterministic transformations (i.e., AS, MS, DS,
LPF, and BPF) on which reliable and informative gradients
can be computed via back-propagation, the optimization
problem can be easily solved by white-box attacks using
gradient descents. However, the gradient of the loss func-
tion L w.r.t. xadv cannot be back-propagated for non-differ-
entiable transformations (e.g., QT and speech
compressions) while the gradient is less reliable and infor-
mative for randomized transformations (e.g., AT and FeCo).
To address this issue, we adopt evasion techniques for
white-box attacks (i.e., FGSM, PGD, CW1, and CW2

attacks).

6.1 Bypassing W-Transformations

To enable backpropagation of the gradient from a non-dif-
ferentiable but deterministic W-transformation g, the
adversary may utilize Backward Pass Differentiable
Approximation (BPDA) [19]. Specifically, during the for-
ward pass, the adversary directly uses g to compute the
loss, while uses a differentiable function ĝ in the backward
pass, i.e., approximating rxgðxÞ with rxĝðxÞ. We set ĝðxÞ ¼
x, i.e., the identity function, which has been shown effective

for breaking non-differentiable input transformations in the
image domain [18].

To tackle randomized transformations, the adversary
may exploit Expectation over Transformation (EOT) [21],
i.e., the loss function is reformulated as Er½LðgrðxÞ; yÞ� �
1
R

PR
i¼1 LðgriðxÞ; yÞ where r denotes the randomness of g, ri

is an independent draw of the randomness, and R is the
number of independent draws. Intuitively, a randomized
transformation is independently sampled multiple times
and the average of the loss function is used during gradient
descent. It reduces the variance of the gradient and enables
a more stable search direction. We remark that four differ-
entiable and randomized transformation based defenses
have been broken using EOT in the image domain [18], [19].

6.2 Bypassing F-Transformations

Since FeCo is differentiable and randomized, one could use
EOT to bypass FeCo (cf. Section 6.1). Below, we design
more specific evasion techniques for white-box attacks, tai-
lored to FeCo, called Replicate attack, including Replicate-F
(feature) and Replicate-W(ave).

Replicate-F. To bypass FeCo, the adversary first crafts an
adversarial voice x0 on the model without FeCo, and then
builds a new feature matrixM0 from the feature matrixM
of x0 with the goal FeCoðM0Þ ¼ M, i.e., whenM0 is fed to
the model defended by FeCo, M0 is likely compressed to
M, leading to a successful attack.

Algorithm 2. Replicating Features

Input: feature matrixM¼ ½a1; . . . ; aN �; cluster ratio 0 < clr <
1; cluster oracle O ¼ kmeans or warped-kmeans
Output: replicated feature matrixM0

1: k b 1clrc
2: for ði ¼ 1; i � N; iþþÞ do
Ai  matrix that replicates the vector ai k times

3: for ði ¼ 1; dðN � kþ i� 1Þ � clre 6¼ N ; iþþÞ do
append the vector ai to Ai

4: M1  ½A1; . . . ;AN � ⊳ concatenate the replicated vectors
5: ½b1; . . . ; bjM1 j�  OðM1; NÞ
6: Let i1; . . . ; iN be a permutation of 1; . . . ; N s.t. for each 1 �

j � N , most of vectors of Aij are divided into the bij -cluster
7: M0  ½Ai1 ; . . . ;AiN �
8: returnM0

The desired feature matrixM0 is built by applying Algo-
rithm 2. Suppose M¼ ½a1; . . . ; aN � where ai is the feature
vector of the ith frame. It first replicates each feature vector
ai ofM by k ¼ b 1clrc times and then appends vectors to the
replicated vectors Ai’s until the concatenated matrixM1 of
½A1; . . . ;AN � will lead to a feature matrix with N frames
after applying FeCo. It is expected that FeCoðM1Þ has the
same frames as M. However, the order of frames of
FeCoðM1Þ may differ from that of M. To overcome this
problem, we run the clustering algorithm with the parame-
ter clr on the matrix M1 to get the order of the frames of
FeCoðM1Þ. This order is used to permute the replicated vec-

tors Ai’s intended to make FeCoðM0Þ ¼ ½
P
Ai1

jAi1 j
; . . . ;

P
AiN

jAiN
j �

beingM.
Replicate-W. Replicate-F is infeasible in practice, as

exposed APIs only accept waveforms. Thus, we introduce
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Replicate-W, which is similar to Replicate-F except that the
adversarial voice xadv is reconstructed fromM0 using Grif-
fin-Lim algorithm [64] and fed to SRS defended with FeCo.

7 EVALUATION OF ADAPTIVE ATTACKS

7.1 Evaluation Setup

We evaluate transformations in the same setup as in Sec-
tion 5 against adaptive attacks derived from a subset of rep-
resentative attacks according to Section 6. For adaptive
attacks derived from FGSM, CW2-0, FAKEBOB, SirenAttack
and Kenansville, we consider all the transformations, as
they are effective in the non-adaptive setting, but the effec-
tiveness varies. For adaptive attacks derived from PGD-10,
PGD-100, CW1111111-10, and CW1111111-100, we do not consider AS,
DS, LPF, and BPF, as they are differentiable, deterministic,
and almost completely ineffective in the non-adaptive set-
ting. The CW2-2 (resp. CW2-50) attack is considered only
when a transformation is effective (i.e., at least 5% accuracy)
against CW2-0 (resp. CW2-2). We do not consider all the
combinations of attacks and transformations, as the current
experiments already require substantial effort.

7.2 Results

The results are shown in Table 6. Overall, the effectiveness
varies with transformations and attacks. Below, we compare
the results with those obtained in the non-adaptive setting
(i.e., Table 4), by distinguishing if the transformations are
differentiable or not.

Results of Non-Differentiable Transformations (gray color in
Table 6). First, QT becomes less effective against both white-
box and black-box attacks, indicating both BPDA and adap-
tive black-box attacks are able to circumvent QT.

Second, against adaptive white-box attacks, the effective-
ness of CBR speech compressions (i.e., OPUS, SPEEX, AMR,
AAC/MP3-C) does not decrease, indicating that BPDA is
not able to circumvent them. Indeed, (1) BPDA cannot
reduce the accuracy of speech CBR compressions on the
adversarial examples crafted by FGSM, PGD, and CW1111111-0
when compared with the results in Table 4. (2) Though
BPDA can reduce the accuracy on the adversarial examples
crafted by CW2-0 and CW2-2, much more distortions are
introduced than the non-adaptive CW2 attack, e.g., the SNR

of the adaptive CW2-0 (with BPDA) on AAC-C (resp. MP3-
C) is 32.67 dB (resp. 34.70 dB), 20 dB (resp. 18 dB) smaller
than that of the non-adaptive CW2-0 (52.99 dB, cf. Table 5).
Recall that CW2 does not have any perturbation threshold,
while other attacks have. Thus, adaptive CW2 attacks still
achieve high attack success rate at the cost of distortion.

In contrast, we found that BPDA with the identity func-
tion is effective in breaking VBR speech compression (i.e.,
AAC/MP3-V). Compared with the result of non-adaptive
CW2-0 attack in Table 4, the adaptive CW2-0 attack
equipped with BPDA reduces the accuracy of AAC-V (resp.
MP3-V) by 70.1% (resp. 59.8%) with no more than 0.2 and
4.1 dB decrease in PESQ and SNR, respectively.

To understand why BPDA has different effectiveness
between QT, CBR and VBR speech compressions, we
checked the appropriateness of approximating non-differ-
entiable transformations by the identity function and found
that QT and VBR speech compressions are much closer to
the identity function than CBR speech compressions (cf.
Supplemental Material A.5, available online), indicating
that BPDA with the identity function is not strong enough
to bypass CBR speech compressions, and better approxima-
tion functions are required to circumvent them. We leave
this as future work (cf. Section 9.1 for discussion).

Findings 6. BPDA with identity function can evade non-
differentiable QT and VBR speech compressions, but fail
to evade CBR speech compressions.

We highlight that in the image domain, [19] and [18] suc-
cessfully evade all the seven input transformation-based
adversarial defenses using BPDA with the identity function,
which is inconsistent with our Findings 6. Also, while [65]
showed MP3 robust audio adversarial examples against
speech recognition models can be crafted with BPDA at the
cost of approximately 15 dB larger distortion (close to our
result of MP3-C), Findings 6 shows that MP3-V can be easily
evaded with BPDA without obvious distortion increase.

Third, CBR speech compressions become less effective
against adaptive FAKEBOB and SirenAttack, especially,
AAC-C and MP3-C reduce 53.3% and 16.90% accuracy
against adaptive FAKEBOB, respectively. However, AAC/

TABLE 6
Results (Aa, SNR, PESQ) of Transformations Against Adaptive Attacks
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MP3-V achieve higher accuracy, indicating that adaptive
FAKEBOB and SirenAttack are limited in circumventing
VBR speech compressions. It is because the gradients esti-
mated by NES of FAKEBOB for AAC/MP3-V are not infor-
mative enough, and the particles moving direction of PSO
in SirenAttack is not stable, due to the variable bit rate of
AAC/MP3-V.

Findings 7. Variable bit rate (VBR) makes speech com-
pressions more resistant against adaptive black-box
attacks.

Results of differentiable transformations (non-gray color in
Table 6). All the deterministic transformations become less
effective against white-box and black-box adaptive attacks,
except for AS, DS, LPF, and BPF against SirenAttack
because the perturbation budget � ¼ 0:002 is not sufficient
enough for SirenAttack to evade these transformations.
When � ¼ 0:02, the adaptive SirenAttack becomes stronger
than the non-adaptive one, reducing at least 16% accuracy,
on these transformations (cf. Supplemental Material A.6,
available online).

Randomized transformations (i.e., AT and FeCo-o(k)) can
also be evaded by the white-box adaptive attacks with EOT
or larger parameter k. However, AT and FeCo-o(k) remain
effective on the adversarial examples crafted by the black-
box adaptive attacks FAKEBOB, SirenAttack, and Kenans-
ville (except for AT due to the larger distortion introduced
by Kenansville which suffices to overcome the randomness
of AT). This is because: their randomness makes the esti-
mated gradients of NES uninformative for FAKEBOB, the
moving direction of PSO unreliable for SirenAttack, and
randomized decision for Kenansville.

Findings 8. Differentiable transformations become less
effective against the white-box adaptive attacks, but ran-
domized transformations remain resistant to the black-
box adaptive attacks.

Replicate Attack versus EOT. We observe that EOT is more
effective than the Replicate attack to bypass FeCo-o(k). To
understand the reason, we analyze if the expectation (i.e.,
FeCoðM0Þ ¼ M) of the Replicate attack is satisfied. We
found that FeCoðM0Þ has almost the same frames (i.e., fea-
ture vectors) asM, but their orders are not the same, due to
the randomness of FeCo. Indeed, it is impossible to ensure
the same orders, even if a brute-force adversary can enu-
merate the randomness, where the adversary has to craft
and submit an adversarial voice for each randomness,
would result in a low success rate (cf. Supplemental
Material A.7, available online). In contrast, EOT allows to
craft an adversarial voice that remains adversarial against
the randomness of FeCo by taking average of the loss func-
tions conditioned at multiple randomness during the gradi-
ent descent.

Besides, Replicate attack replicates the speech content of
each frame, and the lossy reconstruction of voices from fea-
tures introduce additional noise, making the adversarial
voices more perceptible (visit our website for listening

audios) and less robust (i.e., Replicate-W is worse than Rep-
licate-F for strong attacks).

Findings 9. Against FeCo, EOT is more effective than
Replicate attack in terms of both attack success rate and
imperceptibility.

8 EVALUATION OF TRANSFORMATIONS

ON ADVERSARIALLY TRAINED MODEL

8.1 Evaluation Setup

As ivector-PLDA cannot be adversarially trained due to
unsupervised learning, we adversarially train AudioNet for
the CSI-NE task using the datasets Spk251-train and Spk251-
test for training and testing, respectively. The training uses
a minibatch of size 128 for 300 epoches, cross-entropy loss
as the objective function, and Adam [66] to optimize train-
able parameters. The naturally trained model is denoted by
Standard. For adversarial training, we use PGD with 10
steps (i.e., PGD-10) to generate adversarial examples. The
model is denoted by Vanilla-AdvT.

For each chosen transformation X, we implement it as a
proper layer in AudioNet. Note that this layer does not
involve any trainable parameter. The resulting network is
adversarially trained the same as above, except that BPDA
is leveraged for training the network with non-differentia-
ble transformations and EOT with R ¼ 10 is leveraged for
training the network with randomized transformations. The
resulting model is denoted by AdvT+X. We do not consider
speech compressions, LPF and BPF, as BPDA is not effective
for estimating the gradients of speech compressions, and
the accuracy of the resulting model with LPF/BPF is
extreme low on both training dataset (i.e., 24.10%/23.65%)
and testing dataset (i.e., 2.04%/2.25%).

The adaptive attacks are derived from FGSM, PGD-10,
PGD-100, CW1-10, CW1-100, CW2-1, FAKEBOB, SirenAt-
tack, and Kenansville, armed with EOT (R ¼ 50) and BPDA
to evade randomized and non-differentiable transforma-
tions. To improve the attack capability of FAKEBOB, we
increase the parameter samples_per_draw m to 300, allow-
ing more precise gradient estimation at the cost of increased
attack overhead. Since adversarially trained models tend to
yield smaller loss than naturally trained one, we increase
the initial trade-off constant c of CW2 attack from 0.001 to
0.1 when attacking Vanilla-AdvT and AdvT+X. This helps
finding adversarial examples with better imperceptibility
according to our experiments.

8.2 Results

The results are reported in Table 7. We observe that the sole
adversarial training (i.e., Vanilla-AdvT) is effective for
defeating adversarial examples compared over Standard
except for Kenansville, at the cost of slightly sacrificing
accuracy on benign examples (i.e., Ab reduces from 99.06%
to 95.67%). Adversarial training either significantly
improves the accuracy by more than 53% on the adversarial
examples crafted by L1 attacks, or amplifies the distortions
of the adversarial examples crafted by CW2-1 (the SNR of
Vanilla-AdvT is 18 dB smaller than that of Standard).
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However, adversarial training does not improve the model
accuracy on the adversarial examples crafted by Kenans-
ville. This is not surprising since Kenansville is a signal
processing-based attack while the adversarial examples
used for adversarial training is generated by the optimiza-
tion-based attack PGD-10. We also tried to improve the
model robustness against Kenansville by incorporating
Kenansville in adversarial training, but the result is not
promising (cf. Section 9.1 for discussion).

While sole adversarial training is often effective com-
pared over Standard, the combination of adversarial train-
ing with a transformation, highlighted in green color in
Table 7, does not necessarily bring the best of both worlds,
which also exists in image domain [18].

Interestingly, we found that adversarial training com-
bined with FeCo-o(k), i.e., AdvT+FeCo-o(k), is very effec-
tive, achieving higher accuracy on both the adversarial and
benign examples compared with Vanilla-AdvT. This
improvement is brought by the randomness of FeCo. In
fact, during the training of AdvT+FeCo-o(k), the training
data are randomly transformed by FeCo, which enhances
the quantity and diversity of the training data, similar to
data augmentation. Consequently, the distribution mim-
icked by the training dataset fðxi; yiÞgBi¼1 becomes closer to
the underlying data distribution D (cf. Section 3.3), on
which AdvT+FeCo-o(k) encounters more diverse adversar-
ial examples during training. Thus, it becomes more robust
than Vanilla-AdvT. A similar result is also reported in the
image domain [33], where some image data augmentation
methods improve adversarial robustness.

Compared to the other transformations, FeCo enjoys
larger randomness space than AT (cf. Section 8.3) and other
deterministic transformations (without randomness), hence
AdvT+FeCo-o(k) outperforms other AdvT+X.

8.3 Attack Parameters Tuning

To thoroughly evaluate the robustness of AdvT+FeCo-o(k)
against adaptive versions of the PGD and CW2 attacks, we
further conduct a series of experiments by tuning the attack
parameters, including EOT_size (R), number of steps

(#Steps), step_size (a), and confidence (k). Since these
experiments on the entire Spk251-test dataset require huge
effort, we randomly select 1,000 voices out of 2,887 voices in
Spk251-test from which adversarial examples are crafted.

EOT_size (R). We study the impact of EOT_size (R) on
the effectiveness of AdvT+FeCo-o(k). We set PGD’s step_s-
ize a ¼ �=5 ¼ 0:0004 (the same as previous experiments)
and #Steps¼1, 100, 200. For each number of steps (#Steps),
EOT_size (R) ranges from 1 to 300. The results are shown in
Fig. 4. We observe that with the increase of EOT_size (R),
the accuracy of both AdvT+FeCo-o(k) and AdvT+AT
decreases. This is because larger EOT_size (R) allows EOT
to more accurately approximate the distributions of ran-
domized transformations, enabling the PGD attack to obtain
more reliable gradient and thus more stable search direction
for adversarial examples. However, when R 
 275 (resp.
R 
 50), further increasing R has negligible effect on AdvT
+FeCo-o(k) (resp. AdvT+AT), i.e., the accuracy becomes sta-
ble. Note that AdvT+FeCo-o(k) converges at a larger EOT_-
size (R) than AdvT+AT, i.e., 275 versus 50. Recall that EOT
is exploited to overcome the randomness of a transforma-
tion. Thus, EOT_size (R) is a reasonable metric for quantify-
ing the degree of randomness that a transformation
introduces. Accordingly, we can conclude that FeCo intro-
duces larger randomness than AT.

Number of Steps (#Steps). We study the impact of the num-
ber of steps (#Steps) in the PGD attack on the effectiveness
of AdvT+FeCo-o(k). We set PGD’s step_size a ¼ �=5 ¼
0:0004 and EOT_size R ¼ 1; 100; 300. The number of steps
(#Steps) ranges from 1 to 200 for every EOT_size (R). The
results are shown in Fig. 5. We observe that the accuracy of
AdvT+FeCo-o(k) decreases gradually when #Steps increase
from 1 to 100. This is not surprising as increasing #Steps
improves the strength of adversarial examples (cf. Fig. 3).
However, when #Steps> 100, the accuracy of AdvT+FeCo-o
(k) remains almost unchanged with the increase of the num-
ber of steps (#Steps).

Step_size (a). Based on the above results, we fix
#Steps=100 and EOT_size R ¼ 275 when studying the
impact of step_size (a) on the effectiveness of AdvT+FeCo-o

TABLE 7
Results (Aa, SNR, PESQ) on standard, Vanilla-AdvT, and AdvT+Transformation

Fig. 4. x-axis is EOT_size (R) and y-axis is Aa.
Fig. 5. x-axis is the number of steps (#Steps), and y-axis is Aa, where
#Steps¼ 1 is indeed the FGSM attack.
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(k) by setting a ¼ �=100, �=40, �=30, �=20, �=10, �=5. The
results are shown in Fig. 6a. We found that decreasing
step_size reduces the accuracy of both Vanilla-AdvT and
AdvT+FeCo-o(k). We conjecture that the PGD attack with
small step_size is less likely to oscillate across different
directions, thus can search for adversarial examples in a
more stable way. However, when a � �=20 (resp. a � �=40),
decreasing step_size (a) reduces the attack success rate on
AdvT+FeCo-o(k) (resp. Vanilla-AdvT).

From the above three stuides, we can observe that the
accuracy of AdvT+FeCo-o(k) plateaus at 60.62% with R ¼
275, #Steps=100, and a ¼ �=20, while the accuracy of Vanilla-
AdvT plateaus at 47.0% with R ¼ 1, #Steps ¼ 100, and a ¼
�=40. Thus, AdvT+FeCo-o(k) achieves 13.62% higher accu-
racy thanVanilla-AdvT. Furthermore, the attack has to query
the AdvT+FeCo-o(k) model 275� 100 ¼ 27; 500 times, while
it only has to query the Vanilla-AdvT model 1� 100 ¼ 100
times. This indicates that FeCo-o(k) significantly improves
the attack cost by two orders of magnitude.

Confidence (k). We launch the CW2 attack by setting the
parameter k ¼ 1; 5; 10; 15; 20; 25, where the larger k, the
stronger the attack. As shown in Fig. 6b, though the accu-
racy on the adversarial examples decreases with the
increase of k, the distortion also increases. For instance,
when k ¼ 25, the attack success rate is nearly 100%, but the
SNR (resp. PESQ) is 15.61 dB (resp. 1.40), 40.26 dB (resp.
3.07) smaller than that of Standard, indicating that the
adversarial examples become much less imperceptible. This
demonstrates the effectiveness of AdvT+FeCo-o(k) against
powerful attacks.

Findings 10. Among the adversarially trained models
combined with transformations, AdvT+FeCo-o(k) is the
unique one that is effective against all the adaptive
attacks. Compared with Vanilla-AdvT, it improves the
accuracy on both benign examples and adversarial
examples against L1, L2 and signal processing-based
adaptive attacks, largely increases the attack cost of the
PGD based adaptive attack, and significantly worsens
the imperceptibility of adversarial examples crafted by
the CW2 based adaptive attack.

9 DISCUSSION

We discuss some key findings and the limitations of our
study, interspersed with possible future works motivated
by them.

9.1 Discussion of Findings

Combination of Different Transformations. According to Find-
ings 1, Tables 4 and 6, the effectiveness of transformations
varies with attacks. Moreover, different types of transforma-
tions operate on different domains (time versus frequency),
different levels (waveform versus acoustic feature) and own
different properties (differentiable versus non-differentia-
ble, deterministic versus randomized). Therefore, it is inter-
esting to study if the combinations of transformations (e.g.,
AT and FeCo) could improve adversarial robustness.

Attacks Against Speech Compression Defenses. Findings 6 and
Findings 7 reveal that BPDA, FAKEBOB and SirenAttack are
hard to circumvent non-differentiable CBR and VBR speech
compression, respectively. BPDA cannot succeed since
replacing speech compression with the identity function in
the backward pass is not precise enough (cf. Fig. 10 in Supple-
mental Material, available online). Diving deeper into speech
compression, we found that its bit allocation would assign
unequal number of bits to voice sample points, according to
their contribution to human perception of the voices. Conse-
quently, the transformed voice by speech compression does
not align with the original one in time axis, making speech
compression far from the identity function. To improve
BPDA, we may utilize time sequence alignment techniques,
e.g., dynamic time warping [67], to align the original and
transformed voices to make speech compression close to the
identity function asmuch as possible. Another potential solu-
tion is to designmore accurate approximation functions than
the identity function, e.g., differentiable Variational AutoEn-
coder [68] with the origin voice and transformed voice as the
input and latent variables, respectively. The AutoEncoder is
first trained to learn the mapping from origin voices to trans-
formed voices and then utilized to replace the non-differen-
tiable speech compressions in the backward pass. The failure
of FAKEBOB and SireAttack may be attributed to the large
non-smoothness introduced by the variable bit rate of speech
compression. The smoothness assumption of NES and PSO
does not hold anymore [69], making the estimated gradient
of NES and the search direction of PSO not reliable and infor-
mative enough for gradient descent. NATTACK [69], which
will not be impeded by the non-smoothness of models, and
gradient-free decision-only attacks from the image domain,
e.g., evolutionary attack [70], may be good alternatives to
evade speech compression.

Black-Box Attacks Against Randomized Defenses. According
to Findings 8, all the black-box attacks (FAKEBOB, SirenAt-
tack, and Kenansville) have limited attack success rate on
the models with randomized transformations (e.g., AT and
FeCo). This is probably because NES of FAKEBOB becomes
ineffective for estimating gradients, PSO of SirenAttack
becomes unstable for searching better particle locations,
and Kenansville gets misled in updating the attack factor, in
presence of randomness. To bypass such randomized trans-
formations, one may use NATTACK which is effective in
breaking the randomized defenses in the image domain.
Adapting NATTACK to speaker recognition is an interest-
ing future work.

Robust Training Against Kenansville. The results in Table 7
show that adversarial training fails to improve robustness
against Kenansville. The reason is that the adversarial training
uses the optimization-based attack PGD, while Kenansville is

Fig. 6. Tuning the step_size (a) and confidence ðkÞ.
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a signal processing-based attack. We also tried to incorporate
Kenansville into adversarial training but found that it not
only fails to increase adversarial robustness against Kenans-
ville, but also significantly degrades accuracy on benign voi-
ces. The former may be due to low-confidence of adversarial
examples crafted by Kenansville that are not suitable for solv-
ing the inner maximization problem in adversarial training
(cf. in Section 3.3) while the latter may be due to large distor-
tion introduced by Kenansville. Details refer to Table 5. Since
adversarial training does not work well for Kenansville, we
may turn to other robustness training techniques, e.g., Lip-
schitz regularization [6]. In addition, Kenansville can be
defeated by liveness detection [71], [72] when it is launched
over the air. Liveness detection detects over-the-air attacks by
exploiting the different characteristics of the voices generated
by human vocal tract and electronic loudspeaker, so it can
defend against both optimization-based and signal-process-
ing-based over-the-air attacks.

9.2 Discussion of Limitations

Threats to Validity. In this study, we adopt ivector-PLDA and
AudioNet as the speaker recognition models, and four data-
sets derived from Librispeech as the datasets. It is not clear
whether the findings based on them can be extended to
other models and datasets. As a first attempt for confirma-
tion, we choose another deep learning-based model Deep-
Speaker [27], which was released by Baidu Inc. and is one of
the state-of-the-art speaker recognition models, and another
dataset VoxCeleb [73] which has different speakers, utteran-
ces, and subjects background (e.g., ethnicities, accents, age,
and profession) from Librispeech. We re-perform part of
experiments on them, and detailed experimental settings as
well as results refer to Supplemental Material A.9, available
online, from which we observe that the related findings still
hold. However, there are still many models and datasets
that we cannot cover one by one, e.g., wav2vec 2.0 [74], [75],
which stores speaker information of waveforms into the
representations of silent segments [76], and LibriTTS [77],
due to the huge cost.

Suitability of Audio Imperceptibility Metrics. We use L1 and
L2 norms to quantify the perturbation magnitude in adver-
sarial example generation, and adopt SNR and PESQ to
measure the imperceptibility of crafted adversarial voices.
These metrics have been widely adopted in the literature [6],
[7], [8], [10], [11], [12], [13] and in general, can consistently
reflect the degree of distortions according to our experimen-
tal results. Moreover, PESQ is an objective perceptual mea-
sure simulating the human auditory system [62]. However,
it remains unknown to what extent do these metrics corre-
late with human hearing perception. In the image domain,
the proximity of two images measured by Lp norm is nei-
ther necessary nor sufficient for them to be visually indistin-
guishable by humans [78]. Therefore, it is worthy to explore
in future the sufficiency and necessity of these metrics in
quantifying the audio perceptual similarity.

Securing Commercial SRSs. We did not directly target com-
mercial SRSs, although they are also vulnerable to black-box
attacks [12], [79]. The reason is that it is more important to
consider the most powerful adversaries when evaluating
defenses, while the adversaries are not able to mount

white-box attacks without having access to the internal
structures of commercial SRSs. Instead, we directly evalu-
ate defenses against the black-box attacks FAKEBOB [12],
SirenAttack [13] and Kenansville [15] which could be used
to attack commercial SRSs and FAKEBOB is able to fool
commercial SRSs. Investigating and evaluating if our findings
are applicable to commercial SRSs is left for futurework.

Detection of Adversarial Voices. While we focus on adver-
sarial training and transformation based defenses against
adversarial attacks, effective transformations could be lever-
aged to detect adversarial voices by comparing the degree-
of-change of benign and adversarial voices before and after
transformations [32]. This is reasonable as benign voices are
generally more robust [80], their results are less likely to
change after transformations, which is validated by our
Findings 11 in SupplementalMaterial A.4.3, available online.

Defending Against Over-the-Air Attacks. Our evaluation
focuses on digital attacks where adversarial voices are directly
fed to the SRS via exposedAPI, as it ismore important to evalu-
ate defenses against powerful adversaries while over-the-air
attack will be compromised by various sources of distor-
tions [53]. We emphasize that input transformations are also
applicable to over-the-air attacks where the adversarial voices
are played and recorded by hardware and transmitted in the
air. Transformations can back-up liveness detection [71], [72]
when liveness detection has false negatives, where liveness
detection detects over-the-air attacks by exploiting the different
characteristics of the voices generated by human vocal tract
and electronic loudspeaker. Evaluating the effectiveness of
these transformations in defending against over-the-air attacks
is left for futurework.

Input Transformations Against Other Attacks. This work
focuses on defending against adversarial attacks. There are
other attacks against SRSs which have different attack goals
and scenarios from adversarial attack. Thus, it is interesting
to investigate whether input transformations can defend
against those attacks. As a first attempt, we carry out a pre-
liminary evaluation against hidden voice attack [81] and
speech synthesis attack [82] (cf. Supplemental Material A.8,
available online). We found that input transformations are
also effective in mitigating these two attacks and speech
synthesis attack is more difficult to defeat than the other
two attacks. More thorough evaluations against more other
attacks are needed in the future.

10 RELATED WORK

Adversarial attacks and defenses in the speech and speaker
recognition domains recently have attracted intensive atten-
tion. Though both of them share a similar feature extraction
pipeline, they perform different tasks and speaker recogni-
tion owns unique enrollment phase and decision making
mechanism [12], [83]. Thus, in this section, we do not discuss
adversarial attacks and defenses that focus on speech recog-
nition [31], [40], [65], [84], [85], [86], [87], [88] (cf. [63], [83] for
survey). There are other voice attacks in the speaker recogni-
tion domain, such as hidden voice attacks [81] and spoofing
attacks [82], [89]. Though these attacks have different attack
goals and scenarios from adversarial attacks [12], our prelim-
inary evaluation shows that it is possible to mitigate hidden
voice attack [81] and speech synthesis attack [82] via input
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transformations. Below, we discuss adversarial attacks and
defenses in the speaker recognition domain.

Adversarial Attacks. Existing white-box attacks in the
speaker recognition domain are derived from the attacks in
the image recognition domain. The FGSM method was
adopted to attack the CSI-NE task [14] and the SV task [4], [5].
Zhang at al. used PGD to attack the CSI-NE task [7]. Jati at al.
attacked the CSI-NE task by leveraging FGSM, PGD, CW1
and CW2 [6] methods. However, these attacks have not been
thoroughly evaluated on the systems with various defenses
and it is difficult to concludewhich one is better due to incon-
sistent benchmarks (e.g., models and datasets). We consider
all these white-box attacks and adaptive variants thereof in
this work. Though our main goal is to investigate and evalu-
ate transformation and adversarial training based defenses,
our results also provide a fair comparison of these attacks
under the same settingswhen various defenses are deployed.

There are also some specific white-box attacks, aiming at
crafting universal perturbations [8], [9], [90] or improving
the imperceptibility of adversarial voices [10], [11], yet these
works did not consider any defense. Since the essential opti-
mization framework of these attacks is the same as the
attacks considered in this work, we do not incorporate these
attacks into our study.

FAKEBOB [12], SirenAttack [13], Kenansville [15], and
Occam [79] are four black-box adversarial attacks targeting
SRSs, where FAKEBOB, SirenAttack, and Occam are optimi-
zation-based attacks, and Kenansville is a signal processing-
based attack. All of them, except for Occam which is not
publicly available and non-trivial to reproduce, have been
used to evaluate defenses in this work.

Adversarial Defenses: Mitigation and Detection. Robust
training is one way to mitigate adversarial examples. [6],
[13] showed that adversarial training can enhance the
robustness of models. [6] also proposed another technique
which adds a regularization term using Lipschitz smooth-
ness to the loss function for model training. This technique
performs better than FGSM based adversarial training, but
worse than PGD based adversarial training. This motivated
us to evaluate PGD based adversarial training in this work.

The transformations (QT, MS and DS) and (DS and AS)
have been evaluated against FAKEBOB and SirenAttack
respectively. But, theywere neither combinedwith adversar-
ial training nor thoroughly evaluated under various attacks.
Our evaluation shows that these transformations are not
effective against adaptive attacks and cannot improve the
adversarial robustness of adversarially trained models. Fur-
thermore, we investigate and evaluate significantly more
defenses against both non-adaptive and adaptive attacks.
We note that AT, AutoEncoder [80], andGAN [91] have been
evaluated against four white-black attacks in [92]. Compared
to the transformations considered in this work, AutoEncoder
and GAN are data-dependent methods which require addi-
tional overhead for training from benign examples to model
the distribution of unperturbed voices, thus may exhibit dif-
ferent performance on difference datasets. Although BPDA
was used to solve the non-differentiability of GAN in [92],
the randomness of AT was not properly addressed, leading
to false sense of adversarial robustness. Our findings show
that AT becomes ineffective against adaptive attack armed
with EOT to address the randomness. Moreover, [92] did not

consider black-box attacks, while we did and found some
useful related findings (Findings 6-8).

Detection is another way to defend against adversarial
voices. [93] proposed to detect adversarial examples by
training a CNN-based binary classifier, while [94] checks
the consistence of results of twin models. However, these
approaches have not been evaluated against adaptive
attacks and may be evaded by incorporating the detector
into loss functions [95]. Another direction is liveness detec-
tion [71], [72] which detects malicious audios by exploiting
the different characteristics of the voices generated by
human vocal tract and electronic loudspeaker. Liveness
detection is a promising approach for defeating physical
adversarial attacks. However, it is not suitable for API
attacks where adversarial voices are directly fed to the SRSs
in the form of audio file via exposed API.

11 CONCLUSION

We have systematically investigated diverse transforma-
tions for mitigating adversarial voices in the speaker recog-
nition domain, including waveform-level transformations
in both time-domain and frequency-domain, speech com-
pression, and feature-level transformations, and covering
all the differentiable, non-differentiable, deterministic, and
randomized types. We have thoroughly evaluated those
transformations on both naturally trained and adversarially
trained models against promising white-box and black-box
attacks, as well as carefully designed adaptive variants for
circumventing different types of transformations. Our study
revealed lots of interesting and useful findings for both
researchers and practitioners.

Among all the transformations, we showed that our novel
feature-level transformation FeCo is rather effective against
black-box attacks and improves the robustness of adversari-
ally trained models against both white-box and black-box
adaptive attacks in terms of accuracy, attack cost, and distor-
tion level. This opens up a new research direction on transfor-
mations for mitigating adversarial examples. We pointed out
many possible future works in both adversarial attacks and
defenses in the speaker recognition domain, and released our
evaluation platform SPEAKERGUARD to foster further research.
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