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Taking Care of the Discretization Problem:
A Comprehensive Study of the Discretization
Problem and a Black-Box Adversarial
Attack in Discrete Integer Domain

Lei Bu™, Member, IEEE, Zhe Zhao ", Yuchao Duan, and Fu Song

Abstract—Neural network based (NN-based) classifiers are known vulnerable against adversarial examples, namely, adding slight
perturbations to a benign image cause a classifier to make a false prediction. To evaluate the robustness of NN-based classifiers
against adversarial examples, numerous adversarial attacks with high success rates have been proposed recently. NN-based image
classifiers usually normalize valid images (e.g., RGB image where the value at each coordinate is an integer between 0 and 255) into a
real continuous domain (e.g., 3-dimensional matrix where the value at each coordinate is a real number between 0 and 1) and make
classification decisions on the normalized images. However, adversarial examples crafted in a real continuous domain may become
benign once they are denormalized back into the corresponding discrete integer domain, known as the discretization problem. This
problem has been mentioned in some prior works but received relatively limited attention. In this work, we report the first
comprehensive study of existing works to understand the impacts of the discretization problem. By analyzing 35 representative
methods and empirically studying 20 representative open source tools, we found 29/35 (theoretically) and 14/20 (empirically) are
affected by the discretization problem, e.g., the success rate could dramatically drop from 100 to 10 percent after the domain
transformation. As the first step towards addressing this problem in a black-box scenario, we propose a novel derivative-free
optimization method, which can directly craft adversarial examples in the discrete integer domain. Experimental results show that the
method achieves nearly 100 percent attack success rates for both targeted and untargeted attacks, comparable to the most popular
white-box methods (FGSM, BIM and C&W), and significantly outperforms representative black-box methods (ZOO, AutoZOOM, NES-
PGD, Bandits, FD, FD-PSO and GenAttack). Our results suggest that the discretization problem should be treated more seriously, and

the discrete optimization algorithms show a promising future in crafting effective black-box attacks.

Index Terms—Adversarial examples, deep neural networks, discretization, black-box attacks, derivative-free optimization

1 INTRODUCTION

N the past ten years, machine learning algorithms, fueled by

massive amounts of data, achieve human-level performance
or even better on a number of tasks. Models produced by
machine learning algorithms, especially deep neural networks,
has been deployed in a variety of applications such as autono-
mous driving [1], [2], medical diagnostics [3], [4], [5], speech
processing [6], [7], computer vision [8], [9], robotics [10], [11],
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natural language processing [12], [13], and cyber-security [14],
[15], [16].

In the early stage of machine learning, people pay more
attention to the basic theory and application research,
although it is known in 2014 that machine learning models
are often vulnerable to adversarial manipulation of their
input intended to cause misclassification [17]. In 2014, Szeg-
edy et al. proposed the concept of adversarial examples for
the first time in deep neural networks [18]. By adding a sub-
tle perturbation to the input of the deep neural network, it
results in a misclassification. Moreover, a relatively large
fraction of adversarial examples can be used to attack mod-
els that have different architectures and training data. Fol-
lowing these findings, a plethora of studies has shown that
the state-of-the-art deep neural networks suffer from adver-
sarial example attacks, which can lead to severe consequen-
ces when applied to real-world applications [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39]. In the literature, there are
mainly two types of complementary techniques: testing
based [18], [24], [25], [26], [27], [31], [32], [34], [35], [36], [37],
[38], [39], [40], [41] and verification based [38], [42], [43],
[44], [45], [46], [47], [48], [49], [50] methods for crafting adver-
sarial examples. According to the adversary’s knowledge and
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capabilities, these techniques also can be categorized into both
white-box [18], [24], [25], [25], [31], [32], [40], [42], [43], [44],
[45], [46] and black-box [26], [27], [34], [35], [36], [37], [38], [39],
where white-box attacks require full white-box access to the
target model, which is not always feasible in practice.

However, almost all existing adversarial example attacks
target neural networks rather than neural network based
classifiers, while a neural network based classifier contains
not only a neural network model but also a pre-processor
for input data processing. Valid images in computer sys-
tems are stored in some format (e.g., png and jpeg) formed
as a discrete integer domain (e.g., {0,...,255}™), but will be
normalized into some continuous real domain (e.g., [0,1]™)
for training and predicting [51]. Therefore, a neural network
based image classifier consists of a pre-processor for nor-
malization and a neural network model, the input of the
classifier is an image rather than a float array. As a result,
adversarial examples crafted by existing attacks against
neural networks are in the continuous real domain. Such
adversarial examples fool the target neural network, but
once denormalized and saved into the discrete integer
domain as valid images, may become benign for the neural
network based image classifier. This gap was initially con-
sidered by Goodfellow et al. [19] and Papernot et al. [22],
and later formally presented by Carlini and Wagner, called
the discretization problem [21], which mainly refers to the
problem that adversarial examples become benign after the
rounding of float point numbers. Carlini and Wagner stated
that “This rounding will slightly degrade the quality of the adver-
sarial example” according to their experimental results on
MNIST images. Later on, this problem has received rela-
tively little attention. The discretization problem could
cause severe consequences. For instance, attack success
rates are widely used to compare the effectiveness of differ-
ent adversarial attacks and evaluate the robustness of neural
network based classifiers. But almost all the existing work
calculates the attack success rates without taking into the
discretization problem account, resulting in inflated attack
success rates. Such results cause readers and authors to mis-
judge the effectiveness of adversarial attacks and robustness
of neural network based classifiers. Actually, the discretiza-
tion problem already leads to user confusion in practice,
e.g., the Github issues [52], [53], [54], where the adversarial
examples produced by the attack tools become benign after
saving as the valid images. Therefore, it is important to con-
duct a comprehensive study on the impacts of the discreti-
zation problem: e.g., which methods/tools may be affected,
to what extent does this problem affect the attack success
rate and can it be avoided or alleviated?

To understand the impacts of the discretization problem,
in this work, we report the first comprehensive study of
existing works for crafting adversarial examples in image
classification domain which has a plethora of studies. In the
rest of this work, adversarial examples in a continuous real
domain will be called real adversarial examples and adver-
sarial examples in a discrete integer domain will be called
integer adversarial examples.

We first discuss the difference of adversarial examples
between continuous domain and discrete domain, Then, we
theoretically analyze 35 representative methods for crafting
adversarial examples. We find that: (1) Almost all of them
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craft real adversarial examples; (2) 29 methods are affected
by the discretization problem; and (3) 23 works do not pro-
vide hyper-parameters so that the discretization problem
could not be easily and directly avoided.

To understand the impacts of the discretization problem
in practice, we carry out an empirical evaluation of 20 repre-
sentative open source tools. We evaluate the gap between
the attack success rates of crafted real adversarial examples
and their corresponding integer adversarial examples. Our
empirical study shows that: (1) Most of the 20 tools are
affected by the discretization problem. In our experiments,
there are 8 tools whose gap exceeds 50 percent, 6 tools
whose gap exceeds 70 percent, and only 6 tools do not have
any gaps. (2) Among the 14 tools that are affected by the dis-
cretization problem, only 1 tool (FGSM) can avoid the dis-
cretization problem by tuning input parameters, 3 tools can
alleviate the discretization problem by tuning input param-
eters at the cost of attack efficiency or imperceptibility of
adversarial examples, and 10 tools can neither avoid nor
alleviate the discretization problem by tuning input param-
eters. Our study reveals that the discretization problem is far
more serious than originally thought and suggests taking it into
account seriously when crafting digital adversarial examples and
measuring attack success rate.

According to our comprehensive study, we found there
lacks an effective and efficient integer adversarial example
attack in the black-box scenario. This is because that white-
box attacks are usually efficient than black-box attacks in
terms of query times. New adversarial examples can be
quickly crafted when “fake” adversarial examples (due to
the discretization problem) are produced by white-box
attacks, while it would be inefficient for black-box attacks.
As the second main contribution of this work, we propose a
black-box algorithm that directly crafts adversarial exam-
ples in discrete integer domains for both targeted and untar-
geted attacks. Our method only requires access to the
probability distribution of classes for each test input. We
formalize the computation of integer adversarial examples
as a black-box discrete optimization problem constrained
with L. distance, where L. is defined in the discrete
domain as well. However, this discrete optimization prob-
lem cannot be solved using gradient-based methods, as the
model is non-continuous. To solve this problem, we pro-
pose a novel classification model-based derivative-free dis-
crete optimization method that does not rely on the
gradient of the objective function. Instead, it learns from
samples of the search space and refines the search space into
small sub-spaces. It is suitable for optimizing non-differen-
tiable functions, with many local minima, or even unknown
but only testable.

We demonstrate the effectiveness and efficiency of our
method on the MNIST dataset [55] using the LeNet-1
model [56], and the ImageNet dataset [57] using Inception-
v3 [58] model. Our method achieves close to 100 percent attack
success rates for both targeted and untargeted attacks, compa-
rable to the state-of-the-art white-box attacks: FGSM [19],
BIM [26] and C&W [21], and significantly outperforms repre-
sentative black-box methods: ZOO [33], AutoZOOM [37],
NES-PGD [39], Bandits [59], GenAttack [60], substitute model
based black-box attacks with FGSM and C&W methods, FD
and FD-PSO [61]. In terms of query efficiency, our attack is
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comparable to (or better than) the black-box attacks: NES-PGD,
Bandits, AutoZOOM, and GenAttack, which are specially
designed for query-limited scenarios. Moreover, our method
is able to break the HGD defense [62], which won the first place
of NIPS 2017 competition on defense against adversarial
attacks, with 100 percent success rate, and also achieves the so-
far best success rate of white-box attacks in the online MNIST
Adversarial Examples Challenge [63].
Our contributions in this paper include:

e We report the first comprehensive study of existing
works on the discretization problem, including 35
representative methods and 20 representative open
source tools.

e Our study sheds light on the impacts of the discreti-
zation problem, which is helpful to the community.

e We propose a black-box algorithm for crafting inte-
ger adversarial examples for targeted/untargeted
attacks by designing a derivative-free discrete opti-
mization method.

e Our attack achieves close to 100 percent attack suc-
cess rate, comparable to several recent popular
white-box attacks, and outperforms several recent
popular black-box tools (e.g., ZOO, Bandits, Auto-
ZOOM, GenAttack and NES-PGD) in terms of inte-
ger adversarial examples.

e Our attack is able to break the HGD defense [62]
with 100 percent success rate, and also achieves the
same result as the best white-box attack in MNIST
Challenge [63].

To the best of our knowledge, this is the first comprehensive
study of the impacts of the discretization problem on adver-
sarial examples and the first black-box attack that directly
crafts adversarial examples in discrete integer domain.

2 RELATED WORK

Digital adversarial attacks in the white-box scenario have
been widely studied in the literature, to cite a few [18], [24],
[25], [25], [31], [32], [401, [42], [43], [44], [45], [46]. In the
white-box scenario, an adversary has access to details (e.g.,
architecture, parameters, training dataset) of the system
under attack. This setting is clearly impractical in real-world
cases, when the adversary cannot get access to the details.
Therefore, in this work, we propose black-box adversarial
attacks. In the rest of this section, we mainly discuss existing
works on black-box adversarial attacks.

2.1 Digital Adversarial Attack
We classify existing attack methods along three dimensions:
substitute model, gradient estimation and heuristic search.
Substitute Model. Papernot et al. [35] proposed the first
black-box method by leveraging transferability property of
adversarial examples. It first trains a local substitute model
with a synthetic dataset and then crafts adversarial exam-
ples from the local substitute model. [64] generalized this
idea to attack other machine learning classifiers. However,
transferability is not always reliable, other methods such as
gradient estimation are explored as alternatives to substi-
tute networks.
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Gradient Estimation. Gradient plays an important role in
white-box adversarial attacks. Therefore, estimating the gradi-
ent to guide the search of adversarial examples is a popular
research direction in black-box adversarial attacks. Narodyt-
ska and Kasiviswanathan [65] proposed a greedy local search
based method to construct numerical approximation to the
network gradient, which is then used to construct a small set
of pixels in an image to perturb. Chen ef al. [33] proposed a
black-box attack method (named ZOO) with zeroth order opti-
mization. Following ZOO, Tu et al. [37] proposed an autoen-
coder-based method (named AutoZOOM) to improve query
efficiency. Similarly, Bhagoiji et al. [61] proposed a class of
black-box attacks (called FD) that approximate FGSM and BIM
via gradient estimation. Independently, Ilyas et al. [39] pro-
posed an alternative gradient estimation method by leveraging
natural evolution strategy (NES) [66], [67] and employing a
white-box PGD attack with estimated gradient (named NES-
PGD). Based on NES-PGS, Ilyas et al. [59] proposed a bandit
optimization-based method aimed at enhancing query effi-
ciency. Recently, Zhao et al. [68] proposed a method to leverage
an alternating direction method of multipliers (ADMM) algo-
rithm for gradient estimation.

Heuristic Search. Instead of gradient estimation, heuristic
search-based derivative-free optimization (DFO) methods
have been proposed. Hosseini et al. [69] proposed a method
by iteratively adding Gaussian noise. Liu et al. [70] proposed
ensemble-based approaches to generating transferable adver-
sarial examples. Brendel et al. [27] proposed a decision-based
attack (named DBA) with label-only setting, which starts
from the target image, moves a small step to the raw image
every time, and checks the perturbation cross the decision
boundary or not. Su ef al. [71] proposed a black-box attack for
generating one-pixel adversarial images based on differential
evolution. Bhagoiji et al. [61] also proposed a particle swarm
optimization (PSO) based DFO method, named FD-PSO. PSO
previously was used to find adversarial examples to fool face
recognition systems [23]. In a concurrent work, Alzantot et al.
[60] proposed a genetic algorithm based DFO method (named
GenAttack) for generating adversarial images. A genetic algo-
rithm was previously used to find adversarial examples to
fool PDF malware classifiers in EvadeML [72]. Co et al. [73]
proposed a method for generating universal adversarial per-
turbations (UAPs) in the black-box attack scenario by leverag-
ing Bayesian optimization, it is an interesting new area to
generate procedural noise perturbations.

Comparison. Our method does not rely on any substitute
model or gradient estimation. Different from the above heu-
ristic search based methods, we present a classification
model-based DFO method, to distinguish “good” samples
from “bad” samples. By learning from the evaluation of the
samples, our algorithm iteratively refines large search space
into small-subspaces, finally converges to the best solution.
To the best of our knowledge, our method is the first one
which iteratively refines large search space into small-sub-
spaces during searching adversarial examples. Experimen-
tal results show that our method achieves significantly
higher success rates in terms of the integer adversarial
examples than the state-of-the-art tools from all the above
classes, with comparable query times (cf. Section 6).

Although, some of these works (e.g., [27], [69], [70]) for
crafting digital adversarial samples add noises onto integer
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TABLE 1
Notations Used in This Paper
Notation Description
w, h, ch width, height, and number of channels of an image
P the set of coordinates w x h x ch
\% continuous (real) domain of real images 7, e.g., ngﬁlx“’”
D discrete (integer) domain of integer images rf, e.g., N ffﬁzﬁﬁx}‘h
U, P eV continuous real (adversarial) image
d, ¥ e D discrete integer (adversarial) image
Ulp] entity at coordinate p of a real image ¢
dlp] entity at coordinate p of an integer image d € D
T:D—V normalizer that transforms an integer image into a real image in the continuous domain V
T':V—-D denormalizer that transforms a real image back into an integer image such that for all deD, T"HT(d)=d
C; set of mutually exclusive classes for the task ¢

images and clip the value of each pixel into the range of 0
and 255, the noise added to each coordinate could be real
numbers and the value of each coordinate is not clipped in
the discrete integer domain {0,...,255}. Therefore, their
methods may craft many useless invalid integer images,
reducing efficiency. While our method directly crafts adver-
sarial samples the discrete integer domain, hence avoids to
craft useless invalid integer images.

2.2 Physical Adversarial Attack

Thanks to the success of adversarial example attacks in the
digital domain, recently, researchers started to study the feasi-
bility of adversarial examples in the physical world. We now
discuss recent efforts on physical adversarial examples.

Kurakin showed that printed adversarial examples crafted
in the digital domain could be misclassified when viewed
through a smartphone camera [26]. Follow-up works pro-
posed methods to improve robustness of physical adversarial
examples by synthesizing the digital images to simulate the
effect of rotation, brightness and scaling, and digital-to-physi-
cal transformation [31], [32], [74], [75], or manually taking
physical photos from different viewpoints and distances [31],
[76], or adding a scene-independent patch [77]. Furthermore,
adversarial example attacks have been applied on road sign
images [78], [79], face recognition systems [23], and object
detectors [80], [81]. Physical adversarial examples that are
printed or showed by devices will not be affected by the dis-
cretization problem.

Although these works demonstrated that physical adver-
sarial examples are possible, and integer adversarial images
may be damaged by image transformations (e.g., photo,
brightness, contrast, etc.) in the physical world [26], it is still
very useful to generate effective integer adversarial images.

e First, it can be used in many practical scenarios, e.g.,
attacking the online image classification systems.
Second, an attacker who cannot fool a classifier suc-
cessfully in the digital domain will also struggle to
do so physically in practice [23].

Third, it usually requires relatively expensive manual

efforts to directly craft phﬁlsical adversarial examples.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on

On the other hand, robust digital adversarial examples
can survive in physical world [75].

It is interesting to study the impacts of the discretization
problem on finding physical adversarial examples. Apply-
ing our classification model-based derivative free optimiza-
tion method in the physical world is also an interesting
topic. We leave these topics to future work.

2.3 Other Attacks

Adversarial example attacks against other machine learning
based classifiers also have been exhibited, such as malicious
PDF files [72], [82], [83], malware [84], [85], malicious web-
sites [86], spam emails [87], and speech recognition [88],
[89]. Since each type of machine learning based classifiers
has unique characteristics, in general, these existing attacks
are orthogonal to our work.

3 BACKGROUND

In this section, we introduce deep learning based image classi-
fications, adversarial attacks and distance metrics. For conve-
nient reference, we summarize the notations in Table 1.

3.1 Deep Learning Based Image Classification

Valid images are represented as integer images in computer
systems. To train a practical image classifier f;: D — C,,
valid images should first be normalized so that their pixels
all lie in the same reasonable range, as integer images come
in a form that is difficult for many deep learning architec-
tures to represent [51]. Therefore, as shown in Fig. 1, the
classifier f; is constructed by training an image classifier g; :
V — C, in continuous (real) domain aided by a normalizer
T : D — V, which leads to the classifier f; = g; o T.

Integer image classifier f; = g,oT

Real

image

Normalizer
T:D—V

Integer
image

Real image classifier | | Result

gt:V—>Ct

Fig. 1. Overview of machine learning based image classifiers.
October 20,2023 at 03:58:39 UTC from IEEE Xplore. Restrictions apply.
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Neural Networks versus Neural Network Based Classifiers. A
neural network consists of an input layer, an output layer
and some hidden layers, where each layer consists of some
neurons (or nodes) and neurons between layers could be
connected, forming a network. The input-output relation of
a neural network is a function g, : V — C,;, where V denotes
the input space and C, denotes the output space. As shown
in Fig. 1, neural networks are different from neural network
based classifiers, where a neural network based classifier
fi = g1 oT contains not only a neural network ¢, : V — C;
but also a normalizer T : D — V which transforms inputs
from space D into the input space V of the neural network.

3.2 Adversarial Attacks
In this work, we consider adversarial attacks using digital
adversarial examples instead of physical adversarial exam-
ples. We categorize digital adversarial examples into real
and integer ones according to their domains V and D.

Real and Integer Adversarial Examples. A real adversarial
example crafted from a real image ¥ € V is an image 7*%" € V
such that the real image classifier g, misclassifies %, i.e.,

9:(V) # g4 (Uadv) .

Likewise, an integer adversarial example crafted from an inte-
ger image d € D is an image d* € D such that the integer
image classifier f, misclassifies d*¥", i.e.,

Fi(d) # (@),

Untargeted and Targeted Attacks. In the literature, there are
two types of adversarial attacks: targeted and untargeted
attacks. Untargeted attack aims at crafting an adversarial
example that misleads the system being attacked, i.e., g,(v)
# g,(7®") for real adversarial examples and f,(d) # f,(d>)
for integer adversarial examples. A more powerful but diffi-
cult attack, targeted attack, aims at crafting an adversarial
example such that the system classifies the adversarial
example as the given class ¢, i.e., g;(1**") = c for real adver-
sarial examples and f, (d*%) = ¢ for integer adversarial
examples. It is easy to see that targeted attack can be used to
launch untargeted attack by choosing an arbitrary target
class.

White-Box and Black-Box Scenarios. Targeted and untar-
geted attacks have been studied in both white-box and
black-box scenarios, according to the knowledge of the tar-
get system. In the white-box scenario, the adversary has
access to details (e.g., architecture, parameters and training
dataset) of the system under attack. This setting is clearly
impractical in real-world cases, when the adversary cannot
get access to the details. In a more realistic black-box sce-
nario, it is usually assumed that the adversary can only
query the system and obtain confidences or probabilities of
classes for each input by limited queries.

In the black-box scenario, we emphasize that the adver-
sary has no access to the normalization of the target classifi-
cation system, otherwise the attack would be a gray-box
one. It is also non-trivial to infer the normalization by the
adversary in a black-box scenario due to the diversity of
normalization. Indeed, there is no standard normalization
in literature and they may differ in tools, neural network
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models and datasets. For instance, let i denote the integer
value of a coordinate,

e the Inception-v3 model on ImageNet dataset in
Z0O0 [33] uses the normalization: v; = (i/255 — 0.5);

e the Inception-v3 model on ImageNet dataset in Keras
[90] uses the normalization: v, = ((2 % 4)/255 — 1);

e the VGG and ResNet models on ImageNet dataset in
Keras [90] use the normalization: vs = (i — mean),
where mean denotes the mean value of images in
training dataset.

To the best of our knowledge, there is no work on infer-

ring normalization of classifiers. Due to the lack of space,
more details refer to [91].

3.3 Distance Metrics
The distortion of adversarial examples should be visually
indistinguishable from their normal counterparts by humans.
However, it is hard to model human perception, hence several
distance metrics were proposed to approximate human per-
ception of visual difference. In the literature, there are four
common distance metrics Ly, L;, Lo and L. which are
defined over samples in some continuous domain V. All of
them are L,, norm defined as
1
—adv |77) !
)

where ¥, 7% € V. In more detail, Ly counts the number of
different coordinates, i.e., >° p(¥[p] # 7**[p]); L; denotes
the sum of absolute differences of each coordinate value,
ie, > cp([dlp] — [p]); Ly denotes euclidean or root-
mean-square distance; and L., measures the largest change
introduced. Remark that

|7 — 32, = (Z|v

peP

7|, = max{[t[p]

lim ||0— —*Y[p]||p € P}.

n—oo

However, it seems not reasonable to approximate human'’s
perception of visual difference using distance metrics defined
between real images. Instead, it is much better to measure the
distance between integer images. For this purpose, we revise
distance metrics and introduce L, norm which is defined
between integer images. Formally, L,, is defined as follows:

1
n
adv
— )| ) ,

where d, d*® € D. Accordingly, we define: Ly = ||d — d*®"||,,
Ly =||d = d*|,, Ly=|ld—d*|, and Lo = |ld—d*|
Obviously, L,, differs from L, for any n.

I — @], = (Z!d

peP

4 THE DISCRETIZATION PROBLEM

Recall that we categorize digital adversarial examples into
real and integer ones according to their domains. There is a
gap between adversarial examples in continuous and in dis-
crete domains. In this section, we first formalize the gap as
the discretization problem and then report the comprehen-
sive study of the impacts of the discretization problem.
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4.1 Formulation of The Discretization Problem
Recall that a practical image classification system f; is an
integer image classifier that consists of both the real image
classifier g, and the normalizer T. Therefore, to attack the
system f, using a real adversarial image % € V that is
crafted by querying g,, it is necessary to denormalize the
real image ©** back into a valid image (i.e, an integer
image) d*® € D, so that it can be fed to the target system f;.
To denormalize 7%, a denormalizer T~! should be imple-
mented according to the knowledge of the normalizer T
such that for any integer image d € D, T~'(T(d)) = d.
However, after applying the denormalization, d*® may
be classified as a class that differs from the one of 7%, i.e.,

fild@®) = f(T7H(T)) = g(T(TH(TY))) # ().

This is so-called the discretization problem,' which comes from
the non-equivalent transformation between continuous real
and discrete integer domains, i.e., T(T (7)) # %, result-
ingin

g(T(TH(T))) # gu(T).

In the rest of this work, the maximum error when trans-
forming a real adversarial image back into the discrete
domain is called discretization error.

Formally, for a neural network based classifier f; = g; o T
consisting of a neural network g; : V — C; and a normalizer
T :D — V, the discretization problem is the problem that: a
real example ¥ predicated as the class g;(¢) by the neural
network ¢, will be predicated as another class f;(T~!(%))
(with f;(T~(9)) # (7)) by the neural network based classi-
fier f; after transforming ¢ back into the discrete integer
domain I via the denormalizer T~

The discretization problem may result in failure of untar-
geted and targeted attacks, i.e.,

FU(T7H @) = fi(d) or fi(TH (")) #£ec.

where %

denotes a real adversarial image crafted from
T(d) and ¢ denotes the target class.

As stated by Carlini and Wanger [21], the discretization
problem slightly degrades the quality of the adversarial exam-
ple. However, there lacks a comprehensive study of the
impacts of the discretization problem. In the rest of this sec-
tion, we report the first comprehensive study including theo-
retical analysis of 35 representative methods and empirical
study of 20 representative open source tools, in an attempt to

understand the impacts of the discretization problem.

4.2 Theoretical Study

We theoretically analyze 35 existing works including 25
testing methods (15 white-box and 10 black-box) and 10 ver-
ification methods (9 white-box and 1 black-box), to deter-
mine: 1) whether they generate adversarial examples in
discrete or continuous domain? 2) if they use some continu-
ous domain, do they consider the discretization problem
and how do they deal with it? and 3) if they do not consider

1. The term “discretization” comes from Carlini and Wagner[21]
which expresses the rounding problem from real numbers to integer
numbers. Our definition is more general than theirs.
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TABLE 2
Summary of Theoretical Study Results

Reference (Un)targeted| Domain |Considered|B2G |Avoid
L-BFGS [18] Targeted |Continuous X - X
FGSM [19] Untargeted [Continuous 4 - v
BIM(ILLC) [26] Targeted Discrete - - -
PGD [92] Untargeted [Continuous X - X
MBIM [93] Targeted |Continuous X - 4
y JSMA [22] Targeted |Continuous X - 4
g C&W [21] Targeted |Continuous 4 - X
2|4 OptMargin [94] | Untargeted |[Continuous X - X
1 EAD [95] Targeted |[Continuous X - X
@ |Z| DeepFool [96] | Untargeted |Continuous X - X
= UAP [24] Untargeted [Continuous X - X
-] DeepXplore [25] | Untargeted [Continuous X - X
a DeepCover [97] | Untargeted |Continuous X - X
-;':n DeepGauge [40] | Untargeted |Continuous X - -
g DeepConcolic [98]| Untargeted |Continuous 4 - X
] SModel [35] Targeted |Continuous X X -
= PMG [64] Untargeted |Continuous X X -
x| One-pixel [71] Targeted |Continuous X X X
,:3 Z0O0 [33] Targeted |Continuous X v X
4 FD [61] Targeted |Continuous X X -
S NES-PGD [39] Targeted |Continuous X X X
= DBA [27] Targeted |Continuous X X X
Bandits [59] Untargeted |Continuous X X X
AutoZOOM [37] Targeted |Continuous X 4 X
GenAttack [60] Targeted |Continuous X v X
Reference Complete Domain |Considered|B2G |Avoid
" BILVNC [99] V= X Continuous X - X
3 DLV [100] X Continuous v - v
= 3 Planet [101] =X Continuous X - X
E S| MIPVerify [102] =X Continuous X - X
|2 DeepZ [46] X Continuous X - X
-2 |=[ DeepPoly [47] X Continuous X - X
5] = DeepGo [103] X Continuous X - X
E ReluVal [104] /— X | Continuous X - X
< DSGMK [105] X Discrete - - -
) SafeCV [38] X Continuous 4 4 4

Note: (un)targeted column shows the type of attack, once a method could
launch targeted attack, we mark it as targeted, as targeted is more powerful
than untargeted attack; Domain column shows the domain of images; Con-
sidered column shows whether the method considered the discretization prob-
lem; B2G column shows whether black-box downgrades to gray-box; Avoid
column shows whether the discretization problem could be (almost) avoided;
Complete column shows whether the method is complete, — meaning com-
plete method becomes incomplete due to the discretization problem.

it, could the discretization problem be avoided by tuning
input parameters? The summary of results is given in
Table 2 according to raw papers (primarily) and source
code.

Discrete or Continuous. After examining the domain of all
the 35 works, we found only BIM and DSGMK define the
adversarial example searching problem in discrete domains
and uses the integer perturbation step sizes. While the other
33 works craft adversarial examples in continuous domains,
hence they may be affected by the discretization problem.

Considered or Not. Among 33 works that craft adversarial
example in continuous domains, we found only five works
(i.e., FGSM, C&W, DeepConcolic, DLV and SafeCV) do con-
sider the discretization problem, while the other 28 works
do not, indicating that 28 out of 35 works are affected by the
discretization problem.

Specifically, FGSM uses perturbation step sizes that cor-
respond to the magnitude of the smallest bit of an image so
that the transformation between continuous and discrete
domains is almost equivalent, i.e., the discretization errors
are nearly zero. DLV verifies classifiers using discretization
such that the crafted real adversarial examples are still
adversarial after denormalization. SafeCV limits the pertur-
bation of each pixel to the minimum or maximum values of

Authorized licensed use limited to: ShanghaiTech University. Downloaded on October 20,2023 at 03:58:39 UTC from IEEE Xplore. Restrictions apply.
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coordinates. Therefore, the discretization problem in FGSM,
DLV and SafeCV are (almost) avoided.

In contrast, C&W and DeepConcolic perform denormali-
zation post-processing before checking crafted real images,
and C&W also proposes a greedy algorithm that searches
integer adversarial examples on a lattice defined by the dis-
crete solutions by changing one-pixel value at a time. How-
ever, discrete solutions are computed by rounding real
numbers of coordinates in real adversarial examples to the
nearest integers. Therefore, DeepConcolic and C&W either
evade or alleviate the discretization problem, but they can-
not essentially avoid it in theory, as they may craft many
useless real adversarial examples.

Avoidable or Not. We further conduct an in-depth analysis
of 29 works that craft adversarial example in continuous
domains, but do not consider the discretization problem.
We investigate whether the discretization problem in these
works can be easily and directly avoided by tuning hyper-
parameters. We found that only MBIM and JSMA could
control the perturbation step sizes directly by hyper-param-
eters so that the discretization problem could be (almost)
avoided by choosing proper perturbation step sizes.

In contrast, 23 out of 29 works do not provide such
hyper-parameters so that the discretization problem could
not be easily and directly avoided. This is because that

e PGD, DeepXplore, One-pixel, NES-PGD, DBA, Ban-
dits and GenAttack introduce random perturbation
step size or random noise, making perturbation step
size uncontrollable;

e L-BFGS, OptMargin, EAD, DeepFool, DeepCover,
UAP, ZOO and AutoZOOM directly craft perturba-
tions (e.g., from optimizers) in continuous domain;

e BILVNC, Planet, MIPVerify, DeepZ, DeepPoly,
DeepGo, ReluVal, and DSGMK do not provide any
parameters to constrain real adversarial examples so
that the discretization error cannot be minimized.

The remaining 4 methods DeepGauge, SModel, PMG
and FD actually leverage other attack methods such as
(FGSM, BIM, JSMA, and C&W). Therefore, the impacts of
the discretization problem on their methods rely upon other
attacks.

Discussion. After an in-depth analysis of 35 existing works,
we found that 34 works craft adversarial examples in continu-
ous domains, 29 works are affected by the discretization prob-
lem, and 23 works do not provide hyper-parameters to avoid
the discretization problem. As aforementioned, real adversar-
ial examples may be damaged when transforming back into
valid images, due to the discretization problem, hence fail to
launch attacks. Besides this, there are other severe consequen-
ces: (1) the black-box methods such as ZOO, AutoZOOM,
GenAttack and SafeCV downgrade to gray-box ones, as they
directly invoke the normalization of the integer classification
systems; (2) the verification methods such as BILVNC, MIP-
Verify, Planet and ReluVal that are claimed complete are only
limited to real image classifiers, and become incomplete on
practical image classification systems that are indeed integer
image classifiers; and (3) the verification methods such as
BILVNC, MIPVerify, Planet, ReluVal, DeepZ, DeepPoly,
DeepGo and DSGMK may craft spurious adversarial exam-
ples and fail to prove robustness of integer image classifiers.
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Moreover, during our study, we found there are lots of
Github issues, e.g., [52], [53], [54], asking why adversarial
examples are no longer adversarial after saving them in
some format (e.g., png). Users may doubt whether the
attack was not properly implemented, or images were saved
in a wrong way. According to our findings, these issues are
caused by the discretization problem.

4.3 Empirical Study

We conduct an empirical study on 20 representative meth-
ods in Table 3 whose source code is publicly available, in an
attempt to understand the impacts of the discretization
problem in practice.

We consider the following two research questions:

RQ1: To what extent does the discretization problem
affect the attack success rate?

RQ2: Can the discretization problem be avoided or allevi-
ated by tuning input parameters?

Setting. In our experiments, we use the official implemen-
tations of the authors. Due to the diversity of these tools, the
dataset and setting may be different. We manage to be con-
sistent with the original environments in their raw papers,
attack the target models provided by the tools, and conduct
targeted attacks unless the tools are designated for untar-
geted attacks. For verification tools that cannot directly
attack the model, we evaluate them by analyzing the gener-
ated counterexamples. Although, we do not change their
settings deliberately to get exaggerative results, we should
emphasize that the comparison between these tools may be
unfair, our main goal is to understand their own tools.

Dataset. We use two popular image datasets: MNIST [55]
and ImageNet [57]. ImageNet contains over 10000000 images
with 1000 classes. We randomly choose 100 classes from
which we randomly choose 1 image per class that can be cor-
rectly classified by four classifiers in Keras: ResNet50, Incep-
tion-v3, VGG16 and VGG19. For MNIST images, the numbers
of used images are shown in the last column in Table 3, which
depends on the efficiency of the tool under test.

Metrics. We introduce three metrics to evaluate the
impacts of the discretization problem. Let N denote the
number of input images under test, N, denote the number
of successfully crafted real adversarial examples, and N;
denote the number of integer adversarial examples after the
denormalization post-processing,

e Success Rate (SR) is calculated as 3¢ N ,

e True Success Rate (TSR) is calculated as 3z,

e GAP between SR and TSR is calculated as 2%2*

To compute NN;, we use the denormalizer provided by the
corresponding tools.

SR-TSR

4.3.1 RQf1

To answer this research question, we conduct experiments
using default input parameters in their raw papers or tools,
which have been fine-turned for effectiveness by corre-
sponding authors and widely used by existing works. The
results are shown in Table 3.

We can observe that 14 out of 20 tools are affected by the
discretization problem. Their gaps range from 0.03 to 100 per-

cent. In more detail, 8 tools have galps exceeding 50 percent
re. Restrictions apply.
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TABLE 3
Experiment Results on the Discretization Problem
Method SR TSR GAP  Dataset Model Default Note
FGSM [19] 98.61% 98.58% 0.03%  MNIST LeNet-1° v 10000 images
BIM [26] 100%  100% 0%  ImageNet Inception-v3* v -
MBIM [93] 100%  100% 0%  ImageNet Inception-v3 v -
JSMA [22] 96% 96% 0%  ImageNet VGG19* v -
L-BFGS [106] 100%  77% 23%  ImageNet Inception-v3 v -
C&W-L, [21] 100%  10% 90%  ImageNet Inception-v3* v -
DeepFool [96] 100%  23% 77%  ImageNet ResNet34* v -
DeepXplore [25] 65% 28%  56.92% ImageNet ResNet50, VGG16&19* v Generate examples with 100 seeds
DeepConcolic [98] 2% 2% 0% MNIST mnist_complicated.h5* v 10000 images with criterion="nc’
700 [33] 58% 6%  89.66% ImageNet Inception-v3* v -
DBA [27] 100%  28% 72%  ImageNet VGG19* v -
NES-PGD [39] 100%  53% 47%  ImageNet Inception-v3* v -
Bandits [59] 94% 11%  88.3% ImageNet Inception-v3* v -
GenAttack [60] 100%  91% 9%  ImageNet Inception-v3* Vv -
DLV [100] 90% 90% 0% MNIST NoName* v 20 images
Planet [101] 100%  46% 54% MNIST testNetworkB.rlv* v Use ‘GIVE’ model obtain 20 images
MIPVerify [102] 42% 0% 100%  MNIST MNIST.n1* v Quickstart demo with 100 images
DeepPoly [47] 45% 44%  222%  MNIST  convBigRELU_DiffAl* V4 Gap between ¢ = 0.3 and € = 76/255
DeepGo [103] 254% 252% 0.78%  MNIST NoName* v Crafted 1000 images from 1 image
SafeCV [38] 100%  100% 0% MNIST NoName* v 100 images

Note: x means the target model in the corresponding tool; § means that their tools do not have any target models and we choose widely used target models from

Tensorflow or Keras; and Default means default input parameters.

including white-box testing tools (C&W-L, DeepFool, Deep-
Xplore), black-box testing tools (ZOO, DBA and Bandits) and
verification tools (Planet and MIPVerify). Among them, 6
tools have gaps exceeding 70 percent. This demonstrates that
if attackers do not pay attention to the discretization problem,
they will be likely to generate real adversarial examples which
will be damaged after transforming them back into the dis-
crete domain.

There are only 6 out of 20 tools that do not have any gaps
including BIM, MBIM, JSMA, DeepConcolic, DLV and
SafeCV. These results are largely consistent with our theo-
retical study.

Answering RQ1: The results on 20 tools show that most of
them are affected by the discretization problem. There
are 8 tools whose gap exceeds 50 percent, and 6 tools
whose gap exceeds 70 percent, and only 6 tools do not
have any gaps.

4.3.2 RQ2

To answer this research question, we propose different strate-
gies to tune input parameters for these 14 tools whose gap is
not 0 in RQ1. According to our findings in theoretical study,
we distinguish these tools by whether the discretization prob-
lem can be easily and directly avoided by tuning input param-
eters. Remark that we do not investigate how to modify their
implementations and methods by taking the discretization
problem into account. First, it is a tedious and error-prone pro-
cess. Second, modifying their implementations may signifi-
cantly under-estimate their effectiveness and efficiency, as
pointed out by Carlini [107], hence less convincing.

Case 1: Empirical study on the tools where the discretization
problem can be easily and directly avoided by tuning input parame-
ters in theory. Based on the results in Table 3, we can observe
that only FGSM has a non-zero gap and its discretization

problem can be easily and directly avoided by tuning input
parameters. The default perturbation step size e used in
Table 3 is 0.3. Therefore, we revise € to 76 /255 in order to avoid
the discretization problem. Then the gap decreases to 0, which
confirms our theoretical findings.

To illustrate the importance of controllable perturbation
step sizes, we also test the implementations of BIM and MBIM
in other toolkits, such as Foolbox [108]. Different from the raw
implementation of these tools, Foolbox provides a binary
search by default. The binary search is performed between
the original clean input and the crafted adversarial image,
intending to find the exact adversarial boundary. It has been
adopted in recent attacks, e.g., [109], [110]. However, if the
binary search is implemented without taking into the discreti-
zation problem account such as BIM and MBIM in Foolbox,
the perturbation step size will become uncontrollable. We use
the same input parameters of BIM and MBIM as in RQ1,
except that the binary search is enabled (default in Foolbox).
Compared to the results in Table 3, the gaps of both BIM and
MBIM increase from 0 to 90 percent. These results show that
attackers should pay more attention to input parameters even
the discretization problem is avoidable.

Case 2: Empirical study on the tools where the discretization
problem cannot be easily and directly avoided by tuning input
parameters in theory. Based on the results in Table 3, there
remain 13 tools whose gaps are non-zero, and the discretiza-
tion problem cannot be easily and directly avoided by tun-
ing input parameters. We do our best to fine-turn the input
parameters of those tools aimed at increasing TSR and
decreasing the gap.

First of all, as discussed in theoretical study, the verifica-
tion tools (i.e., Planet, MIPVerify, DeepPoly and DeepGo)
do not provide any parameters to constrain real adversarial
examples so that the discretization error could be mini-
mized, we cannot tune input parameters of those tools. For
the other 9 test-based tools (i.e., white-box attacks L-BFGS,
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C&W, DeepFool and DeepXplore, and black-box attacks
Z0O0, DBA, NES-PGD, Bandits and GenAttack), we adopt
the following three strategies to alleviate the discretization
problem:

S1: forbidding adaptive perturbation step size: aims at con-
trolling perturbation step sizes. NES-PGD, DBA, Ban-
dits and GenAttack provide such adaptive mechanism.

52: increasing overall perturbations: aims at minimizing the
ratio of discretization error against the overall perturba-
tions. L-BFGS, DeepFool, DeepXplore and DBA provide
input parameters related to this strategy.

S3: enhancing strength/confidence of adversarial examples:
aims at enhancing the robustness of real adversarial
examples. C&W and ZOO provide input parameters
related to confidence.

After tuning input parameters (for details refer to [91]),
none of them is able to eliminate the discretization errors
absolutely.

In terms of TSR, we found that:

e By applying S1, the TSR of NES-PGD and DBA can
increase, but the TSR of Bandits and GenAttack
cannot;

e By applying S2, the TSR of DBA can increase, but the
TSR of DeepXplore, L-BFGS and DeepFool cannot;

e By applying S3, the TSR of C&W-L; can increase, but
the TSR of ZOO cannot.

This demonstrates that our strategies are able to increase
TSR for 3 tools, but fail to increase TSR for the other 6 tools.
However, these strategies also bring some side effects,
namely, increasing either overall perturbations in terms of
Mean Square Error (MSE) or the number of query times,
hence sacrificing attack efficiency and imperceptibility of
adversarial samples. Due to limited space, the detailed sta-
tistic is given in [91].

Answering RQ2: According to our experiences, among 14
tools that are affected by the discretization problem, only
1 tool, FGSM, can definitely avoid the discretization
problem by tuning input parameters, and only 3 tools
can alleviate the discretization problem by tuning input
parameters at the cost of attack efficiency or impercepti-
bility.

Discussion. Our empirical study reveals that the discreti-
zation problem is more severe than originally thought in
practice, in conformance with the results of our theoretical
study. According to our experimental results, the attack
results in published works may not be as good as those
reported in raw papers. For instance, DeepFool assumed
that the classifier g, in continuous domain is the same as the
classifier f, in discrete interger domain which contradicts to
our empirical result, e.g., it has gap 77 percent in Table 3.
We believe it is important to highlight the potential impacts
of the discretization problem, and by no means invalidate
existing methods or their importance and contributions.

Compared to adjusting parameters, it may be more effec-
tive to change the rounding direction of float point numbers
to alleviate the discretization problem. In default, each float
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point number is round down to the nearest integer. A more
promising approach is to round float point numbers guided
by the direction of derivatives. Specifically, when transform-
ing a real adversarial example back into the integer domain,
the value of a pixel is round up to the nearest integer if its
derivative is positive, otherwise round down to the nearest
integer. This approach can be seen as performing an addi-
tional FGSM-like attack after the original attack. Though it is
trivial to obtain derivatives for white-box attacks, it is difficult
to compute derivatives for black-box attacks, as estimating
the gradient in the black-box scenario often requires a large
number of queries, e.g., estimating the gradient of a 299*299*3
image using the finite difference method [61] needs 500,000
queries. Therefore, we implement this approach on the four
white-box attacks, L-BFGS, DeepFool, C&W and DeepXplore,
where the discretization problem cannot be easily and directly
avoided by tuning input parameters in theory. The TSR of L-
BFGS, DeepFool, C&W and DeepXplore increases from 77, 23,
10 and 28 to 97, 36, 82 and 37 percent, respectively, demon-
strating that this approach is able to alleviate the discretization
problem to some extent. However, MSE increases 1.9 times on
average, hence sacrificing the imperceptibility of adversarial
samples.

It is worth noting that Carlini and Wagner [21] pro-
posed a greedy search based algorithm to alleviate the
discretization problem. This approach iteratively modifies
the pixel with the largest gradient, thus, can be seen as
performing an additional JSMA-like attack when the dis-
cretization problem occurs. We conduct an experiment on
the greedy search based version of C&W-L, which are
obtained from Carlini. In our experiment, we use input
parameters recommended by Carlini for MNIST images.
We found that the greedy search based algorithm signifi-
cantly improves TSR and reduces gaps without increasing
distortions of crafted adversarial examples. This demon-
strates that the greedy search based algorithm is a solu-
tion to alleviate the discretization problem when one
cannot precisely control perturbation step sizes by adjust-
ing input parameters. However, due to the fact that the
greedy search based algorithm leverages gradients of tar-
geted networks frequently, it is difficult to integrate it
into black-box attacks.

According to our findings, we suggest that: (1) attack suc-
cess rate should be measured using integer adversarial exam-
ples instead of real adversarial examples; (2) it is vital to pay
more attention to perturbation step sizes that can be con-
trolled by input parameters; and (3) it is better to revise the
implementations of the tools that cannot easily avoid the dis-
cretization problem by tuning input parameters if one wants
to achieve higher TSR but do not sacrifice the attack efficiency
and imperceptibility of adversarial examples.

5 AN APPROACH FOR BLACK-BOX ATTACK

According to our study in Section 4, there lacks an effective
and efficient integer adversarial example attack in black-box
scenario. As a first step towards addressing this problem,
we propose a novel black-box algorithm for both targeted
and untargeted attacks by presenting a classification model-
based perivative-Free discrete optimization (DFO) method.
This type of DFO methods has been widely used to solve
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complex optimization tasks in a sampling-feedback-style. It
does not rely on the gradient of the objective function, but
instead, learns from samples of the search space. Therefore,
it is suitable for optimizing functions that are non-differen-
tiable, or even unknown but only testable. Furthermore, it
was shown by Yu et al. [111] that it is not only superior to
many state-of-the-art DFO methods (e.g., genetic algorithm,
Bayesian optimization and cross-entropy method), but also
stable. We refer readers to [111] for the advantages of classi-
fication model-based DFO methods.

In the rest of this section, we first introduce our approach
framework, then present the formulation and our algorithm.

Threat Model. In our black-box scenario, we assume that
the adversary does not have any access to any details (e.g.,
normalization, architecture, parameters and training data)
of the target classifier, but he/she knows the input format
of the target classifier and has access to the probabilities (or
confidences) of all classes for each input image which are
widely used assumptions in the black-box scenario [34],
[35], [61], [72], [83].

In our attack, the distortion of adversarial examples is mea-
sured by the L, distance metric, which is one of the most
widely used metrics to model human perception. The L,
metric imposes the same constraints on the perturbation range
of each coordinate. Compared with a benign image, an adver-
sarial example generated under this constraint has a more sig-
nificant euclidean distance but is relatively uniform and
smooth [112], [113], [114]. The L, metric limits the number of
coordinates that the attacker can modify, and the L, metric
limits the maximum euclidean distance between an adversar-
ial example and a benign image. The overall perturbation gen-
erated by an attack under these two metrics is generally small,
but the differences at some specific coordinates may be signifi-
cant, and thus can be perceived by human-being [115], [116],
[117]. Most of the baseline tools we compared in the experi-
mental section support the L, metric [19], [21], [26], [35], [39],
[59], [60], [61]. Furthermore, our attack could be easily revised
to use Ly or Ly metric by adapting our dissatisfaction-degree
function according to [21]. We leave this as future work.

5.1 Framework of DFA

Fig. 2 shows the framework of our approach named DFA,
standing for Derivative-Free Attack. Given an integer image,
DFA directly searches an adversarial image in a (discrete inte-
ger) search space specified by the maximum L, distance.

In principle, DFA first samples some perturbations from
the search space and repeats the following procedure until
an integer adversarial example is found. During each itera-
tion, DFA queries the target classifier to measure the images
(perturbations added onto the input image) via a given dis-
satisfaction degree function which predicates how far is an
image from a successful attack. The perturbations are parti-
tioned into two parts w.r.t. dissatisfaction degrees: perturba-
tions yielding high dissatisfaction degrees and perturbations
yielding low dissatisfaction degrees. The search space is
refined into a small sub-space according to the partitions of
perturbations. New perturbations are sampled from the
refined sub-space. Together with old perturbations, a set of
best-so-far perturbations is selected according to their dis-
satisfaction degrees. Finally, the procedure is repeated on
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Fig. 2. Framework of our approach DFA.

the best-so-far perturbations which will be used to refine the
sub-space again.

5.2 Formulation

We formalize the integer adversarial example searching
problem as a derivative-free discrete optimization problem
by defining the dissatisfaction degree functions. We first
introduce some notations.

Let us fix a classifier f; : D — C; for some image classifi-
cation task ¢ and an integer number e denoting the maxi-
mum L. distance. We denote by P(d 1) the vector of
probablhtles on the image d and by P(d, ) the probability
that the image d is classified to the class ¢ € C;. For a given
integer j such taht 1 < j < |Cy|, we denote by Top,(d 1) the jth
largest probability in P(d) and Top/(d 1) the class whose prob-

ability is Top,(d 1). Obviously, Top! (d 1) = f,(d).

We define the initial search space A of perturbations as a
discrete integer domain N{”<"*". Specifically, the discrete
domain A is a two-dimensional array such that for each
coordinate p € P =w x h x ch, Alp][low] and A[p][high]
(such that Alp][high] > A[p][low]) are integer numbers
respectively denoting the lower and upper bound of the
value at the coordinate p. Therefore, A denotes a set of per-
turbations such that § € A if and only if A[p][low] < §[p] <
Alp][high] for all coordinates p € P. The search space A will
be refined into small sub-spaces by increasing lower bound

A[p][Low] or decreasing upper bound A[p]high] for choosing
coordinates p in our algorithm.

Given a perturbation § € A, we denote by d @ 5, the valid
image after adding the perturbation § onto the image d,
namely, for every coordinate p € P

B} dip) + 8lp), if 0 < dip] + 8[p] < 255;
(d®d)lp]:= 1 0, it dlp] + 8[p] < 0;
255, if d[p] + 8[p] > 255.

The integer adversarial example searching problem with respect
to the maximum L, distance ¢ is to find some perturbation
8 € Asuch that:

o Top1 (d @ 8) # f,(d) for untargeted attack;
e Top| (d @ 8) = cfor targeted attack with a target class c.

We solve the integer adversarial example searching prob-
lem by reduction to a derivative-free discrete optimization
problem. The reduction is given by defining an optimization
goal which is characterized by dissatisfaction-degree functions.
We first consider the untargeted case.
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The goal of untargeted attack is to find some perturba-
tion 8 € A such that Top!(d @ 8) # f,(d). To do this, we
maximize the current probablhty of the image d @ 8 being
classified as the class TopQ(d@S) (i.e., the current class
with second largest probability, which may change w.r.t.
different 8) until the image is able to successfully mislead
the classifier. Therefore, we define the dissatisfaction-degree
function for untargeted attack, denoted by Dy.(-,-), as
follows:

° ua(d ) =0, 1fT°P1(d@8)7éft( )

o Du(ds):=1- Top2(d@ §), otherwise.

In this function, if the attack has succeeded, the perturba-
tion § is “satisfying”, then the value of the dissatisfaction-
degree becomes 0. Otherwise, we return the distance between
1 and the currently reported second largest probability, which
is in the range of [0,1], indicating how far it is from 1. Clearly,
in this case, the distance is definitely positive. To this end, our
goal is to find a perturbation § such that the dissatisfaction-
degreeis 0.

For targeted attack with the target class ¢, instead of max-
1m1z1rlg the probability of d ® § being classified as the class
Top(d & §), we maximize the probability of the image d @ §
being classified as c. Hence, the dissatisfaction-degree function,
denoted by Dx, (-, -), is defined as follows:

o Dta(d 8) :=0,if Topl(d B8 =c¢

o Do(d,8):=1—P((d®3$),c), otherwise.

Now, the integer adversarial example searching problem
is reduced to the minimization problem of the dissatisfac-
tion-degree functions.

5.3 Algorithm

Instead of using heuristic search methods, e.g., genetic pro-
gramming, particle swarm optimization, simulated anneal-
ing, to solve the minimization problem of the dissatisfaction-
degree functions, we propose a classification model-based
DFO method (shown in Algorithm 1). Unlike heuristic search
based methods, our method maintains a classification model
during the search to distinguish “good” samples from
“bad” samples. Then, the algorithm will refine the search
space A by learning from the samples to converge to the best
solution.

In detail, Algorithm 1 first initializes the search space A
according to the given maximum L., distance ¢ (Line 1).
Then, it randomly selects (s + k) perturbations (stored as
the set By) from the search space A (Line 2), where s denotes
the sample size during each iteration and & denotes the

ranking threshold. Next, it computes (s + k) valid images

by adding the perturbations onto the source integer image d
and evaluates the dissatisfaction-degree (d.d.) of these
images using the dissatisfaction-degree function D (Line 3).
The perturbation # with the smallest dissatisfaction-degree
is selected from set B, (Line 4). After that, Algorithm 1
repeats the following procedure.

For each iteration ¢ > 1, if the perturbation Z suffices to
craft an integer adversarial example, return & (Lines 6-7).
Otherwise, the set B;_; of perturbations is partitioned into
two sets: “positive” set B, and “negative” set B,_,, where
B; | consists of the smallest-k perturbations in terms of the
dissatisfaction-degree (Lines 8-9).
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Algorithm 1. A DFO-Based Algorithm

Input: classifier under attack f; : D — C,, integer image deD,
number of iterations T € N,
ranking threshold k& € N, sample size s € N, maximum L,
distance € € N,
the number of coordinates to be changed in each refine-
ment process u € N,
dissatisfaction-degree (d.d.) function D
Output: optimized perturbation
1: A= NELX}: ]><(h
2: By ={81,...,8s1k} sampled from A; // initial collection
3: Evaluate the dissatisfaction-degree D(cf7 3;) for
1<i<s+¥k

4: 7= argminaeBoD(J, 8); /] select the best-so-far sample
5: fort =1to T do
6:  if D(d, &) = 0 then
7: break; // find an adversarial example
8: B;[ | = smallest-k solutions in B,_; in terms of d.d;
9: B, =B_1—-B;
10: B=10;
11: fori=1tosdo
12: /| Refine the space A into a small one by B/ | and B,
13: Randomly select a sample b™ from the positive set
B y;
14: Y =0;
15: forj=1toudo
16: Randomly select a coordinate p from
P=wxhxch;
17: Y=YU{p}h
18: ge:={be B, ,|blp] > bt]pl};
19: le:={be B, |blp] < b"[pl};
20: if |ge| > |1le| then
21: minVal = minjegeb[p];
22: Randomly select an integer r from minVal to b* [p];
23: Alp][high] = r; /[ decrease the upper bound at p
24: else
25: maxVal = maxye1.b[p];
26: Randomly select an integer 7 from b" [p] to maxVal;
27: Alp][Low] = r; /] increase the lower bound at p
28: b’ = Copy of b";
29: forp € Y do
30: /| Sample in the refined the search space A
31: Randomly select an integer r from Afp][low] to
Alp][highl;
32: bpl=r;
33: B=BU{t'};
34: A = Nkl || Reset A for next sample to avoid over
ﬁttzng
35: Evaluate the dissatisfaction-degree D(d, ) for all § € B;
36: B; = smallest-(s + k) solutions in BU B;_; in terms of

dissatisfaction-degree // keep the size as s + k;
37: T = argmingp, D(d, 8);
38: return z;

Based on B/, and B, ;, Algorithm 1 refines the search
space A into a small sub-space (Lines 11-34) as follows. It
first randomly selects a sample b* from the positive set B, ,
(Line 13) and randomly selects u coordinates to refine (Lines
15-27). For each selected coordinate p, it compares the num-
ber of perturbations in B;_;, whose value is larger than the
value of b™ at the coordinate p against the number of perturba-
tions in B,_; whose value is smaller than the value of b* at the
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coordinate p. If the majority of perturbations in B,_, are larger
than b" at the coordinate p, we decrease the upper bound of
the search space A (Lines 20-23), otherwise increase the lower
bound (Lines 25-27), at the coordinate p. Once u coordinates
have been processed, we craft a new image ¢’ from b* by reas-
signing the value of each coordinate p € Y with the random
integer r from A[p|[low] to A[p][high] (Lines 29-33). The new
perturbation ¢ is added into the set B. Then, the search space
A is reset to the original size. We remark that the refining pro-
cedure for the next sample will be conducted on the original
search space to avoid over fitting.

When the search space A has been refined s times, we get
s new perturbations (i.e., set B), resulting in (2s + k) pertur-
bations in the set BU B;_;. From them, we choose the small-
est-(s + k) perturbations in terms of the dissatisfaction-
degree (Line 37). Algorithm 1 continues the above proce-
dure on B; until an integer adversarial example is found or
the number of iterations 7" is reached.

Dimensionality Reduction. Algorithm 1 depicts the work-
flow of our approach, which solves the integer adversarial
example searching problem by a classification model-based
DFO method. It can be further optimized by a dimensionality
reduction technique, which reduces the search space A into
a lower dimensional space to improve query efficiency.
Dimensionality reduction has been adopted in recent attacks,
e.g., AutoZOOM [37] and GenAttack [60]. Instead of search-
ing in the large search space A = N“Xﬁ“h we can first search
a perturbation §, in a small search space A, = NE"X:]“X"}’ for
w, <wand h, < h, and scale §, up to §, with the same size as
input (i.e., the search space A) by applying resizing methods
(e.g., bilinear resizing), resulting in the valid image do 8, in
the original size. (Please refer to [37] and [60] for more details
about dimensionality reduction.) By doing so, the query effi-
ciency of our method can be improved while maintaining the
attack success rate under the L, constraint.

5.4 |lllustrative Example

We illustrate Algorithm 1 through an example, as shown in
Fig. 3. The original integer image d is an image from the
ImageNet dataset and it is classified as the class flamingo by
the target classifier Inception-v3. To launch an untargeted
attack using this image, we set the sample size s as 3 and the
ranking threshold k as 2. Consider the first iteration, Algo-
rithm 1 samples 5 perturbations (§;),;; from A = N5
and adds them onto the original image, resulting in five new
images (shown in Fig. 3). Then, it computes the dissatisfaction
degrees of these five new images (d @ &; )1<i<5 by querying the
classifier and the dissatisfaction-degree function Dy.. Among
these 5 perturbations, (d @ 81) has the smallest dissatisfaction
degree, hence 8, is the best-so-far perturbation. After more
iterations, the results are shown in Fig. 4. We can see that after
388 iterations, the image with the smallest dissatisfaction
degree is classified as the class hook, but is visually indistin-
guishable from the original one.

5.5 Scenario Extension

Our framework is very reflexible and could be potentially
adapted to other scenarios such as: (1) target classifiers that
only output top-1 class and its probability, and (2) target

3211

classifiers that are integrated with defenses, by restricting
the search space or modifying dissatisfaction-degree
functions.

For instance, if the adversary only has access to the top-1
class and its probability, the dissatisfaction-degree function
for untargeted attack can be adapted as follows:

DL(d8) =0,if Top|(d®8) # fi(d);

e D! (d8):=Top,(d® s), otherwise.

The dissatisfaction-degree function for targeted attack
could be adapted accordingly. Remark that it is different
from label-only attacks in which the adversary has access to
the top-1 class, but not its probability. We leave this to future
work.

6 IMPLEMENTATION AND EVALUATION

We implement our classification model-based DFO method
in DFA based on the framework of RACOS [111], for which
we implement our new algorithm and manage to engineer
to significantly improve its efficiency and scalability with
lots of domain-specific optimizations. Hereafter, we report
experimental results compared with state-of-the-art white-
box and black-box attacks.

6.1 Dataset & Setting

Dataset. We use two standard datasets MNIST [55] and
ImageNet [57]. MNIST is a dataset of handwritten digits
with 10 classes (0-9). We choose the first 200 images out of
10000 validation images of MNIST as our subjects.

We use the same 100 ImageNet images as in Section 4.3.
(Recall that we randomly choose 100 classes from which we
randomly choose 1 image per class that can be correctly
classified by four classifiers in Keras: ResNet50, Inception-
v3, VGG16 and VGG19.)

Target Model. For MNIST images, we use a DNN classifier
LeNet-1 from the LeNet family [56]. LeNet-1 is a popular
target model for MNIST images, e.g., [25], [40], [118], [119],
[120]. For ImageNet images, we use a pre-trained DNN clas-
sifier Inception-v3 [58] which is a widely used target model
for ImageNet images, e.g., [21], [33], [37], [39], [60].

Setting. As shown in Section 4.3, the discretization problem
can be avoided or alleviated by tuning input parameters for
some tools, at the cost of attack efficiency or quality of adver-
sarial examples, except for FGSM and C&W+GS. Therefore,
to maximize their TSRs as done in Section 4.3, we choose
proper step sizes for FGSM and enable greedy search for
C&W+GS with parameters recommended by Carlini on
MNIST images. For other tools, we use the parameters as in
their raw papers which are already fine-tuned by the authors
for effectiveness and efficiency. A discussion on turning input
parameters refers to Section 4.3.2. Furthermore, some tools
only provide implementations for attacking under some spe-
cific settings. If this issue happens, we may not modify their
implementations as it may greatly under-estimate their effec-
tiveness and efficiency, as pointed out by Carlini [107], hence
some attacks are not evaluated in all settings.

We conduct both untargeted attack and targeted attack
on a Linux PC running UBUNTU 16.04 LTS with Intel Xeon
(R) W-2123 CPU, TITAN Xp COLLECTORS GPU and 64G
RAM. Table 4 lists the other experiment settings.
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Fig. 3. Untargeted attack on a Flamingo image (the first iteration).

6.2 Comparison With White-Box Methods

Although our method is a black-box one, we compare the per-
formance with four well-known white-box tools: FGSM, BIM,
C&W and C&W+GS, where the implementations are by their
authors. Since FGSM has nearly no ability to handle targeted
attack, we use one-step target class method (denoted by
FGSM-1) of [113], which can be regarded as the targeted ver-
sion of FGSM. The maximum L., distances are transformed
into their maximum L, distances accordingly.

The results are shown in Tables 5 and 6 for untargeted
and targeted attacks, respectively. Notice that C&W+GS
only implements attacks for MNIST images, hence is not
applied to ImageNet images.

Overall, our attack DFA achieves close to 100 percent attack
success rates for both targeted and untargeted attacks. In
terms of SR, our tool DFA outperforms FGSM/FGSM-1 and is
comparable to the other tools. In terms of TSR, DFA is compa-
rable to BIM and outperforms FGSM, FGSM-1 and C&W in
most cases.

Specifically, FGSM, FGSM-1, BIM and C&W+GS do not
have any gap due to the tuning of step sizes and the greedy
search based algorithm. It is easy to observe that C&W has a
relatively larger gap in targeted attacks on Inception-v3 in L,
norm setting, as its TSR is only 24 percent compared with 100
percent SR. Thus, although C&W outperforms DFA in terms
of SR, DFA outperforms C&W in most cases in terms of TSR.
We remark that the gap of C&W is slightly different from the
one given in Table 3, as C&W-L, has an input parameter «
which can control the confidence. By increasing «, the confi-
dence of real adversarial examples as well as the TSR of
C&W-L; increase, and the gap can be minimized. Whereas
C&W-L,, does not have this parameter.
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6.3 Comparison With Black-Box Methods

We compare DFA with well-known recent black-box meth-
ods: substitute model based attacks, ZOO, NES-PGD, FD, FD-
PSO, and also three concurrent works Bandits, AutoZOOM
and GenAttack, representing all the classes of existing black-
box attacks (cf. Section 2), where the implementations are by
their authors.

Recall that it is very difficult to tune input parameters for
those tools without loss of attack efficiency or quality of
adversarial examples, hence we use the parameters as in
their raw papers which are already fine-tuned by the
authors. When evaluating substitute model, we use FGSM/
FGSM-1 and C&W methods, and use ResNet50 [121] as the
substitute model for Inception-v3, the model in ZOO as the
substitute model for LeNet-1. Since ZOO and AutoZOOM
use L, distance, we map our maximum L., distances into
maximum L, distances by considering the worst case of L,
namely, all the pixels are modified by the maximum L, dis-
tance. For instance, the L, distance 10 is approximated by

L, distance \/(10/255)2 x (299 x 299 x 3) ~ 20 for 299 x

299 x 3 images. Remark that this is not a rigorous mapping,
Z00 and AutoZOOM under Ly would be easier to find an
adversarial example, as the corresponding L, distances are
less restricted.

The results of untargeted and targeted attacks are given
in Tables 7 and 8. We can see that our attack DFA achieves
close to 100 percent attack success rates for both targeted
and untargeted attacks and outperforms all the other tools
in terms of TSR no matter targeted or untargeted attacks. In
terms of SR, our tool is also comparable (or better) to the
other tools. One may notice that substitute models perform
poorly. This may be due to the difference between training
data and architectures of the substitute model and the target
model, as the larger gap between the substitute model and
the target model is, the less effective of transferability of
adversarial samples is.

6.4 Query Comparison

In many black-box scenarios, the attacker has a limited
number of queries to the classifier. Therefore, we report the
average number of queries of the black-box attacks in
Table 9, where substitute model based attack is excluded
due to its low SR. We remark that ZOO is regarded as base-
line, the others are state-of-the-art query-efficient tools.

On Attack Against Inception-v3, our tool DFA outperforms
all the other tools for targeted attacks, except for GenAttack,
which is slightly better than DFA. Recall that GenAttack
downgrades to gray-box one, as they directly invoke the
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TABLE 4 TABLE 6
Experiment Settings Results of White-Box Targeted Attacks
Parameter Setting Dataset & DNN Method SR TSR GAP
Max. L, e = 64 for MNIST and € = 10 for ImageNet. MNIST LeNet-1 FGSM-1 84% 84% 0%
distance e BIM 100% 100% 0%
Target class For MNIST images, the class with 4th largest C&W 100% 75% 25%
probability is chosen as the target class. For C&W+GS  100%  100% 0%
ImageNet images, the class with 11th largest DFA 100%  100% 0%
: proba.blhty is chosen. as the target class. fmageNet nception-v3  FGSM-1 9% 9% 0%
Samplesize s s = 3 in all the experiments. BIM 999, 999, 0%
Ranking k = 2 in all the experiments. C&W 100%  24% 76%
Threshold & DFA 96% 96% 0%
Coordinate u = 2 pixels for MNIST images. u = 10
Threshold « pixels for ImageNet images.
Iteration T = 30000 in all the experiments. TABLE 7
Threshold T Results of Black-Box Untargeted Attacks
Timeout 3 minutes for MNIST images. 30 minutes for
Threshold ImageNet images. Dataset & DNN Method SR TSR GAP
Resized Space A, No resize for MNIST images. 100 x 100 x 3 MNIST LeNet-1 SModel+C&W 25% 25% 0%
for ImageNet images. SModel+FGSM  20% 20% 0%
FD 94.5% 945% 0%
FD-PSO 46.5% 46.5% 0%
DFA 100% 100% 0%
lizati f the int lassificati t hil
normalization of the integer classification systems, while ImageNet Inception-v3 SModel+C&W 6% 6% 0%
our attack is black-box one. For untargeted attacks, our tool
. SModel+FGSM  38% 38% 0%
DFA outperforms the baseline tool ZOO and comparable to 700 89% 5% 94.3%
other tools. Recall that our tool DFA outperforms all these AutoZOOM 100% 57% 43%
tools in terms of TSR. NES-PGD 100% 77% 23%
We remark that ZOO and AutoZOOM are tested under Bandits 100% 12%  88%
the L, distance 20, which is less restricted than the L., dis- GenAttack 100%  93% 7%
DFA 9% 9% 0%

tance 10 used for the other tools. Indeed, in untargeted
attack setting, the average L, distance of our tool is 8.33.
Whereas the average query times of AutoZOOM becomes
4971 (worse than ours) if L, = 12.

On attack against LeNet-1, our tool DFA outperforms both
of them in almost all cases, except that FD uses less query
times than DFA for targeted attacks. Note that our tool DFA
achieves a higher attack success attack rate than FD and FD-
PSO in terms of both SR/TSR. One may notice that the query
times of FD and FD-PSO are the same between untargeted
and targeted attacks. This is due to the implementations of
FD and FD-PSO (confirmed by some authors of [61]).

Furthermore, we also report the average Mean Square
Error (MSE) of the adversarial examples in Table 9. We can
observe that our tool DFA outperforms most of the other

TABLE 5
Results of White-Box Untargeted Attacks

Dataset & DNN Method SR TSR GAP

MNIST LeNet-1 FGSM 97% 97% 0%
BIM 100%  100% 0%
C&W 100%  88% 12%
C&W+GS  100%  100% 0%
DFA 100%  100% 0%

ImageNet Inception-v3 ~ FGSM 79% 79% 0%
BIM 100%  100% 0%
C&W 100%  68%  32%
DFA 99% 99% 0%

Note: FD and FD-PSO do not provide attacks against ImageNet images. ZOO
and AutoZOOM do not provide attacks under L, distance, so we only com-
pare our tool with them on ImageNet images. NES-PGS and Bandits do not
provide attacks against MINIST images. Meanwhile, the version of Gen-
Attack’s attack against MNIST is buggy.

tools on attacks against Inception-v3. FD and FD-PSO are
slightly better than DFA on attacks against LeNet-1, at the
same order of magnitude. ZOO outperforms all the other
tools in terms of MSE against Inception-v3, but at the cost of
a huge number of queries.

TABLE 8
Results of Black-Box Targeted Attacks
Dataset & DNN Method SR TSR GAP
MNIST LeNet-1 SModel+C&W  15% 1.5% 0%
SModel+FGSM-1 5% 5% 0%
FD 2% 72% 0%
FD-PSO 6.5% 65% 0%
DFA 100% 100% 0%

ImageNet Inception-v3 SModel+C&W 1% 1% 0%
SModel+FGSM-1 2% 2% 0%

Z00 69% 5% 92.7%
AutoZOOM 95% 43% 54.7%
NES-PGD 100% 47% 53%
GenAttack 100% 84% 16%
DFA 9%6% 96% 0%

Note: Bandits does not support targeted attack.
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TABLE 9
Comparison With Average Query Times
and Corresponding MSE
Dataset & DNN Method Untargeted Targeted
Query MSE Query MSE
MNIST LeNet-1 FD 1568 3.4e-2 1568 3.5e-2
FD-PSO 10000 2.5e-2 10000 2.5e-2
DFA 817 3.7e-2 1593 5.1e-2
ImageNet Inception-v3 700 85368 1.7e-5 203683 3.6e-5
AutoZOOM 2224 9.2e-4 14322 1.2e-3
NES-PGD 4741 8.4e-4 13421 9.0e-4
Bandits 4595 1.4e-3 - -
GenAttack 4008 6.3e-4 12369 9.2e-4
DFA 4746 2.6e-4 12740 3.4e-4

Note: the queries of our tool is computed on integer adversarial examples, while it is computed on real adversarial examples for the others.

6.5 Attack Classifiers With Defense

To show the effectiveness of our approach, we use our tool to
attack the HGD defense [62], which won the first place on
defense against adversarial attacks in NIPS 2017 competition.
HGD defense is a typical denoising based defense method
for image classification. The whole classification system is
an ensemble of 4 independent models and their denoiser
(ResNet, ResNext, InceptionV3, inceptionResNetV2). We con-
duct untargeted attacks against this model using the same 100
ImageNet images and parameters as previously, except that
the L distance e is 32 according to the NIPS 2017 competition.
Our tool achieves 100 percent TSR in the experiments, indicat-
ing the effectiveness of DFA. This benefits from the advantage
of our classification model-based derivative-free optimization
method, which does not rely on the gradient of the objective
function, but instead, learns from samples of the search space,
hence suitable for attack systems that are non-differentiable or
even unknown but only testable.

MNIST Adversarial Examples Challenge [63] is another
widely recognized attack problem. It uses adversarial training
as a defense method. We use the same 200 MNIST images as
previously on the attack of this problem. Our tool DFA
achieves 10.5 percent TSR, the same as the current best white-
box attack “interval attacks”, which is publicly reported on
the webpage of the challenge. The images on which the
attacks succeed by both methods are exactly same, and the
time costs of both tools are also similar.

7 CONCLUSION AND FUTURE WORK

We conducted the first comprehensive study of 35 methods
and 20 open source tools for crafting adversarial examples,
in an attempt to understand the impacts of the discretiza-
tion problem. Our study revealed that most of these meth-
ods and tools are affected by this problem and researchers
should pay more attention when designing adversarial
example attacks and measuring attack success rate. We also
proposed strategies to avoid or alleviate the discretization
problem, which can improve TSR of some tools, at the
cost of attack efficiency or imperceptibility of adversarial
examples.

We proposed a black-box method by designing a classifi-
cation model-based derivative-free optimization method.
Our method directly crafts adversarial examples in discrete
integer domains, hence it does not have the discretization

problem and is able to attack a wide range of classifiers
including non-differentiable ones. Our attack method
requires access to the probability distribution of classes for
each test input and does not rely on the gradient of the
objective function, but instead, learns from samples of the
search space. We implemented our method into tool DFA,
and conducted an intensive set of experiments on MNIST
and ImageNet in both untargeted and targeted scenarios.
The experimental results show that our method achieved
close to 100 percent attack success rate, comparable to the
white-box methods (FGSM, BIM and C&W) and outper-
formed the state-of-the-art black-box methods. Moreover,
our method achieved 100 percent success rate on the winner
of NIPS 2017 competition on defense, and achieved the
same result as the best white-box attack in MNIST Chal-
lenge. Our results suggest that classification model-based
derivative-free discrete optimization opens up a promising
research direction into effective black-box attacks. Our
method could serve as a test for designing robust networks.

In the future, we plan to lift our generic method to other
neural network based systems such as face recognition sys-
tems [23] and speech recognition [88], [89]. It is also worth
investigating how to intergrade gradient estimation techni-
ques into our sampling. This may improve query efficiency
of our method.
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