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Pushdown systems (PDS) are well adapted to model sequential programs with (possibly 
recursive) procedure calls. Therefore, it is important to have efficient model checking 
algorithms for PDSs. We consider in this paper CTL model checking for PDSs. We 
consider the “standard” CTL model checking problem where whether a configuration of 
a PDS satisfies an atomic proposition or not depends only on the control state of the 
configuration. We consider also CTL model checking with regular valuations, where the set 
of configurations in which an atomic proposition holds is a regular language. We reduce 
these problems to the emptiness problem in Alternating Büchi Pushdown Systems, and 
we give an algorithm to solve this emptiness problem. Our algorithms are more efficient 
than the other existing algorithms for CTL model checking for PDSs in the literature. We 
implemented our techniques in a tool, and we applied it to different case studies. Our 
results are encouraging. In particular, we were able to confirm the existence of known 
bugs in Linux source code.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Pushdown Systems (PDS for short) are an adequate formalism to model sequential, possibly recursive, programs [1,2]. It 
is then important to have verification algorithms for pushdown systems. This problem has been intensively studied by the 
verification community. Several model-checking algorithms have been proposed for both linear-time logics [3,2,4–6], and 
branching-time logics [3,7–11,5,6]. While model-checking for PDSs against pushdown specifications is undecidable [12].

In this paper, we first study the model-checking problem for PDSs against the “standard” branching-time temporal logic 
CTL [13]. In this setting, whether a configuration satisfies an atomic proposition or not depends only on the control state 
of the configuration, not on its stack content. This problem is known to be EXPTIME-complete [14] and the set of PDS 
configurations satisfying a CTL formula is known to be regular [3]. CTL corresponds to a fragment of μ-calculus and of CTL∗ . 
Existing algorithms for model-checking these logics for PDSs could then be applied for CTL model-checking. However, these 
algorithms either allow only to decide whether a given configuration satisfies the formula i.e., they cannot symbolically 
compute the regular set of PDS configurations where the formula holds [15,8–10], or have a high complexity [11,7,3,16,17,
5,6,18,19].

In this work, we propose a new efficient algorithm for CTL model-checking for PDSs. Our algorithm allows to sym-
bolically compute the regular set of PDS configurations that satisfy a given CTL formula. Our procedure is more efficient 
than the existing model-checking algorithms for μ-calculus and CTL∗ that are able to symbolically compute the regular set 
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of configurations where a given property holds [11,7,3,16,17,5,6,18,19]. Our technique reduces CTL model-checking to the 
problem of computing the set of configurations from which an Alternating Büchi Pushdown System (ABPDS for short) has 
an accepting run. We show that this set can be effectively represented using an alternating finite word automaton.

Then, we consider CTL model checking with regular valuations. In this setting, the set of configurations where an atomic 
proposition holds is given by a finite state automaton. Indeed, since a configuration of a PDS has a control state and 
a stack content, it is natural that the validity of an atomic proposition in a configuration depends on both the control 
state and the stack. For example, in one of the case studies we considered, we needed to check that whenever a function 
call_hpsb_send_phy_config is invoked, there is a path where call_hpsb_send_packet is called before call_hpsb_send_phy_config
returns. We need propositions about the stack to express this property. “Standard” CTL is not sufficient. We provide an effi-
cient algorithm that solves CTL model checking with regular valuations for PDSs. Our procedure reduces the model-checking 
problem to the problem of computing the set of configurations from which an ABPDS has an accepting run.

We implemented our techniques in a tool for CTL model-checking for pushdown systems. Our tool deals with both 
“standard” model-checking, and model-checking with regular valuations. As far as we know, this is the first tool for CTL 
model-checking for PDSs. Indeed, existing model-checking tools for PDSs like Moped [20] consider only reachability and 
LTL model-checking, they don’t consider CTL. The only other tool that can check branching time properties for PDSs is 
PDSolver [18]. We run several experiments on our tool. We obtained encouraging results. In particular, we were able to 
confirm the existence of known bugs in source files of the Linux system, in a watchdog driver of Linux, and in an IEEE 1394 
driver of Linux. We needed regular valuations to express the properties of some of these examples. Moreover, we showed 
in [21] that our tool is much more efficient than PDSolver for the benchmark considered in [21].

Outline. The rest of the paper is structured as follows. Section 2 gives the basic definitions used in the paper. In Section 3, 
we present an algorithm for computing an alternating finite word automaton recognizing all the configurations from which 
an ABPDS has an accepting run. Sections 4 and 5 describe the reductions from “standard” CTL model-checking for PDSs and 
CTL model-checking for PDSs with regular valuations, to the emptiness problem in ABPDS. The experiments are provided in 
Section 6. Section 7 describes the related work.

2. Preliminaries

2.1. The temporal logic CTL

We consider the standard branching-time temporal logic CTL [13]. For technical reasons, we use the release operator R as 
a dual of the until operator U for which the stop condition is not required to occur; and we suppose w.l.o.g. that formulas 
are given in positive normal form, i.e., negations are applied only to atomic propositions. Indeed, each CTL formula can be 
written in positive normal form by pushing the negations inside.

Definition 1. Let AP = {a, b, c, ...} be a finite set of atomic propositions. The set of CTL formulas is given by (where a ∈ AP) 
[13]:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ |
A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ].

The closure cl(ϕ) of a CTL formula ϕ is the set of all the subformulas of ϕ , including ϕ . Let AP+(ϕ) = {a ∈ AP | a ∈ cl(ϕ)}
and AP−(ϕ) = {a ∈ AP | ¬a ∈ cl(ϕ)}. The size |ϕ| of ϕ is the number of elements in cl(ϕ). Let T = (S, −→, c0) be a transition 
system where S is a set of states, −→⊆ S × S is a set of transitions, and c0 is the initial state. Let s, s′ ∈ S . s′ is a successor 
of s iff s −→ s′ . A path is an infinite sequence of states s0, s1, . . . such that for every i ≥ 0, si −→ si+1. Let λ : AP → 2S be a 
labeling function that assigns to each atomic proposition a set of states in S . The validity of a formula ϕ in a state s w.r.t. 
the labeling function λ, denoted s |
λ ϕ , is defined inductively in Fig. 1. T |
λ ϕ iff c0 |
λ ϕ . Note that a path π satisfies 
ψ1Rψ2 iff either ψ2 holds everywhere in π , or the first occurrence in the path where ψ2 does not hold must be preceded 
by a position where ψ1 holds.

2.2. Pushdown systems

Definition 2. A Pushdown System (PDS for short) P is a tuple (P , Γ, �, �), where P is a finite set of control locations, Γ is 
a finite stack alphabet, � ⊆ (P × Γ ) × (P × Γ ∗) is a finite set of transition rules and � ∈ Γ is a bottom stack symbol.

A configuration of P is an element 〈p, ω〉 of P × Γ ∗ . We write 〈p, γ 〉 ↪→ 〈q, ω〉 instead of ((p, γ ), (q, ω)) ∈ �. For 
technical reasons, we consider the bottom stack symbol �, and we assume w.l.o.g. that it is never popped from the stack, 
i.e., there is no transition rule of the form 〈p, �〉 ↪→ 〈q, ω〉 ∈ �. The successor relation �P⊆ (P ×Γ ∗) ×(P ×Γ ∗) is defined as 
follows: if 〈p, γ 〉 ↪→ 〈q, ω〉, then 〈p, γω′〉 �P 〈q, ωω′〉 for every ω′ ∈ Γ ∗ . A run of P is an infinite sequence of configurations 
c0, c1, ... such that for every i ≥ 0: ci �P ci+1.
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s |
λ a ⇐⇒ s ∈ λ(a).

s |
λ ¬a ⇐⇒ s /∈ λ(a).

s |
λ ψ1 ∧ ψ2 ⇐⇒ s |
λ ψ1 and s |
λ ψ2.

s |
λ ψ1 ∨ ψ2 ⇐⇒ s |
λ ψ1 or s |
λ ψ2.

s |
λ AXψ ⇐⇒ s′ |
λ ψ for every successor s′ of s.
s |
λ EXψ ⇐⇒ There exists a successor s′ of s s.t. s′ |
λ ψ.

s |
λ A[ψ1Uψ2] ⇐⇒ For every path of T ,π = s0, s1, ..., with s0 = s,∃i ≥ 0
s.t. si |
λ ψ2 and ∀0 ≤ j < i, s j |
λ ψ1.

s |
λ E[ψ1Uψ2] ⇐⇒ There exists a path of T ,π = s0, s1, ..., with s0 = s, s.t.
∃i ≥ 0, si |
λ ψ2 and ∀0 ≤ j < i, s j |
λ ψ1.

s |
λ A[ψ1Rψ2] ⇐⇒ For every path of T ,π = s0, s1, ..., with s0 = s,∀i ≥ 0 s.t.
si �|
λ ψ2,∃0 ≤ j < i, s.t. s j |
λ ψ1.

s |
λ E[ψ1Rψ2] ⇐⇒ There exists a path of T ,π = s0, s1, ..., with s0 = s, s.t.
∀i ≥ 0 s.t. si �|
λ ψ2,∃0 ≤ j < i s.t. s j |
λ ψ1.

Fig. 1. Semantics of CTL.

The reachability relation 
⇒P⊆ (P × Γ ∗) × (P × Γ ∗) is the reflexive and transitive closure of the successor relation. 
Formally 
⇒P is defined as follows: (1) c 
⇒P c for every c ∈ P × Γ ∗ , (2) if c 
⇒P c′′ and c′′ �P c′ , then c 
⇒P c′ .

Let c be a given initial configuration of P . Starting from c, P induces the transition system T c
P = (P × Γ ∗, �P , c). Let 

AP be a set of atomic propositions, ϕ be a CTL formula on AP, and λ : AP → 2P×Γ ∗
be a labeling function. We say that 

(P, c) |
λ ϕ iff T c
P |
λ ϕ .

2.3. Alternating Büchi pushdown systems

Definition 3. An Alternating Büchi Pushdown System (ABPDS for short) is a tuple BP = (P , Γ, �, F ), where P is a finite set 
of control locations, Γ is the stack alphabet, F ⊆ P is a finite set of accepting control locations and � is a function that 
assigns to each element of P × Γ a positive boolean formula over P × Γ ∗ .

A configuration of an ABPDS is a pair 〈p, ω〉, where p ∈ P is a control location and ω ∈ Γ ∗ is a stack content. 
We assume w.l.o.g. that the boolean formulas are in disjunctive normal form. This allows to consider � as a subset of 
(P × Γ ) × 2P×Γ ∗

. Thus, rules of � of the form1 〈p, γ 〉 ↪→ ∨n
j=1

∧m j

i=1〈p j
i , ω

j
i 〉 can be denoted by the union of n rules of 

the form 〈p, γ 〉 ↪→ {〈p j
1, ω

j
1〉, ..., 〈p j

m j
, ω j

m j
〉}, where 1 ≤ j ≤ n. Let t = 〈p, γ 〉 ↪→ {〈p1, ω1〉, ..., 〈pn, ωn〉} be a rule of �. For 

every ω ∈ Γ ∗ , the configuration 〈p, γω〉 (resp. {〈p1, ω1ω〉, ..., 〈pn, ωnω〉}) is an immediate predecessor (resp. successor) of 
{〈p1, ω1ω〉, ..., 〈pn, ωnω〉} (resp. 〈p, γω〉).

A run ρ of BP from an initial configuration 〈p0, ω0〉 is a tree in which the root is labeled by 〈p0, ω0〉, and the 
other nodes are labeled by elements of P × Γ ∗ . If a node of ρ is labeled by 〈p, ω〉 and has n children labeled by 
〈p1, ω1〉, ..., 〈pn, ωn〉, respectively, then necessarily, {〈p1, ω1〉, ..., 〈pn, ωn〉} is an immediate successor of 〈p, ω〉 in BP . A path 
c0c1... of a run ρ is an infinite sequence of configurations such that c0 is the root of ρ and for every i ≥ 0, ci+1 is one of 
the children of the node ci in ρ . The path is accepting from the initial configuration c0 if and only if it visits infinitely 
often configurations with control locations in F . A run ρ is accepting if and only if all its paths are accepting. Note that an 
accepting run has only infinite paths; it does not involve finite paths. A configuration c is accepted (or recognized) by BP
iff BP has an accepting run starting from c. The language of BP , L(BP) is the set of configurations accepted by BP .

The reachability relation 
⇒BP⊆ (P × Γ ∗) × 2P×Γ ∗
is the reflexive and transitive closure of the immediate successor 

relation. Formally 
⇒BP is defined as follows: (1) c 
⇒BP {c} for every c ∈ P × Γ ∗ , (2) c 
⇒BP C if C is an immediate 
successor of c, (3) if c 
⇒BP {c1, ..., cn} and ci 
⇒BP Ci for every i : 1 ≤ i ≤ n, then c 
⇒BP

⋃n
i=1 Ci . We will write 

{c1, ..., cn} 
⇒BP
⋃n

i=1 Ci if for every i : 1 ≤ i ≤ n: ci 
⇒BP Ci .
The functions PreBP : 2P×Γ ∗ −→ 2P×Γ ∗

, Pre∗
BP : 2P×Γ ∗ −→ 2P×Γ ∗

and Pre+
BP : 2P×Γ ∗ −→ 2P×Γ ∗

are defined as follows: 
PreBP (C) = {c ∈ P × Γ ∗ | ∃C ′ ⊆ C s.t. C ′ is an immediate successor of c}. Pre∗

BP (C) = {c ∈ P × Γ ∗ | ∃C ′ ⊆ C s.t. c 
⇒BP C ′}. 
Pre+

BP (C) = PreBP ◦ Pre∗
BP (C).

To represent (infinite) sets of configurations of ABPDSs, we use Alternating Multi-Automata:

Definition 4. (See [3].) Let BP = (P , Γ, �, F ) be an ABPDS. An Alternating Multi-Automaton (AMA for short) is a tuple 
A = (Q , Γ, δ, I, Q f ), where Q is a finite set of states that contains P , Γ is the input alphabet, δ ⊆ (Q × Γ ) × 2Q is a finite 
set of transition rules, I ⊆ P is a finite set of initial states, Q f ⊆ Q is a finite set of final states.

A Multi-Automaton (MA for short) is an AMA such that δ ⊆ (Q × Γ ) × Q .

We define the reflexive and transitive transition relation −→δ⊆ (Q ×Γ ∗) ×2Q as follows: (1) q ε−→δ {q} for every q ∈ Q , 
where ε is the empty word, (2) q 

γ−→δ Q ′ , if q 
γ−→ Q ′ ∈ δ, (3) if q ω−→δ {q1, ..., qn} and qi

γ−→δ Q i for every i : 1 ≤ i ≤ n, then 

1 This rule represents �(p, γ ) = ∨n
j=1

∧m j

i=1(p j
i , ω

j
i ).
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q 
ωγ−→δ

⋃n
i=1 Q i . By abuse of notation, we sometimes write {q1, ..., qn} ω−→δ

⋃n
i=1 Q i if for every i : 1 ≤ i ≤ n, qi

ω−→δ Q i . The 
automaton A recognizes a configuration 〈p, ω〉 iff there exists Q ′ ⊆ Q f such that p ω−→δ Q ′ and p ∈ I . The language of A, 
L(A), is the set of configurations recognized by A. A set of configurations is regular if it can be recognized by an AMA. It 
is easy to show that AMAs are closed under boolean operations and that they are equivalent to MAs. Given an AMA, one 
can compute an equivalent MA by performing a kind of powerset construction as done for the determinization procedure. 
Similarly, MAs can also be used to recognize (infinite) regular sets of configurations for PDSs.

Proposition 1. (See [22].) Let A = (Q , Γ, δ, I, Q f ) be an AMA. Deciding whether a configuration 〈p, ω〉 is accepted by A can be done 
in O(|Q | · |δ| · |ω|) time.

3. Computing the language of an ABPDS

Our goal in this section is to compute the set of accepting configurations of an Alternating Büchi PushDown System 
BP = (P , Γ, �, F ). We show that it is regular and that it can effectively be represented by an AMA. Determining whether 
BP has an accepting run is a non-trivial problem because a run of BP is an infinite tree with an infinite number of paths 
labeled by PDS configurations, which are control states and stack contents. All the paths of an accepting run are infinite 
and should all go through final control locations infinitely often. The difficulty comes from the fact that we cannot reason 
about the different paths of an ABPDS independently, we need to reason about runs labeled with PDS configurations. We 
proceed as follows: first, we characterize the set of configurations from which BP has an accepting run. Then, based on 
this characterization, we compute an AMA representing this set.

3.1. Characterizing L(BP)

We give in this section a characterization of L(BP), i.e., the set of configurations from which BP has an accepting 
run. Let (Xi)i≥0 be the sequence defined as follows: X0 = P × Γ ∗ and Xi+1 = Pre+(Xi ∩ F × Γ ∗) for every i ≥ 0. Let 
YBP = ⋂

i≥0 Xi . We can show that L(BP) = YBP . To prove this result, we first show that for every configuration c ∈ P ×Γ ∗ , 
BP has a run from c such that each path of the run visits some accepting control locations at least k times iff c ∈ Xk .

Lemma 1. BP has a run ρ from a configuration 〈p, ω〉 such that each path of ρ visits configurations with control locations in F at 
least k times iff 〈p, ω〉 ∈ Xk.

Proof. (
⇒) The proof proceeds by induction on k. We directly obtain that 〈p, ω〉 ∈ X0 = P × Γ ∗ . We only need to show 
that 〈p, ω〉 ∈ Xk when k ≥ 1.

Let 〈p1, ω1〉, .., 〈pn, ωn〉 be the first nodes of ρ that are visited in each path of ρ such that pi ∈ F . Then we get that 
(a) 〈p, ω〉 
⇒BP {〈p1, ω1〉, .., 〈pn, ωn〉}, (b) for every i : 1 ≤ i ≤ n, pi ∈ F , (c) for every i : 1 ≤ i ≤ n, BP has a run ρi from the 
configuration 〈pi, ωi〉 such that all the paths of ρi can visit some configurations with control locations in F at least k − 1
times.

By applying the induction hypothesis to (c), we obtain that 〈pi , ωi〉 ∈ Xk−1 for every i : 1 ≤ i ≤ n. Since pi ∈ F for every 
i : 1 ≤ i ≤ n, we get that 〈pi, ωi〉 ∈ Xk−1 ∩ F × Γ ∗ for every i : 1 ≤ i ≤ n. Since Xk = Pre+(Xk−1 ∩ F × Γ ∗) and the result 
from (a), we get that 〈p, ω〉 ∈ Xk .

(⇐
) Let’s apply the induction on k, it is straightforward when k = 0. We only need to show that BP has a run ρ from 
the configuration 〈p, ω〉 such that each path of ρ can visit some configurations with control locations in F at least k times 
when k ≥ 1.

Since 〈p, ω〉 ∈ Xk where Xk = Pre+(Xk−1 ∩ F × Γ ∗), we obtain that 〈p, ω〉 
⇒BP {〈p1, ω1〉, .., 〈pn, ωn〉}, and 〈pi, ωi〉 ∈
Xk−1 ∩ F × Γ ∗ for every i : 1 ≤ i ≤ n. By applying the induction hypothesis to 〈pi , ωi〉 ∈ Xk−1 for every i : 1 ≤ i ≤ n, we 
get that BP has a run ρi from the configuration 〈pi, ωi〉 such that each path of ρi can visit some configurations with 
control locations in F at least k − 1 times. Since 〈p, ω〉 
⇒BP {〈p1, ω1〉, .., 〈pn, ωn〉}, and 〈pi, ωi〉 ∈ Xk−1 ∩ F × Γ ∗ for 
each i : 1 ≤ i ≤ n, we obtain that BP has a run ρ from the configuration 〈p, ω〉 such that each path of ρ can visit some 
configurations with control locations in F at least k times. �

Now, let us prove that L(BP) = YBP .

Theorem 1. BP has an accepting run from a configuration 〈p, ω〉 iff 〈p, ω〉 ∈ YBP .

Proof. (
⇒) First we show that if BP has an accepting run from the configuration 〈p, ω〉, then the configuration 〈p, ω〉
must be in YBP . We prove that if the configuration 〈p, ω〉 is not in YBP , then BP has no accepting run from 〈p, ω〉. Since 
〈p, ω〉 /∈ YBP and YBP = ⋂

i≥0 Xi , there exists k ≥ 0 such that 〈p, ω〉 /∈ Xk . By Lemma 1, all the runs from the configuration 
〈p, ω〉 can visit configurations with control locations in F at most k − 1 times, otherwise 〈p, ω〉 ∈ Xk , which contradicts the 
fact that 〈p, ω〉 /∈ Xk . Thus, BP has no accepting run from the configuration 〈p, ω〉.



F. Song, T. Touili / Theoretical Computer Science 549 (2014) 127–145 131
Algorithm 1: Computation of YBP .
Input : An ABPDS BP = (P , Γ, �, F );
Output: An AMA A = (Q, Γ, δ, I, Q f ) that recognizes YBP ;

1 Let i = 0, δ = {(q f , γ , {q f }) | for every γ ∈ Γ, p ∈ P } and p0 = q f for every p ∈ P ;
2 repeat we call this loop loop1
3 i := i + 1;

4 Add in δ a new transition rule pi ε−→ pi−1, for every p ∈ F ;
5 repeat we call this loop loop2
6 For every 〈p, γ 〉 ↪→ {〈p1, ω1〉, ..., 〈pn, ωn〉} in �,

7 and every case where pi
k

ωk−→δ Q k , for every k : 1 ≤ k ≤ n;

8 Add a new rule pi γ−→ ⋃n
k=1 Q k in δ;

9 until No new transition rule can be added;

10 Remove from δ the transition rules pi ε−→ pi−1, for every p ∈ F ;

11 Replace in δ every transition rule pi γ−→ R by pi γ−→ π i(R), for every p ∈ P , γ ∈ Γ, R ⊆ Q
12 until i > 1 and for every p ∈ P , γ ∈ Γ, R ⊆ P × {i} ∪ {q f }, pi γ−→ R ∈ δ ⇐⇒ pi−1 γ−→ π−1(R) ∈ δ;

(⇐
) Now we prove the other direction, i.e., we prove that if the configuration 〈p, ω〉 is in YBP , then BP has an 
accepting run from 〈p, ω〉. Since the function f (X) = Pre+(X ∩ F ×Γ ∗) is monotone, by the Tarski theorem [23], YBP is the 
greatest fixpoint of f , we get that YBP = Pre+(YBP ∩ F ×Γ ∗). Since 〈p, ω〉 ∈ YBP , we get that 〈p, ω〉 ∈ Pre+(YBP ∩ F ×Γ ∗). 
By the definition of Pre+ , there exists a set of configurations {〈p1, ω1〉, ..., 〈pn, ωn〉} ⊆ YBP ∩ F ×Γ ∗ such that 〈p, ω〉 
⇒BP
{〈p1, ω1〉, ..., 〈pn, ωn〉}. Since {〈p1, ω1〉, ..., 〈pn, ωn〉} ⊆ YBP ∩ F × Γ ∗ , we obtain that 〈pi, ωi〉 ∈ YBP and pi ∈ F for every 
i : 1 ≤ i ≤ n. Let’s construct a finite tree ρ with root 〈p, ω〉, the leaves of ρ are 〈p1, ω1〉, ..., 〈pn, ωn〉, the inner nodes of ρ are 
the successors during the derivation of 〈p, ω〉 
⇒BP {〈p1, ω1〉, ..., 〈pn, ωn〉}. Each path of ρ can visit some configurations 
with control locations in F at least once. Since 〈pi, ωi〉 ∈ YBP for every i : 1 ≤ i ≤ n, we can repeatedly construct a finite 
tree ρi for the configuration 〈pi, ωi〉 such that ρi has the same properties as ρ . Let’s replace each leaf 〈pi, ωi〉 in ρ by 
the tree ρi and obtain a new tree ρ such that each path of the new tree ρ can visit some configurations with control 
locations in F at least twice. Now we infinitely repeat this procedure to the leaves of the latest tree ρ . Finally, each path 
of the infinite limit tree ρ can infinitely often visit some configurations with control locations in F . We obtain that ρ is an 
accepting run. �
3.2. Computing L(BP)

Our goal is to compute YBP = ⋂
i≥0 Xi , where X0 = P × Γ ∗ and for every i ≥ 0, Xi+1 = Pre+(Xi ∩ F × Γ ∗). We provide 

a saturation procedure that computes the set YBP . Our procedure is inspired from the algorithm given in [22] to compute 
the winning region of a Büchi game on a pushdown graph.

We show that YBP is regular and it can be represented by an AMA A = (Q, Γ, δ, I, Q f ) whose set of states Q is a 
subset of P ×N ∪ {q f }, where q f is a special state denoting the final state (Q f = {q f }). From now on, for every p ∈ P and 
i ∈N, we write pi to denote (p, i).

Intuitively, to compute YBP , we will compute iteratively the different Xi ’s by applying the saturation procedure of [3]. 
The iterative procedure computes different automata. The automaton computed during the iteration i uses states of the 
form pi having i as index. To force termination, we use an acceleration criterion. For this, we need to define two projection 
functions π−1 and π i defined as follows: for every S ⊆ P ×N ∪ {q f },

π−1(S) =
{ {qi | qi+1 ∈ S} ∪ {q f } if q f ∈ S or ∃q1 ∈ S,

{qi | qi+1 ∈ S} else,

π i(S) = {
qi

∣∣ ∃1 ≤ j ≤ i s.t. q j ∈ S
} ∪ {q f | q f ∈ S}.

The AMA A is computed iteratively using Algorithm 1. Let us explain the intuition behind the different lines of this 
algorithm. Let Ai be the automaton obtained at step i (a step starts at Line 3). For every p ∈ P , the state pi is meant 
to represent state p at step i, i.e., Ai recognizes a configuration 〈p, ω〉 iff pi ω−→δ q f . Let A0 be the automaton obtained 
after the initialization step (Line 1). It is clear that A0 recognizes X0 = P × Γ ∗ . Suppose now that the algorithm is at the 
beginning of the ith iteration (loop1). Line 4 adds the ε-transition pi ε−→ pi−1 for every control state p ∈ F . After this step, 
we obtain L(Ai−1) ∩ F × Γ ∗ . loop2 at Lines 5–9 is the saturation procedure of [3]. It computes the Pre∗ of L(Ai−1) ∩ F × Γ ∗ . 
Line 10 removes the ε-transition added by Line 4. After this step, the automaton recognizes Pre+(L(Ai−1) ∩ F × Γ ∗). Let us 
call Algorithm B the above algorithm without Line 11. It follows from the explanation above that if Algorithm B terminates, 
it will produce YBP . However, this procedure will never terminate if the sequence (Xi) is strictly decreasing. Consider for 
example the ABPDS BP = ({q}, {γ }, �, {q}), where � = {〈q, γ 〉 ↪→ 〈q, ε〉}. Then, for every i ≥ 0, Xi = {〈q, γ iω〉 | ω ∈ γ ∗}. It 
is clear that Algorithm B will never terminate on this example.

The substitution at Line 11 is the acceleration used to force the termination of the algorithm, tested at Line 12. We 
can show that thanks to Line 11 and to the test of Line 12 (note that there is no acceleration when i = 1), our algorithm 
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always terminates and produces YBP . To prove this, we need to prove some auxiliary results. First, we show that for every 
transition rule at the iteration i + 1, there exists a similar transition rule at the iteration i.

Proposition 2. In Algorithm 1, for every γ ∈ Γ, ω ∈ Γ ∗, p ∈ P , S ⊆Q; at each step i ≥ 1, the following holds:

(a) if pi γ−→ S ∈ δ, then pi−1 γ−→ π−1(π i(S)) ∈ δ;

(b) if pi ω−→δ S, then pi−1 ω−→δ π−1(π i(S)).

Proof. As the transition rule could be added by either the saturation procedure (Lines 5–9) or the substitution (Line 11), 
both situations should be considered. We proceed by induction on i.

Basis. i = 1. In this case, whenever a transition rule p1 γ−→ S is added into δ by either the saturation procedure or the 
substitution, we can get that π−1(π1(S)) = {q f }. Since p0 = q f and q f

γ−→ {q f } in δ, we obtain that p0 γ−→ {q f }. Hence, 
p0 γ−→ π−1(π1(S)). Therefore, the statement (a) holds.

Now let us suppose that p1 ω−→δ S , we show that p0 ω−→δ π−1(π i(S)). Since p0 γ−→ {q f } and q f
γ ′

−→ {q f } for every 
γ , γ ′ ∈ Γ and since π−1(π1(S)) = {q f } for every S ⊆ P × {1, 0} ∪ {q f }, we obtain that p0 ω−→δ π−1(π i(S)), for every 
p ∈ P , ω ∈ Γ +, S ⊆ P × {1, 0} ∪ {q f }. The case where ω = ε is trivial, as p0 ε−→δ {p0} and either p1 ε−→δ {p0} if p ∈ F or 
p1 ε−→δ {p1}. Hence, the statement (b) holds.

Step. i ≥ 2. Let n be the number of transition rules added at the step i. We proceed by induction on n.

• Basis. n = 0. Then, there is no transition rule in the form of pi γ−→ S in δ which implies that the statement (a) holds.

For every pi ω−→δ S , we get that either pi ε−→δ pi−1 ω−→δ S with S ⊆ P × {i − 1} ∪ {q f } if p ∈ F or pi ε−→δ S with 
S = {pi} and ω = ε . Since π−1(π i(S)) = S and pi−1 ε−→δ {pi−1}, we get that the statement (b) holds.

• Step. n ≥ 1.

For statement (a). W.l.o.g., let t = pi γ−→ S be the nth transition rule added by the saturation procedure (the case where 
t is added by the substitution will be discussed later). Then there exists a transition rule in BP

〈p, γ 〉 −→ {〈p1,ω1〉, ..., 〈pm,ωm〉} ∈ � (1)

such that pi
j

ω j−→δ S j for every j : 1 ≤ j ≤ m and S = ⋃m
j=1 S j . By applying the induction hypothesis on i to pi

j

ω j−→δ

S j for every j : 1 ≤ j ≤ m, we get that pi−1
j

ω j−→δ π−1(π i(S j)) for every j : 1 ≤ j ≤ m. Thus, to show that pi−1 γ−→
π−1(π i(S)) (i.e., the statement (a) holds), it is sufficient to show that for every j : 1 ≤ j ≤ m, there exists R j such that 

π i−1(R j) = π−1(π i(S j)) and pi−1
j

ω j−→δ R j exists during the saturation procedure at the (i − 1)th iteration.

If the derivation of pi−1
j

ω j−→δ π−1(π1(S j)) does not use any transition rule that is added by the substitution at Line 11, 

then, pi−1
j

ω j−→δ π−1(π1(S j)) exists during the saturation procedure at the (i − 1)th iteration. Otherwise, there is a 

transition rule qi−1 γ ′
−→δ R which is used in the derivation of pi−1

j

ω j−→δ π−1(π1(S j)) and is obtained by replacing 

qi−1 γ ′
−→δ R ′ at Line 11, where R = π i−1(R ′). Let us decompose pi−1

j

ω j−→δ π−1(π1(S j)) as follows:
– ω j = uγ ′v with u, v ∈ Γ ∗ ,

– pi−1
j

u−→δ G ∪ {qi−1} with G ⊆ P × {i − 1} ∪ {q f },

– G 
γ ′v−→δ G ′ ,

– R v−→δ G ′′ ,
– π−1(π1(S j)) = G ′ ∪ G ′′ .
By applying the induction hypothesis on i to R v−→δ G ′′ , there exists G ′′′ such that R ′ v−→δ G ′′′ is obtained by applying 
the saturation procedure at the (i − 1)th iteration and G ′′ = π i−1(G ′′′). Thus, there must exist R j such that π i−1(R j) =
π−1(π i(S j)) and the derivation of pi−1

j

ω j−→δ R j uses transition rules added by the substitution at Line 11 less often 

than the derivation of pi−1
j

ω j−→δ S j . We can apply the same reasoning to pi−1
j

ω j−→δ R j to show that there exists R ′
j

such that pi−1
j

ω j−→δ R ′
j holds during the saturation procedure at the (i − 1)th iteration. Hence the statement (a) holds.

If a transition rule pi γ−→ π i(S) is added by the substitution at Line 11 due to the transition t , then (a) still hold.
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For statement (b). Let us consider the statement (b) where we show that if pi ω−→δ S , then pi−1 ω−→δ π−1(π i(S)).

Suppose t = pi
0

γ−→ {qi
1, ..., q

i
m, qi−1

m+1, ..., q
i−1
m+m′ } is the nth transition rule added by either the saturation procedure or 

the substitution. Let � be the number of times that t is used in the derivation of pi ω−→δ S . We proceed by induction 
on �. In the basic case when � = 0, statement (b) holds by applying the induction hypothesis on n.
Let us consider the case where � ≥ 1. Then, there exist u, v ∈ Γ ∗ such that
– ω = vγ u,

– pi v−→δ G ∪ {pi
0} for some G ⊆Q and t is not used in the derivation of pi v−→δ G ∪ {pi

0},

– G 
γ u−→δ G ′ ,

– qi
j

u−→δ S j for every j : 1 ≤ j ≤ m,

– qi−1
j

u−→δ S j for every j : m + 1 ≤ j ≤ m + m′ ,
– S = G ′ ∪ ⋃m+m′

j=1 S j .

By applying the induction hypothesis on n to pi v−→δ G ∪ {pi
0} we obtain that pi−1 v−→δ π−1(π i(G)) ∪ {pi−1

0 }. 

By applying the induction hypothesis on � to G 
γ u−→δ G ′ and qi

j
u−→δ S j for every j : 1 ≤ j ≤ m, we obtain that 

π−1(π i(G)) 
γ u−→δ π−1(π i(G ′)) and qi−1

j
u−→δ π−1(π i(S j)) for every j : 1 ≤ j ≤ m. By applying the statement (a) to 

t = pi
0

γ−→ {qi
1, ..., q

i
m, qi−1

m+1, ..., q
i−1
m+m′ }, we obtain that pi−1

0
γ−→ {qi−1

1 , ..., qi−1
m+m′ }. Since π−1(π i(S)) = π−1(π i(G ′)) ∪⋃m

j=1 π−1(π i(S j)) ∪ ⋃m+m′
j=m+1 S j , we get that pi−1 ω−→δ π−1(π i(S)). �

To show the termination of Algorithm 1, we will show that there exists a fixpoint such that the termination condition of 
loop1 is true. To show this, let Algorithm C be Algorithm 1 without Line 12, i.e., without the termination condition of loop1. 
We show that there exists a fixpoint n such that L(An) = L(Ai+1) for every i ≥ n.

Lemma 2. Let n ≥ 1 be the first number in Algorithm C such that for every p ∈ P , γ ∈ Γ , S ⊆ P × {n + 1} ∪ {q f }, pn+1 γ−→ S ∈
δ ⇐⇒ pn γ−→ π−1(S) ∈ δ. For every i ≥ n, L(Ai+1) = L(An).

Proof. Since Line 11 of Algorithm C will replace pi+1 γ−→ S by pi+1 γ−→ π i+1(S), then each path pi+1 ω−→δ {q f } only uses 
states of P × {i + 1} ∪ {q f }. In order to prove that L(Ai+1) = L(An) for every i ≥ n, it is sufficient to prove that for every 
p ∈ P , γ ∈ Γ, pi+1 γ−→ {qi+1

1 , ..., qi+1
m } ∈ δ ⇐⇒ pn γ−→ {qn

1, ..., q
n
m} ∈ δ by induction on i.

• Basis. i = n. We get directly from the condition of n that

pn+1 γ−→ {
qn+1

1 , ...,qn+1
m

} ∈ δ ⇐⇒ pn γ−→ {
qn

1, ...,qn
m

} ∈ δ (0)

• Step. i > n. By applying the induction hypothesis (induction on i), we obtain that for every p ∈ P , γ ∈ Γ ,

pi γ−→ {
qi

1, ...,qi
m

} ∈ δ ⇐⇒ pn γ−→ {
qn

1, ...,qn
m

} ∈ δ (1)

Since the result (1), pi+1 γ−→ {qi+1
1 , ..., qi+1

m } is added based on Ai , for every p ∈ P , γ ∈ Γ and pn+1 γ−→ {qn+1
1 , ..., qn+1

m }
is added based on An , for every p ∈ P , γ ∈ Γ , we obtain that:

pi+1 γ−→ {
qi+1

1 , ...,qi+1
m

} ∈ δ ⇐⇒ pn+1 γ−→ {
qn+1

1 , ...,qn+1
m

} ∈ δ

From (0), we get that pi+1 γ−→ {qi+1
1 , ..., qi+1

m } ∈ δ ⇐⇒ pn γ−→ {qn
1, ..., q

n
m} ∈ δ. �

To show the correctness of Algorithm 1, we first show the following lemmas.

Lemma 3. In Algorithm 1, for every i ≥ 1, just after Line 10, Ai accepts Pre+(L(Ai−1) ∩ F × Γ ∗).

Proof. Before Line 4, L(Ai) = ∅. By adding transition rules pi ε−→ pi−1 for every p ∈ F at Line 4, we get that for every 
p ∈ P , ω ∈ Γ ∗ , pi ω−→δ {q f } iff pi ε−→δ {pi−1} ω−→δ {q f } and p ∈ F . Thus, we get that L(Ai) = L(Ai−1) ∩ F × Γ ∗ .

It is shown in [3], by applying the saturation procedure Lines 5–9, that Ai accepts Pre∗(L(Ai−1) ∩ F × Γ ∗).
To show that Ai accepts exactly Pre+(L(Ai−1) ∩ F × Γ ∗) after Line 10, we first show that each configuration accepted by 

Ai after Line 10 is in Pre+(L(Ai−1) ∩ F × Γ ∗), then we show that each configuration c ∈ Pre+(L(Ai−1) ∩ F × Γ ∗) is accepted 
by Ai after Line 10.
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• Suppose 〈p, ω〉 ∈ P × Γ ∗ is accepted by Ai after Line 10, we show that 〈p, ω〉 ∈ Pre+(L(Ai−1) ∩ F × Γ ∗). Since there is 
no path of the form pi ε−→δ {q f } after Line 10, we get that |ω| ≥ 1. Then, there exist γ ∈ Γ, u ∈ Γ +, Q ⊆ Q such that 
ω = γ u, t = pi γ−→ Q is in δ and Q

u−→δ {q f }.

Let 〈p, γ 〉 ↪→ {〈p1, ω1〉, ..., 〈pm, ωm〉} be the transition used by the saturation procedure to add t such that pi
j

ω j−→ Q j

for every j : 1 ≤ j ≤ m and Q = ⋃m
j=1 Q j . This implies that {〈p1, ω1u〉, ..., 〈pm, ωmu〉} ⊆ Pre∗(L(Ai−1) ∩ F × Γ ∗). Thus, 

we get that 〈p, γ u〉 ∈ Pre+(L(Ai−1) ∩ F × Γ ∗).
• Suppose 〈p, ω〉 ∈ Pre+(L(Ai−1) ∩ F × Γ ∗), we show that Ai after Line 10 accepts 〈p, ω〉. Since Pre+(L(Ai−1) ∩ F × Γ ∗) =

Pre∗(Pre(L(Ai−1) ∩ F × Γ ∗)), we obtain that Pre+(L(Ai−1) ∩ F × Γ ∗) is the limit of the infinite sequence {Ci}i≥0 given by 
C0 = Pre(L(Ai−1) ∩ F × Γ ∗) and C j+1 = C j ∪ Pre(C j) for every j ≥ 0. Note that for every j ≥ 0, C j ⊆ C j+1. It is sufficient 
to show that for every j ≥ 0, every configuration 〈p, ω〉 ∈ C j , Ai has a path pi ω−→δ {q f } whose derivation does not use 
any transition rule in the form of qi ε−→ {qi−1} (note that such path allows Ai to recognize 〈p, ω〉 after Line 10). We 
proceed by induction on j.
– Basis j = 0. By applying the saturation procedure (Lines 6–8), Ai accepts C0 if only the outcoming states pi of the 

added transition rules are regarded as initial states. These transition rules starting from these new initial states are 
in the form of pi γ−→ Q where Q ⊆ P × {i − 1} ∪ {q f }. For every configuration 〈p, ω〉 ∈ C0, Ai has a path of the form 
pi ω−→δ {q f } whose derivation does not use any transition rule in the form of qi ε−→ {qi−1}.

– Step j ≥ 1. For every configuration 〈p, ω〉 ∈ C j , then, we obtain that either 〈p, ω〉 ∈ C j−1 or 〈p, ω〉 ∈ Pre(C j−1). The 
result follows from the induction hypothesis if 〈p, ω〉 ∈ C j−1. If 〈p, ω〉 ∈ Pre(C j−1), then there exist a transition rule 
〈p, γ 〉 ↪→ {〈p1, ω1〉, ..., 〈pm, ωm〉} and u ∈ Γ ∗ such that ω = γ u and 〈pk, ωku〉 ∈ C j−1 for every k : 1 ≤ k ≤ m. By 
applying the induction hypothesis: we get that for every k : 1 ≤ k ≤ m, Ai has a path pi

k
ωk−→δ Q k

u−→δ {q f } whose 
derivation does not use any transition of the form qi ε−→ {qi−1}. The saturation procedure will add a transition 
rule pi γ−→ ⋃m

k=1 Q k . This implies that Ai has a path pi γ−→ ⋃m
k=1 Q k

u−→δ {q f } whose derivation does not use any 
transition of the form qi ε−→ {qi−1}. �

Lemma 4. In Algorithm C, for every i ≥ 0,

(a) for every accepting run ρ of BP from 〈p, ω〉 with any 〈p, ω〉 ∈ P × Γ ∗ , there exists a path pi ω−→δ {q f } in Ai and for every 
decomposition pi u−→δ Q

v−→δ {q f } of the path pi ω−→δ {q f }, if Q �= {q f }, then for all qi or qi−1 in Q \ {q f }, some path of the 
run ρ will reach the configuration 〈q, v〉;

(b) YBP ⊆ L(Ai), after the substitution at Line 11.

Proof. Let us apply induction on i.
Basis: i = 0. The statement (a) directly follows from the fact that for every configuration 〈p, ω〉 ∈ P × Γ ∗ , there exists 

a path p0 ω−→δ {q f } in A0 and for every decomposition p0 u−→δ Q
v−→δ {q f } of the path p0 ω−→δ {q f }, Q = {q f }. The 

statement (b) follows from the fact that YBP ⊆ P × Γ ∗ = L(A0).
Step: i ≥ 1. For the statement (a). Let H(ρ) be the maximum over the numbers of steps required by the paths of ρ (from 

the root) to reach some configuration in F × Γ ∗ . Note that since ρ is an accepting run of BP , H(ρ) is well-defined and 
finite. We apply a nested induction on H(ρ).

• Basis: H(ρ) = 0. Since the root of ρ is 〈p, ω〉, we obtain that 〈p, ω〉 ∈ F × Γ ∗ . By the transition rules added at Line 4 
during the ith iteration, we get that pi ε−→ {pi−1} is a transition rule of Ai . Thus, by applying the induction hypothesis 
on i, the result immediately follows.

• Step: H(ρ) ≥ 1. Let ρ1, ..., ρm be the subtrees of ρ rooted by the children of the root 〈p, ω〉, respectively. Then, there ex-
ists a transition rule 〈p, γ 〉 ↪→ {〈p1, ω1〉, ..., 〈pm, ωm〉} such that the roots of ρ1, ..., ρm are 〈p, ω1ω

′〉, ..., 〈p, ωmω′〉 and 
ω = γω′ . Now, ρ1, ..., ρm are accepting runs of BP from the configurations 〈p, ω1ω

′〉, ..., 〈p, ωmω′〉. Since H(ρ) ≥ 1, 
we get that 〈p, ω〉 /∈ F × Γ ∗ . Hence, H(ρ j) < H(ρ) for every j : 1 ≤ j ≤ m. Thus, we can apply the nested induction 

hypothesis on H(ρ j) for every j : 1 ≤ j ≤ m for statement (a), we get that there exists a path pi
j

ω jω
′

−→δ {q f } in Ai and 

for every decomposition pi
j

u−→δ Q
v−→δ {q f } of the path pi

j

ω jω
′

−→δ {q f }, if Q �= {q f }, then for all qk ∈ Q \ {q f } with 
k ∈ {i, i − 1}, some path of the run ρ will reach the configuration 〈q, v〉.

In particular, for every j : 1 ≤ j ≤ m, there exists pi
j

ω j−→δ Q j in Ai (which corresponds to a prefix of pi
j

ω jω
′

−→δ {q f }). By 

applying the saturation procedure, we get that there exists a transition pi γ−→ ⋃m
j=1 Q j in Ai . Hence, there exists a path 

pi γ−→ ⋃m
j=1 Q j

ω′−→δ {q f } in Ai and for every decomposition pi u−→δ Q
v−→δ {q f } of the path pi γω′

−→δ {q f }, if Q �= {q f }, 
then for all qk ∈ Q \ {q f } with k ∈ {i, i − 1}, some path of the run ρ will reach the configuration 〈q, v〉.
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For the statement (b). Since YBP = Pre+(YBP ∩ F ×Γ ∗) and YBP ⊆ L(Ai−1), we get that YBP ⊆ Pre+(L(Ai−1) ∩ F ×Γ ∗). 
By Lemma 3, we get that just before the substitution at Line 10, Ai accepts Pre+(L(Ai−1) ∩ F × Γ ∗). Thus, it is sufficient to 
show that for every 〈p, ω〉 ∈ YBP , Ai accepts 〈p, ω〉 after the substitution at Line 11. Let n be the number of transition rules 
substituted at Line 11. For all m ≤ n, let Am

i be the automaton obtained by substituting m transition rules. We show that 
YBP ⊆ L(Am

i ) by induction on m.

• Basis. m = 0. We directly get that YBP ⊆ L(A0
i ).

• Step. m ≥ 1. By applying the induction hypothesis: we get that YBP ⊆ L(Am−1
i ). If L(Am−1

i ) ⊆ L(Am
i ), the result follows 

from the fact that YBP ⊆ L(Am−1
i ). Otherwise, if L(Am−1

i ) \ L(Am
i ) �= ∅, let 〈p, ω〉 ∈ L(Am−1

i ) \ L(Am
i ) be some configuration 

such that |ω| is the minimum of {|ω′| | 〈p′, ω′〉 ∈ L(Am−1
i ) \ L(Am

i )} s.t. 〈p, ω〉 ∈ YBP . We prove by contradiction that 
〈p, ω〉 should not be in YBP .

For every path of the form pi ω−→δ {q f } in Am−1
i , there exist u ∈ Γ +, v ∈ Γ ∗ and q ∈ P such that ω = uv and pi u−→δ

Q ∪ {qi−1} v−→δ {q f } in Am−1
i and Am

i does not have {qi} v−→δ {q f } (otherwise 〈p, ω〉 ∈ L(Am
i )). By the statement (a), for 

each accepting run ρ of BP starting from 〈p, ω〉, one path of this run ρ will reach such a configuration 〈q, v〉. It is 
sufficient to show that 〈q, v〉 /∈ YBP .
Now, let us show that 〈q, v〉 /∈ YBP . If 〈q, v〉 /∈ L(Am−1

i ), by applying the induction hypothesis on m, we get that 
〈q, v〉 /∈ YBP .
If 〈q, v〉 ∈ L(Am−1

i ), then 〈q, v〉 ∈ L(Am−1
i ) \ L(Am

i ). If 〈q, v〉 ∈ YBP , then |v| < |ω| which contradicts the fact that |ω| is 
the minimum of {|ω′| | 〈p′, ω′〉 ∈ L(Am−1

i ) \ L(Am
i )} such that 〈p, ω〉 ∈ YBP . Thus, we obtain that 〈q, v〉 /∈ YBP . �

Now, we are ready to prove that Algorithm 1 always terminates and outputs YBP .

Theorem 2. Algorithm 1 always terminates and produces YBP .

Proof. We prove termination and correctness.
Termination: There are two loops in Algorithm 1, we need to prove that both loops terminate.
Loop2: Suppose loop2 is in the ith iteration of loop1. Since only states of the form pi ∈ P × {i} can be added into A at 

the ith iteration, we get that Loop2 only add a finite number of transition rules at the ith iteration. This implies that for 
every i ≥ 1, Loop2 always terminates at the ith iteration.

loop1: Now we consider the termination of loop1. For every i ≥ 1, Line 11 ensures that at the end of the ith iteration, 
each transition rule of A is of the form p j γ−→ S where j ≤ i and S ⊆ P × { j} ∪ {q f }. Hence, by Proposition 2(a), at the 
(i + 1)th iteration with i ≥ 1, either the termination condition at Line 12 of Algorithm 1 is satisfied or the number of 
transition rules is strictly smaller than in the ith iteration. Thus Algorithm 1 will always terminate.

Correctness: Let n > 1 be the fixpoint of Algorithm 1 such that for every p ∈ P , γ ∈ Γ , S ⊆ P × {n + 1} ∪ {q f }, pn+1 γ−→
S ∈ δ ⇐⇒ pn γ−→ π−1(S) ∈ δ. Then L(An) = L(An+1). We will prove that L(An) = YBP .

If we use Algorithm C, by Lemma 2, Proposition 2(b) and the fact that L(A0) = P × Γ ∗ , we have that for all i ≥ n

L(Ai) = L(Ai−1) = ... = L(An) ⊆ L(An−1) ⊆ ... ⊆ L(A0) (1)

(⊆) We show that L(An) ⊆ YBP . From (1), since YBP = ⋂
i≥0 Xi and Xi+1 = Pre+(Xi ∩ F × Γ ∗), it is sufficient to prove that 

L(Ai) ⊆ Xi for every i ≥ 0. We proceed by induction on i.

• Basis. i = 0. We directly get that L(A0) ⊆ X0.
• Step. i ≥ 1. We will show that L(Ai) ⊆ Xi . By applying the induction hypothesis (induction on i), we get that L(Ai−1) ⊆

Xi−1. By the definition of Xi = Pre+(Xi−1 ∩ F × Γ ∗), we obtain that

Pre+(
L(Ai−1) ∩ F × Γ ∗) ⊆ Xi (2)

By Lemma 3, Ai accepts Pre+(L(Ai−1) ∩ F × Γ ∗) before Line 11 of the algorithm. By Proposition 2(b), Line 11 can only 
remove configurations from Ai , we obtain that

L(Ai) ⊆ Pre+(
L(Ai−1) ∩ F × Γ ∗). (3)

From (2) and (3), we get that L(Ai) ⊆ Xi .

(⊇) The converse inclusion directly follows from Lemma 4(b). �
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Fig. 2. The result automaton.

Thus, since L(BP) = YBP , we get that:

Theorem 3. Given an ABPDS BP = (P , Γ, �, F ), we can effectively compute an AMA A with O(|P |) states and O(|P | · |Γ | · 2|P |)
transition rules that recognizes L(BP). This AMA can be computed in time O(|P |2 · |�| · |Γ | · 25|P |).

Proof. The correctness follows from Theorem 1 and Theorem 2.
Complexity: Given an ABPDS P with n control locations and transition rules �, an AMA A with m non-initial states, 

[24] provides a procedure that can implement the saturation procedure loop2 to compute the Pre∗ of L(A) in O((n + m) ·
|�| · 22n+2m) time. We integrated this efficient algorithm into our saturation procedure (loop2). Let us compute the number 
n and m in our algorithm.

Thanks to Line 11 of Algorithm 1, in each iteration ith of loop1 we only need to keep the states (P × {i, i − 1}) ∪ {q f }, in 
which P × {i} are initial states of the AMA A and (P × {i − 1}) ∪ {q f } are non-initial states, we obtain that n + m is at most 
2|P | + 1. Thus, loop2 can be done in O(|P | · |�| · 24|P |) time. In Line 4 and Line 10, adding or removing ε-transition rules 
can be done in |F | times. Since the number of transition rules of A is at most |Γ | · |P | · 22|P |+1 after Line 10 and at most 
|Γ | · |P | · 2|P |+1 after Line 11, the number of times of substitution (Line 11) is at most |Γ | · |P | · 22|P |+1. The termination 
condition can be done in time O(|Γ | · |P | · 2|P |+1). At each iteration of loop1, the number of transition rules of A will be 
smaller and smaller until reaching a fixpoint. Thus, loop1 can be done in O(|P | · |Γ | · 2|P |+1) time.

Putting all these estimations together, the algorithm runs in O(|P |2 · |�| · |Γ | · 25|P |) time. �
Example. Let us illustrate our algorithm by an example. Consider an ABPDS BP = ({q}, {γ }, �, {q}), where � = {〈q, γ 〉 ↪→
〈q, ε〉}. The automaton produced by Algorithm 1 is shown in Fig. 2. The dashed lines denote the transitions removed by 
Lines 10 and 11. In the first iteration, t1 = q1 ε−→ q f is added by Line 4, the saturation procedure (Lines 5–9) adds two 
transitions q1 γ−→ q f and q1 γ−→ q1. Then the transition t1 is removed by Line 10. In the second iteration, t2 = q2 ε−→ q1

is added by Line 4. The saturation procedure adds the transitions t3 = q2 γ−→ q1 and q2 γ−→ q2. Finally, t2 is removed by 
Line 10 and t3 is replaced by q2 γ−→ q2 (this transition already exists in the automaton). Now the termination condition is 
satisfied and the algorithm terminates. In this case, BP has no accepting run.

3.2.1. Efficient implementation of Algorithm 1
We show that we can improve the complexity of Algorithm 1 as follows:

Improvement 1. For every q ∈Q and γ ∈ Γ , if t1 = q 
γ−→ Q 1 and t2 = q 

γ−→ Q 2 are two transitions in δ such that Q 1 ⊆ Q 2, 
then we can remove t2. This means that if A contains two transitions t1 = p 

γ−→ {q1, q2, q3} and t2 = p 
γ−→ {q1, q2}, then 

we can remove t1 without changing the language of A. Indeed, if a path q ω−→δ q f uses the transition rule t1, then there 
must be necessarily a path q ω−→δ q f that uses the transition rule t2 instead of t1.

Improvement 2. Each transition qi γ−→ R added by the saturation procedure will be substituted by qi γ−→ π i(R) in Line 11. 
Transitions of the form qi γ−→ {qi

1, q
i−1
1 } ∪ R and qi γ−→ {qi−1

1 } ∪ R have the same substitution qi γ−→ {qi
1} ∪ π i(R). We show 

that each transition qi γ−→ {qi
1, q

i−1
1 } ∪ R can be replaced by qi γ−→ {qi−1

1 } ∪ R in the saturation procedure (i.e., during loop2). 
Moreover, we show that if both t1 = qi γ−→ {qi−1

1 , ..., qi−1
n } ∪ R and t2 = qi γ−→ {qi

1, ..., q
i
n} ∪ R exist during loop2, then t2 can 

be removed. This is due to the fact that they both have the same substitution rule.

More precisely, we can show that these two improvements are sound and complete.

Lemma 5. Given an AMA A = (Q, Γ, δ, I, Q f ), for every q ∈ Q, γ ∈ Γ , suppose δ contains two transition rules t1 = q 
γ−→ Q 1 and 

t2 = q 
γ−→ Q 2 such that Q 1 ⊆ Q 2 . Let A′ be the automaton obtained from A by removing t2 . Then L(A′) = L(A).

Proof. W.l.o.g., we assume that Q f = {q f }.
(⊆) Since A′ is obtained by eliminating the transition rule t2, A′ preserves the other transition rules of A. It is easy to 

see that L(A′) ⊆ L(A).
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(⊇) Let 〈p, ω〉 ∈ L(A), we will show that 〈p, ω〉 ∈ L(A′). Since 〈p, ω〉 ∈ L(A), if there is a path p ω−→δ q f which does not 
use the transition rule t2, 〈p, ω〉 ∈ L(A′) holds.

If p ω−→δ q f uses the transition rule t2, then there exist u, v ∈ Γ ∗ , R1 ⊆ Q such that (1) ω = uγ v , (2) p u−→δ R1 ∪ {q}, 
(3) R1

γ v−→δ q f , (4) Q 2
v−→δ q f . Since Q 1 ⊆ Q 2 and Q 2

v−→δ q f , we get that Q 1
v−→δ q f . Since p u−→δ R1 ∪ {q}, q 

γ−→ Q 1, 
Q 1

v−→δ q f and R1
γ v−→δ q f , we obtain that p u−→δ R1 ∪ {q} γ v−→δ q f in A′ . Since ω = uγ v , we obtain that 〈p, ω〉 ∈ L(A′). �

Lemma 6. During the ith iteration of loop1 of Algorithm 1, (a) and (b) hold for every i ≥ 1.

(a) For every q, q1 ∈Q, γ ∈ Γ , R ⊆Q, a transition rule of the form t1 = qi γ−→ {qi
1, q

i−1
1 } ∪ R can be replaced by the transition rule 

t2 = qi γ−→ {qi
1} ∪ R in the saturation procedure without changing the language of the automaton Ai.

(b) For every q ∈ Q, γ ∈ Γ , R ⊆ Q, if both transition rules t1 = qi γ−→ {qi−1
1 , ..., qi−1

n } ∪ R and t2 = qi γ−→ {qi
1, ..., q

i
n} ∪ R exist 

during the saturation procedure, we can remove t2 without changing the language of Ai.

Proof. (a) First we show that Ai does not lose any configuration by removing t1, then we show that we do not introduce 
any new configuration by adding t2.

• Suppose Ai accepts a configuration 〈q, γ u〉 by qi γ−→ {qi
1, q

i−1
1 } ∪ R u−→δ q f for some u ∈ Γ ∗ , it is easy to see that 

qi γ−→ {qi
1} ∪ R u−→δ q f . This implies that 〈q, γ u〉 is accepted by Ai after removing t1.

• Suppose Ai accepts a configuration 〈q, γ u〉 by qi γ−→ {qi
1} ∪ R u−→δ q f . To prove that Ai accepts the configuration 〈q, γ u〉

before adding t2, it is sufficient to show that qi γ−→ {qi
1, q

i−1
1 } ∪ R u−→δ q f . The proof depends on whether i = 1 or not. 

If i = 1, then qi−1
1 = q f . This implies that qi γ−→ {qi

1, q
i−1
1 } ∪ R u−→δ q f . If i �= 1, then i ≥ 2. Since qi

1
u−→δ q f , by 

Proposition 2, we obtain that qi−1
1

u−→δ q f . Thus, qi γ−→ {qi
1, q

i−1
1 } ∪ R u−→δ q f .

(b) Suppose Ai accepts a configuration 〈q, γ u〉 by qi γ−→ {qi
1, ..., q

i
n} ∪ R u−→δ q f , we show that qi γ−→ {qi−1

1 , ..., qi−1
n } ∪

R u−→δ q f . The proof depends on whether i = 1 or not. If i = 1, then qi−1
k = q f for every k : 1 ≤ k ≤ n. This implies that 

qi γ−→ {qi−1
1 , ..., qi−1

n } ∪ R u−→δ q f . If i �= 1, then i ≥ 2. Since qi
k

u−→δ q f for every k : 1 ≤ k ≤ n, by Proposition 2, we obtain 

that qi−1
k

u−→δ q f for every k : 1 ≤ k ≤ n. Thus, qi γ−→ {qi−1
1 , ..., qi−1

n } ∪ R u−→δ q f . �
4. CTL model-checking for pushdown systems

We consider in this section “standard” CTL model checking for pushdown systems as considered in the literature, i.e., the 
case where whether an atomic proposition holds for a given configuration c or not depends only on the control state of c, 
not on its stack. Let P = (P , Γ, �, �) be a pushdown system, c0 its initial configuration, AP a set of atomic propositions, ϕ
a CTL formula, f : AP → 2P a function that associates atomic propositions to sets of control states, and λ f : AP → 2P×Γ ∗

a 
labeling function such that for every a ∈ AP, λ f (a) = {〈p, ω〉 | p ∈ f (a), ω ∈ Γ ∗}. We provide in this section an algorithm to 
determine whether (P, c0) |
λ f ϕ . We proceed as follows: Roughly speaking, we compute an Alternating Büchi PushDown 
System BP that recognizes the set of configurations c such that (P, c) |
λ f ϕ . Then (P, c0) |
λ f ϕ holds iff c0 ∈ L(BP). 
This can be effectively checked due to Theorem 3 and Proposition 1.

Let BPϕ = (P ′, Γ, �′, F ) be the ABPDS defined as follows: P ′ = P × cl(ϕ); F = {[p, a] | a ∈ cl(ϕ) ∩ AP and p ∈ f (a)} ∪
{[p, ¬a] | ¬a ∈ cl(ϕ), a ∈ AP and p /∈ f (a)} ∪ P × clR(ϕ), where clR(ϕ) is the set of formulas of cl(ϕ) of the form E[ϕ1Rϕ2]
or A[ϕ1Rϕ2]; and �′ is the smallest set of transition rules such that for every control location p ∈ P , every subformula 
ψ ∈ cl(ϕ), and every γ ∈ Γ , we have:

1. if ψ = a, a ∈ AP and p ∈ f (a); 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ], γ 〉 ∈ �′ ,
2. if ψ = ¬a, a ∈ AP and p /∈ f (a); 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ], γ 〉 ∈ �′ ,
3. if ψ = ψ1 ∧ ψ2; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ1], γ 〉 ∧ 〈[p, ψ2], γ 〉 ∈ �′ ,
4. if ψ = ψ1 ∨ ψ2; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ1], γ 〉 ∨ 〈[p, ψ2], γ 〉 ∈ �′ ,
5. if ψ = EXψ1; 〈[p, ψ], γ 〉 ↪→ ∨

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ1], ω〉 ∈ �′ ,
6. if ψ = AXψ1; 〈[p, ψ], γ 〉 ↪→ ∧

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ1], ω〉 ∈ �′ ,
7. if ψ = E[ψ1Uψ2]; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ2], γ 〉 ∨ ∨

〈p,γ 〉↪→〈p′,ω〉∈�(〈[p, ψ1], γ 〉 ∧ 〈[p′, ψ], ω〉) ∈ �′ ,
8. if ψ = A[ψ1Uψ2]; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ2], γ 〉 ∨ ∧

〈p,γ 〉↪→〈p′,ω〉∈�(〈[p, ψ1], γ 〉 ∧ 〈[p′, ψ], ω〉) ∈ �′ ,
9. if ψ = E[ψ1Rψ2]; 〈[p, ψ], γ 〉 ↪→ (〈[p, ψ1], γ 〉 ∨ ∨

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ], ω〉) ∧ 〈[p, ψ2], γ 〉 ∈ �′ ,
10. if ψ = A[ψ1Rψ2]; 〈[p, ψ], γ 〉 ↪→ (〈[p, ψ1], γ 〉 ∨ ∧

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ], ω〉) ∧ 〈[p, ψ2], γ 〉 ∈ �′ .
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The ABPDS BPϕ above can be seen as the “product” of P with the formula ϕ . Intuitively, BPϕ has an accepting run 
from 〈[p, ψ], ω〉 if and only if the configuration 〈p, ω〉 satisfies ψ . Let us explain the intuition behind the different items 
defining �′ .

Let ψ = a ∈ AP. If p ∈ f (a) then for every ω ∈ Γ ∗ , 〈p, ω〉 satisfies ψ . Thus, BPϕ should accept 〈[p, a], ω〉, i.e., have an 
accepting run from 〈[p, a], ω〉. This is ensured by Item 1 that adds a loop in 〈[p, a], ω〉, and the fact that [p, a] ∈ F .

Let ψ = ¬a, where a ∈ AP. If p /∈ f (a) then for every ω ∈ Γ ∗ , 〈p, ω〉 satisfies ψ . Thus, BPϕ should accept 〈[p, ¬a], ω〉, 
i.e., have an accepting run from 〈[p, ¬a], ω〉. This is ensured by Item 2 and the fact that [p, ¬a] ∈ F .

Item 3 expresses that if ψ = ψ1 ∧ ψ2, then for every ω ∈ Γ ∗ , BPϕ has an accepting run from 〈[p, ψ1 ∧ ψ2], ω〉 iff BPϕ

has an accepting run from 〈[p, ψ1], ω〉 and 〈[p, ψ2], ω〉; meaning that 〈p, ω〉 satisfies ψ iff 〈p, ω〉 satisfies ψ1 and ψ2. Item 4 
is similar to Item 3.

Item 5 means that if ψ = EXψ1, then for every ω ∈ Γ ∗ , 〈p, ω〉 satisfies ψ iff there exists an immediate successor 〈p′, ω′〉
of 〈p, ω〉 such that 〈p′, ω′〉 satisfies ψ1. Thus, BPϕ should have an accepting run from 〈[p, ψ], ω〉 iff it has an accepting run 
from 〈[p′, ψ1], ω′〉. Similarly, item 6 states that if ψ = AXψ1, then for every ω ∈ Γ ∗ , 〈p, ω〉 satisfies ψ iff 〈p′, ω′〉 satisfies 
ψ1 for every immediate successor 〈p′, ω′〉 of 〈p, ω〉.

Item 7 expresses that if ψ = E[ψ1Uψ2], then for every ω ∈ Γ ∗ , 〈p, ω〉 satisfies ψ iff either it satisfies ψ2, or it satisfies 
ψ1 and there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉 such that 〈p′, ω′〉 satisfies ψ . Item 8 is similar to Item 7.

Item 9 expresses that if ψ = E[ψ1Rψ2], then for every ω ∈ Γ ∗ , 〈p, ω〉 satisfies ψ iff it satisfies ψ2, and either it satisfies 
also ψ1, or it has a successor that satisfies ψ . This guarantees that ψ2 holds either always, or until both ψ1 and ψ2 hold. 
The fact that the state [p, ψ] is in F ensures that paths where ψ2 always hold are accepting. The intuition behind Item 10 
is analogous.

Formally, we can show that:

Theorem 4. Let P = (P , Γ, �, �) be a PDS, f : AP −→ 2P a labeling function, ϕ a CTL formula, and 〈p, ω〉 a configuration of P . Let 
BPϕ be the ABPDS computed above. Then, (P, 〈p, ω〉) |
λ f ϕ iff BPϕ has an accepting run from the configuration 〈[p, ϕ], ω〉.

Proof. Theorem 4 is a special case of Theorem 5. We refer the reader to the proof of Theorem 5. �
It follows from Theorems 3 and 4 that:

Corollary 1. Given a PDS P = (P , Γ, �, �), a labeling function f : P −→ 2A P , and a CTL formula ϕ , we can construct an AMA A in 
time O(|P |2 · |ϕ|3 · (|P | · |Γ | + |�|) · |Γ | · 25|P ||ϕ|) such that for every configuration 〈p, ω〉 of P , (P, 〈p, ω〉) |
λ f ϕ iff the AMA A
recognizes the configuration 〈[p, ϕ], ω〉.

The complexity follows from the complexity of Algorithm 1 and the fact that BPϕ has O (|P ||ϕ|) states and O ((|P ||Γ | +
|�|)|ϕ|) transitions.

5. CTL model-checking for pushdown systems with regular valuations

So far, we considered the “standard” model-checking problem for CTL, where the validity of an atomic proposition in 
a configuration c depends only on the control state of c, not on the stack. In this section, we go further and consider an 
extension where the set of configurations in which an atomic proposition holds is a regular set of configurations.

Let P = (P , Γ, �, �) be a pushdown system, c0 its initial configuration, AP a set of atomic propositions, ϕ a CTL formula, 
and λ : AP → 2P×Γ ∗

a labeling function such that for every a ∈ AP, λ(a) is a regular set of configurations. We say that λ
is a regular labeling. We give in this section an algorithm that checks whether (P, c0) |
λ ϕ . We proceed as in Section 4. 
Roughly speaking, we compute an ABPDS BP ′

ϕ such that BP ′
ϕ recognizes a configuration c iff (P, c) |
λ ϕ . Then (P, c0)

satisfies ϕ iff c0 is accepted by BP ′
ϕ . As in Section 4, this can be checked using Theorem 3 and Proposition 1.

For every a ∈ AP, since λ(a) is a regular set of configurations, let Ma = (Q a, Γ, δa, Ia, Fa) be a multi-automaton such that 
L(Ma) = λ(a), and M¬a = (Q ¬a, Γ, δ¬a, I¬a, F¬a) such that L(M¬a) = P × Γ ∗ \ λ(a) be a multi-automaton that recognizes 
the complement of λ(a), i.e., the set of configurations where a does not hold. Since for every a ∈ AP and every control state 
p ∈ P , p may be an initial state in both Q a and Q ¬a , to distinguish between all these initial states, for every a ∈ AP, we will 
denote in the following the initial state corresponding to p in Q a (resp. in Q ¬a) by pa (resp. p¬a).

Let BP ′
ϕ = (P ′′, Γ, �′′, F ′) be the ABPDS defined as follows2: P ′′ = P × cl(ϕ) ∪ ⋃

a∈AP+(ϕ) Q a ∪ ⋃
a∈AP−(ϕ) Q ¬a; F ′ =

P × clR(ϕ) ∪ ⋃
a∈AP+(ϕ) Fa ∪ ⋃

a∈AP−(ϕ) F¬a; and �′′ is the smallest set of transition rules such that for every control location 
p ∈ P , every subformula ψ ∈ cl(ϕ), and every γ ∈ Γ , we have:

1. if ψ = a, a ∈ AP; 〈[p, ψ], γ 〉 ↪→ 〈pa, γ 〉 ∈ �′′ ,
2. if ψ = ¬a, a ∈ AP; 〈[p, ψ], γ 〉 ↪→ 〈p¬a, γ 〉 ∈ �′′ ,

2 AP+(ϕ) and AP−(ϕ) are as defined in Section 2.1.
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3. if ψ = ψ1 ∧ ψ2; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ1], γ 〉 ∧ 〈[p, ψ2], γ 〉 ∈ �′′ ,
4. if ψ = ψ1 ∨ ψ2; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ1], γ 〉 ∨ 〈[p, ψ2], γ 〉 ∈ �′′ ,
5. if ψ = EXψ1; 〈[p, ψ], γ 〉 ↪→ ∨

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ1], ω〉 ∈ �′′ ,
6. if ψ = AXψ1; 〈[p, ψ], γ 〉 ↪→ ∧

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ1], ω〉 ∈ �′′ ,
7. if ψ = E[ψ1Uψ2]; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ2], γ 〉 ∨ ∨

〈p,γ 〉↪→〈p′,ω〉∈�(〈[p, ψ1], γ 〉 ∧ 〈[p′, ψ], ω〉) ∈ �′′ ,
8. if ψ = A[ψ1Uψ2]; 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ2], γ 〉 ∨ ∧

〈p,γ 〉↪→〈p′,ω〉∈�(〈[p, ψ1], γ 〉 ∧ 〈[p′, ψ], ω〉) ∈ �′′ ,
9. if ψ = E[ψ1Rψ2]; 〈[p, ψ], γ 〉 ↪→ (〈[p, ψ1], γ 〉 ∨ ∨

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ], ω〉) ∧ 〈[p, ψ2], γ 〉 ∈ �′′ ,
10. if ψ = A[ψ1Rψ2]; 〈[p, ψ], γ 〉 ↪→ (〈[p, ψ1], γ 〉 ∨ ∧

〈p,γ 〉↪→〈p′,ω〉∈�〈[p′, ψ], ω〉) ∧ 〈[p, ψ2], γ 〉 ∈ �′′ .

Moreover:

11. for every transition q1
γ−→ q2 in (

⋃
a∈AP+(ϕ) δa) ∪ (

⋃
a∈AP−(ϕ) δ¬a); 〈q1, γ 〉 ↪→ 〈q2, ε〉 ∈ �′′ ,

12. for every q ∈ (
⋃

a∈AP+(ϕ) Fa) ∪ (
⋃

a∈AP−(ϕ) F¬a); 〈q, �〉 ↪→ 〈q, �〉 ∈ �′′ .

The ABPDS BP ′
ϕ has an accepting run from 〈[p, ψ], ω〉 if and only if the configuration 〈p, ω〉 satisfies ψ according to 

the regular labellings Ma ’s. Let us explain the intuition behind the rules above. Let p ∈ P , ψ = a ∈ AP, and ω ∈ Γ ∗ . The 
ABPDS BP ′

ϕ should accept 〈[p, a], ω〉, iff 〈p, ω〉 ∈ L(Ma). To check this, BP ′
ϕ goes to state pa , the initial state corresponding 

to p in Ma (Item 1); and then, from this state, it checks whether ω is accepted by Ma . This is ensured by Items 11 and 12. 
Item 11 allows BP ′

ϕ to mimic a run of Ma on ω: if BP ′
ϕ is in state q1 with γ on top of its stack, and if q1

γ−→ q2 is a rule 
in δa , then BP ′

ϕ moves to state q2 while popping γ from the stack. Popping γ allows to check the rest of the word. The 
configuration is accepted if the run (with label ω) in Ma reaches a final state, i.e., if BP ′

ϕ reaches a state q ∈ Fa with an 
empty stack, i.e., a stack containing only the bottom stack symbol �. Thus, Fa is in F ′ . Since all the accepting runs of BP ′

ϕ

are infinite, we add a loop on every configuration in control state q ∈ Fa and having � as content of the stack (Item 12).
The intuition behind Item 2 is similar. This item applies to ψ of the from ¬a. Items 3–10 are similar to Items 3–10 in 

the construction underlying Theorem 4. We get that:

Theorem 5. (P, 〈p, ω〉) |
λ ϕ iff BP ′
ϕ has an accepting run from the configuration 〈[p, ϕ], ω〉.

Proof. (
⇒) Suppose (P, 〈p, ω〉) |
λ ψ , we show that BP ′
ψ has an accepting run from the configuration 〈[p, ψ], ω〉 by 

induction on the structure of ψ .
Case ψ = a: Since (P, 〈p, ω〉) |
λ ψ , then 〈p, ω〉 ∈ λ(a). By the definition of Ma , Ma has an accepting run from the initial 

state, pa
ω−→δa f where f ∈ Fa . We will prove that BP ′

ψ has an accepting run from 〈pa, ω〉 by induction on m = |ω| (the 
length of ω) which is greater than 0. Note that the bottom of the stack is �.

• Basis. m = 1 (note that � will never be popped), hence ω = �. Then pa
�−→ f . We get that 〈pa, �〉 
⇒BP ′

ψ
〈 f , �〉 
⇒BP ′

ψ

〈 f , �〉. Since f is an accepting control location, BP ′
ψ has an accepting run from 〈pa, �〉.

• Step. m ≥ 2. Then there exist γ ∈ Γ, u ∈ Γ ∗, q ∈ Q a such that ω = γ u and pa
γ−→ q u−→δa f in Ma . By applying the 

induction hypothesis (induction on m) to q u−→δa f , BP ′
ψ has an accepting run from 〈q, u〉. Since 〈pa, γ u〉 
⇒BP ′

ψ

〈q, u〉, BP ′
ψ has an accepting run from 〈pa, ω〉.

Since 〈[p, a], ω〉 
⇒BP ′
ψ

〈pa, ω〉, we get that BP ′
ψ has an accepting run from 〈[p, a], ω〉.

Case ψ = ¬a: Since (P, 〈p, ω〉) |
λ ψ , then 〈p, ω〉 /∈ λ(a). By the definition of M¬a , M¬a has an accepting path 
p¬a

ω−→δ¬a f where f ∈ F¬a . We will prove that BP ′
ψ has an accepting run from 〈p¬a, ω〉 by induction on m = |ω| (the 

length of ω).

• Basis. m = 1. Then p¬a
�−→δ¬a f . Since we have 〈p¬a, �〉 
⇒BP ′

ψ
〈 f , �〉 
⇒BP ′

ψ
〈 f , �〉, BP ′

ψ has an accepting run from 
〈 f , �〉.

• Step. m ≥ 2. Then there exist γ ∈ Γ, u ∈ Γ ∗, q ∈ Q ¬a such that ω = γ u and p¬a
γ−→ q u−→δ¬a f in M¬a . By applying the 

induction hypothesis (induction on m), BP ′
ψ has an accepting run from 〈q, u〉. Since 〈p¬a, ω〉 
⇒BP ′

ψ
〈q, u〉, we obtain 

that BP ′
ψ has an accepting run from 〈p¬a, ω〉.

Since 〈[p, ψ], ω〉 
⇒BP ′
ψ

〈p¬a, ω〉, BP ′
ψ has an accepting run from 〈[p, ψ], ω〉.

Case ψ = ψ1 ∧ ψ2: Since (P, 〈p, ω〉) |
λ ψ , we get that (P, 〈p, ω〉) |
λ ψ1 and (P, 〈p, ω〉) |
λ ψ2. By applying 
the induction hypothesis, BP ′

ψ has an accepting run from the configuration 〈[p, ψ1], ω〉, and BP ′
ψ has an accepting 
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run from the configuration 〈[p, ψ2], ω〉. Since 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ1], γ 〉 ∧ 〈[p, ψ2], γ 〉, we get that 〈[p, ψ], ω〉 
⇒BP ′
ψ

{〈[p, ψ1], ω〉, 〈[p, ψ2], ω〉}. So BP ′
ψ has an accepting run from the configuration 〈[p, ψ], ω〉.

Case ψ = ψ1 ∨ ψ2: Since (P, 〈p, ω〉) |
λ ψ , we get that (P, 〈p, ω〉) |
λ ψ1 or (P, 〈p, ω〉) |
λ ψ2. By applying the 
induction hypothesis, BP ′

ψ has an accepting run from the configuration 〈[p, ψ1], ω〉 or BP ′
ψ has an accepting run 

from the configuration 〈[p, ψ2], ω〉. Since 〈[p, ψ], γ 〉 ↪→ 〈[p, ψ1], γ 〉 ∨ 〈[p, ψ2], γ 〉, we get that 〈[p, ψ], ω〉 
⇒BP ′
ψ

{〈[p, ψ1], ω〉} and 〈[p, ψ], ω〉 
⇒BP ′
ψ

{〈[p, ψ2], ω〉}. So BP ′
ψ has an accepting run from the configuration 〈[p, ψ], ω〉.

Case ψ = EXψ1: Since (P, 〈p, ω〉) |
λ ψ , then there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉, such that 
(P, 〈p′, ω′〉) |
λ ψ1. By applying the induction hypothesis, BP ′

ψ has an accepting run from the configuration 〈[p′, ψ1], ω′〉.
Since 〈p′, ω′〉 is an immediate successor of 〈p, ω〉, we obtain that 〈[p, ψ], ω〉 
⇒BP ′

ψ
〈[p′, ψ1], ω′〉. Hence BP ′

ψ has an 
accepting run from the configuration 〈[p, ψ], ω〉.

Case ψ = AXψ1 is similar to the case ψ = EXψ1.
Case ψ = E[ψ1Uψ2]: Since (P, 〈p, ω〉) |
λ E[ψ1Uψ2], then there exists a path 〈p0, ω0〉, 〈p1, ω1〉, 〈p2, ω2〉... from 〈p, ω〉

such that there exists i ≥ 0, (P, 〈pi, ωi〉) |
λ ψ2 and for every 0 ≤ j < i, (P, 〈p j, ω j〉) |
λ ψ1. Thus, by applying the induction 
hypothesis, we obtain that BP ′

ψ has an accepting run from 〈[pi, ψ2], ωi〉 and for every j : 0 ≤ j < i, BP ′
ψ has an accepting 

run from the configuration 〈[p j, ψ1], ω j〉. Since 〈[pi, ψ], γ 〉 ↪→ 〈[pi, ψ2], γ 〉 ∨ ∨
〈pi ,r〉↪→〈p′,ω〉(〈[pi, ψ1], γ 〉 ∧ 〈[p′, ψ], ω〉), we 

get that 〈[pi, ψ], ωi〉 
⇒BP ′
ψ

〈[pi, ψ2], ωi〉, so BP ′
ψ has an accepting run from 〈[pi, ψ], ωi〉. If i = 0, then 〈[p, ψ], ω〉 =

〈[pi, ψ], ωi〉, and BP ′
ψ has an accepting run from 〈[p, ψ], ω〉. Otherwise if i > 0, we show that BP ′

ψ has an accepting run 
from 〈[p j, ψ], ω j〉 by induction on l = i − j. (Note that 〈[p0, ψ], ω0〉 = 〈[p, ψ], ω〉.)

• Basis. l = 1. 〈pi, ωi〉 is an immediate successor of 〈p j, ω j〉. Since 〈[p j, ψ], ω j〉 
⇒BP ′
ψ

{〈[p j, ψ1], ω j〉, 〈[pi, ψ], ωi〉}, 
BP ′

ψ has an accepting run from 〈[p j, ψ], ω j〉.
• Step. l > 1. 〈p j+1, ω j+1〉 is an immediate successor of 〈p j, ω j〉, then 〈[p j, ψ], ω j〉 
⇒BP ′

ψ
{〈[p j, ψ1], ω j〉, 〈[p j+1, ψ],

ω j+1〉}. By applying the induction hypothesis, BP ′
ψ has an accepting run both from 〈[p j+1, ψ], ω j+1〉 and 〈[p j, ψ1], ω j〉. 

Thus, BP ′
ψ has an accepting run from 〈[p j, ψ], ω j〉.

Case ψ = A[ψ1Uψ2] is similar to the case ψ = E[ψ1Uψ2].
Case ψ = E[ψ1Rψ2]: Since (P, 〈p, ω〉) |
λ E[ψ1Rψ2], by the semantics of CTL, P has a path 〈p0, ω0〉, 〈p1ω1〉, 〈p2, ω2〉...

from 〈p, ω〉 such that:

1. either for every i ≥ 0 (P, 〈pi, ωi〉) |
λ ψ2,
2. or there exists i ≥ 0 such that (P, 〈pi, ωi〉) |
λ ψ1 and for every j : 0 ≤ j ≤ i (P, 〈pi, ωi〉) |
λ ψ2

First let us consider Item 2, it can be proved that BP ′
ψ has an accepting run from 〈[p, ψ], ω〉 by applying the induction 

on i − j similar to the case ψ = E[ψ1Uψ2].
Let’s consider Item 1, we will show that BP ′

ψ has an accepting run from 〈[p, ψ], ω〉. Let us construct an accepting run 
ρ of BP ′

ψ from 〈[p, ψ], ω〉 as follows. Note that 〈[p, ψ], ω〉 = 〈[p0, ψ], ω0〉.
Let 〈[p0, ψ], ω0〉 be the root of ρ . For every k ≥ 0, 〈[pk, ψ], ωk〉 
⇒BP ′

ψ
{〈[pk, ψ2], ωk〉, 〈[pk+1, ψ], ωk+1〉}, we 

can let 〈[pk+1, ψ], ωk+1〉 and 〈[pk, ψ2], ωk〉 be the children of 〈[pk, ψ], ωk〉. By applying the induction hypothesis to 
(P, 〈pk, ωk〉) |
λ ψ2, we obtain that BP ′

ψ has an accepting run ρk from 〈[pk, ψ2], ωk〉. We replace the child 〈[pk, ψ2], ωk〉 of 
〈[pk, ψ], ωk〉 in ρ by the run ρk . By the above construction, we obtain an infinite run ρ of BP ′

ψ such that ρ has an infinite 
path 〈[p0, ψ], ω0〉, 〈[p1, ψ], ω1〉, ... and all the other paths infinitely often visit some accepting control locations. Since for 
every k ≥ 0, [pk, ψ] ∈ F ′ , we obtain that each path of ρ infinitely often visits some accepting control locations, i.e., BP ′

ψ

has an accepting run from 〈[p, ψ], ω〉.
Case ψ = A[ψ1Rψ2]: it can be proved as for the case ψ = E[ψ1Rψ2].
(⇐
) Suppose BP ′

ψ has an accepting run from the configuration 〈[p, ψ], ω〉, we show that (P, 〈p, ω〉) |
λ ψ by induc-
tion on the structure of ψ .

Case ψ = a: then, 〈[p, ψ], γ 〉 ↪→ 〈pa, γ 〉 for every γ ∈ Γ , 〈q1, γ 〉 ↪→ 〈q2, ε〉 for every q1
γ−→ q2 in δa and 〈 f , �〉 ↪→ 〈 f , �〉

for every f ∈ Fa . Since BP ′
ψ has an accepting run from 〈[p, ψ], ω〉, there exists a state f ∈ Fa such that 〈[p, a], ω〉 
⇒BP ′

ψ

〈pa, ω〉 
⇒BP ′
ψ

〈 f , �〉 
⇒BP ′
ψ

〈 f , �〉. Thus Ma has a corresponding path pa
ω−→δa f . This implies that 〈p, ω〉 ∈ L(Ma). Thus, 

〈p, ω〉 ∈ λ(a). We obtain that (P, 〈p, ω〉) |
λ ψ .

Case ψ = ¬a: then 〈[p, ¬a], γ 〉 ↪→ 〈p¬a, γ 〉 for every γ ∈ Γ , 〈q1, γ 〉 ↪→ 〈q2, ε〉, for every q1
γ−→ q2 in δ¬a and 〈 f , �〉 ↪→

〈 f , �〉, for every f ∈ F¬a . Since BP ′
ψ has an accepting run from 〈[p, ¬a], ω〉, there exists a state f ∈ F¬a such that

〈[p,¬a],ω〉 
⇒BP ′
ψ

〈p¬a,ω〉 
⇒BP ′
ψ

〈 f , �〉 
⇒BP ′
ψ

〈 f , �〉.
Then M¬a has a corresponding path, p¬a

ω−→δ¬a f , which implies that 〈p, ω〉 ∈ L(M¬a). Thus, 〈p, ω〉 /∈ λ(a). We obtain that 
(P, 〈p, ω〉) |
λ ψ .
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Case ψ = ψ1 ∧ ψ2: then 〈[p, ψ], ω〉 
⇒BP ′
ψ

{〈[p, ψ1], ω〉, 〈[p, ψ2], ω〉}. So BP ′
ψ has an accepting run from the configu-

ration 〈[p, ψ1], ω〉 and BP ′
ψ has an accepting run from the configuration 〈[p, ψ2], ω〉. By applying the induction hypothesis, 

we get that (P, 〈p, ω〉) |
λ ψ1 and (P, 〈p, ω〉) |
λ ψ2. Thus, we get that (P, 〈p, ω〉) |
λ ψ .
Case ψ = ψ1 ∨ ψ2: then we get that either 〈[p, ψ], ω〉 
⇒BP ′

ψ
{〈[p, ψ1], ω〉} or 〈[p, ψ], ω〉 
⇒BP ′

ψ
{〈[p, ψ2], ω〉}, so 

BP ′
ψ has an accepting run from the configuration 〈[p, ψ1], ω〉 or BP ′

ψ has an accepting run from the configuration 
〈[p, ψ2], ω〉. By applying the induction hypothesis, we get that (P, 〈p, ω〉) |
λ ψ1 or (P, 〈p, ω〉) |
λ ψ2. This implies that 
(P, 〈p, ω〉) |
λ ψ .

Case ψ = EXψ1 is similar to the case ψ = AXψ1.
Case ψ = AXψ1: Suppose {〈[p1, ψ1], ω1〉, ..., 〈[pn, ψ1], ωn〉} is the immediate successor of 〈[p, ψ], ω〉 in the accepting 

run. Then BP ′
ψ has an accepting run from 〈[pi, ψ1], ωi〉, for each i : 1 ≤ i ≤ n. By applying the induction hypothesis, 

we get that (P, 〈pi, ωi〉) |
λ ψ1, for each i : 1 ≤ i ≤ n. By the construction, the immediate successors in P of 〈p, ω〉 are 
〈p1, ω1〉, ..., 〈pn, ωn〉. Thus, we obtain that (P, 〈p, ω〉) |
λ ψ .

Case ψ = E[ψ1Uψ2]: Let ρ be the accepting run from 〈[p, ψ], ω〉. By the construction, each configuration 〈[pi, ψ], ωi〉 in 
ρ has either two children 〈[pi, ψ1], ωi〉 and 〈[pi+1, ψ], ωi+1〉 or has only one child 〈[pi, ψ2], ωi〉. Since ρ is an accepting run, 
there exists a configuration 〈[pn, ψ], ωn〉 in ρ such that 〈[pn, ψ], ωn〉 has only one child 〈[pn, ψ2], ωn〉. In particular, there 
is a path of ρ of the form 〈[p0, ψ], ω0〉, ..., 〈[pn, ψ], ωn〉, ... with 〈[p0, ψ], ω0〉 = 〈[p, ψ], ω〉, then BP ′

ψ has an accepting 
run from 〈[pi, ψ1], ωi〉 for every i : 0 ≤ i < n, and BP ′

ψ has an accepting run from 〈[pn, ψ2], ωn〉. By applying the induction 
hypothesis, we get that (P, 〈pn, ωn〉) |
λ ψ2 and (P, 〈pi, ωi〉) |
λ ψ1, for every i : 0 ≤ i < n. Since 〈p, ω〉, ...〈pn, ωn〉... is a 
run of P , we get that (P, 〈p, ω〉) |
λ ψ .

Case ψ = A[ψ1Uψ2]: This case is similar to the case ψ = E[ψ1Uψ2].
Case ψ = E[ψ1Rψ2]: Let ρ be an accepting run from 〈[p, ψ], ω〉, then each configuration 〈[pi, ψ], ωi〉 in ρ has two 

children (1) 〈[pi, ψ2], ωi〉 and 〈[pi+1, ψ], ωi+1〉, or (2) 〈[pi, ψ1], ωi〉 and 〈[pi, ψ2], ωi〉. Thus, there are two cases.

• First we consider case 1 where each configuration 〈[pi, ψ], ωi〉 in ρ has two children 〈[pi, ψ2], ωi〉 and 〈[pi+1, ψ], ωi+1〉. 
Hence, there is an infinite path of ρ of the form 〈[p0, ψ], ω0〉, ..., 〈[pi+1, ψ], ωi+1〉, ..., with 〈[p0, ψ], ω0〉 = 〈[p, ψ], ω〉, 
and BP ′

ψ has an accepting run from the configuration 〈[pi, ψ2], ωi〉 for every i ≥ 0. By applying the induction hy-
pothesis, we get that (P, 〈pi, ωi〉) |
λ ψ2 for every i ≥ 0. Thus, we get that 〈p0, ω0〉, ..., 〈pn, ωn〉, ... is a run of P with 
〈p0, ω0〉 = 〈p, ω〉 and (P, 〈p, ω〉) |
λ ψ .

• Let’s consider case 2 where there exists a configuration 〈[pn, ψ], ωn〉 in ρ whose children are 〈[pn, ψ1], ωn〉 and 
〈[pn, ψ2], ωn〉. Then BP ′

ψ has an infinite path 〈[p0, ψ], ω0〉, ..., 〈[pn, ψ], ωn〉, 〈[pn, ψ1], ωn〉..., where 〈[p0, ψ], ω0〉 =
〈[p, ψ], ω〉. Each configuration 〈[pi, ψ], ωi〉 in this path has children 〈[pi, ψ2], ωi〉 and 〈[pi+1, ψ], ωi+1〉. Thus BP ′

ψ has 
an accepting run from 〈[pn, ψ1], ωn〉 and BP ′

ψ has an accepting run from 〈[pi, ψ2], ωi〉, for 1 ≤ i ≤ n. By applying the 
induction hypothesis, (P, 〈pn, ωn〉) |
λ ψ1 and (P, 〈pi, ωi〉) |
λ ψ2, for each i : 1 ≤ i ≤ n. Thus, 〈p0, ω0〉, ..., 〈pn, ωn〉, ...
is a run of P with 〈p0, ω0〉 = 〈p, ω〉 and (P, 〈p, ω〉) |
λ ψ .

Case ψ = A[ψ1Rψ2]: This case is similar to the case ψ = E[ψ1Rψ2]. �
From this theorem and Theorem 3, it follows that:

Corollary 2. Given a PDS P = (P , Γ, �, �), a regular labeling function λ, and a CTL formula ϕ , we can construct an AMA A such 
that for every configuration 〈p, ω〉 of P , (P, 〈p, ω〉) |
λ ϕ iff the AMA A recognizes the configuration 〈[p, ϕ], ω〉. This AMA can be 
computed in time O(|P |3 · |Γ |2 · |ϕ|3 ·k2 · |�| ·d ·25(|P ||ϕ|+k)), where k = ∑

a∈AP+(ϕ) |Q a| +∑
a∈AP−(ϕ) |Q ¬a| and d = ∑

a∈AP+(ϕ) |δa| +∑
a∈AP−(ϕ) |δ¬a|.

The complexity follows from the complexity of Algorithm 1 and the fact that BP ′
ϕ has O(|P ||ϕ| + k) states and 

O ((|P ||Γ | + |�|)|ϕ| + d) transitions.

Remark 1. Note that to improve the complexity, we represent the regular valuations Ma ’s using AMAs instead of MAs. 
The construction of BP ′

ϕ can be easily generalized to the class of AMA to represent regular valuations. This prevents the 
exponential blow-up when complementing these automata to compute M¬a .

6. Experiments

We implemented all the algorithms presented in the previous sections in a tool. As far as we know, this is the first 
tool for CTL model-checking for PDSs. We applied our tool to the verification of sequential programs. Indeed, PDSs are 
well adapted to model sequential (possibly recursive) programs [1,2]. We carried out several experiments. We obtained 
interesting results. In particular, we were able to confirm the existence of known bugs in Linux drivers. Our results are 
reported in Fig. 3. Column formula size gives the size of the formula. Columns time (s) and mem (kb) give the time (in 
seconds) and memory (in kb). Column Recu. gives the number of iterations of loop1. The last Column result gives the result 
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Fig. 3. The performance of our tool.

whether the formula is satisfied or not (Y is satisfied, otherwise N). The first eleven lines of the table describe experiments 
done to evaluate Algorithm 1 that computes the set of configurations from which an ABPDS has an accepting run. The 
second part of the table describes experiments for “standard” CTL model-checking in which most of the specifications 
cannot be expressed in LTL. The last part considers CTL model-checking with regular valuations.

Plotter controls a plotter that creates random bar graphs [20]. We checked three CTL properties for this example 
(Plotter.1, Plotter.2 and Plotter.3). In Plotter.1, we checked whether the program can eventually terminates or not. In Plot-
ter.2, we checked whether the program always terminate or not. In Plotter.3, we checked a desirable correctness property 
that an upward movement should never be immediately followed by a downward movement and vice versa. This property
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is specified as the CTL formula (AG(up → A[¬down U up ∨ right])) ∧ AG(down → A[¬up U down ∨ right]). This formula states 
that whenever up (resp. down) holds, then down (resp. up) cannot hold until up (resp. down) or right holds. ATM is an 
automatic teller machine controller. We checked that if the pincode is correct, then the ATM will provide money (ATM.1), 
and otherwise, it will set an alarm (ATM.2). ATM.3 checks that the ATM gives the money only if the pincode is correct, 
and if it is accessed from the main session. This property is expressed in CTL with regular valuations as the formula: 
AG((input_pincode ∧ EX pincode_correct) → Γ main_session), where Γ main_session is a regular predicate stating that the re-
turn address main_session is on the stack, i.e., the pincode input session is accessed from the main session (note that when 
a function call is made, its return address is pushed onto the stack). This formula expresses that whenever pincode_correct
can be true from the input_pincode state, the return address main_session is on the stack. Regular valuations are needed 
to express this property. Lock is a lock-unlock program. In Lock.1, we checked that an acquired lock cannot be acquired 
again until it is released. In Lock.2, we checked that a released lock cannot be released again until it is acquired. Lock-
err is a buggy version of Lock which acquires an acquired lock without releasing. M-WO is a Micro-Wave Oven controller 
taken from [13]. We checked that the oven will stop once it is hot, and that it cannot continue heating forever. File is a 
file management program. In File.1 (resp. File.2), we checked that a file could be closed eventually (resp. immediately). In 
File.3, we checked that a file should be opened before reading or writing. This property is expressed in CTL with regu-
lar valuations as AG((read ∨ write) → Γ open), where Γ open is a regular predicate stating that the file is opened, as we 
push open onto the stack when the file is opened. W.G.C. checks the Wolf, Goat and Cabbage problem, where the CTL 
formula expresses that Wolf, Goat and Cabbage can eventually cross the river. btrfs/file.c models the source file file.c from 
the Linux btrfs file system. We confirm the existence of the known error in this file which was reported by Xin Zhong.3 In 
this program, a lock is continually acquired twice without releasing. btrfs/file.c-fixed is the bug fixed version of btrfs/file.c.
Bluetooth is a simplified model of a Bluetooth driver [25]. We also confirm the existence of the data race found by [25].
w83627ehf, w83697ehf and advantech are watchdog Linux drivers. w83627ehf had an error that the watchdog is not 
enabled after timeout.4 Our tool confirmed the existence of this bug by checking whether whenever the time is out, the 
watchdog will be enabled in future. w83627ehf-fixed is the bug fixed version of w83627ehf. For w83697ehf and advan-
tech, we checked the similar property as for w83627ehf. at91rm9200 and at32ap700x are Real Time Clock drivers for 
Linux. In at91rm9200, once the setalarm function is called in which the alarm is enabled, the interrupt may be disabled.5

Our tool confirmed the existence of this error. at91rm9200-fixed is the bug fixed version of at91rm9200. We applied our 
tool to check at32ap700x against the same property as at91rm9200. We also found this error. pcf857x is a driver for 
pcf857x, pca857x, and pca967x I2C GPIO expanders. We checked whether the driver correctly sets the number of bits for 
GPIO expanders. RSM1–RSM5 are examples written by us which are the PDSs encoding the recursive state machine in 
[26] and are used to check the efficiency of the regular valuations part of our tool. ieee1394_core_1–ieee1394_core_4
are simplified versions of IEEE 1394 driver for Linux. For ieee1394_core_1, we checked that whenever the function 
hpsb_send_phy_config is called to send its physical configuration, then the packet of the configuration should be sent by 
calling the function hpsb_send_packet in the function hpsb_send_packet_and_wait which will wait the response of send-
ing the packet. This property is expressed in CTL with regular valuations as the formula AG(call_hpsb_send_phy_config →
EF(call_hpsb_send_packet ∧ Γ hpsb_send_packet_and_wait3 Γ ∗)), where Γ hpsb_send_packet_and_wait3 Γ ∗ denotes a regular 
predicate stating the return address of hpsb_send_packet is hpsb_send_packet_and_wait3 and is the second symbol on the 
stack (Γ denotes the top of the stack can be any symbol and Γ ∗ denotes that the rest of the stack can be any word), 
i.e., the function call of hpsb_send_packet is made in hpsb_send_packet_and_wait. For ieee1394_core_2, we checked that if 
the function hpsb_send_packet_and_wait is called, then the function hpsb_set_packet_complete_task should not be called un-
til the function init_completion is called before the return of hpsb_send_packet_and_wait. For ieee1394_core_3, we checked 
that if the function hpsb_send_packet_and_wait is called, then the function hpsb_free_packet should be called before the re-
turn of the function hpsb_send_packet_and_wait. For ieee1394_core_4, we checked that if the function send_packet_nocare is 
called, then the function hpsb_send_packet should be called before the return of the function in which send_packet_nocare
is called and hpsb_send_packet is called in the function send_packet_nocare. As described in Fig. 3, our tool could find errors 
in some of these drivers. We needed regular valuations to express some properties, while “Standard” CTL is not sufficient. 
All the PDSs and CTL formulas considered in this work and the source code of our tool can be downloaded on the website 
ftp://222.73.57.93.

7. Related work

Alternating Büchi Pushdown Systems can be seen as non-deterministic Büchi Pushdown Systems over trees. Emptiness 
of non-deterministic Büchi Pushdown Systems over trees is solved in triple exponential time by Harel and Raz [27]. On the 
other hand, the emptiness problem of ABPDSs can be seen as solving Büchi games on pushdown systems. [22] proposed an 
algorithm for computing the winning strategy of Büchi games on pushdown systems. Our work has several differences com-
pared with [22]. The algorithm in [22] has a time complexity which is exponential in O(|P |2). Moreover, no implementation 

3 http :/ /permalink.gmane .org /gmane .comp .file-systems .btrfs /8072.
4 https :/ /bugzilla .kernel .org /show _bug .cgi ?id =15558.
5 https :/ /bugzilla .kernel .org /show _bug .cgi ?id =11112.

ftp://222.73.57.93
http://permalink.gmane.org/gmane.comp.file-systems.btrfs/8072
https://bugzilla.kernel.org/show_bug.cgi?id=15558
https://bugzilla.kernel.org/show_bug.cgi?id=11112
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of this algorithm is given in [22]. Also, [22] gives only the proof sketch of some theorems about correctness and termination 
of substitution. While our work considers the emptiness problem of ABPDSs, our algorithm runs in time exponential in 5|P |. 
We also implement our techniques in a tool and give the details of the proofs. These technical proofs are very important to 
understand why the algorithm works. [7] considers the emptiness problem in Alternating Parity Pushdown Automata. The 
emptiness problem of nondeterministic parity pushdown tree automata is investigated in [12,28,29]. ABPDSs can be seen 
as a subclass of these Automata. For ABPDSs, our algorithm is more general than the ones in these works since it allows 
to characterize and compute the set of configurations from which the ABPDS has an accepting run, whereas the other al-
gorithms allow only to check emptiness. Moreover, the emptiness of ABPDSs is known to be EXPTIME-complete and our 
algorithm is asymptotically optimal compared with known algorithms.

Model-checking pushdown systems against branching time temporal logics has already been intensively investigated 
in the literature. Several algorithms have been proposed. Walukiewicz [14] showed that CTL model checking is EXPTIME-
complete for PDSs. The complexity of our algorithm matches this bound. CTL corresponds to a fragment of the alternation-
free μ-calculus and of CTL∗ . Model checking full μ-calculus for PDSs has been considered in [15,8–10]. These algorithms 
allow only to determine whether a given configuration satisfies the property. They cannot compute the set of all the con-
figurations where the formula holds. As far as CTL is concerned, our algorithm is more general since it allows to compute a 
finite automaton that characterizes the set of all such configurations. Moreover, the complexity of our algorithm is compa-
rable to the ones of [15,8–10] when applied to CTL, it is even better than [9,10].

[11,6] consider the global model-checking of PDSs against the more expressive modal μ-calculus, i.e., they symbolically 
compute the set of configurations that satisfy the formula which is regular. They reduce this problem to the membership 
problem in two-way alternating parity tree automata. [6] considers also μ-calculus model-checking with regular valuations. 
These algorithms are more complex, technically more complicated and less intuitive than our procedure. Indeed, the com-
plexity of [11,6] is (|ϕ| · |P | · |�| · |Γ |)O(|P |·|�|·|ϕ|)2

, whereas our complexity is O(|P |2 · |ϕ|3 · (|P | · |Γ | + |�|) · |Γ | · 25|P ||ϕ|). 
[18,19] present another technique for global model-checking of PDSs against μ-calculus. Their complexity is O(2O (|P |·|ϕ|·dϕ ))

where dϕ denotes the nesting depth of the fixed points of the formula ϕ . We showed in [21] that our tool is much more 
efficient than PDSolver under the benchmark considered in [21].

In [3], Bouajjani et al. consider alternating pushdown systems (without the Büchi accepting condition). They provide an 
algorithm to compute a finite automaton representing the Pre∗ of a regular set of configurations for these systems. We use 
this procedure in loop2 of Algorithm 1. [24] showed how to efficiently implement this procedure. We used the ideas in 
[24] while implementing Algorithm 1. In their paper, Bouajjani et al. applied their Pre∗ algorithm to compute the set of 
PDS configurations that satisfy a given alternation-free μ-calculus formula. Their procedure is more complex than ours. It is 
exponential in |P | · |ϕ|2 whereas our algorithm is exponential only in |P | · |ϕ|, where |P | is the number of states of the PDS 
and |ϕ| is the size of the formula.

It is well known that the model-checking problem for μ-calculus is polynomially reducible to the problem of solving 
parity games. Parity games for pushdown systems are considered in [30,31] and are solved in time exponential in (|P ||ϕ|)2. 
As far as CTL model-checking is concerned, our method is simpler, less complex (i.e. exponential in 5|P ||ϕ|), and more 
intuitive than these algorithms.

Model checking CTL∗ for PDS is 2EXPTIME-complete (in the size of the formula) [7]. Algorithms for model-checking CTL∗
specifications for PDSs have been proposed in [5,16,17,7]. [5] considers also CTL∗ model checking with regular valuations. 
When applied to CTL formulas, these algorithms are more complex than our techniques. They are double exponential in the 
size of the formula and exponential in the size of the system; whereas our procedure is only exponential for both sizes (the 
formula and the system).

LTL model-checking with regular valuations was considered in [16,17]. Their algorithm is based on a reduction to the 
“standard” LTL model-checking problem for PDSs. The reduction is done by performing a kind of product of the PDS with the 
different regular automata representing the different constraints on the stack. Compared to these algorithms, our techniques 
for CTL model-checking with regular valuations are direct, in the sense that they do not necessitate to make the product of 
the PDS with the different automata of the regular constraints.
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