
Inferring Loop Invariants for Multi-Path Loops

Yingwen Lin1, Yao Zhang1, Sen Chen1∗, Fu Song2, Xiaofei Xie3, Xiaohong Li1∗, Lintan Sun4

1College of Intelligence and Computing, Tianjin University, Tianjin, China, {linyingwen, zzyy, senchen, xiaohongli}@tju.edu.cn
2School of Information Science and Technology, ShanghaiTech University, Shanghai, China, songfu@shanghaitec.edu.cn

3Nanyang Technological University, Singapore, xfxie@ntu.edu.sg
4State Grid Customer Service Center, Tianjin, China

Abstract—Loop invariant plays an important role in program
analysis and verification. Equipping each loop with a sound and
useful invariant is a crucial step for full program verification
and program understanding. However, inferring sound and useful
loop invariants remains a challenge due to the complex control
structure of loops, especially for loops that contain multiple
paths. In this paper, we first analyze the main challenges in loop
invariant inference, then introduce a new approach to generate
sound and useful loop invariants using a divide-and-conquer
strategy. Specifically, we use Path Dependency Automaton (PDA)
to model loops by which we boil down the problem of loop
invariant inference to state invariant inference of the PDA. We
propose an algorithm to infer state invariants of the PDA and
construct loop invariants from state invariants. We implement
our approach in a tool named InvInfer. We evaluate InvInfer
on various benchmarks. The results show that our approach is
remarkably more effective and efficient than several state-of-the-
art approaches, especially on loops with multiple paths.

I. INTRODUCTION

Loop invariants play an important role in program verifi-

cation and program understanding. When designing an algo-

rithm, programmers usually use the concept of loop invariants

to intuitively ensure the correctness of the algorithm. But few

programmers would write them down or it is difficult to write

them down. Hence, generating loop invariants automatically is

one of the most important fundamental problems in program

verification. Given a Hoare triple [1] of a loop:

{pre}while c do L{post}
the problem of program verification is to judge if the Hoare

triple is valid, i.e., if the precondition pre holds, the post-

condition post then holds upon the termination of the loop.

Loop invariant is a predicate that holds before entering the loop

and after each iteration of the loop. If a predicate I meets the

following properties, it is a valid loop invariant:

pre ⇒ I and {I ∧ c} L {I}
A loop invariant I is useful if it can be used to prove the

correctness of the loop, i.e., the following constraint holds:

(I ∧ ¬c) ⇒ post

Various approaches have been proposed to infer loop invari-

ants. Though promising, it is fair to say that the loop invariant

∗Sen Chen and Xiaohong Li are the corresponding authors.

generation problem remains unsolved, even for simple arith-

metic programs. The difficulties of loop invariant inference

mainly lie on the following aspects:

A large number of candidate invariants. According to the

definition of loop invariants, any predicates that satisfy the

two properties are loop invariants, but may not be useful for

proving the post-condition. Taking a loop with three variables

{x, y, z} as an example, one can build many atomic predicates

using these three variables, expr = {x == y, x == z, x +
y == 0, . . .}. Since the form of loop invariants is incertitude,

each combination of such atomic predicates is a candidate

invariant. With the increase of the number of variables, there

will be a huge amount of candidate invariants to validate.

Complex control structure of loops. Loops can have complex

control structures due to branches, leading to multiple paths

in one loop, called multi-path loop. Different paths typically

show different properties, hence the invariants of multi-path

loops are composed by several atomic predicates. The combi-

nation of atomic predicates enlarges the search space of loop

invariant inference. Template-based approaches often suffer

from such problems [2–4].

Candidate invariants are difficult to validate. Some previ-

ous works [5, 6] reduce the validation of candidate invariants

to SMT solving using the above three properties. However,

SMT solving is computationally expensive, and hence may

fail to validate candidate invariants. Other works [2, 7] use

symbolic execution to validate candidate invariants. Such

approaches typically sacrifice soundness for efficiency [2].

The above three problems make the loop invariant inference

problem challenging and difficult. To overcome these prob-

lems, we propose a new approach to infer loop invariants. Our

approach is designed to deal with multi-path loops, which can

contain both inductive variables and non-inductive variables

with a deterministic upper bound. We use a divide-and-
conquer strategy to deal with multi-path loops. Specifically,

we introduce Path Dependency Automaton (PDA) [8] to model

multi-path loops and boil down the problem of loop invariant

inference to state invariant inference on the PDA, which

reduces the search space of the problem. We introduce a new

operator spk to derive the constraints of variables and use a

guess-and-check strategy to compute state invariants. Finally,

loop invariants are computed from the state invariants.

63

2021 International Symposium on Theoretical Aspects of Software Engineering (TASE)

978-1-6654-4163-6/21/$31.00 ©2021 IEEE
DOI 10.1109/TASE52547.2021.00030

20
21

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Th

eo
re

tic
al

 A
sp

ec
ts

 o
f S

of
tw

ar
e

En
gi

ne
er

in
g

(T
A

SE
) |

 9
78

-1
-6

65
4-

41
63

-6
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
TA

SE
52

54
7.

20
21

.0
00

30

In summary, we make the following main contributions:

• We highlight the difficulties in loop invariant inference

and employ PDA to model loops by which the useful

loop invariants can be computed.

• We conclude that different paths show different properties

generally and propose a divide-and-conquer strategy to

boil down the problem of loop invariant inference to

the state invariant inference on the PDA. As a result,

our approach only need to infer simple atomic predicates

rather than compound predicates, so that the search space

of loop invariants is reduced.

• We implement our algorithm in a tool named InvInfer. We

compare InvInfer with several state-of-the-art invariant

inference tools: InvGen [9], FiB [10] and CLN2INV [5].

We also evaluate the effectiveness of the divide-and-

conquer strategy. The results show that our approach can

infer more useful loop invariants compared with the other

three tools, and the divide-and-conquer strategy can help

to reduce the search space and the number of SMT calls.

II. PRELIMINARIES

A. Loop Modeling

The control flow graph (CFG) G of a loop is defined as

a tuple, G = (B,E, bpre, Bh, Be), where B is a set of basic

blocks each of which is a sequence of straight-line instructions,

E ⊆ B × B is a set of edges between basic blocks, bpre is

the pre-header of the loop after which the control flow goes

to the loop guard condition, Bh is a set of header blocks and

Be is a set of exit blocks.

To model the loop in the Hoare triple, we introduce the

PDA model from our previous work [8]. It is a general

approach for modeling loop, whether it is nested or unnested.

For a CFG G, the corresponding PDA model is a tuple:

A = {Q,L, q0, accept, T}, which is detailed as follows:

• Q = {q0, . . . , qn} is a finite set of states, each of

which corresponds to a path in the loop. Each path is a

sequence of basic blocks in the CFG without containing

any repeated basic blocks except for the starting and

ending ones.
∏

G is a finite set of paths.

• L is a labeling function that maps each state q ∈ Q to its

corresponding path L(q).
• q0 ∈ Q is the initial state with head(L(q0)) = bpre
• accept = {q ∈ Q|tail(L(q)) ∈ Be} is a finite set of

accepting states.

• T is a set of transitions between states.

As an equivalent model of the loop, PDA not only describes

the loop paths, but also contains their dependency relation.

Algorithm 1 describes the approach to construct the PDA

model A from a CFG G. It first extracts paths
∏

G from the

CFG and defines states G for those path. Then it computes the

transitions between the states during the outer for-loop at lines

7–17. We use kij to denote the number of iterations of the state

qi, after which the path L(qj) of qj will be executed. If qi (i.e.,

L(qi)) can execute more than once before it transits to qj , it is

an iterative state. Otherwise qi is a one-time state. At line 15,

Algorithm 1: PDA Construction

Input: G = (B,E, bpre, Bh, Be): CFG
Output: A: PDA

1
∏

G = {σ0, . . . , σn}
2 Q = {q0, . . . , qn};
3 T = ∅;
4 q0 is a state, where head(σ0) = bpre;
5 L = {(q0, σ0), . . . , (qn, σn)}
6 accept = {q ∈ Q|tail(L(q)) ∈ Be};
7 foreach qi ∈ Q do
8 foreach qj ∈ Q do
9 if tail(qi) = head(qj) ∧ i �= j then

10 Let kij be a state counter for (qi, qj)
11 if qi is an iterative state then
12 kij � 1;
13 else
14 kij = 1;

15 θij = θσi ∧ θσi [X
σ
kij−1
i

/X] ∧ θσj [X
σ
kij
i

/X];

16 if sat(θij) then
17 T = T ∪ {(qi, qj)};

18 return A = (Q,L, q0, accept, T);

we compute the guard condition of the transition from qi to qj ,

where θσi
denotes the guard condition of σi and θσj

[X
σ
kij
i

/X]

denotes the guard condition of σj after executing σi kij times.

If the guard condition θij can be satisfied, qi can transit to qj .

A variable is inductive if we can derive its general form

in the form of a sequence [11], e.g., the constant sequence

(xn = c), arithmetic sequence (xn = x0+d∗n) and geometric

sequence (xn = x0 ∗ cn). A state q in PDA is inductive if all

the variables defined in L(q) are inductive variables.

To generate loop invariants from the PDA model, we

customize the original PDA model as follows. For the non-

inductive states which contain non-inductive variables, we add

them to the model according to the reachability in the CFG.

Supposing there are two states, an non-inductive state qi and

an inductive state qj such that tail(qi) = head(qj). In order

to ensure the integrity of the model, we view qi can transit

to qj , and the real transition relation is determined when we

traverse the model.

B. Strongest Post-condition Operator

In traditional forward analysis [12], the predicate transform-

ers are defined as a set of strongest post-condition operators

in Fig. 1.

sp(pre, skip) ⇔ pre
sp(pre, abort) ⇔ false
sp(pre, x = e) ⇔ ∃x0 : pre[x0/x] ∧ x = e[x0/x]
sp(pre, c1; c2) ⇔ sp(sp(pre, c1), c2)
sp(pre, if b then c1 else c2) ⇔ (b ⇒ sp(pre, c1)) ∧ (¬b ⇒
sp(pre, c2))
sp(pre, if b then c) ⇔ (b ⇒ sp(pre, c)) ∧ (¬b ⇒ pre)

Fig. 1: Strongest post-condition

As shown in Fig. 2, we introduce the spk operator to calcu-

late the constraints that the variables form after k iterations of

an inductive state. Given a precondition pre and a sequence of

assignment statements, which correspond to an iterative path

of a loop, we can directly derive the post-condition after exe-

64

cuting these statements for k times. Thus, we use the general

form x = GFk(x = e) of x to represent the result after x = e
executing k times, but the intermediate steps are omitted. For

example, for Hoare triple {x == y}while(∗)x = x+1; {Q},

we denote the iteration times as k, the general form of x is

x = x0+k, then Q is spk(x == y, x = x+1) ⇒ x−k == y.

While traditional forward analysis needs to iterate k steps to

get the constraint, which is quite time-consuming.

spk(pre, skip) ⇔ pre
spk(pre, x = e) ⇔ ∃x0 : pre[x0/x]∧ x = GFk(x = e)[x0/x]
spk(pre, c1; c2) ⇔ spk(spk(pre, c1), c2)

Fig. 2: spk operator

Since we only need to apply spk operator to a single state,

there is no need to define it on branches.

III. MOTIVATING EXAMPLE

We will illustrate our approach using the example shown

in Fig. 3(a). The CFG, extracted paths and PDA model are

shown in Fig. 3(b), Fig. 3(c), and Fig. 3(d).

int x;
int y = 50;
assume(x < 50)
while(x < 100){
if(x < 50){
x = x + 1;

}else{
x = x + 1;
y = y + 1;

}
}
assert(x == y);

(a) Example

int x;

int y=50;
a

x <100?

b

x <50?c assert(x==y)

d

x=x+1;

e

x=x+1;

y=y+1;
f

Yes

Yes No

No

(b) CFG

σ0 : a b
True

σ1 : b c
x<100

e
x<50

b
True

σ2 : b c
x<100

f
x≥50

b
True

σ3 : b d
x≥ 100

(c) Paths

σ0

[1]
q0

σ1

[∗] q1

σ2

[∗] q2
σ3

[1]
q3

(d) PDA

Fig. 3: Motivating example

The loop (denoted as l) in the program contains two

branches due to the if statement. We can extract four paths

from the CFG, σ0 ∼ σ3. The corresponding PDA model

consists of four states, where [∗] indicates iterative states and

[1] indicates one-time states. The initial state q0 corresponds

to the path from the entry block to the guard block of the

loop while the accept state q3 corresponds to the path from

the guard block to the exit block. For other states, each state

is an abstraction of a path inside the loop. We denote the

constraint in assume and the assignment statements in q0 as

the precondition prel of the loop, prel : x < 50 ∧ y == 50.
The constraint in the assert statement in q3 is viewed as the

post-condition postl of the loop, postl : x == y. Our goal

is to generate a loop invariant to prove postl if prel holds.

We first generate some candidate invariants V by mutating the

post-condition using the variables x and y:

V = {x == y, x ≤ 50, x ≤ y, y ≥ 0, y == 50, . . .}.
Then we start from the initial state of the PDA model and

analyze each state and squeeze the state invariant during this

process.

For the state q1, since preq1 = postq0 , we have preq1 : x <
50 ∧ y == 50. In this state, only variable x is inductive. We

can deduce that the general form of x is x = x0 + k12 ∗ 1,

where x0 denotes the value of x in q0 and k12 is the iteration

times of q1. The guard condition of σ1 is θσ1
: x < 50. We can

derive the max iteration times of this state using an optimizer

in SMT solver to get the minimal value of k which makes

x = x0+k12∧x < 50∧k12 > 0 unsat, k12min = 50−x0. So

after k12 iterations of this state, we can derive the constraints

that the variables form using the spk operator, i.e.:

spk12(preq1 , x = x+ 1) ⇔ x− k12 < 50 ∧ y == 50.

The constraint set of q1 is Cq1 =
⋃k12min

k12=0 spk12
(preq1 , x =

x + 1). For a candidate invariant v in V , if we can prove

∀c ∈ Cq1 , c ⇒ v, v is a valid state invariant of q1. Suppose

that the mutation strategy gives y == 50 and x == y, we can

prove that y == 50 is a valid state invariant of q1 and x == y
is not. Similarly, we can prove that x ≤ 50 and y ≥ 0 are valid

state invariants and they can be used to strengthen the invariant

y == 50, i.e., the state invariant of q1 is y == 50 ∧ x ≤ 50.

We denote the state invariant of q1 as Iq1 : y == 50∧x ≤ 50.

Then we can get the post-condition postq1 of q1 using the

spk operator:

postq1 : spk12min(preq1 , x = x+ 1) ⇔ x == 50 ∧ y == 50.

Next, we analyze q2, the successor of q1. Since preq2 =
postq1 , we have postq1 : x == 50 ∧ y == 50. In q2, both

variables x and y are inductive and we can derive their general

forms: x = x1 + k23 and y = y1 + k23, where x1 and y1
are the values of x and y after q1 terminates. Then we can

get the maximal iteration time k23min = 50 of q2 using the

guard condition of σ2: x < 100 ∧ x == x1 + k23 ∧ y ==
y1 + k23 ∧ y1 == 50. So after k23 iterations of this state, the

constraint that the variables form becomes: spk23
(preq2 , x =

x+ 1; y = y + 1).
The constraint set of q2 is Cq2 =

⋃k23min

k23=0 spk23
(preq2 , x =

x+ 1; y = y + 1). So if a candidate invariant v satisfies ∀c ∈
Cq2 , c ⇒ v, it is a valid state invariant of q2.

We can prove that x == y and y ≥ 0 are valid state

invariants of q2. We denote them as Iq2 : x == y ∧ y ≥ 0,

which is sufficient to prove the post-condition of loop l. Since

this state is the predecessor of the accept state q3, we get the

invariant Il of the loop l:
Il = Iq1 ∨ Iq2 = (y == 50∧ x ≤ 50)∨ (x == y ∧ y ≥ 0).
For this example, we have successfully computed a dis-

junctive invariant. Actually, there is no loop invariant in a

conjunction normal form and strong enough to prove the post-

condition of l.

65

Source Code
Control Flow

Graph
Path Dependency

Automaton
Proved? End

Assertion
Candidate
Invariants

Mutation

Yes

No

Fig. 4: The overflow of our approach

IV. OUR APPROACH

The overflow of our approach is shown in Fig. 4. The input

is a .c source file which contains the property ϕ to be verified.

We first convert the input into LLVM IR from which the CFG

is constructed. Then we build the PDA model from the CFG.

The assertions and the variables in the program are extracted

and used to generate candidate state invariants. The candidates

are checked after we traverse the model. The result I generated

by our approach is a general arithmetic formula and it is in

DNF for a multi-path loop.

To efficiently generate loop invariants, we use the idea

of divide-and-conquer to split the problem into several sub-

problems. We notice that the branches in a loop will bring

multiple paths and different paths show unique properties. As

mentioned above, a state in the PDA model corresponds to a

path in the loop, we introduce state invariant below.

Definition 1: A state invariant of a state in a PDA is a

predicate that always holds once the state is visited.

Inferring invariants for each path is equal to inferring

invariants for each state. The loop invariant is a disjunction

of state invariants. For each state we use a guess-and-check

approach to get the state invariant. We only need to construct

simple atomic predicates and check if they are state invariants.

The invariant is strengthened step by step until it suffices to

prove the correctness of the loop, i.e., post-condition. In fact,

as long as we can derive the state invariant of the predecessor

of the accept state, the post-condition of the loop is proved.

But for integrity, we still infer loop invariant.

A. Candidate Invariant Generation

Since loop invariants are used to prove the correctness of a

program, the form of an invariant is related to the properties

to be proved. To generate candidate invariants, we first extract

the assertions that appear in the program. The assertions can

be divided into two types according to their positions:

Assertion inside the loop. If the assert statement is inside

the loop, the problem is to check if the assertion ϕ is a

loop invariant or state invariant. So we treat ϕ as a candidate

invariant. If we can prove that ϕ is a valid invariant, then we

proved the correctness of the program.

Assertion that exists as post-condition. A loop invariant is

usually a weakened form of the loop’s post-condition. So if the

assertion appears as the post-condition of the loop, we mutate

the assertion ϕ to generate candidates using the following

mutation strategies.

• Constant relaxation. Replacing the each constant that

appears in ϕ with a variable in the program. For example,

the post-condition to be verified is ϕ : x == 10 and the

Algorithm 2: Constraint Set Calculating (CSC)

Input: qi: visiting state, preqi : precondition of qi
Output: Cqi : the constraint set qi holds

1 Cqi = ∅;
2 if qi ∈ accept then
3 return;

4 if qi is an iterative state then
5 if qi is inductive then
6 if θσi is nondeterministic then
7 Cqi = Cqi ∪ {spk(preqi , Xi = Ei)|k ∈ [0,+∞]};
8 postqi = spk(preqi , Xi = Ei);
9 else

10 exit = spk(preqi , Xi = Ei) ∧ ¬θσi ∧ k > 0;
11 opt.add(exit);
12 kmin = opt.min(k);
13 Cqi = Cqi ∪ {spk(preqi , Xi = Ei)|k ∈ [0, kmin]};
14 postqi = spkmin

(preqi , Xi = Ei);

15 else
16 c = preqi ;
17 while sat(c ∧ θσi) do
18 c = sp(c,Xi = Ei);
19 Cqi = Cqi ∪ {c};
20 postqi = c;

21 else
22 postqi = sp(preqi , Xi = Ei);

23 foreach q in succ(qi) do
24 if sat(postqi ∧ θL(q)) and preq �= postqi then
25 preq = postqi ;
26 CSC(q, preq , Cq);

variables are {x, y}, we use y to substitute the constant

in ϕ and take the result x == y as a candidate invariant.

• Negation. For a post-condition ϕ, if we can prove that

¬ϕ always holds, then the Hoare triple is not valid.

• Splitting. If ϕ is a conjunction of several atomic pred-

icates, ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn, we split ϕ into

atomic predicates ϕ1, ϕ2, . . . , ϕn and apply the previous

strategies to generate candidates.

• Constructing predicates using the variables that appear in

the program. This is similar to the invariant generation

approaches using template, but we only need to con-

struct simple atomic predicates, thus the number of the

predicates is much less than using template. The degree

of the predicate is determined by the degree of ϕ. For

example, for a program with variables {x, y}, we take

ax + by + c = 0 as a candidate, the parameters can be

obtained by solving a simple system of linear equations.

B. Loop Invariant Generation

For each candidate state invariant, we need to check if it is a

valid one or not and then construct loop invariants from state

invariants via Algorithm 3. Algorithm 2 traverses the PDA

model and computes the constraint set that the variables form,

which are used to check the candidates in Algorithm 3.

Algorithm 2 is invoked by CSC(q0, prel, Cq0), where q0
is the initial state of the PDA, prel is the precondition of the

loop l, Cq0 is the constraint set of q0 which is empty initially.

It visits states in each feasible trace from the initial state to

the accept state, where a trace τ is a sequence of states from

the initial state to the accept state, τ = (q0, q1, . . . , accept).

66

Algorithm 3: Loop Invariant Inferring

Input: Q: state set of the PDA, C: constraint set for each state, ϕ:
assertion in the program, X: variables in the program

Output: I: Loop invariant
1 V = mutate(ϕ,X);
2 I = false;
3 foreach qi in Q do
4 Iqi = true;
5 if head(qi) = tail(qi) = lh then
6 foreach v in V do
7 if ∀c in Cqi , c ⇒ v then
8 Iqi = Iqi ∧ v;

9 I = I ∨ Iqi ;

10 return I;

For each state qi, its corresponding path is σi and its

precondition is the post-condition of its predecessor. We use

Xi = Ei to denote the assignment statements in σi. If qi
is not an iterative state, we directly obtain its post-condition

and continue to visit its successors. Otherwise, if qi is an

inductive state and its path condition θσi
is non-deterministic,

we can directly get the general forms of the variables. We

can derive the constraints from preqi using the spk operator.

We compute the constraint set and add them to Cqi . Then we

compute postqi using the spk operator. If θσi
is deterministic,

we use exit to represent the exit condition of qi and can get

the maximal iteration time kmin directly. Then the termination

of qi is transformed to find a minimal value of k which makes

the constraints violate the path condition θσi
, i.e., a minimal

k such that spk(preqi , Xi = Ei)∧ θσi
∧ k > 0 is unsat. If the

minimal k is kmin, the constraint set of qi can be expressed

as
⋃kmin

k=0 spk(preqi , Xi = Ei). The traces considered in our

paper are finite, as it does not make sense to prove the post-

condition of infinite traces. For a finite trace, it starts from the

initial state can end in the accept state in the PDA model, so

Algorithm 2 always terminates.

If qi is not inductive, we cannot directly derive the constraint

set after qi iterates k times. Thus, we compute the constraint

set Cqi via forward analysis until the exit condition is satisfied.

For multi-path loops, Algorithm 3 starts by mutating the

assertion ϕ to be verified using variables in the loop l. For

state q in the PDA, if its head and tail are head blocks of the

loop, q corresponds to a path inside the loop. We first assign

a trivial invariant Iq = true for q and then strengthen it with

valid candidates.

For a candidate v, if v is implied by each constraint in Cq ,

it is a valid state invariant. By checking all the candidates

in V , Iq is strengthened gradually. For a multi-path loop, the

loop invariant is a disjunction of state invariants which can

be proved using the definition of loop invariants. Fianlly, I is

implied by each constraint in the constraint set.

V. EVALUATION

A. Experimental Setup

We implement our algorithm for loop invariant inference in

a tool named InvInfer, using the LLVM1 framework (version

1https://llvm.org/

10.0.1) and Z32 solver (version 4.7.1). InvInfer takes a .c
program as its input and output the loop invariant it derives.

To evaluate our invariant inference algorithm and other

approaches, we select a set of programs from sv-benchmarks3.

These programs are selected from categories of loop-

acceleration, loop-crafted, loop-invariants, loop-lit, loop-new,

loops, and loops-crafted-1. These test cases are widely-used in

previous works, e.g., [7, 13–15]. They are small but non-trivial

to test the performance of invariant generation tools, thus we

removed the test cases which contain complex data structures

and function calls because these programs cannot be handled

by all evaluated tools. As a result, there are 63 programs left

and they are converted to the proper format supported by each

tool for comparison.

All our experiments are done on a machine with a Intel

six-core processor, running Ubuntu 20.04. We use benchexec4

to run these tools and monitor the resource consumption. For

each run, the memory limit is 8GB and the time limit is set

to 900s. If the tool exceeds the resource limit, it is terminated

automatically.

B. Research Questions and Results

RQ1: How does our approach perform in invariant infer-
ence compared with other existing tools?

We choose to compare InvInfer with three existing invariant

generation tools: InvGen [9], FiB [10], and CLN2INV [5].

These three tools all aim at generating loop invariants to prove

the correctness of programs. InvGen [9] uses a constraint-

based approach to synthesize invariants. It uses both static

analysis and dynamic analysis to obtain the constraints over

invariants. FiB [10] is a tool which utilizes forward and back-

ward analysis and squeezes loop invariants during this process

using Craig interpolants. CLN2INV [5] uses continuous logic

networks to get the parameters for the invariant templates. We

choose to compare our approach with it because our tool also

uses the concept of guess-and-check.

Since loop invariants are used to prove the correctness of

programs, our evaluation criterion is if the invariants generated

by each tool could prove the post-condition.

We run these four tools on the benchmarks built from sv-

benchmarks and record the results in Table I. The first column

and the second column indicate the name of categories from

sv-benchmarks and the number of test cases. For each tool the

Solved column reports the number of test cases solved by this

tool. The Time and Memory column report average time and

memory consumed by the tool.

On 55 programs out of 63, InvInfer is able to generate

valid invariants that are sufficient to prove these programs

and outperforms the other three tools as shown in Table I.

Invgen, FiB and CLN2INV prove the correctness of 18, 39,

and 11 programs respectively. For most test cases, InvInfer

can derive useful invariants in 10 seconds using memory no

more than 10MB. For 8 programs out of 63, InvInfer failed

2https://github.com/Z3Prover/z3
3https://github.com/sosy-lab/sv-benchmarks
4https://github.com/sosy-lab/benchexec

67

TABLE I: Results on sv-benchmarks

Category Number
InvGen FiB CLN2INV InvInfer

Solved
Time

(s)
Mem
(MB)

Solved
Time

(s)
Mem
(MB)

Solved
Time

(s)
Mem
(MB)

Solved
Time

(s)
Mem
(MB)

loop-acceleration 21 3 0.03 3.62 13 385.73 1700.26 4 47.24 116.97 19 0.42 7.17
loop-crafted 2 2 0.04 4.13 0 900.00 3638.09 0 132.75 115.49 2 2.14 12.71

loop-invariants 5 2 0.02 3.60 5 0.01 4.22 3 1.34 116.33 5 1.26 7.41
loop-lit 10 7 0.25 4.61 9 93.63 670.01 1 22.594 117.17 8 6.86 12.52

loop-new 3 1 0.05 4.19 1 300.34 1353.71 1 2.289 118.84 3 0.72 8.48
loops 9 2 0.09 4.22 9 0.02 5.71 2 46.37 117.39 6 1.23 7.85

loops-crafted-1 13 0 0.67 5.16 2 609.82 4007.89 0 65.03 117.94 12 1.91 8.04
Total 63 17 0.21 4.22 39 312.15 1681.24 11 43.81 117.25 55 1.89 8.55

to infer useful invariants. For 5 of them, the mutation strategy

failed to give the correct form of the candidate invariants. For

diamond_1-1.c, the transition relation between two paths

cannot be decided by our algorithm. For vnew2.c, it has

three assertions and our approach proved two of them cor-

rectly. The last assertion is i%20000003 �= 0 and our approach

failed to find a useful invariant to prove it. FiB is out of time

when it tries to prove this assertion using forward/backward

analysis. The result shows that InvGen is quite efficient, but it

fails to prove many programs because it relies on the template

to generate invariants and it does not support some operations

like modulo and bit-wise operation and it has few support for

disjunctive invariants. For part of the benchmarks such as the

test cases in category loops, FiB is more efficient than InvInfer,

this is because InvInfer should first analyze the compiler IR

and then construct the PDA model, which will take certain

of time. For many other test cases, FiB runs out of time or

memory. This is because FiB needs to calculate the interpolant

when it performs forward/backward analysis. For most of the

benchmarks, CLN2INV failed to construct valid invariants

that are sufficient to prove the programs. The reason is that

CLN2INV needs to generate invariant templates for the whole

loop and its template generation strategy failed to generate

proper templates for these test cases. Besides, CLN2INV

sets an upper bound for the loop when it samples data by

instrumentation, which makes it misjudges the properties to

be verified as false.

Answer to RQ1: InvInfer outperforms the other three

tools (i.e., InvGen, FiB, and CLN2INV) and it is effective

and efficient. InvInfer can infer more useful invariants

with less time and memory consumption.

RQ2: Does the divide-and-conquer strategy help to reduce
the number of candidate invariants and SMT calls?

The number of candidate invariants and SMT calls are

two key performance factors of our approach. The more

candidates, the more SMT calls used to prove the validity

of candidates. To answer this question, we compare InvInfer

with and without the divide-and-conquer strategy. Without the

divide-and-conquer strategy, we need to construct candidate

loop invariants for the whole loop and check if they are

valid. So under this circumstance, the mutation module needs

to construct complex candidates composed by disjunction of

atomic predicates. We choose to record the average number of

candidates and SMT calls on sv-benchmarks and another test

0 100 200 300 400 500
loop upper bound

10−1

100

101

102

103

T
im

e
/s

Invgen

CLN2INV

FiB

InvInfer

(a) Time cost

0 100 200 300 400 500
loop upper bound

101

102

103

M
e
m

o
ry

/M
B

Invgen

CLN2INV

FiB

InvInfer

(b) Memory cost

Fig. 5: Results on the influence of loop upper bound.

set cln2inv5. The results are shown in Table II.
TABLE II: The effect of the divide-and-conquer strategy

Dataset
InvInfer

(with divide-and-conquer)
InvInfer

(without divide-and-conquer)
Candidates SMT calls Candidates SMT calls

sv-bench 39.0 72.3 67.7 156.3
cln2inv 22.0 62.7 35.1 125.0

The results show that with the divide-and-conquer strategy,

the number of candidates has been reduced by 42.4% on the

sv-benchmarks and 37.7% on the cln2inv benchmarks. The

number of SMT calls has been reduced by nearly 50%. Most

loops in these two test sets contain one or two branches. If

the number of the branches increases further, the advantage of

the divide-and-conquer strategy will be more significant.

Answer to RQ2: The divide-and-conquer strategy helps

to significantly reduce the number of candidate invariants

and SMT calls, i.e. improve the efficiency of the invariant

inference.

RQ3: How does loop upper bound affect the efficiency of
invariant inference tools?

In RQ1, we notice that FiB runs out of time or memory

in many test cases. These programs have a common ground:

they all have a large loop upper bound. So we select several

test cases and change the upper bound of the loop gradually

and record the time and memory consumption. The results are

shown in Fig. 5(a) and Fig. 5(b).

As the results show, the time and memory cost of InvGen,

CLN2INV and InvInfer have nothing to do with the upper

bound. For FiB, the time and memory cost increase sharply

when the upper bound increases. The difference is due to the

divide-and-conquer strategy and spk operator we introduced.

The search space of InvInfer is small and it only needs few

steps to traverse the model, while FiB needs to invoke the

SMT solver many times when it does forward and backward

5https://github.com/gryan11/cln2inv

68

analysis, which is related to the loop upper bound. Another

reason is that when the upper bound increases, the answer

that FiB gives is simply a disjunction of program states. This

problem is caused by the SMT solver it uses. For simple

predicates, the SMT solver can derive correct interpolant.

When the predicates become complicated, the solver can

only give a disjunction of program states instead of proper

predicates. The size of invariants given by FiB increases with

the loop upper bound. For our motivating example, when the

loop upper bound is 10, the size of the invariant given by FiB

is 48, with 19 forward steps and 7 backward steps. When the

loop upper bound increases to 200, the invariant size is 957,

with 2,006 forward steps and 102 backward steps. It will cost

the SMT solver much time to calculate interpolants for such

predicates.

Answer to RQ3: When the loop upper bound increases,

the efficiency of FiB decreases sharply. The other three

tools are not affect by the loop upper bound.

C. Limitations

Our approach can generate loop invariants for multi-path

loops and the result can be applied in program verification.

But there are still some limitations. The first is the non-

inductive states in a PDA model. We cannot derive the general

form for these non-inductive variables and so we use forward

analysis to deal with them instead. This requires the non-

inductive states to have an upper bound. Forward analysis is

not as efficient as the spk operator. Another limitation is the

complexity of program structure. In this paper, we propose a

method to deal with loops with multiple paths. However, real-

world programs may be more complex, which may contain

complex function calls, reference type and other complex

operations, which need interprocedural analysis to deal with

them. For example, for the program below:

int x = 0;
unsigned int N = __VERIFIER_nondet_uint();
while (x < N){

x+= 2;
}

Our approach assigns the constraint (N ≥ 0 ∧ N ≤
UINT MAX) to the variable N . This constraint is a weak

constraint on N . For real-world programs, the function may

only return odd numbers or numbers in a specific interval,

which requires interprocedural analysis to determine a strong

constraint on N . At present, our approach and other ap-

proaches still have few support for such problems.

VI. RELATED WORK

In this work, we propose a novel approach to infer loop

invariants for multi-path loops, which converts the problem

to generating state invariants for states in the PDA model.

It improves the efficiency of loop invariant generation. A

previous work [16] uses a similar idea, which transforms

a multi-path loop into multiple single-path loops. However,

not all multi-path loops can be split into simple loops. For

example, if two paths in a loop execute one after another, the

trace forms a cycle. [16] cannot deal with such loops. Another

problem is that it does not propose an effective algorithm to

infer loop invariants for simple loops after splitting. It calls

other loop invariant generation tools to deal with these simple

loops. Our approach solves this problem further. Algorithm 2

and Algorithm 3 can also be used for loops with interleaving

paths, which only contain inductive variables. For example,

qi, qj are inductive states and qi can transit to qj and qj can

transit to qi, then the two states form a cycle. In this case, qi
and qj can be visited more than once in Algorithm 2 and the

constraint sets can be obtained to generate state invariants.

Traditional approaches utilize static and dynamic analysis

to generate loop invariants. They can be divided into sev-

eral categories according to the techniques: constraint solv-

ing [9, 15, 17, 18], interpolation [10, 19], abstract interpreta-

tion [20–23] and CEGAR (counter-example guided abstraction

refinement) [14]. Constraint solving based approaches, such

as InvGen [9], rely on invariant templates and the form of

the invariants is fixed. Compared with them, our approach

is more flexible and the form of invariants is a general

arithmetic formula. Compared with the interpolation based

approaches [10, 19], our approach is more efficient since it

does not need so many forward/backward steps to traverse the

loop. Abstract interpretation based approaches cannot generate

loop invariants in inequalities and do not support nested loops.

[2, 24–26] use dynamic analysis to construct a hull for the

trace of loop. [27–29] employ symbolic execution to verify

programs. [24] can also generate disjunctive loop invariants

for multi-path loops, while the form of the invariants is less

diverse. The reason is that the polyhedron for the trace is built

by max-plus and min-plus algebra, which is limited to a fixed

form. Compared with this method, our approach generates a

loop invariant for each path and the form of the loop invariants

is more diverse. A key problem of dynamic approaches is that

they don’t make use of the program structure, which is useful

in invariant inference. Our approach utilizes the structure to

simplify the loop invariant inference.

Recently, there have been works which utilize learning

methods to generate loop invariants. [7] proposes an active

learning approach to generate loop invariants. It utilizes se-

lective sampling to generate more samples and uses SVM

for classification. Similar to [2], it adopts KLEE to check

the invariants, so it is not sound. [6] uses graph neural

network to emulate the procedure of human expert to write

loop invariants. While its practical effect is not satisfactory,

especially on multi-path loops. [5, 30] propose continuous

logic networks, which convert the invariant to neural networks

and get the parameters during the training process. The search

space of this approach is large, so it needs to train many neural

networks to get invariants and invoke a SMT solver to check

them, which is quite time consuming. [5] and our approach

both uses the idea of guess-and-check. The key difference is

that our approach only needs to generate atomic predicates in

the guess step, which is more efficient.

69

VII. CONCLUSION

In this work, we propose a novel approach to infer strong

loop invariants for multi-path loops. We introduce PDA to

model loops and use the idea of divide-and-conquer to infer

loop invariants. And we develop the algorithm to verify

candidates and squeeze loop invariants using PDA model.

The result shows that our approach is efficient. Besides, we

evaluate the impact of loop upper bound on the performance

of these approaches.

ACKNOWLEDGMENT

This work is partially supported by the National Science

Foundation of China (Nos.61872262 and 62072309).

REFERENCES

[1] C. A. R. Hoare, “An axiomatic basis for computer

programming,” Commun. ACM, vol. 12, no. 10, pp. 576–

580, 1969.

[2] T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks,

“Counterexample-guided approach to finding numerical

invariants,” in ESEC/SIGSOFT FSE, 2017, pp. 605–615.

[3] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,

C. Pacheco, M. S. Tschantz, and C. Xiao, “The daikon

system for dynamic detection of likely invariants,” Sci.
Comput. Program., vol. 69, no. 1-3, pp. 35–45, 2007.

[4] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Us-

ing dynamic analysis to discover polynomial and array

invariants,” in ICSE, 2012, pp. 683–693.

[5] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana,

“CLN2INV: learning loop invariants with continuous

logic networks,” in ICLR, 2020.

[6] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song,

“Learning loop invariants for program verification,” in

NeurIPS, 2018, pp. 7762–7773.

[7] J. Li, J. Sun, L. Li, Q. L. Le, and S. Lin, “Automatic loop-

invariant generation and refinement through selective

sampling,” in ASE, 2017, pp. 782–792.

[8] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus: com-

puting disjunctive loop summary via path dependency

analysis,” in SIGSOFT FSE, 2016, pp. 61–72.

[9] A. Gupta and A. Rybalchenko, “Invgen: An efficient

invariant generator,” in CAV, 2009, pp. 634–640.

[10] S. Lin, J. Sun, H. Xiao, Y. Liu, D. Sanán, and H. Hansen,

“Fib: squeezing loop invariants by interpolation between

forward/backward predicate transformers,” in ASE, 2017,

pp. 793–803.

[11] W. F. Trench, “Introduction to real analysis introduction,”

Library of Congress Cataloging-in-Publication Data.,
2003.

[12] E. W. Dijkstra and C. S. Scholten, Predicate Calculus
and Program Semantics, ser. Texts and Monographs in

Computer Science. Springer, 1990.

[13] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE:

A robust framework for learning invariants,” in CAV,

2014, pp. 69–87.

[14] T. Welp and A. Kuehlmann, “Property directed invariant

refinement for program verification,” in DATE, 2014, pp.

1–6.

[15] P. Cadek, C. Danninger, M. Sinn, and F. Zuleger, “Using

loop bound analysis for invariant generation,” in FM-
CAD, 2018, pp. 1–9.

[16] R. Sharma, I. Dillig, T. Dillig, and A. Aiken, “Simpli-

fying loop invariant generation using splitter predicates,”

in CAV, 2011, pp. 703–719.

[17] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program

analysis as constraint solving,” in PLDI, 2008, pp. 281–

292.

[18] A. R. Bradley, “Sat-based model checking without un-

rolling,” in VMCAI, 2011, pp. 70–87.

[19] Y. Chen, C. Hong, B. Wang, and L. Zhang,

“Counterexample-guided polynomial loop invariant gen-

eration by lagrange interpolation,” in CAV, 2015, pp.

658–674.

[20] P. Cousot and R. Cousot, “Abstract interpretation: A

unified lattice model for static analysis of programs by

construction or approximation of fixpoints,” in POPL,

1977, pp. 238–252.

[21] P. Cousot and N. Halbwachs, “Automatic discovery of

linear restraints among variables of a program,” in POPL,

1978, pp. 84–96.

[22] V. Laviron and F. Logozzo, “Subpolyhedra: A (more)

scalable approach to infer linear inequalities,” in VMCAI,
2009, pp. 229–244.

[23] E. Rodrı́guez-Carbonell and D. Kapur, “Automatic gen-

eration of polynomial invariants of bounded degree using

abstract interpretation,” Sci. Comput. Program., vol. 64,

no. 1, pp. 54–75, 2007.

[24] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using

dynamic analysis to generate disjunctive invariants,” in

ICSE, 2014, pp. 608–619.

[25] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,

“Dynamically discovering likely program invariants to

support program evolution,” in ICSE, 1999, pp. 213–224.

[26] X. Allamigeon, S. Gaubert, and E. Goubault, “Inferring

min and max invariants using max-plus polyhedra,” in

SAS, 2008, pp. 189–204.

[27] C. S. Pasareanu and W. Visser, “Verification of java

programs using symbolic execution and invariant gen-

eration,” in SPIN, 2004, pp. 164–181.

[28] T. Nguyen, M. B. Dwyer, and W. Visser, “Syminfer:

inferring program invariants using symbolic states,” in

ASE, 2017, pp. 804–814.

[29] C. Csallner, N. Tillmann, and Y. Smaragdakis, “Dysy:

dynamic symbolic execution for invariant inference,” in

ICSE, 2008, pp. 281–290.

[30] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu, “Learning

nonlinear loop invariants with gated continuous logic

networks,” in PLDI, 2020, pp. 106–120.

70

