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Abstract—Backbone is the common part of each solution in
a given propositional formula, which is a key to improving the
performance of SAT solving and SAT-based applications, such as
model checking and program analysis. In this paper, we propose
an optimized approach that combines implication-driven (IDF),
conflict-driven (CDF), and unique-driven (UDF) heuristics to
improve backbone computing. IDF uses the particular binary
structure of the form a ↔ b ∧ c to find more backbone literals.
CDF comes from the observation that for a clause ¬a ∨ b,
if a is a backbone literal, then b is also a backbone literal.
Besides CDF, we are also able to detect new non-backbone
literals by UDF. A literal l is not a backbone literal, if there
is no clause φ ∈ Φ that is only satisfied by l. We implemented
our approach in a tool named DUCIBone with the above
optimizations (IDF+CDF+UDF), and conducted experiments on
formulas used in previous work and SAT competitions (2015,
2016). Results demonstrate that DUCIBone solved 4% (507
formulas) more formulas than minibones ( minibones-RLD, 490
formulas) does under its best configuration. Among 486 formulas
solved by all tools (DUCIBone, minibones-RLD, minibones-
cb100), DUCIBone reduced 7% (35131 seconds) than minibones
(37454 seconds). Experiments indicate that the advantage of
DUCIBone is more obvious when the formulas are harder.

I. INTRODUCTION

The backbone of a satisfiable formula is a set of literals
that are always true in all models of the formula, which
plays an important role in finding heuristic strategies of NP-
hard problems [1]. The identification of backbone improves
the performance of random SAT solvers [2], [3], [4], Lin-
Kernighan local search algorithms for Travel Salesman Prob-
lem [5] and the post-silicon fault localization in integrated
circuits [6], [7]. It also improved the performance of chip
verification [8], graph coloring problems [9] and artificial
intelligence strategies generation [10].

However, computing backbone is a co-NP-hard problem.
There are mainly three kinds of backbone computing frame-
works [11]. The naive one is the so-called implicant (as-
signment) enumeration, which enumerates all models of a
satisfiable formula. To avoid finding duplicate implicants, it
inserts previous implicants as new constraints into the formula.
The second one is called iterative SAT testing, which is often
equipped with optimizations of backbone filtering. Filtering
optimizations are used to reduce the number of SAT testings.
These optimizations aim to detect non-backbone literals with-

out invoking the expensive SAT testings, and reduce the total
overhead of the backbone computation. The third approach
is named core-based algorithm, which is motivated by the
solving procedure of modern SAT solvers, i.e., constructing
an unsatisfiable formula by adding assumptions to the original
formula. In this way, SAT solvers are able to return the reason
for unsatisfiability of the input formula, which is a subset
of the given assumptions. If the reason contains only one
element (literal), then a backbone literal is found (negation
of the reason).

Although filtering is cheap comparing to SAT testings,
[11] shows that in practice equipping filtering optimizations
in the backbone computation slows down the overall perfor-
mance. They claimed that the core-based algorithm without
backbone filtering optimizations outperforms other algorithms,
and formulas containing large amount of binary clauses are
not suitable for filtering optimizations. However, formulas
with more than a half binary clauses appear frequently in
practice, such as circuit checking, silicon chips testing, and
microprocessors verification. Better solutions for computing
the backbone of such formulas are still highly in demand.

In this paper, we aim to improve the performance of iterative
SAT testing on these formulas, and propose three kinds of
filtering optimizations. The first one is called implication-
driven filtering. The idea comes from the structural features
of formulas with large amount of binary clauses. Such clauses
are often obtained from formulas with the form of a↔ b∧ c.
It is not hard to see that a is a backbone literal if and only if
b and c are both backbone literals. Based on this observation,
if a is a backbone literal, then b and c are both backbone
literals. Symmetrically, if ¬b or ¬c is a backbone literal, then
¬a is a backbone literal as well. Given a CNF formula, the
implication-based filtering identifies such binary clauses in the
formula, and then applies the above idea to detect additional
backbone literals without SAT testing.

The second heuristics is called conflict-driven filtering,
which is based on the fact that, for the clauses of the form
¬a ∨ b, if a is a backbone literal, then b must be a backbone
literal. The last heuristics is named unique-driven filtering.
Since a backbone literal a has the property that there must
be a clause only satisfied by a, literals that do not meet such
property can be ruled out directly without using any additional
SAT testing.978-1-5386-1925-4/17/$31.00 c©2017 IEEE



We implemented our approach in a tool DUCIBone and
evaluated with empirical experiments. We compared DUCI-
Bone with the state-of-the-art tool minibones [11]. There are
many configurations in minibones corresponding to differ-
ent algorithms, we choose two configurations, minibones-
RLD, and minibones-cb100. minibones-cb100 using core-
based algorithms is the best configuration suggested by Janota
et.al. [11]. minibones-RLD is also a backbone filtering
technique.

DUCIBone was able to solve 507 formulas, 4% more
than minibones-RLD (490 formulas), and 5% more than
minibones-cb100 (486 formulas). Moreover, DUCIBone
solved all the formulas that were solved either by minibones-
RLD or minibones-cb100. Considering the formulas that
were solved by all three tools, DUCIBone reduced 22% time
than minibones-RLD, and 7% time than minibones-cb100.
Moreover, DUCIBone performs better on harder formulas.
The advantage of DUCIBone is more obvious for formulae
whose time of satisfiability checking precedes 300 seconds.

The rest of the paper is organized as follows. Section II
introduces notations and Section III introduces the iterative-
testing-based backbone computing framework we follow in
this paper. Section IV introduces the overview of our backbone
computing framework. Section V presents the heuristics for
backbone filtering, and Section VI shows the experimental
results. Finally Section VII and Section VIII discusses and
concludes the paper, respectively.

II. PRELIMINARIES

Let X be a finite set of Boolean variables. A literal l is
either a Boolean variable x ∈ X or its negation ¬x. A clause
φ is a disjunction of literals

∨
li∈φ li, which is also represented

as a set of literals {li | 1 ≤ i ≤ n}. We say a set L of literal
satisfies a clause φ, denoted as L |= φ, iff φ ∩ L 6= ∅. Given
a set C of clauses, L |= C iff L |= φ for each clause φ in
C. W.o.l.g., we assume that every clause φ is consistent, i.e.,
l and ¬l cannot be in φ at the same time.

A Boolean formula Φ over X is a Boolean combination
of variables in X . We assume that formulas are given in
conjunctive normal form (CNF), i.e., each formula Φ is a
conjunction of clauses

∧
li∈φ

φi. Analogously, the formula Φ

can also be represented as a set of clauses {φi | 1 ≤ i ≤ n}.
We denote by Φl the set of clauses that contains l, i.e., φ ∈ Φl
iff l ∈ φ.

An assignment v of a Boolean formula Φ is a mapping
X → {0, 1,−1}, where 1 (resp. 0) denotes true (resp. false)
and −1 means the unspecified value. v is a full assignment
if it is a mapping from X to {0, 1}, otherwise it is a partial
assignment. We say that a full assignment v implies a partial
assignment v′ if for each variable x ∈ X , v′(x) 6= −1 implies
v′(x) = v(x). v is a model of Φ, denoted by Φ(v) ≡ true,
if v is a full assignment and the evaluation of Φ under v is
true. Generally, v is an implicant of Φ if v is an assignment
of Φ and Φ(v) is true. In the rest of the paper, we consider
the assignment, model and implicant to be sets of literals in

the following way: a variable x ∈ v if v(x) = 1, and ¬x ∈ v
if v(x) = 0.

A Boolean formula Φ is satisfiable if there is a model of Φ,
otherwise Φ is unsatisfiable. We now give the formal definition
of backbone.

Definition 1 (Backbone). Given a Boolean formula Φ, the
backbone of Φ, denoted by BL(Φ), is a maximal set of literals
such that BL(Φ) ⊆ v for each model v of Φ. Every literal
in BL(Φ) is called a backbone literal, and every literal not in
BL(Φ) is a non-backbone literal. We will use BL(Φ) to denote
the set of non-backbone literals.

It is known that the backbone for each satisfiable formula
Φ is unique [11]. The backbone of an unsatisfiable formula
can be defined as an empty set. Therefore, in this work, we
focus on satisfiable formulas.

Theorem 1. [1][12] Given a satisfiable formula Φ and a
literal l, deciding whether l is a backbone literal is co-NP-
complete.

Let us consider the formula Φ = {¬x1 ∨¬x2, x1, x3 ∨x4},
we have BL(Φ) = {x1,¬x2}.

We introduce the concept of equilibrium literals which will
be used later.

Definition 2 (Equilibrium Literals). Given a formula Φ, for
each pair (l, l′) of literals, l′ is an equilibrium literal of l iff
for all models v of Φ, l ∈ v =⇒ l′ ∈ v. Let El denote the set
of equilibrium literals of l.

III. COMPUTING BACKBONE VIA ITERATIVE TESTING

Our approach DUCIBone proposed in this paper is an
optimized algorithm based on the iterative-testing backbone
computation. The idea comes from the simple property of
backbone literals as below.

Property 1. l is a backbone literal of the Boolean formula Φ,
iff Φ is satisfiable and Φ ∪ {¬l} is unsatisfiable.

From the definition of backbone, backbone literals are
contained in every model of Φ. We can first compute a model
via a SAT testing, and then iteratively check the literals in
the model one by one. This is the basic idea of iterative-
testing backbone computation [11]. The algorithm is shown
in Algorithm 1.

We suppose there is a SAT testing oracle (i.e., SAT (Φ))
which takes the formula Φ as input, and returns 〈false, ∅〉 if
Φ is unsatisfiable; otherwise returns 〈true, v〉 in which v is a
model of Φ. By fixing a model v of Φ, iteratively check the
satisfiability of Φ ∪ {¬l} for each l ∈ v. If the result is false
(unsatisfiable), l is a backbone literal and is removed from v.
Otherwise, a new model v′ of Φ is obtained, then v is reduced
to v ∩ v′. The algorithm terminates until v becomes empty.

In Algorithm 1, the process filtering is used to reduce
the size of v as far as possible by deleting non-backbone
literals. Previous works on such filtering techniques mainly
include: 1) Implication-Extraction: extracting an implicant v′



Algorithm 1: Computing backbone via iterative testing.
Input : A formula Φ
Output: The backbone of Φ, BL(Φ)

1 〈ret, v〉 := SAT (Φ);
2 if ret = false then
3 return ∅;
4 v := filtering(v);
5 Y := ∅;
6 foreach l ∈ v do
7 〈ret′, v′〉 := SAT (Φ ∪ {¬l});
8 if ret′ = false then
9 Y := Y ∪ {l};

10 v := v\{l};
11 Φ := Φ ∪ {l};
12 else
13 v′ := filtering(v′);
14 v := v ∩ v′;

15 return Y ;

Single SAT testing
Generate new 
assignemnts

Backbone Non-backbone

IDF

CDF/UDF

UC

UNSAT

IDF/CDF/UDF

Fig. 1: The General Framework of DUCIBone

from the model v as small as possible, or 2) Rotatable-Literal
Deletion (short for RLD): deleting the so-called rotatable
literals in the model v. It is in principle guaranteed that the
second optimization subsumes the first one. For more details
we refer to [11]. A surprising conclusion from [11] is that,
backbone filtering is not helpful in practice, namely, Algorithm
1 performs better without the filtering optimization. In this
paper, we present three further optimizations for backbone
filtering based on the results from RLD.

IV. OVERVIEW OF DUCIBONE

In this section, we introduce the overview of our approach
DUCIBone, which is able to fill the performance gap between
Filtering Optimizations and the core-based techniques in back-
bone computing.

Figure 1 illustrates the framework of our backbone comput-
ing approach. Given a satisfiable formula Φ, and a model v,
we first use a SAT testing to check the satisfiability of Φ∧l, for
every literal l in Φ. If Φ∧l is unsatisfiable, then l is the unique
unsatisfiable reason (UC) since Φ is satisfiable. Therefore, l is
a backbone literal. We compute a set of backbone literals El

based on l using IDF. If both Φ∧ l and Φ∧¬l are satisfiable,
then l is a non-backbone literal. We try to generate a new
model by fixing the assignments of l and every literal in El
to false, the fixed literals are called assumptions. If a new
model v′ is generated, literals that are assigned to different
values in v and v′ are non-backbone literals (i.e., v ∩ v′).
If no model is generated, we choose another literal l′ in Φ
which has not been decided as backbone or non-backbone
literal, and compute the satisfiability of Φ ∧ l′ using a SAT
testing again. During the computation, DUCIBone uses the
Conflict-driven Filtering (CDF) and Unique-driven Filtering
(UDF) optimizations to find new backbone and non-backbone
literals. The algorithm terminates when BL(Φ) is found.

V. HEURISTICS FOR BACKBONE FILTERING

In this section, we first present the three optimizations for
backbone filtering, then introduce the explicit implementation
of the improved backbone computing algorithm equipped with
the optimizations.

Implication-Driven Filtering (IDF)

The implication-driven filtering (IDF) is designed for accel-
erating backbone computing for the particular binary structure
of the form a ↔ b ∧ c. In this formula, if a is a backbone
literal, then both b and c are backbone literals. Symmetrically,
if ¬b or ¬c is a backbone literal, then ¬a is a backbone literal.

Taking the formula (a↔ b∧c)∧(c↔ d∧e) as an example.
From Definition 2, we know that Ec = {d, e} and Ea =
{b, c, d, e}. The following lemma guarantees that if the literal
l is a backbone literal, all elements (literals) in El are backbone
literals as well.

Lemma 1. For every literal in Φ, if l ∈ BL(Φ), then all literals
l′ ∈ El are also backbone literals.

Proof. If l ∈ BL(Φ), then for each model v |= Φ, l ∈ v.
Thus for each literal l′ ∈ El, we get that l′ ∈ v. The result
immediately follows.

However, it is non-trivial to compute El for a give literal
l. We design a heuristic algorithm to find equilibrium literals.
We consider the form of l⇔ a ∧ b, whose CNF form is

(a ∨ ¬l) ∧ (b ∨ ¬l) ∧ (¬a ∨ ¬b ∨ l).

We will compute the equilibrium literals of l.
Algorithm 2 presents how to find equilibrium literals of

a given literal l. The loop from Line 2 to Line 6 traverses
on every clause φ ∈ Φ. If the literal l appears in current φ,
the algorithm tries to find equilibrium literals by finding the
clauses that containing the negation of literal ¬l. Let φ :=
l ∨ ¬l1 ∨ ¬l2, the algorithm tries to find clauses ¬l ∨ l1 and
¬l ∨ l2 in the given formula.

After obtaining the set of pairs 〈l, E〉, IDF first checks
whether l in each pair is a backbone literal. If l is a backbone
literal, then all elements in E are identified as backbone literals
without any additional SAT testings.



Algorithm 2: Finding Equilibrium Literals
Input : A formula Φ, a literal l
Output: A subset of Equilibrium Literals El

1 E := ∅;
2 foreach φ ∈ Φ do
3 if l ∈ φ, and |φ| = 3 then
4 Let φ := l ∨ ¬l1 ∨ ¬l2;
5 if ∃φ1, φ2 ∈ Φ, s.t. φ1 := l1 ∨ ¬l, and

φ2 := l2 ∨ ¬l then
6 E := E ∪ {l1, l2};

7 return E;

Conflict-Driven Filtering (CDF)
The conflict-driven filtering (CDF) optimization comes from

the observation that, for a clause φ of the form ¬a ∨ b, if a
is a backbone literal, then b is also a backbone literal. The
correctness of this heuristics is guaranteed by the following
theorem.

Theorem 2. Given a CNF formula Φ and a clause φ := ¬a∨b
of Φ, if a is a backbone literal of Φ, then b is also a backbone
literal of Φ.

Proof. Since a is a backbone literal of Φ, for every model
v of Φ, ¬a 6∈ v. Consider now an arbitrary model v of Φ
here. Since ¬a 6∈ v, b ∈ v must holds, otherwise the clause
φ cannot be satisfied by v, which is a contradiction with the
assumption that v is the model of Φ. As a result, we prove
that b is a backbone literal of Φ as well.

Algorithm 3: The implementation of CDF.
Input : A formula Φ, a backbone literal l
Output: A subset of new backbone literals

1 B := ∅;
2 foreach φ ∈ Φ do
3 if φ = ¬l ∧ l′ then
4 B := B ∪ {l′};

5 return B;

Although CDF is applicable only for clauses with two
literals, there are many such cases in practice (recall the
benchmarks from hardware model checking and etc). The
algorithm of CDF is shown in Algorithm 3.

Unique-Driven Filtering (UDF)
In addition to finding new backbone literals via CDF, we

are also able to find new non-backbone literals by using the
unique-driven filtering optimization (UDF). According to the
definition of backbone, we can get the following theorem.

Theorem 3. Given a satisfiable formula Φ, and a backbone
literal l ∈ BL(Φ), there exists at least one clause φ ∈ Φ, such
that l is the unique satisfying literal of φ.

Proof. Suppose there exists a model v |= Φ:

• If l /∈ v, then l is a non-backbone literal by the definition
of backbone (Definition 1), which is a contradiction.

• If l ∈ v, suppose there is no clause φ ∈ Φ, such that l is
the unique satisfying literal of φ, let v′ = v \ {l}∪ {¬l},
then v′ |= Φ, thus l is a non-backbone literal by the
definition of backbone (Definition 1), which is a contra-
diction.

Therefore, for a backbone literal l of a formula Φ, there
exists at least one clause φ ∈ Φ such that l is the unique
satisfying literal of φ.

Given a literal l and a subset of backbone literals in a
satisfiable formula Φ, for every clause φ ∈ Φl that contains l,
if there always exists a backbone literal in φ, then l is a non-
backbone literal. Since l violates the condition in Theorem 3,
that l is not the unique satisfying literal of any clause φ ∈ Φ.

Backbone Computing with Optimized Filtering

With the above optimizations (IDF+CDF+UDF), we devel-
op an algorithm to compute backbone literals. We iteratively
check if a literal l is a backbone literal by a SAT testing.
The selection of later literals in SAT testings are guided by
the information obtained from the previous literals. During
the computation, more backbone and non-backbone literals are
extracted without invoking SAT testing.

Algorithm 4: Computing backbone using improved Fil-
tering Optimizations
Input : A formula Φ, a model v
Output: Backbone literals of Φ

1 L := v;
2 foreach l ∈ L do
3 L := L \ {l};
4 if ∀φ ∈ Φl, BL(Φ) ∩ φ 6= ∅ then
5 continue;

6 (ret, v′) := SAT (Φ ∧ ¬l);
7 if ret = true then
8 L := L \ {c ∈ L|v(c) 6= v′(c)};
9 v := v′;

10 (ret, v) := SAT (
∧
a∈El

¬a ∧ Φ);

11 if ret = true then
12 L := L \ {c ∈ L|v(c) 6= v′(c)};

13 if ret = false then
14 BLl := El ∪ BLl;
15 L := L \ {El};
16 foreach φ ∈ Φ¬l, φ = l′ ∨ ¬l do
17 BLl := {E′l} ∪ BLl;
18 L := L \ {E′l};

19 return BLl;



Algorithm 4 computes backbone literals using our improved
filtering optimizations. At Line 8, it enumerates the different
literals between two different models. If the values of literals
are different in different models, these literals must be non-
backbone literals. At Line 10, we construct an assignment by
assigning the value of all literals in El to false. Suppose that
there are k literals in El, then we add k unit clauses to Φ,
one unit clause ¬a for each literal a ∈ El. At Line 4, we use
UDF to find more non-backbone literals without a new SAT
testing. At Line 14, we find more backbone literals using IDF,
and we find more backbone literals using CDF at Line 16.

VI. EXPERIMENTAL STUDY

DUCIBone is implemented with IDF, CDF, and UDF
optimizations, interfacing Minisat 2.2 as SAT solver. In this
section, we conduct an experimental study on 1276 formulas to
check performance of DUCIBone. The performance of DUCI-
Bone is evaluated in two dimensions: the performance of
DUCIBone on formulae with large amount of binary clauses,
and the scalability of DUCIBone on industrial formulas.

We compared DUCIBone with the state-of-the-art tool
minibones [11], which implemented several backbone com-
puting algorithms. We consider the core-based algorithm of
minibones, denoted by minibones-cb100, which outperforms
others pointed out in [11], as well as the iterative testing-
based algorithm of minibones with RLD filtering, denoted by
minibones-RLD.

The experiments were conducted on a cluster of IBM iData-
Plex 2.83 GHz, with a memory limit of 4GB, and a time limit
of 3600 seconds. There is no paralleling or portfolio in our
experiments of all tools. Neither DUCIBone nor minibones
uses the incremental feature of Minisat.

DUCIBone was able to solve 507 formulas, while
minibones-RLD solved 490 formulas and minibones-cb100
solved 486 formulas. DUCIBone solved 4% more formu-
las than minibones-RLD, and 5% more formulas than
minibones-cb100. DUCIBone is able to solve all the formu-
las solved either by minibones-RLD or minibones-cb100.
On the formulas solved by all the three tools, DUCIBone
reduced 22% computing time than minibones-RLD, and 7%
computing time than minibones-cb100.

Benchmark Setup

In our experiments, we considered 1276 formulas consisting
of all the available formulas of [11] (779 formulas), and all
the formulas from the industrial tracks of 2015 and 2016 SAT
competitions (497 formulas). We notice that all 779 formulas
from [11] are satisfiable.

To evaluate the performance of DUCIBone on formulas
with large amount of binary clauses, we considered 435
formulas from [11] which consist of a large amount of binary
clauses. Moveover, minibones-RLD needs more time on these
formulas than minibones-cb100. Therefore, these formulas are
more suitable to evaluate the performance of DUCIBone on
formulas with large amount of binary clauses. These formulas

are divided into 5 groups according to their names, that are
the first 5 groups of Table I .

Since it does not make sense to compute backbone of
unsatisfiable formulas, we have to remove all the unsatisfiable
ones from the formulas taken from the industrial tracks of
2015 and 2016 SAT competitions. According to the results
of SAT competitions, among 497 formulas, there are 256
satisfiable formulas that are solved, in which 168 formulas are
from SAT competition 2015, and 88 formulas are from SAT
competition 2016. Moreover, these formulae were divided into
different groups according to the origin of them, e.g., planning
problems. We classified all the 256 formulas into 46 groups
based on their names. From 46 groups, we considered 5 groups
according to the following criterion:
• There exists at least one formula Φ in a group such that

the BL(Φ) can be successfully computed by at least one
tool.

• There are no less than 10 formulas in this group.
The selected 5 groups showing as the last 5 groups in

Table I, consist of 122 formulas that were created from
several well known applications of SAT, including formal
verification [13], planning [14], [15], [16], and cryptanaly-
sis [17]. The 2dlx group consists of formulas from formal
verification, the mrpp group consists of formulas from multi-
robot path planning, the aprove group consists of formulas
from term-rewriting, the vmpc group consists of formulas from
the problem of stream chip verification in cryptanalysis, and
the manthey group consists of formulas from the problem
of finding gray codes which might attack encryptions. These
formulas are used to evaluate the performance on industrial
formulas.

In Table I, the first column is the name of the group,
the second column is the number of formulas in the group.
The average of the numbers of variables, clauses, and binary
clauses of each group are listed in column 3, 4, and 5
respectively.

There are two features of the formulas that minibones-
RLD performed poorly: (1) large formulas with massive claus-
es, and (2) formulas with more than half of binary clauses. In
Table I, the groups 9vliw, bin *, 2dlx and 1394* have these
features.

Performance Comparison

In Table II, the numbers of formulas solved by DUCIBone,
minibones-RLD and minibones-cb100 in different groups
are given. The first two columns are names and numbers
of formulas in each benchmark. The numbers of the formu-
las solved by DUCIBone are presented in column 3, the
number of the formulas solved by minibones-RLD (resp.
minibones-cb100) and the division of between DUCIBone
and minibones-RLD (resp. minibones-cb100) are presented
in column 4 (resp .6) and 5 (resp. 7), respectively.

All three tools have similar performance on simple formu-
las, namely, 2dlx and 1394*. DUCIBone performed better on
formulas of the groups manthey and vmpc. DUCIBone solved



Name No. of formulas Average of the No. of variables Average of the No. of clauses Average of the No. of binary clauses

2dlx 100 20731 63673 42448
1394* 100 19587 56178 37452
9vliw 100 220717 652779 435186
bin * 135 21820 626473 417649
aprove 18 26744 68845 28130
mrpp 26 6163 46460 0
vmpc 13 780 134273 53709

manthey 44 2457 10308 2835
dimacs 21 5087 19935 1030

total 557 324086 1052451 600790

TABLE I: Benchmark

Fig. 2: Number of Solved Formulas on Different Benchmarks

24 formulas of manthey, which is 30% more than minibones-
RLD (i.e., 17 formulas). DUCIBone solved all 13 formulas
of vmpc, while minibones-cb100 only solved 9 formulas.
Figure 2 shows the numbers of solved formulas in different
benchmarks.

Figure 3 presents the number of solved formulas with-
in different computing time. All three tools were able to
solve 100 formulas within 60 seconds. DUCIBone solved 10
more formulas than minibones-RLD and minibones-cb100
around 300 seconds, and solved 17 more formulas by 3600
seconds. These experiments demonstrate that the advantage of
DUCIBone is more obvious when the formulas are harder.

Table III shows the computing time of different groups by
DUCIBone, minibones-RLD, and minibones-cb100. For
a fair comparison, we only show the result of the formulas
that are solved by all three tools simultaneously. The first
column presents groups as usual, the second column gives
the number of formulas of each group that are solved by all
three tools. The following three columns show the computing
time of DUCIBone, minibones-RLD, and the division value
between them. The last two columns show the computing time
of minibones-cb100, and the division value between the time
used in DUCIBone and minibones-cb100.

To avoid turbulence, we repeatedly computed the same
formula for three times, and use the average computing time
of the three computations. In general, DUCIBone used less

Fig. 3: Numbers of solved formulas within different computing
times

Fig. 4: Total computing time of each group

time than the other two tools, saving 7% and 22% time than
minibones-cb100 and minibones-RLD, respectively.

All three tools performed steadily on the formulas of 2dlx,
and 1394*, as these formulas are relatively simple which cost-
ed less than 1 second to compute. minibones-RLD performed
poorly on the formulas of 9vliw, and bin *, which contains
large amounts of binary clauses, preventing minibones-RLD



Name No. of formulas DUCIBone minibones-RLD minibones-RLD
DUCIBone minibones-cb100 minibones-cb100

DUCIBone

2dlx 100 100 100 100% 100 100%
1394* 100 100 100 100% 100 100%
9vliw 100 99 99 100% 99 100%
bin * 135 132 128 96.9% 127 96.2%
aprove 18 18 18 100% 18 100%
mrpp 26 15 13 86.7% 13 86.7%
vmpc 13 13 10 76.9% 9 69.2%

manthey 44 24 17 70.8% 17 70.8%
dimacs 21 6 5 83.3% 3 50%

total 557 507 490 96.6% 486 95.5%

TABLE II: Number of solved formulas

Name No. of formulas DUCIBone minibones-RLD DUCIBone
minibones-RLD minibones-cb100 DUCIBone

minibones-cb100

2dlx 100 50 50 100% 50 100%
1394* 100 188 196 95.9% 190 98.9%
9vliw 99 6064 7449 81.2% 6014 100.8%
bin * 127 14570 21611 67.4% 15771 92.3%
aprove 18 3180 3282 96.9% 3364 94.5%
mrpp 13 3388 4057 83.5% 3712 91.2%
vmpc 9 2178 2475 88% 2424 89.9%

manthey 17 4464 4519 98.8% 4767 93.6%
dimacs 3 1049 1097 95.6% 1162 90.2%

total 486 35131 44736 78.5% 37454 93.7%

TABLE III: Computing time of of each group

Name Average Variables Number DUCIBone minibones-RLD minibones-RLD
DUCIBone minibones-cb100 minibones-cb100

DUCIBone

aprove 26744 16119 15903 93.9% 15093 93.9%
mrpp 6163 858 744 86.7% 782 91.1%
vmpc 780 625 523 83.6% 516 82.6%

manthey 2457 1739 1638 94.1% 1638 94.1%
dimacs 5087 638 489 76.7% 276 43.2%

total 41231 19979 18487 92.5% 18305 91.6%

TABLE IV: Number of literals determined by SAT testing only once

from finding non-backbone literals efficiently. DUCIBone
overcomes this problem by detecting backbone literals instead
of non-backbone literals. Therefore, binary clauses will not be
the obstacle of DUCIBone any more. In contrary, DUCIBone
detects more backbone literals in the early stage of computing
by the IDF optimization from binary clauses.

Figure 4 shows the computing time of the three tools, from
which we can easily observe that: DUCIBone costed less time
than minibones-RLD and minibones-cb100, except for
9vliw group, in which minibones-cb100 and DUCIBone
performed similarly. Concluded from Figure 4, DUCIBone is
at least a comparable and complementary tool of minibones-
cb100.

To understand the diverse performance among three tools,
we study the underlying mechanisms of them. minibones-
RLD is designed to reduce the number of SAT testings by de-
tecting more non-backbone literals. minibones-cb100 is able
to find backbone literals faster with the help of unsatisfiable
reasons returned by each SAT solver testing. DUCIBone is
able to detect non-backbone literals and backbone literals us-
ing IDF, CDF, and UDF. The key of the three tools is to avoid
SAT testing by detecting backbone or non-backbone literals.
Since minibones-cb100 works different from minibones-

RLD and DUCIBone, instead of comparing the number of
SAT testings, we compare the numbers of literals that are
determined (as backbone or non-backbone) by the initial SAT
testing in Table IV.

For a fair comparison, we only considered the formulas
that are solved by all the three tools within 300 seconds,
that are groups: bin *, mrpp, vmpc, dimacs and aprove. The
first two columns represent the name and the number of
average variables in each group as usual, the following 3
columns represent the average of the number of literals that
are pruned by DUCIBone and minibones-RLD, and the
division between them. The last 2 columns represent the
average number of literals pruned by minibones-cb100, and
division between the numbers of pruned literals by DUCIBone
and minibones-cb100.

As we can observe, DUCIBone determines more liter-
als using the initial SAT testing. On average, by using
the first SAT testing, DUCIBone determines 48.5% literals,
minibones-RLD determines 44.8% literals, and minibones-
cb100 determines 44.3% literals. DUCIBone identified 8%
more literals than minibones-RLD, and 9% more literals
than minibones-cb100. minibones-cb100 worked differ-
ently from minibones-RLD and DUCIBone, it identifies



backbone literals by SAT testings with assumptions. The
more the assumptions are, the less the time needs. That’s
why minibones-cb100 computes faster than minibones-
RLD while pruning less literals. We conclude that detecting
more backbone literals with the first SAT testing is helpful for
backbone computing.

VII. RELATED WORK

Backbone computing has been studied in several works.
Kaiser and Kühlin proposed three model-enumeration based
algorithms for computing backbone literals [18] using SAT
testings. Dubois and Dequen proposed the heuristics for
computing backbone literals for hard 3-SAT formulas which
yields DPLL-type algorithms with a significant performance
improvement over the best previous algorithms [19]. Climer
et al. proposed a graph-based approach to discover back-
bone literals which relies on over-approximation and under-
approximation [20]. Zhu et al proposed an iterative SAT testing
based algorithm [6], [7] which is more efficient than previous
model enumeration algorithms.

Marques-Silva et al. investigated previous algorithms for
computing backbone literals mentioned above, including mod-
el enumeration, iterative SAT-testing and optimizations with
modern SAT solvers [21], [22], [11]. They proposed a tool
minibones with several configurations, and claimed that the
best configuration of minibones is minibones-cb100. An-
other configuration of minibones is minibones-RLD, which
fails to improve the performance of iterative SAT testing
on formulas that contains large numbers of binary clauses.
minibones-RLD only worked well on formulas with little
binary clause.

VIII. CONCLUSION

We presented implication-driven, conflict-driven, and
unique-driven heuristics in the optimization of backbone com-
puting, focusing on the clauses which can’t be improved by
minibones-RLD. Experimental results showed that DUCI-
Bone performs better on hard formulas, and fill the per-
formance gap of binary clauses between minibones-cb100
and minibones-RLD. In general, DUCIBone (507 formulas)
solved 17 more formulas than minibones-RLD (490 for-
mulas), and 21 formulas more than minibones-cb100 (486
formulas). On the formulas that are solved by all three tools,
DUCIBone (35131 seconds) reduced 22% computing time
than minibones-RLD (44736 seconds), and 7% computing
time than minibones-cb100 (37454 seconds).
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