
Pushdown Model Checking for Malware Detection

Fu Song and Tayssir Touili

LIAFA, CNRS and Univ. Paris Diderot, France.
E-mail: {song,touili}@liafa.jussieu.fr

Abstract. The number of malware is growing extraordinarily fast. Therefore, it is
important to have efficient malware detectors. Malware writers try to obfuscate their
code by different techniques. Many of these well-known obfuscation techniques rely
on operations on the stack such as inserting dead code by adding useless push and
pop instructions, or hiding calls to the operating system, etc. Thus, it is important for
malware detectors to be able to deal with the program’s stack. In this paper we pro-
pose a new model-checking approach for malware detection that takes into account
the behavior of the stack. Our approach consists in : (1) Modeling the program using a
Pushdown System (PDS). (2) Introducing a new logic, called SCTPL, to represent the
malicious behavior. SCTPL can be seen as an extension of the branching-time tem-
poral logic CTL with variables, quantifiers, and predicates over the stack. (3) Reduc-
ing the malware detection problem to the model-checking problem of PDSs against
SCTPL formulas. We show how our new logic can be used to precisely express mali-
cious behaviors that could not be specified by existing specification formalisms. We
then consider the model-checking problem of PDSs against SCTPL specifications.
We reduce this problem to emptiness checking in Symbolic Alternating Büchi Push-
down Systems, and we provide an algorithm to solve this problem. We implemented
our techniques in a tool, and we applied it to detect several viruses. Our results are
encouraging.

1 Introduction

To identify viruses, existing antivirus systems use either code emulation or signature (pat-
tern) detection. These techniques have some limitations. Indeed, emulation based tech-
niques can only check the program’s behavior in a limited time interval, whereas signature
based systems are easy to get around. To sidestep these limitations, instead of executing
the program or making a syntactic check over it, virus detectors need to use analysis tech-
niques that check the behavior (not the syntax) of the program in a static way, i.e. without
executing it. Towards this aim, we propose in this paper to use model-checking for virus
detection. Model-checking has already been used for virus detection in [7, 23, 12, 14, 19,
18, 20]. However, these works model the program as a finite state graph (automaton). Thus,
they are not able to model the stack of the programs, and cannot track the effects of the
push, pop and call instructions. However, as decribed in [22], many obfuscation techniques
rely on operations over the stack. Indeed, many antivirus systems determine whether a pro-
gram is malicious by checking the calls it makes to the operating system. Hence, several
virus writers try to hide these calls by replacing them by push and return instructions [22].
Therefore, it is important to have analysis techniques that can deal with the program stack.

We propose in this paper a novel model-checking technique for malware detection that
takes into account the behavior of the stack. Our approach consists in modeling the program
using a pushdown system (PDS), and defining a new logic, called SCTPL, to express the
malicious behavior.

Using pushdown systems as program model allows to consider the program stack. In
our modeling, the PDS control locations correspond to the program’s control points, and
the PDS stack mimics the program’s execution stack. This allows the PDS to mimic the be-
havior of the program. This is different from standard program translations to PDSs where
the control points of the program are stored in the stack [16, 6]. These standard translations
assume that the program follows a standard compilation model, where the return addresses
are never modified. We do not make such assumptions since behaviors where the return
addresses are modified can occur in malicious code. We only make the assumption that
pushes and pops can be done only using push, pop, call, and return operations, not by
manipulating the stack pointer.

The logic SCTPL that we introduce is an extension of the CTPL logic that allows to
use predicates over the stack. CTPL was introduced in [19, 18, 20]. It can be seen as an ex-
tension of CTL with variables and quantifiers. In CTPL, propositions can be predicates of
the form p(x1, . . . , xn), where the xi’s are free variables or constants. Free variables can get
their values from a finite domain. Variables can be universally or existentially quantified.
CTPL is as expressive as CTL, but it allows a more succinct specification of the malicious
behavior. For example, consider the statement “The value data is assigned to some regis-
ter, and later, the content of this register is pushed onto the stack.” This statement can be
expressed in CTL as a large formula enumerating all the possible registers:

EF
(
mov(eax, data) ∧ AF push(eax)

)∨
EF
(
mov(ebx, data) ∧ AF push(ebx)

)∨
EF
(
mov(ecx, data) ∧ AF push(ecx)

) ∨ ...
where every instruction is regarded as a predicate, i.e., mov(eax, data) is a predicate. How-
ever, the CTL formula is large for such a simple statement. Using CTPL, this can be ex-
pressed by the CTPL formula ∃r EF

(
mov(r, data) ∧ AF push(r)

)
which expresses in a

succinct way that there exists a register r such that the above holds. [19, 18, 20] show how
this logic is adequate to specify some malicious behaviors. However, CTPL does not allow
to specify properties about the stack (which is important for malicious code detection as
explained above).

For example, consider Figure 1(a). It corresponds to a critical fragment of the Email-
worm Avron [17] that shows the typical behavior of an email
worm: it calls an API function GetModuleHandleA with 0 as
its parameter. This allows to get the entry address of its own
executable so that later, it can infect other files by copying this
executable into them. (Parameters to a function in assembly
are passed by pushing them onto the stack before a call to the
function is made. The code in the called function later retrieves
these parameters from the stack.) Using CTPL, we can specify
this malicious behavior by the following formula:

l1: mov eax,0

l2: push eax

l3: call ds:GetModuleHandleA

(a)

(b)

l
′

1: mov eax,0

l
′

2: push eax

l
′

3: push ebx

l
′

4: pop ebx

l
′

5: call ds:GetModuleHandleA

Fig. 1. (a) Worm fragment;
(b) Obfuscated fragment.∃ r1 EF

(
mov(r1, 0) ∧ EX E

[¬∃r2 mov(r1, r2) U
(
push(r1)∧

EX E[¬∃ r3 (push(r3) ∨ pop(r3)) U call(GetModuleHandleA)]
)])
. (1)

This formula states that there exists a register r1 assigned by 0 such that the value of r1 is
not modified until it is pushed onto the stack. Later the stack is not changed until function
GetModuleHandleA is called. This specification can detect the fragment in Figure 1(a).
However, a worm writer can easily use some obfuscation techniques in order to escape
this specification. For example, let us introduce one push followed by one pop after push
eax at line l2 as done in Figure 1(b). By doing so, this fragment keeps the same malicious

2

behavior than the fragment in Figure 1(a). However, it cannot be detected by the above
CTPL formula. Since the number of pushes and pops that can be added by the worm writer
can be arbitrarily large, it is always possible for worm developers to change their code in
order to escape a given CTPL formula.

To overcome this problem, we introduce the SCTPL logic which extends CTPL by
predicates over the stack. Such predicates are given by regular expressions over the stack
alphabet and some free variables (which can also be existantially and universally quanti-
fied). Using our new logic SCTPL, the malicious behavior of Figures 1(a) and (b) can be
specified as follows:

ψ = ∃r1 EF
(
mov(r1, 0) ∧ EX E

[¬∃r2 mov(r1, r2)U
(
push(r1) ∧ EX E[¬

(
push(r1)

∨(∃r3(pop(r3) ∧ r1Γ
∗)
))

U (call(GetModuleHandleA) ∧ r1Γ
∗)]
)])

(2)

where r1Γ
∗ is a regular predicate expressing that the topmost symbol of the stack is r1. The

SCTPL formula ψ states that there exists a register r1 assigned by 0 such that the value of
r1 is not changed until it is pushed onto the stack. Then, r1 is never pushed onto the stack
again nor popped from it until the function GetModuleHandleA is called. When this call is
made, the topmost symbol of the stack has to be r1. This ensures that GetModuleHandleA
is called with 0 as parameter. This specification can detect both fragments in Figure 1,
because it allows to specify the content of the stack when GetModuleHandleA is called.
Note that it is important to use pushdown systems as model in order to have specifications
with predicates over the stack.

The main contributions of this paper are:

1. We present a new technique to translate a binary program into a pushdown system
that mimics the program’s behavior (a malicious program is usually an executable,
i.e., a binary program). Our translation is different from standard program translations
to PDSs that need to assume that the program follows a standard compilation model,
where the return addresses are never modified. Our translation does not need to make
this assumption since malicious code may have a non standard form.

2. We introduce the SCTPL logic and show how it can be used to efficiently and precisely
characterize different malicious behaviors.

3. We propose an algorithm for model checking pushdown systems against SCTPL speci-
fications. We reduce this problem to checking emptiness in Symbolic Alternating Büchi
Pushdown Systems (SABPDS), and we propose an algorithm to solve this emptiness
problem.

4. We implemented our techniques in a tool that we successfully applied to detect several
viruses.

Related work. Model-checking and static analysis techniques have been applied to detect
malicious behaviors e.g. in [7, 23, 12, 14, 19, 18, 20]. However, all these works are based on
modeling the program as a finite-state system, and thus, they miss the behavior of the stack.
As we have seen, being able to track the stack is important for many malicious behaviors.
[8] use tree automata to represent a set of malicious behaviors. However, [8] cannot specify
predicates over the stack content.

[22] keeps track of the stack by computing an abstract stack graph which finitely repre-
sents the infinite set of all the possible stacks for every control point of the program. Their
technique can detect only obfuscated calls and obfuscated returns. Using SCTPL, we are
able to detect more malicious behaviors.

3

[21] performs context-sensitive analysis of call and ret obfuscated binaries. They use
abstract interpretation to compute an abstraction of the stack. We believe that our tech-
niques are more precise since we do not abstract the stack. Moreover, the techniques of
[21] were only tried on toy examples, they have not been applied for malware detection.

[6] uses pushdown systems for binary code analysis. However, [6] has not been applied
for malware detection. Moreover, the translation from programs to PDSs in [6] assumes that
the program follows a standard compilation model where calls and returns match. Several
malicious behaviors do not follow this model. Our translation from a control flow graph to
a PDS does not make this assumption.

[13] defines a language for specifying malicious behavior in terms of dependencies be-
tween system calls. Compared to SCTPL, the specification language of [13] does not take
the stack into account and is only able to express safety properties (no CTL like properties),
whereas SCTPL does. On the other hand, [13] is able to automatically derive the malicious
specifications by comparing the execution behavior of a known malware against the execu-
tion behaviors of a set of benign programs. It would be interesting to see if their techniques
can be extended to automatically derive SCTPL specifications of malicious behaviors.

LTL or CTL model-checking with regular predicates over the stack was considered in
[15, 24]. These works do not consider variables and quantifiers.

Outline. We give our formal model in Section 2. In Section 3, we introduce our SCTPL
logic. Our SCTPL model checking algorithm for pushdown systems is given in Section 4.
The experiments we made for malware detection are reported in Section 5. Due to lack of
space, some illustrating examples and proofs are omitted and given in the appendix.

2 Formal model: Pushdown Systems

We model a binary code by a pushdown system (PDS). In our modeling, the PDS control
locations correspond to the program’s control points, and the PDS stack mimics the pro-
gram’s execution stack. This is different from standard program translations to PDSs where
the control points of the program are stored in the stack [16, 6]. These standard translations
assume that the program follows a standard compilation model, where the return addresses
are never modified. We do not make such assumptions since behaviors where the return
addresses are modified can occur in malicious code. We only make the assumption that
pushes and pops can be done only using push, pop, call, and return operations, not by ma-
nipulating the stack pointer. Due to lack of space, we give the details of our translation in
Appendix B.

Formally, a Pushdown System (PDS) is a tuple P = (P, Γ, ∆, ♯), where P is a finite set of
control locations, Γ is the stack alphabet, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of transition
rules, and ♯ ∈ Γ is the bottom stack symbol. A configuration ofP is ⟨p, ω⟩, where p ∈ P and
ω ∈ Γ∗. If ((p, γ), (q, ω)) ∈ ∆, we write ⟨p, γ⟩ ↪→ ⟨q, ω⟩. For technical reasons, we assume
that the bottom stack symbol ♯ is never popped from the stack, i.e., there is no transition
rule of the form ⟨p, ♯⟩ ↪→ ⟨q, ω⟩ ∈ ∆.

The successor relation{P⊆ (P×Γ∗)×(P×Γ∗) is defined as follows: if ⟨p, γ⟩ ↪→ ⟨q, ω⟩,
then ⟨p, γω′⟩{P ⟨q, ωω′⟩ for every ω′ ∈ Γ∗. For every configuration c, c′ ∈ P × Γ∗, c is a
successor of c′ iff c{P c′. A path is a sequence of configurations c0, c1, ... s.t. ci {P ci+1
for every i ≥ 0.

4

3 Malicious behavior Specification

In this section, we introduce the Stack Computation Tree Predicate Logic (SCTPL), the
formalism we use to specify malicious behavior.

3.1 Environments, predicates and regular expressions

From now on, we fix the following notations. Let X = {x1, x2, ...} be a finite set of variables
ranging over a finite domain D. Let B : X ∪ D −→ D be an environment function that
assigns a value c ∈ D to each variable x ∈ X, and such that B(c) = c for every c ∈ D.
B[x ← c] denotes the environment function such that B[x ← c](x) = c and B[x ← c](y) =
B(y) for every y , x. Absx(B) is the set of all the environments B′ s.t. for every y , x,
B′(y) = B(y). Let B be the set of all the environment functions.

Let AP = {a, b, c, ...} be a finite set of atomic propositions, APX be a finite set of atomic
predicates of the form b(α1, ..., αm) such that b ∈ AP, αi ∈ X ∪ D for every i, 1 ≤ i ≤ m,
and APD be a finite set of atomic predicates of the form b(α1, ..., αm) such that b ∈ AP and
αi ∈ D for every i, 1 ≤ i ≤ m.

Let P = (P, Γ, ∆, ♯) be a PDS s.t. Γ ⊆ D. Let R be a finite set of regular variable
expressions e over X ∪ Γ defined by:

e ::= ∅ | ϵ | a ∈ X ∪ Γ | e + e | e · e | e∗

The language L(e) of a regular variable expression e is a subset of P × Γ∗ × B defined
inductively as follows: L(∅) = ∅; L(ϵ) = {(⟨p, ϵ⟩,B) | p ∈ P,B ∈ B}; L(x), where x ∈ X
is the set {(⟨p, γ⟩,B) | p ∈ P, γ ∈ Γ,B ∈ B : B(x) = γ}; L(γ), where γ ∈ Γ is the set
{(⟨p, γ⟩,B) | p ∈ P,B ∈ B}; L(e1 + e2) = L(e1) ∪ L(e2); L(e1 · e2) = {(⟨p, ω1ω2⟩,B) |
(⟨p, ω1⟩,B) ∈ L(e1); (⟨p, ω2⟩,B) ∈ L(e2)}; and L(e∗) = {(⟨p, ω∗⟩,B) | (⟨p, ω⟩,B) ∈ L(e)}.
E.g., (⟨p, γ1γ1γ2⟩,B) is an element of L(x∗γ2) when B(x) = γ1.

3.2 Stack Computation Tree Predicate Logic

We are now ready to define our new logic SCTPL. Intuitively, a SCTPL formula is a CTL
formula where predicates and regular variable expressions are used as atomic propositions.
Using regular variable expressions allows to express predicates on the stack content of the
PDS. Moreover, since predicates and regular variable expressions contain variables, we al-
low quantifiers over variables. For technical reasons, we suppose w.l.o.g. that formulas are
given in positive normal form, i.e., negations are applied only to atomic propositions. In-
deed, each CTL formula can be written in positive normal form by pushing the negations
inside. Moreover, we use the operator Ũ as a dual of the until operator for which the stop
condition is not required to occur. Then, standard CTL operators can be expressed as fol-
lows: EFψ = E[trueUψ], AFψ = A[trueUψ], EGψ = E[f alseŨψ] and AGψ = A[f alseŨψ].

More precisely, the set of SCTPL formulas is given by (where x ∈ X, a(x1, ..., xn) ∈ APX
and e ∈ R):

φ ::= a(x1, ..., xn) | ¬a(x1, ..., xn) | e | ¬e | φ ∧ φ | φ ∨ φ | ∀x φ
| ∃x φ | AXφ | EXφ | A[φUφ] | E[φUφ] | A[φŨφ] | E[φŨφ]

Let φ be a SCTPL formula. The closure cl(φ) denotes the set of all the subformulas
of φ including φ. The size |φ| of φ is the number of elements of cl(φ). Let AP+(φ) =

5

{a(x1, ..., xn) ∈ APX | a(x1, ..., xn) ∈ cl(φ)}, AP−(φ) = {a(x1, ..., xn) ∈ APX | ¬a(x1, ..., xn) ∈
cl(φ)}, Reg+(φ) = {e ∈ R | e ∈ cl(φ)}, Reg−(φ) = {e ∈ R | ¬e ∈ cl(φ)}, and clŨ(φ) be the set
of formulas of cl(φ) in the form of E[φ1Ũφ2] or A[φ1Ũφ2].

Given a PDS P = (P, Γ, ∆, ♯) s.t. Γ ⊆ D, let λ : APD → 2P be a labeling function that
assigns a set of control locations to a predicate. Let c = ⟨p,w⟩ be a configuration of P. P
satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment B ∈ B
s.t. c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xn) iff p ∈ λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ ¬a(x1, ..., xn) iff p < λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ e iff (c,B) ∈ L(e).

– c |=B
λ ¬e iff (c,B) < L(e).

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ψ1 ∨ ψ2 iff c |=B

λ ψ1 or c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ∃x ψ iff ∃v ∈ D s.t. c |=B[x←v]
λ ψ.

– c |=B
λ AX ψ iff c′ |=B

λ ψ for every successor c′ of c.
– c |=B

λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B
λ ψ.

– c |=B
λ A[ψ1Uψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∃i ≥ 0 s.t. ci |=B

λ ψ2
and ∀0 ≤ j < i : c j |=B

λ ψ1.
– c |=B

λ E[ψ1Uψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∃i ≥ 0, ci |=B
λ

ψ2 and ∀0 ≤ j < i, c j |=B
λ ψ1.

– c |=B
λ A[ψ1Ũψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∀i ≥ 0 s.t. ci ̸|=B

λ ψ2,
∃0 ≤ j < i s.t. c j |=B

λ ψ1.
– c |=B

λ E[ψ1Ũψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∀i ≥ 0 s.t.
ci ̸|=B

λ ψ2, ∃0 ≤ j < i s.t. c j |=B
λ ψ1.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies the formula ψ under the environ-

ment B. Note that a path π satisfies ψ1Ũψ2 iff either ψ2 holds everywhere in π, or the first
occurrence in the path where ψ2 does not hold must be preceeded by a position where ψ1
holds.
Example: In Appendix C, we give an example that illustrates the above definitions.

Remark 1. CTPL [20] is a subclass of SCTPL where predicates over the stack are not
allowed (i.e., SCTPL formulas that do not use regular variable expressions). SCTPL is
more expressive than CTPL since it allows to express predicates over the content of the
stack using regular languages.

Remark 2. CTL with regular valuations is an extended version of CTL where the atomic
propositions can be regular sets of configurations over the stack alphabet. Since the domain
D is finite, every SCTPL formula ψ can be transformed to an equivalent CTL formula with
regular valuations ψ′. This transformation can be done by enumerating all the possible val-
uations of the variables X. Intuitively, a SCTPL formula ∃xa(x) is equivalent to

∨
c∈D a(c),

and ∀xa(x) is equivalent to
∧

c∈D a(c). The obtained formula has size |ψ′| = O(|ψ||D|g)
where g is the number of subformulas of ψ in the form of ∀xψ or ∃xψ. Thus, SCTPL
allows to be more succinct than CTL with regular valuations.

Modeling malicious behaviors using SCTPL: In Appendix D, we show some examples
that illustrate how SCTPL can be used to precisely specify malicious behaviors. We needed
stack predicates to express most of the specifications. Thus, SCTPL is necessary to specify
these behaviors, CTPL is not sufficient.

6

4 SCTPL Model-Checking for Pushdown Systems
In this section, we give an efficient SCTPL model checking algorithm for Pushdown sys-
tems. Our procedure works as follows: we reduce this model checking problem to the
emptiness problem in Symbolic Alternating Büchi Pushdown Systems (SABPDS), and we
give an algorithm to solve this emptiness problem. To achieve this reduction, we use vari-
able automata to represent regular variable expressions. This section is structured as fol-
lows. First, we introduce variable automata. Then, we define Symbolic Alternating Büchi
Pushdown Systems. Next, we show how SCTPL model checking for PDSs can be reduced
to emptiness checking of SABPDSs. Finally, we give an algorithm that solves this problem.

In the remainder of this section, we letX be a finite set of variables ranging over a finite
domainD, and B be the set of all the environment functions B : X ∪D −→ D.

4.1 Variable Automata

Given a PDS P = (P, Γ, ∆, ♯) s.t. Γ ⊆ D, a Variable Automaton (VA) is a tuple M =

(Q, Γ, δ, q0, A), where Q is a finite set of states; Γ is the input alphabet; q0 ⊆ Q is an initial
state; A ⊆ Q is a finite set of accepting states; and δ is a finite set of transition rules of the
form: p

α−→ {q1, ..., qn} where α can be x, ¬x, or γ, for any x ∈ X and γ ∈ Γ.
Let B ∈ B. A run of VA on a word γ1, ..., γm under B is a tree of height m whose root is

labelled by the initial state q0, and each node at depth k labelled by a state q has h children
labelled by p1, ..., ph, respectively, such that: either q

γk−→ {p1, ..., ph} ∈ δ and γk ∈ Γ; or
q

x−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) = γk; or q
¬x−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) , γk.

A branch of the tree is accepting iff the leaf of the branch is an accepting state. A run is
accepting iff all its branches are accepting. A word ω ∈ Γ∗ is accepted by a VA under an
environment B ∈ B iff the VA has an accepting run on the word ω under the environment B.
The language of a VA M, denoted by L(M), is a subset of (P × Γ∗) ×B. (⟨p, ω⟩,B) ∈ L(M)
iff M accepts the word ω under the environment B. We can show that:

Theorem 1. VAs are effectively closed under boolean operations.

Theorem 2. For every regular expression e ∈ R, one can effectively compute in polynomial
time a VA M such that L(M) = L(e).

4.2 Symbolic Alternating Büchi Pushdown Systems

Definition 1. A Symbolic Alternating Büchi Pushdown System (SABPDS) is a tuple BP =
(P, Γ, ∆, F), where P is a finite set of control locations; Γ ⊆ D is the stack alphabet; F ⊆
P × 2B is a set of accepting states; ∆ is a finite set of transitions of the form ⟨p, γ⟩ ℜ

↪→
[⟨p1, ω1⟩, ..., ⟨pn, ωn⟩] where p ∈ P, γ ∈ Γ, for every i, 1 ≤ i ≤ n: pi ∈ P, ωi ∈ Γ∗, and
ℜ : (B)n −→ 2B is a function that maps a tuple of environments to a set of environments.

A configuration of a SABPDS is a tuple ⟨[p,B], ω⟩, where p ∈ P is a control location,
B ∈ B is an environment and ω ∈ Γ∗ is the stack content. [p,B] ∈ P×B is an accepting state

iff ∃[p, β] ∈ F s.t. B ∈ β. Let t = ⟨p, γ⟩ ℜ↪→ [⟨p1, ω1⟩, ..., ⟨pn, ωn⟩] ∈ ∆ be a transition, n is
the width of the transition t. For every ω ∈ Γ∗, B,B1, ...,Bn ∈ B, if B ∈ ℜ(B1, ...,Bn),
then the configuration ⟨[p,B], γω⟩ (resp. {⟨[p1,B1], ω1ω⟩, ..., ⟨[pn,Bn], ωnω⟩}) is an im-
mediate predecessor (resp. immediate successor) of {⟨[p1,B1], ω1ω⟩, ..., ⟨[pn,Bn], ωnω⟩}
(resp. ⟨[p,B], γω⟩). A run ρ of BP from an initial configuration ⟨[p0,B0], ω0⟩ is a tree

7

in which the root is labeled by ⟨[p0,B0], ω0⟩, and the other nodes are labeled by ele-
ments of (P × B) × Γ∗. If a node of ρ labeled by ⟨[p,B], ω⟩ has n children labeled by
⟨[p1B1], ω1⟩, ..., ⟨[pn,Bn], ωn⟩, respectively, then, necessarily, ⟨[p,B], ω⟩ is an immediate
predecessor of {⟨[p1,B1], ω1⟩, ..., ⟨[pn,Bn], ωn⟩} in BP.

A path c0c1... of a run ρ is an infinite sequence of configurations where c0 is the root of
ρ and for every i ≥ 0, ci+1 is one of the children of the node ci in ρ. The path is accepting iff
it visits infinitely often configurations with accepting states. A run ρ is accepting iff all its
paths are accepting. Note that an accepting run has only infinite paths. A configuration c is
accepted (or recognized) by BP iff BP has an accepting run starting from c. The language
of BP, denoted by L(BP), is the set of configurations accepted by BP.

The predecessor functions PreBP, Pre∗BP and Pre+BP : 2(P×B)×Γ∗ −→
2(P×B)×Γ∗ are defined as follows: PreBP(C) = {c ∈ (P × B) × Γ∗ |
some immediate successor of c is a subset of C}, Pre∗BP is the reflexive and transitive clo-
sure of PreBP, PreBP ◦ Pre∗BP is denoted by Pre+BP.

SABPDS vs. ABPDS. An Alternating Büchi Pushdown System (ABPDS for short) [24]
can be seen as a SABPDS such that X = ∅, D = {⊥}, and every functionℜ : (B)n −→ 2B

is of the form ℜ(B1, ..., Bn) = B⊥, where B⊥(⊥) = ⊥. Such a function will be denoted
by ℜ⊥. SABPDSs can be simulated by ABPDSs. Indeed, each SABPDS rule of the form

⟨p, γ⟩ ℜ↪→ [⟨p1, ω1⟩, ..., ⟨pn, ωn⟩] ∈ ∆ can be translated into a set of ABPDS rules of the form

⟨(p,B), γ⟩ ℜ⊥↪→ [⟨(p1,B1), ω1⟩, ..., ⟨(pn,Bn), ωn⟩] where B,B1, ...,Bn can be any elements in
B s.t. B ∈ ℜ(B1, ...,Bn). However, this translation is expensive since the number of envi-
ronments in B is large:

Lemma 1. Given a SABPDS BP = (P, Γ, ∆, F), one can compute an equivalent ABPDS
BP′ that simulates BP in O(|∆| · |B|k+1) time, where k is the maximum of the widths of the
transition rules in ∆ and |B| = |D||X|.

Symbolic Alternating Multi-Automata. To finitely represent infinite sets of configura-
tions of SABPDSs, we use Symbolic Alternating Multi-Automata.

LetBP = (P, Γ, ∆, F) be a SABPDS, a Symbolic Alternating Multi-Automaton (SAMA)
is a tuple A = (Q, Γ, δ, I,Q f), where Q is a finite set of states, Γ is the input alphabet,
δ ⊆ (Q × Γ) × 2Q is a finite set of transition rules, I ⊆ P × 2B is a finite set of initial states,
Q f ⊆ Q is a finite set of final states. An Alternating Multi-Automaton (AMA) is a SAMA
such that I ⊆ P × {∅}.

We define the reflexive and transitive transition relation −→δ⊆ (Q×Γ∗)×2Q as follows:
(1) q

ϵ−→δ {q} for every q ∈ Q, where ϵ is the empty word, (2) if q
γ
−→ {q1, ..., qn} ∈ δ and

qi
ω−→δ Qi for every 1 ≤ i ≤ n, then q

γω
−→δ

∪n
i=1 Qi. The automaton A recognizes a

configuration ⟨[p,B], ω⟩ iff there exist Q′ ⊆ Q f and β ⊆ B s.t. B ∈ β, [p, β] ∈ I and
[p, β]

ω−→δ Q′. The language ofA, denoted by L(A), is the set of configurations recognized
by A. A set of configurations is regular if it can be recognized by a SAMA. Similarly,
AMAs can also be used to recognize (infinite) regular sets of configurations for ABPDSs.

Proposition 1. Let A = (Q, Γ, δ, I,Q f) be a SAMA. Then, deciding whether a configura-
tion ⟨[p,B], ω⟩ is accepted by A can be done in O(|Q| · |δ| · |ω| + τ) time, where τ denotes
the time used to check whether B ∈ β for some B ∈ B, β ⊆ B.

8

Remark 3. The time τ used to check whether B ∈ β depends on the representation of B
and β. In particular, if we use BDDs to represent sets of environment functions, checking
whether B ∈ β can be done in τ = O(⌈log|D|⌉ · |X|) [10].

Examples of functionsℜ. We give some examples of functionsℜ that will be used later.

– equal(B1, ...,Bn) =
{
{B1} if Bi = B j for every 1 ≤ i, j ≤ n, or n = 1
∅ otherwise.

This function checks that all the Bi’s are equal and returns {B1} (which is equal to {Bi}
for any i) if this is the case and the emptyset otherwise.

– meetx
{c1,...,cn}(B1, ..., Bn) =


Absx(B1) if Bi(x) = ci and Bi(y) = B j(y) for y , x,

for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) = ci for every i, 1 ≤ i ≤ n, and for every y , x and
every i, j, 1 ≤ i, j ≤ n Bi(y) = B j(y). It returns Absx(B1) (which is equal to Absx(Bi) for
any i) if this is the case and the emptyset otherwise.

– joinx
c(B1, ...,Bn) =

{
{B1} if Bi = B j and Bi(x) = c, for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) = c for every i. If this is the case, it returns
equal(B1, ...,Bn), otherwise, it returns the emptyset.

– join¬x
c (B1, ...,Bn) =

{
{B1} if Bi = B j and Bi(x) , c, for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) , c for every i. If this is the case, it returns
equal(B1, ...,Bn), otherwise, it returns the emptyset.

4.3 From SCTPL Model Checking for PDSs to Emptiness of SABPDS

Let P = (P, Γ, ∆, ♯), λ : APD → 2P be a labeling function, and φ be a SCTPL formula.
For every configuration ⟨p, ω⟩, our goal is to determine whether ⟨p, ω⟩ |=λ φ, i.e., whether
there exists an environment B ∈ B s.t. ⟨p, ω⟩ |=B

λ φ. We proceed as follows: we compute
a symbolic alternating Büchi pushdown system BP s.t. ⟨p, ω⟩ |=B

λ φ iff ⟨[Lp, φM,B], ω⟩ ∈
L(BP). Then, ⟨p, ω⟩ |=λ φ iff there exists B ∈ B such that ⟨p, ω⟩ |=B

λ φ.
Let Reg+(φ) = {e1, ..., ek} and Reg−(φ) = {ek+1, ..., em} be the two sets of regular variable

expressions1 that occur in φ. As shown in Theorems 2 and 1, for every i, 1 ≤ i ≤ k we
can construct VAs Mei = (Qei , Γ, δei , sei , Aei) such that L(Mei) = L(ei); and for every j,
k < j ≤ m we can construct VAs M¬e j = (Q¬e j , Γ, δ¬e j , s¬e j , A¬e j) such that L(M¬e j) =
(P × Γ∗) × B \ L(e j). We suppose w.l.o.g. that the states of these automata are distinct.
Let M be the union of all these automata, F be the union of all the final states of these
automata Aei ’s and A¬e j ’s and S be the union of all the states of these automata Qei ’s and
Q¬e j ’s.

Let BPφ = (P′, Γ, ∆′, F) be the SABPDS defined as follows: P′ = P × cl(φ) ∪ S; F =
F1∪F2∪F3∪F4, where F1 = {[Lp, a(x1, ..., xn)M, β] | a(x1, ..., xn) ∈ AP+(φ) and β = {B ∈ B |
p ∈ λ

(
a
(
B(x1), ..., B(xn)

))}}; F2 = {[Lp,¬a(x1, ..., xn)M, β] | ¬a(x1, ..., xn) ∈ AP−(φ) and β =

{B ∈ B | p < λ
(
a
(
B(x1), ..., B(xn)

))}}; F3 = P × clŨ(φ) × {B}; and F4 = F × {B}.
∆′ is the smallest set of transition rules that satisfy the following. For every control location
p ∈ P, every subformula ψ ∈ cl(φ), and every γ ∈ Γ:

1 AP+(φ), AP−(φ), Reg+(φ) and Reg−(φ) are as defined in Section 3.2.

9

1. if ψ = a(x1, ..., xn) or ψ = ¬a(x1, ..., xn); ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψM, γ⟩ ∈ ∆′;

2. if ψ = ψ1 ∧ ψ2; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp, ψ2M, γ⟩] ∈ ∆′;

3. if ψ = ψ1 ∨ ψ2; ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψ1M, γ⟩ ∈ ∆′ and ⟨Lp, ψM, γ⟩ equal

↪→ ⟨Lp, ψ2M, γ⟩ ∈ ∆′;
4. if ψ = ∃x ψ1; ⟨Lp, ψM, γ⟩ meetx

{c}
↪−−−→ ⟨Lp, ψ1M, γ⟩ ∈ ∆′, for every c ∈ D;

5. if ψ = ∀x ψ1; ⟨Lp, ψM, γ⟩ meetx
D

↪−−−→ [⟨Lp, ψ1M, γ⟩, · · · , ⟨Lp, ψ1M, γ⟩] ∈ ∆′, where ⟨Lp, ψ1M, γ⟩ is repeated
m times in [⟨Lp, ψ1M, γ⟩, · · · , ⟨Lp, ψ1M, γ⟩], where m is the number of elements inD;

6. if ψ = EXψ1; ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp′, ψ1M, ω⟩ ∈ ∆′ for every ⟨p, γ⟩ ↪→ ⟨p′, ω⟩ ∈ ∆;

7. if ψ = AXψ1; ⟨Lp, ψ)M, γ⟩ equal
↪−−→ [⟨Lp1, ψ1M, ω1⟩, . . . , Lpl, ψ1M, ωl⟩] ∈ ∆′ such that for every i, 1 ≤ i ≤

l, ⟨p, γ⟩ ↪→ ⟨pi, ωi⟩ ∈ ∆ and these transitions are all the transitions of ∆ that have ⟨p, γ⟩ as left
hand side;

8. if ψ = E[ψ1Uψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp′, ψM, ω⟩] ∈ ∆′ for every rule ⟨p, γ⟩ ↪→

⟨p′, ω⟩ ∈ ∆, and ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψ2M, γ⟩ ∈ ∆′;

9. if ψ = A[ψ1Uψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp1, ψM, ω1⟩, ..., ⟨Lpl, ψM, ωl⟩] ∈ ∆′ such that for

every i, 1 ≤ i ≤ l, ⟨p, γ⟩ ↪→ ⟨pi, ωi⟩ ∈ ∆ and these transitions are all the transitions of ∆ that have

⟨p, γ⟩ as left hand side, and ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψ2M, γ⟩ ∈ ∆′;

10. if ψ = E[ψ1Ũψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ2M, γ⟩, ⟨Lp′, ψM, ω⟩] ∈ ∆′ for every ⟨p, γ⟩ ↪→ ⟨p′, ω⟩ ∈ ∆,

and ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ2M, γ⟩, ⟨Lp, ψ1M, γ⟩] ∈ ∆′;

11. if ψ = A[ψ1Ũψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ2M, γ⟩, ⟨Lp1, ψM, ω1⟩, ..., ⟨Lpl, ψM, ωl⟩] ∈ ∆′ such that for

every i, 1 ≤ i ≤ l, ⟨p, γ⟩ ↪→ ⟨pi, ωi⟩ ∈ ∆ and these transitions are all the transitions of ∆ that have

⟨p, γ⟩ as left hand side, and ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp, ψ2M, γ⟩] ∈ ∆′;

12. if ψ = e: ⟨Lp, ψM, γ⟩ equal
↪→ ⟨se, γ⟩ ∈ ∆′, where se is the initial state of Me,

13. if ψ = ¬e: ⟨Lp, ψM, γ⟩ equal
↪→ ⟨s¬e, γ⟩ ∈ ∆′, where s¬e is the initial state of M¬e,

14. for every transition q
α−→ {q1, ..., qn} inM; ⟨q, γ⟩ ℜ↪→ {⟨q1, ϵ⟩, ..., ⟨qn, ϵ⟩} ∈ ∆′, where

(a) ℜ = equal if α = γ,
(b) ℜ = joinx

γ if α = x ∈ X,
(c) ℜ = join¬x

γ if α = ¬x and x ∈ X,

15. for every q ∈ F ; ⟨q, ♯⟩
equal
↪→ ⟨q, ♯⟩ ∈ ∆′.

Roughly speaking,BPφ could be seen as the product ofP and φ.BPφ recognizes all the
configurations ⟨[Lp, ψM,B], ω⟩ s.t. ⟨p, ω⟩ satisfies ψ under B. ThusBPφ has an accepting run
from ⟨[Lp, ψM,B], ω⟩ if and only if the configuration ⟨p, ω⟩ satisfies ψ under B. The intuition
behind each rule is explained in Appendix E. Here, due to lack of space, we only explain
some of the rules.

If ψ = a(x1, ..., xn) ∈ AP+(φ), then for every ω ∈ Γ∗, ⟨p, ω⟩ satisfies ψ under any
environment B such that p ∈ λ

(
a
(
B(x1), ..., B(xn)

))
. Thus, for such B’s, BPφ should have

an accepting run from the configuration ⟨[Lp, a(x1, ..., xn)M,B], ω⟩. This is ensured by Item
1 that adds a loop in ⟨[Lp, a(x1, ..., xn)M,B], ω⟩ (since all accepting paths are infinite), and
by the fact that the state [Lp, a(x1, ..., xn)M,B] is accepting thanks to F1. Here the function is
equal to ensure that the environment does not change while applying the rule.

If ψ = ∃x ψ1, then for every ω ∈ Γ∗, B ∈ B, BPφ has an accepting run
from ⟨[Lp, ψM,B], ω⟩ iff there exists c ∈ D such that BPφ has an accepting run from
⟨[Lp, ψ1M,B[x ← c]], ω⟩ which ensures that ⟨p, ω⟩ satisfies ψ under the environment B iff
⟨p, ω⟩ satisfies ψ1 under B[x← c]. This is expressed by Item 4 since B ∈ meetx

{c}
(
B[x← c]

)
.

10

If ψ = e, then the SABPDS BPφ accepts ⟨[Lp, ψM,B], ω⟩ iff (⟨p, ω⟩,B) ∈ L(Me). To
check this, BPφ first goes to state [se,B] by Item 12, where se is the initial state of Me, then
it continues to check whether ω is accepted by Me under the environment B. This is ensured
by Items 14. Item 14 allows BPφ to mimic a run of Me on ω under the environment B: if
BPφ is in state [q,B] and the topmost symbol of its stack is γ, then:

– Item 14(a) deals with the case where q
γ
−→ {q1, ..., q2} is a transition in δe. In this

case, BPφ moves to the next states [q1,B], ..., [qn,B] while popping γ from the stack.
Popping γ allows BPφ to check the rest of the word. The function equal guarantees
that all the environments are the same.

– Item 14(b) deals with the case where q
x−→ {q1, ..., q2}, x ∈ X is a transition in δe. In

this case, BPφ can continue to mimic a run of Me under the environment B only if
B(x) = γ. If this holds, BPφ moves to the next states [q1,B], ..., [qn,B] and pops γ from
the stack, which allows BPφ to check the rest content of the stack. The function joinx

γ

ensures that all the environments are the same and the value of B(x) is γ.
– Item 14(c) deals with the case where q

¬x−→ {q1, ..., q2} is a transition in δe. In this
situation, BPφ can continue to mimic a run of Me under the environment B only if
B(x) , γ. If this holds, BPφ moves to the next states [q1,B], ..., [qn,B] and pops γ from
the stack. The function join¬x

γ ensures that all the environments are the same and the
value of B(x) is different from γ.

Thus, (⟨p, ω⟩,B) ∈ L(Me) iff Me reaches final states f1, ..., fn of Me after reading the wordω,
i.e., iff BPφ reaches a set of states [f1,B], ..., [fn,B] with an empty stack (a stack containing
only the bottom stack symbol ♯). This is why F4 is a set of accepting states. Moreover, since
all the accepting paths are infinite, Item 15 adds a loop on every configuration ⟨[f ,B], ♯⟩
where f is a final state of M and ♯ is the stack symbol (this makes the paths of BPφ that
reach a state ⟨[f ,B], ♯⟩ accepting). Formally, we can show:

Theorem 3. Given a PDS P = (P, Γ, ∆, ♯), a function λ : APD −→ 2P, a SCTPL formula
φ, and a configuration ⟨p, ω⟩ of P, we have: for every B ∈ B, ⟨p, ω⟩ |=B

λ φ iff BPφ has an
accepting run from the configuration ⟨[Lp, φM,B], ω⟩.

4.4 Computing L(BP)

Let BP = (P, Γ, ∆, F) be a SABPDS. In this section, we give an algorithm to compute a
SAMA that recognizes L(BP). First, we characterize the set of configurations from which
the SABPDS has an accepting run. Then, we show how to compute this set.

Characterizing L(BP). Let YBP =
∩

i≥0 Xi where X0 = (P × B) × Γ∗ and for every i ≥ 0,
Xi+1 = Pre+(Xi ∩ F × Γ∗), where F × Γ∗ stands for {⟨[p,B], ω⟩ ∈ (P × B) × Γ∗ | ∃[p, β] ∈
F s.t. B ∈ β }. We can show that:

Proposition 2. Given a SABPDS BP = (P, Γ, ∆, F), L(BP) = YBP.

Computing YBP. Our goal is to compute YBP =
∩

i≥0 Xi. We provide a symbolic algorithm
that computes this set. Our procedure is an extension of the procedure given in [11, 24]
that computes an AMA recognizing the language of an ABPDS. We show that YBP can
be represented by a SAMA A = (Q, Γ, δ, I, Q f) whose set of states Q is a subset of

11

(P × 2B) × N ∪ {q f }, where q f is a special state that corresponds to the unique final state
(Q f = {q f }). For every [p, β] ∈ P × 2B and i ∈ N, let [p, β]i denote ([p, β], i). To compute
YBP, we iteratively compute a SAMA Ai using states of the form [p, β]i during the step
i. Moreover, We extend the function ℜ : (B)n −→ 2B to ℜ : (2B)n −→ 2B as follows:
ℜ(β1, ..., βn) = {B ∈ B | B ∈ ℜ{B1, ...,Bn} s.t. for every 1 ≤ i ≤ n : Bi ∈ βi}; and we define
to functions π−1 and πi as follows: For every S ⊆ Q,

π−1(S) =


{qi | qi+1 ∈ S } ∪ {q f } if q f ∈ S or ∃q1 ∈ S ,

{qi | qi+1 ∈ S } else.

πi(S) = {qi | ∃1 ≤ j ≤ i s.t. q j ∈ S } ∪ {q f | q f ∈ S }.

Input: A SABPDS BP = (P, Γ, ∆, F,X,D).
Output: A SAMAA = (Q, Γ, δ, I, Q f) that recognizes YBP, where Q ⊆ (P × 2B) × N ∪ {q f }, Q f = {q f }.
Initially: Let i = 0, δ = {(q f , γ, {q f }) | for every γ ∈ Γ}, and for [p, β] ∈ F : [p, β]0 = q f .

1. Repeat (we call this loop loop1)
2. i := i + 1;
3. Add in δ a new transition [p, β′ ∩ β]i ϵ−→ [p, β′]i−1, for every [p, β] ∈ F, [p, β′]i−1 γ−→ Q ∈ δ;
4. Repeat (we call this loop loop2)

5. For every ⟨p, γ⟩ ℜ↪→ [⟨p1, ω1⟩, ..., ⟨pn, ωn⟩] in ∆,
6. and every case where [pk, βk]i ωk−→δ Qk, for all 1 ≤ k ≤ n;
7. Add a new rule [p, β]i γ−→ ∪n

k=1 Qk in δ where β = ℜ(β1, ..., βn);
8. Until No new transition rule can be added.
9. Remove from δ the transition rules added by line 3;
10. Replace in δ every transition rule [p, β]i γ−→ R by [p, β]i γ−→ πi(R), for every γ ∈ Γ, R ⊆ Q;
11. Until i > 1 and ∀[p, β] ∈ P × 2B, γ ∈ Γ, R ⊆ (P × 2B) × {i} ∪ {q f } : [p, β]i γ−→ R ∈ δ iff [p, β]i−1 γ−→ π−1(R) ∈ δ

Table 1. Algorithm 1: Computation of YBP

Algorithm 1 computes a SAMA A recognizing YBP. To understand the idea behind
this algorithm, let A0 be the automaton obtained after the initialization step and Ai be the
automaton obtained at step i (a step starts at Line 2) for every i ≥ 1. Each state [p, β]i

represents the state [p, β] at step i, i.e., Ai recognizes a configuration ⟨[p,B], ω⟩ iff there
exists β ⊆ B s.t. [p, β]i ω−→δ q f and B ∈ β. It is clear that A0 recognizes X0 ∩ F × Γ∗.
Suppose the algorithm is at the beginning of the ith iteration (loop1). Line 3 adds the ϵ-
transition [p, β′ ∩ β]i ϵ−→ [p, β′]i−1, for every [p, β] ∈ Fs.t. [p, β′]i−1 γ

−→ Q ∈ δ. After this
step, we obtain L(Ai−1)∩F×Γ∗. loop2 (Lines 4−8) is the saturation procedure that computes
the Pre∗ of L(Ai−1) ∩ F × Γ∗. Line 9 removes the ϵ-transition added by Line 3. After Line
9, the automaton Ai recognizes Pre+(L(Ai−1) ∩ F × Γ∗). Thus, in case of termination, the
algorithm produces YBP. The substitution at Line 10 is needed to guarantee the termination
of the algorithm. We show that: (a sketch of the proof is given in the appendix)

Theorem 4. Algorithm 1 always terminates and produces YBP.

Thus, we get: (the complexity is discussed in the appendix)

Theorem 5. Let BP = (P, Γ, ∆, F) be a SABPDS, then we can compute a SAMA A that
recognizes L(BP) in O

(
|P|2 · 22|B| · |Γ| · |∆| · 25|P|·2|B|

)
time.

12

Remark 4. Note that another way to compute L(BP) is to apply Lemma 1 and produce
an equivalent ABPDS BP′ that simulates BP, and then apply the algorithm of [24] to
compute an AMA that recognizes L(BP′). The complexity of such a procedure would be
O(|P|2 · |∆| · |B|h+3 · |Γ| ·25|P|·|B|), where h is the maximum of the widths of the transition rules
in ∆ . This worst case complexity is better than the complexity of Algorithm 1. However, in
practice, in the symbolic case (for SABPDS), the sets of environments β’s can be compactly
represented using BDDs for example, whereas in the explicit case (for ABPDS), all the
environments B’s have to be considered. Thus, Algorithm 1 will behave better in practice.
This is confirmed by the experiments we run where, in the majority of cases, Algorithm
1 terminates in few seconds, whereas if we compute an equivalent ABPDS and apply the
algorithm of [24], we run out of memory. These experimental results are summarized in
Section 5 and Table 4 in the appendix.

4.5 SCTPL model-checking for PDSs

Given a PDS P = (P, Γ, ∆, ♯), a labeling function λ, and a SCTPL formula φ, thanks to
Theorems 3 and 5, and due to the fact that BPφ has O(|P| · |φ| + k) states and O((|P| · |Γ| +
|∆|) · |φ|+d) transitions, where k and d are the number of states and the number of transitions
of the unionM of the Variable Automata involved in φ; we get the following:

Corollary 1. Given a PDS P = (P, Γ, ∆, ♯), a SCTPL formula φ and a labeling function λ,
we can effectively compute a SAMAA in time O

(
(|P||φ| + k)2 · 22|B| · |Γ| · ((|P||Γ| + |∆|)|φ| +

d
) · 25(|P||φ|+k)·2|B|

)
, where k is the number of states ofM and d is the number of transition

rules ofM such that for every configuration ⟨p, ω⟩ of P:

1. ⟨p, ω⟩ |=λ φ iff there exists a B ∈ B s.t.A recognizes ⟨[Lp, φM,B], ω⟩.
2. for every B ∈ B: ⟨p, ω⟩ |=B

λ φ iffA recognizes ⟨[Lp, φM,B], ω⟩.
Thus, thanks to this corollary and to Proposition 1, it follows that it is possible to deter-

mine whether a PDS configuration satisfies a SCTPL formula:

Corollary 2. It is possible to decide whether a PDS configuration satisfies a SCTPL for-
mula.

Remark 5. As described in Remark 2, we can transform every SCTPL formula ψ to an
equivalent CTL with regular valuations formula ψ′ such that |ψ′| = O(|ψ| · |D|g) where g
is the number of subformulas of ψ in the form of ∀x φ or ∃x φ. Every regular variable
expression in ψ will generate |D||X| “standard” regular expressions over Γ in ψ′. Thus,
the number of states |S′| and the number of transition rules |T ′| of the finite automata
corresponding to the regular expressions in ψ′ will be |D||X| · k and |D||X| · d, respectively.
Then, applying [24], we can construct an AMA recognizing all the configurations which
satisfy ψ′ in time O(|P|3 · |Γ|2 · |ψ′|3 · |S′|2 · |∆| · |T ′| · 25(|P||ψ′ |+|S′ |)), i.e., O(|P|3 · |Γ|2 · |ψ|3 ·
|D|3g · |B|3 · k2 · |∆| · d · 25(|P|(|ψ|·|D|g)+|B|·k)), where |B| = |D||X|.

This theoretical complexity is better than the complexity of Corollary 1 obtained us-
ing our SCTPL model-checker. However, in practice, thanks to the compact representation
of the sets of environments β’s using BDDs, model-checking SCTPL using our symbolic
techniques behaves much better than reducing SCTPL to CTL with regular valuations and
then applying [24]. Indeed, the experiments we run show that in most of the cases, our
symbolic algorithm for SCTPL model-checking terminates in few seconds, whereas trans-
lating the SCTPL formula to CTL with regular valuations and then applying [24] would
run out of memory. These experimental results are summarized in Section 5 and Table 4 in
the appendix.

13

Examples |P| Our techniques SABPDS→ABPDS SCTPL→CTLr
Result Examples |P| Our techniques SABPDS→ABPDS SCTPL→CTLr

Result
Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb)

Klez.a 42 1.62 10.8 - MemOut - MemOut Y Adson.1559 52 0.22 2.1 - MemOut - MemOut Y
Klez.b 45 1.55 10.8 - MemOut - MemOut Y Adson.1651 54 0.23 2.1 - MemOut - MemOut Y
Klez.c 41 1.27 8.9 - MemOut - MemOut Y Adson.1703 55 0.25 2.1 - MemOut - MemOut Y
Klez.d 51 1.47 10.3 - MemOut - MemOut Y Adson.1734 54 0.31 2.6 - MemOut - MemOut Y
Klez.e 52 0.77 7.0 - MemOut - MemOut Y Alcaul.d 62 0.20 0.8 - MemOut 47.70 51 Y
Klez.f 50 0.76 7.0 - MemOut - MemOut Y Alcaul.i 88 4.38 0.28 - MemOut 159.88 169.64 Y
Klez.g 47 0.75 7.0 - MemOut - MemOut Y Alcaul.j 79 0.30 2.1 - MemOut 218.25 198.71 Y
Klez.i 49 0.74 7.0 - MemOut - MemOut Y Oroch.3982 89 3.70 7.72 - MemOut - MemOut Y
Klez.j 55 0.74 7.0 - MemOut - MemOut Y KME 145 999.31 20.04 - MemOut - MemOut Y

Mydoom.c 210 145.20 322.8 - MemOut - MemOut Y Anar.a 41 1.16 1.60 885.33 343.24 54.92 34.12 Y
Mydoom.e 288 123.22 267.5 - MemOut - MemOut Y Anar.b 47 1.49 1.60 891.42 348.54 56.14 36.16 Y
Mydoom.g 256 117.50 256.7 - MemOut - MemOut Y Atak.b 126 762.34 18.15 - MemOut - MemOut Y

Predec.j 25 0.23 0.81 - MemOut 56.14 36.16 Y Alcaul.c 33 0.12 0.3 - MemOut 0.41 2.19 Y
Netsky.a 69 2.73 14.5 - MemOut - MemOut Y Bagle.d 88 652.23 16.96 - MemOut - MemOut Y

Akez 42 0.22 0.3 - MemOut 0.44 2.49 Y Alcaul.f 52 0.09 0.3 - MemOut 0.53 2.23 Y
Netsky.b 80 2.73 14.5 - MemOut - MemOut Y Alcaul.b 50 0.06 0.2 - MemOut 0.28 1.18 Y
Netsky.c 78 2.73 14.5 - MemOut - MemOut Y Alcaul.e 49 0.49 0.9 - MemOut 1.03 5.28 Y
Netsky.d 72 2.73 14.5 - MemOut - MemOut Y Alcaul.g 53 0.31 0.7 - MemOut 0.97 4.45 Y
Alcaul.h 48 0.83 0.9 - MemOut 1.14 6.88 Y Evol.a 102 9.58 3.22 - MemOut - MemOut Y
Uedit32 180 92.58 100.94 - MemOut - MemOut N Alcaul.k 52 0.26 0.6 - MemOut 0.76 3.65 Y
Alcaul.l 52 0.30 0.7 - MemOut 0.86 3.96 Y Alcaul.m 53 0.20 0.6 - MemOut 0.88 3.37 Y

Cygwin32 212 23.72 123.31 - MemOut - MemOut N Alcaul.n 34 0.12 0.3 - MemOut 0.44 2.28 Y
cmd.exe 202 1.44 25.52 - MemOut - MemOut N Klinge 78 237.50 4.49 - MemOut 0.83 3.37 Y
Alcaul.o 68 0.20 0.6 - MemOut 0.83 3.37 Y Atak.f 220 23.4 139.1 - MemOut - MemOut Y

Mydoor.ar 256 113.2 227.4 - MemOut - MemOut Y Mydoor.ay 328 124.2 232.5 - MemOut - MemOut Y

Table 2. Detection of real malwares

5 Experiments

We implemented our techniques in a tool for malware detection. We use IDAPro [3] as
disassembler. We use BDDs to represent sets of environments. We carried out different ex-
periments. We obtained interesting results. In particular, our tool was able to detect several
viruses taken from [17]. Our results are reported in Table 2.
Column |P| gives the number of control locations of the PDS model. Every program is
checked against several malicious behaviors. A program is declared as a potential virus if it
satisfies one of the specifications. Column time(s) and mem(Mb) give the time (in seconds)
and the memory (in Mb). The last Column result is Y is the program contains the mali-
cious behaviors given in Column Formula, and N if not. We also compared our techniques
against translating SABPDS to ABPDS (Columns “SABPDS→ABPDS”), or translating
SCTPL to CTL with regular valuations (Columns “SCTPL→CTLr”). We were able to de-
tect all the viruses that we considered, whereas applying the translation from SABPDS to
ABPDS or from SCTPL to CTL with regular valuations would run out of memory in most
of the cases, and thus cannot detect the viruses. Our tool was also able to deduce that some
benign programs are not viruses. E.g. we tried the following benign programs: Uedit32, a
fragment of Ultra Edit Text Editor software by IDM Computer Solutions; Cygwin32 a frag-
ment of the Setup software of Cygwin, a Linux-like environment for Windows. cmd.exe is
the Microsoft-supplied command-line interpreter.

Moreover, we run several experiments to check how robust are our techniques in virus
detection in case the virus writers use obfuscation techniques. To this aim, we considered
some of the viruses of Table 2, and we added several obfuscations manually such as: in-
struction reordering (reordering the instructions inside the code and using jump instructions
so that the control flow is not changed), dead code insertion, register renaming, splitting the
code into several procedures, adding useless stack operations, etc. We tested 5 variants for
each type of obfuscation of the viruses Mydoom.g, Netsky.a, Bagle.d, Adson.1734 and
Akez. The results are reported in Table 3. Our techniques were able to detect all these vari-
ations, whereas the three well known and widely used free antiviruses Avira [2], Qihoo 360
[4] and Avast [1] were not able to detect several of these virus variations.

14

Obfuscation
Our techniques Avira antivirus Qihoo 360 antivirus Avast antivirus
detection rate detection rate detection rate detection rate

nop-insertion 100% 65% 55% 60%
code-reordering 100% 40% 35% 45%

register-renaming 100% 25% 25% 30%
stack-operation 100% 20% 25% 20%
procedure-split 100% 5% 5% 5%

Table 3. Detection of obfuscated Viruses

References

1. Avast antivirus, free version. http://www.avast.com.
2. Avira antivirus, free version. http://www.avira.com.
3. IDA Pro. http://www.hex-rays.com/idapro/.
4. Qihoo 360 antivirus. http://www.360.cn.
5. G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum. Codesurfer/x86-a platform for

analyzing x86 executables. In CC, 2005.
6. G. Balakrishnan, T. W. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian, S. H. Yong, C.-H.

Chen, and T. Teitelbaum. Model checking x86 executables with codesurfer/x86 and wpds++. In
CAV, 2005.

7. J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and N. Tawbi. Static detection
of malicious code in executable programs. In SREIS, 2001.

8. G. Bonfante, M. Kaczmarek, and J.-Y. Marion. Architecture of a Morphological Malware De-
tector. Journal in Computer Virology, 5:263–270, 2009.

9. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata: Applica-
tion to Model Checking. In CONCUR’97. LNCS 1243, 1997.

10. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv., 24(3), 1992.

11. T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP, 2002.
12. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns. In 12th

USENIX Security Symposium, 2003.
13. M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious behavior. In

ISEC, 2008.
14. M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and R. E. Bryant. Semantics-aware malware

detection. In IEEE Symposium on Security and Privacy, 2005.
15. J. Esparza, A. Kucera, and S. Schwoon. Model checking LTL with regular valuations for push-

down systems. Inf. Comput., 186(2), 2003.
16. J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs. In CAV, 2001.
17. V. Heavens. http://vx.netlux.org.
18. A. Holzer, J. Kinder, and H. Veith. Using verification technology to specify and detect malware.

In EUROCAST, 2007.
19. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious code by model

checking. In DIMVA, 2005.
20. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Proactive detection of computer worms

using model checking. IEEE Transactions on Dependable and Secure Computing, 7(4), 2010.
21. A. Lakhotia, D. R. Boccardo, A. Singh, and A. Manacero. Context-sensitive analysis of obfus-

cated x86 executables. In PEPM, 2010.
22. A. Lakhotia, E. U. Kumar, and M. Venable. A method for detecting obfuscated calls in malicious

binaries. IEEE Trans. Software Eng., 31(11), 2005.
23. P. K. Singh and A. Lakhotia. Static verification of worm and virus behavior in binary executables

using model checking. In IAW, 2003.
24. F. Song and T. Touili. Efficient CTL model-checking for pushdown systems. In CONCUR, 2011.
25. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. Efficient algorithms for alternating push-

down systems with an application to the computation of certificate chains. In ATVA, 2006.

15

A Experiments: Symbolic vs. explicit

As described previously, our approach consists in computing a SABPDS from the PDS and
the SCTPL formula, and then applying Algorithm 1 to compute the set of configurations
from which the SABPDS has an accepting run, i.e., that satisfy the SCTPL formula. As ex-
plained in Remarks 4 and 5, this can be done differently in two ways: (1) either translate the
SABPDS into an equivalent ABPDS and then apply the algorithm of [24] to compute the set
of configurations that it accepts; (2) or translate the SCTPL formula into an equivalent CTL
with regular valuations formula, and then apply an existing algorithm for model-checking
PDSs against CTL with regular valuations (such as the one given in [24]). In order to show
that our approach is much better than these two solutions, we run several experiments that
compares the three approaches. Our experiments are applied to random PDSs. The results
are summarized in Table 4. Column PDS |P|+|Γ|+|∆| gives the number of control locations,
the number of stack alphabet and the number of transitions of the PDS. Column SCTPL
size denotes the size of the considered SCTPL formula. Columns |X| and |D| denote the
number of variables and the size of the domain. The Columns “Our techniques” describe
the results obtained using our techniques. The Columns “SABPDS→ABPDS” describe the
results obtained if we translate the SABPDS to an equivalent ABPDS and then apply the
algorithm of [24]. The last Columns “SCTPL→CTLr” describe the results obtained if the
SCTPL formula is translated into a CTL with regular valuations formula. |∆s| and |δs| de-
note the number of transitions of the SABPDSs and the SAMAs computed by Algorithm
1. |∆1| denotes the number of transitions of the ABPDSs corresponding to the SABPDSs.
|δ1| gives the number of transitions of the AMAs computed using the algorithm of [24].
Column time(s) and mem(kb) give the time (in seconds) and the memory (in kilobytes).
Memout means “memory out” (the memory limit is 650Mb). The results described in Ta-
ble 4 show that our techniques behave much better than the two other techniques. In most
of the cases, our techniques terminate in few seconds and using less memory, whereas the
two other approaches run out of memory.

B From binary code to Pushdown Systems

We represent a binary code program by a set of control flow graphs (CFGs), one CFG for
each procedure. These CFGs are over-approximations of the concrete program. The nodes
of a CFG correspond to the program locations, and its edges are annotated with assembly
instructions (e.g. mov eax,0). Several tools allow to extract a set of CFGs from a binary
code, such as IDAPro [3], CodeSurfer/x86 [5], etc. We can use these tools to extract CFGs
from binary code. Some of these tools involve efficient static analysis techniques that al-
low to compute over-approximations of the sets of numeric values and addresses that are
involved in every control point of the program. In particular, they provide informations on
the possible values of l in instructions of the form n1 : jmp l or n1 : call l. Thus, we sup-
pose that in the CFGs, these instructions are represented by edges of the form n1

jmp n−−−−−−→ n
and n1

call n−−−−−→ n2 for all the possible values n of l (these values are computed by the CFG-
extractor tool). Moreover, we suppose that pushes and pops can be done only using push,
pop, call, and return operations, not by manipulating the stack pointer.

Translation:
Given a set of CFGs S , we define a corresponding PDS P = (P, Γ, ∆, ♯) such that: Γ

is the set of symbols α such that there exists in S an edge of the form n1
push α−−−−−−→ n2 or

1

PDS SCTPL
|X| |D|

Our techniques SABPDS→ABPDS SCTPL→CTLr
|P|+|Γ|+|∆| size SABPDS SAMA Time Mem ABPDS AMA Time Mem Time Mem

|∆s| |δs| (s) (Kb) |∆1| |δ1| (s) (kb) (s) (kb)
1+2+1 3 2 4 18 6 0.02 27 432 12 0.03 54 0.03 41
1+2+1 4 2 4 20 8 0.02 27 464 20 0.02 56 0.03 42
1+2+1 3 2 5 22 6 0.00 27 1072 14 0.02 94 0.03 47
1+2+1 4 2 5 25 8 0.03 28 1147 28 0.03 102 0.02 48
4+5+3 6 3 11 693 30 0.02 76 5257k 120 40.67 329k 0.33 1236
4+5+3 3 1 13 301 59 0.00 55 2225 169 0.03 190 0.02 140
4+5+3 6 3 13 813 30 0.03 84 - - - MemOut 0.56 1767
4+5+3 5 2 9 393 26 0.02 56 23448 66 0.14 1505 0.05 115
4+5+3 6 3 9 573 30 0.02 67 939k 92 6.75 59k 0.19 845
4+4+5 4 2 10 357 66 0.05 61 96597 335 1.05 6147 0.20 968
4+4+5 6 3 10 521 60 0.02 69 8529k 1077 65.28 634k 0.09 525
4+4+5 4 3 7 373 48 0.02 57 939k 92 6.8 59k 0.06 281
4+4+5 6 3 8 425 60 0.02 63 1895k 609 13.53 119k 0.06 346
4+4+5 6 3 9 473 60 0.02 66 4213k 819 29.81 264k 0.12 425
4+4+5 6 3 11 569 60 0.03 72 - - - MemOut 0.16 622
4+4+5 6 3 12 617 60 0.05 75 - - - MemOut 0.17 724
4+4+5 6 3 20 1001 60 0.05 99 - - - MemOut 0.97 2096

12 +12+6 11 1 16 1752 187 0.06 197.60 - - - MemOut 0.36 1094
12 +12+6 13 3 16 1896 187 0.11 776.91 - - - MemOut 197.94 27.14k
12 +12+6 15 5 24 5928 340 0.27 1.60k - - - MemOut - MemOut
25 +35+6 15 5 34 16878 691 1.12 5.72k - - - MemOut - MemOut
34 +65+6 15 5 50 32808 967 4.33 14.99k - - - MemOut - MemOut
42+96+6 15 5 58 46641 1284 8.05 24.11k - - - MemOut - MemOut
50+124+6 15 5 70 66360 1555 17.84 40.23k - - - MemOut - MemOut
66+169+7 15 5 71 103437 2334 28.81 63.60k - - - MemOut - MemOut
75+215+7 11 4 14 19051 2493 0.66 4.87k - - - MemOut - MemOut
75+215+7 15 5 26 46696 2697 2.02 13.14k - - - MemOut - MemOut
75+215+7 15 5 59 98699 2724 17.20 51.76k - - - MemOut - MemOut
75+215+7 17 7 59 160649 2738 18.34 55.57k - - - MemOut - MemOut
75+215+7 17 7 99 265677 2771 100.00 140.02k - - - MemOut - MemOut
75+215+7 17 7 139 370698 2799 341.91 262.91k - - - MemOut - MemOut
75+215+7 17 7 174 462601 2837 880.61 401.99k - - - MemOut - MemOut

Table 4. Our techniques vs. Explicit techniques.

n1
call proc−−−−−−−−→α. P is Γ ∪ N, where N is the set of nodes of S ; and ∆ contains transition rules

that mimic the behaviors of the program’s instructions. Let i be an instruction from control
point n1 to control point n2:

– if i is of the form n1
push α−−−−−−→ n2, it is translated into a set of push rules ⟨n1, γ⟩ ↪→

⟨n2, αγ⟩, for every γ ∈ Γ;
– if i is of the form n1

pop α−−−−−−→ n2, it is translated into a set of pop rules ⟨n1, γ⟩ ↪→ ⟨n2, ϵ⟩,
for every γ ∈ Γ, where ϵ is the empty word;

– if i is a call instruction n1
call proc−−−−−−−−→ n2, it is translated into a set of push rules ⟨n1, γ⟩ ↪→

⟨eproc, n2 γ⟩, for every γ ∈ Γ. These rules move the control point to the entry point eproc

of the procedure proc and pushes the return address n2 of the callee onto the stack. This
is how an assembly program behaves when it executes a call.

– if i is a return instruction n1
ret−−−→ n2, it is translated into a set of pop rules ⟨n1, γ⟩ ↪→

⟨γ, ϵ⟩, for every γ ∈ Γ. These rules remove the topmost symbol γ from the stack, and
moves the PDS’s control point to γ, i.e., to the return address. This is how an assembly
program behaves when it executes a return.

2

– if i is any other instruction n1
other instruction−−−−−−−−−−−−−→ n2, it is translated into a set of rules

⟨n1, γ⟩ ↪→ ⟨n2, γ⟩, for every γ ∈ Γ. These rules move the PDS’s control point from
n1 to n2 without changing the stack.

Note that in our modeling, the PDS control locations correspond to the program’s con-
trol points, and the PDS stack mimics the program’s execution stack. The above transition
rules allow the PDS to mimic the behavior of the program’s stack. This is different from
standard program translations to PDSs where the control points of the program are stored
in the stack [16, 6]. These standard translations assume that the program follows a standard
compilation model, where the return addresses are never modified. We do not make such
assumptions since behaviors where the return addresses are modified can occur in mali-
cious code. We only make the assumption that pushes and pops can be done only using
push, pop, call, and return operations, not by manipulating the stack pointer.
Example: The fragment of code of Figure 1(b) can be encoded by the PDS P = (P, Γ, ∆, ♯)
such that: P = {l′1, l′2, l′3, l′4, l′5, l′6, g0} where g0 is the entry point of the
function GetModuleHandleA and l′6 is the location just after l′5. The
stack alphabet is Γ = {eax, ebx, l′6}. The transition rules ∆ are shown in
Figure 2.

∀γ ∈ {eax, ebx, l′6}

〈l′1, γ〉 →֒ 〈l′2, γ〉
〈l′2, γ〉 →֒ 〈l′3, eax γ〉
〈l′3, γ〉 →֒ 〈l′4, ebx γ〉
〈l′4, γ〉 →֒ 〈l′5, ǫ〉
〈l′5, γ〉 →֒ 〈g0, l

′

6γ〉

Fig. 2. ∆

C An example illustrating SCTPL

Example: Consider the fragment of Figure 1(b), and
the SCTPL formula ψ described in the introduction
by the formula (2). In this example, we have:

λ(mov(eax, 0)) = {l′1}
λ(push(eax)) = {l′2}
λ(push(ebx)) = {l′3}
λ(pop(ebx)) = {l′4}
λ(call(GetModuleHandleA)) = {l′5}

Fig. 3. λ.

– X = {r1, r2, r3} is the set of variables appearing
in ψ,

– R = {r1Γ
∗} is the set of regular variable expressions in ψ,

– AP = {mov, push, pop, call} is the set of atomic propositions corresponding to the
instructions of the program,

– APX = {mov(r1, 0),mov(r1, r2), push(r1), pop(r3), call(GetModuleHandleA)} is the set
of predicates that appear in the formula ψ,

– D = {eax, ebx, 0,GetModuleHandleA, l′6} is defined such that Γ ⊆ D, and the set of
instructions of the program are in APD,

– APD = {mov(eax, 0), push(eax), push(ebx), pop(ebx), call(GetModuleHandleA)} is
the set of labels of the program’s instructions,

– The labeling function λ is described in Figure 3.

Consider the PDS of Figure 2 that describes this fragment of code. Any configuration
⟨l′1,w⟩, w ∈ Γ∗ satisfies the subformula φ:

φ = EF
(
mov(r1, 0) ∧ EX E

[¬∃r2 mov(r1, r2)U
(
push(r1) ∧ EX E[¬

(
push(r1)∨(∃r3(pop(r3) ∧ r1Γ

∗)
))

U(call(GetModuleHandleA) ∧ r1Γ
∗)]
)])

under all the environments B s.t. B(r1) = eax. Thus, since ψ = ∃ r1 φ, we get that any
configuration ⟨l′1,w⟩, w ∈ Γ∗ satisfies the specification ψ under every environment B′ ∈ B.

3

...

lea eax, [ebp+ ExistingF ileName]
push eax

push 0
call ds : GetModuleF ileNameA

...

lea eax, [ebp+ ExistingF ileName]
push eax

call ds : CopyF ileA

...

(a)

1. ψew = ∃m

(

∃r0

(

2. EF
(

lea(r0,m) ∧EX E

[

¬∃v(mov(r0, v) ∨ lea(r0, v))U
(

push(r0)

3. ∧EX E[¬(push(r0) ∨ ∃v(pop(v) ∧ r0Γ
∗))U(call(GetModuleF ileNameA) ∧ 0 r0Γ

∗

4. ∧ ∃r1
(

EF(lea(r1,m) ∧EX E[¬∃v(mov(r1, v) ∨ lea(r1, v))U(push(r1)

5. ∧EX E[¬(push(r1) ∨ ∃v(pop(v) ∧ r1Γ
∗))Ucall(CopyF ileA) ∧ r1Γ

∗])])
)

)]
)

]

)

)

)

(b)

Fig. 5. (a) Email worm (b) Specification of Email worm

D Modeling malicious behaviors using SCTPL

In this section, we show some examples that illustrate how SCTPL can be used to precisely
specify malicious behaviors. We needed stack predicates to express most of the specifica-
tions. Except the first specification given using a CTPL formula, all the other malicious
behaviors described in this section need to use predicates over the stack. Thus, SCTPL is
necessary to specify these behaviors, CTPL is not sufficient.

Kernel32.dll base address viruses. Many of Windows viruses use an API to achieve their
malicious tasks. The Kernel32.dll file includes several API functions that can be
used by the viruses. In order to use these functions, the viruses have to find the entry
addresses of these API functions. To do this, they need to deter-
mine the Kernel32.dll entry point. They determine first the Ker-
nel32.dll PE header in memory and use this information to locate
Kernel32.dll export section and find the entry addresses of the API
functions. For this, the virus looks first for the DOS header (the
first word of the DOS header is 5A4Dh in hex (MZ in ascii)); and
then looks for the PE header (the first two words of the PE header
is 4550h in hex (PE00 in ascii)). Figure 4 presents a disassem-
bled code fragment performing this malicious behavior. This can

l1 : cmp [eax], 5A4Dh

jnz l2
...

cmp [ebx], 4550h
jz l3
l2 : ...

jmp l1
l3

Fig. 4. Virus.

be specified in SCTPL as follows:
ψwv = EG

(
EF
(∃r1 cmp(r1, 5A4Dh) ∧ EF ∃r2 cmp(r2, 4550h)

))
.

This SCTPL formula expresses that the program has a loop such that there are two variables
r1 and r2 such that first, r1 is compared to 5A4Dh, and then r2 is compared to 4550h. Note
that this formula can detect all the class of viruses that have such behavior.

Email worms. The typical behavior of an email worm can be summarized as follows: the
worm will first call the API GetModuleFileNameA in order to get the name of its executable.
For this, the worm needs to call this function with 0 and m as parameters (m corresponds
to the address of a memory location), i.e., with 0m on the top of the stack since parameters
to a function in assembly are passed through the stack. GetModuleFileNameA will then
write the name of the worm executable on the address m. Then, the worm will copy its
file (whose name is at the address m) to other locations using the function CopyFileA. It
needs to call CopyFileA with m as parameter, i.e., with m on the top of the stack. Figure
5(a) shows a disassembled fragment of a code corresponding to this typical behavior. This

4

behavior can be expressed by the SCTPL formula of Figure 5(b). In this formula, Line 2
expresses that there exists a register r0 such that the address of the memory location m is
assigned to r0, and such that the value of r0 does not change until it is pushed onto the stack
(subformula ¬∃v(mov(r0, v)∨lea(r0, v)) Upush(r0)). Line 3 guarantees that r0 is not pushed
nor popped from the stack until GetModuleFileNameA is called, and 0r0 is on the top of the
stack (the predicate 0r0Γ

∗ ensures this). This guarantees that when GetModuleFileNameA
is called, r0 still contains the address of m. Thus, the name of the worm file returned by
GetModuleFileNameA will be put at the address m. Line 4 is similar to Line 2. It expresses
that there exists a register r1 such that the address of the memory location m is assigned
to r1, and such that the value of r1 does not change until it is pushed onto the stack. This
guarantees that when r1 is pushed to the stack, it contains the address of m. Line 5 expresses
that r1 is not pushed nor popped from the stack until CopyFileA is called, and r1 is on the
top of the stack (the predicate r1Γ

∗ ensures this). This guarantees that when CopyFileA is
called, the value of r1 is still m. Thus, CopyFileA will copy the file whose name is at the
address m. Note that we need predicates over the stack to express in a precise manner this
specification.

Obfuscated calls. Virus writers try to obfuscate their code by e.g. hiding the calls to

the operating system. For example, a call instruction can be replaced by pushes and jumps.
Figure 6 shows two equivalent fragments achieving a “call” in-
struction. Figure 6(a) shows a normal call/ret where the func-
tion f consists just of a return instruction. When control point
f is reached, the return instruction moves the control point to
l1 which is the return address of the call instruction (at l0). As
shown in Figure 6(b), the call can be equivalently substituted
by two other instructions, where push l′2 pushes the return ad-
dress l′2 onto the stack, and jmp f moves the control point to
the entry point of f . These instructions do exactly the same

l0 : call f
l1 : ...

f: ret

l
′

0
: push l

′

2

l
′

1
: jmp f

l
′

2
: ...

f: ret

(a) (b)

Fig. 6. (a) Normal call. (b)
Obfusated call

thing than the call instruction. When reaching the control point f , the ret instruction will
pop the stack and thus, move the control point to l′2. Such obfuscated calls can be described
by the following SCTPL formula:

ψoc = ∃ addr E[¬(∃ proc call(proc) ∧ EX addrΓ∗) U (ret ∧ addrΓ∗)]

The subformula (∃ proc call(proc) ∧ EX addrΓ∗) means that there exists a procedure call
having addr as return address, since when a procedure call is made, the program will push
its corresponding return address addr to the stack, and thus, at the next step, we will have
addr on the top of the stack (i.e., addrΓ∗). The subformula (ret ∧ addrΓ∗) expresses that
we have a return instruction with addr on the top of the stack, i.e., a return instruction that
will return to addr. Thus the formula ψoc expresses that there exists a return address addr
such that there exists a path where there is no call to a procedure proc having addr as return
address until a return instruction with addr as return address occurs. This formula can then
detect a return that does not correspond to a call.

Obfuscated returns. Virus writers usually obfuscate the returns of their calls in order

to make it difficult to manually or automatically analyse their code. Benign programs

5

move the control point to the return address using the ret
instruction. Viruses may replace the ret instruction by other
equivalent instructions such as pop eax, jmp l, etc. E.g., the
program in Figure 7 is a disassembled fragment from the virus
Klinge that pops the return address 00401028 from the stack.
This phenomenon can be detected by the following specifica-
tion:

00401023: call 004011CE

00401028: ...

...

004011CE: ...

...

0040121A: pop eax

Fig. 7. Fragment of the
Virus Klinge

ψor = AG
(
∀proc∀addr

(
(call(proc) ∧ AX addrΓ∗) =⇒ AF(ret ∧ addrΓ∗)

))
.

ψor expresses that for every procedure proc, if proc is called with addr as the return
address of the caller, then there exists a ret instruction which will return to addr. Indeed,
since when an assembly program runs, if an instruction call proc is executed, then the return
address addr of the caller is pushed onto the stack. Thus, in the subformula call(proc) ∧
AX addrΓ∗, addr refers to the return address of the call, because this subformula expresses
that in all the immediate successors of the call, addr is on the top of the stack. Moreover,
ret ∧ addrΓ∗ means that when the return is executed, then the return address addr should
be on the top of the stack.2

Appending viruses. An appending virus is a virus that inserts a copy of its malicious
code at the end of the target file. To do this, the virus has to first calculate its real absolute
address in the memory, because the real OFFSET of the virus’ variables
depends on the size of the infected file. To achieve this, the viruses have to
call the routine in Figure 8 (this code is a fragment of the virus Alcaul.b).
The instruction call l2 will push the return address l2 onto the stack. Then,
the pop instruction will put the value of this address into the register eax. In

l1 : call l2
l2 : pop eax

...

Fig. 8.

this way, the virus can get its real absolute address in the memory. This malicious behavior
can be detected using the specification ψor, since there does not exist any return instruction
corresponding to the call instruction.

E Intuition behind the rules of BPφ
As said previously, BPφ could be seen as the product of P and φ. BPφ recognizes all the
configurations ⟨[Lp, ψM,B], ω⟩ s.t. ⟨p, ω⟩ satisfies ψ under B. ThusBPφ has an accepting run
from ⟨[Lp, ψM,B], ω⟩ if and only if the configuration ⟨p, ω⟩ satisfies ψ under B. The intuition
behind each rule is explained as follows.

If ψ = a(x1, ..., xn) ∈ AP+(φ), then for every ω ∈ Γ∗, ⟨p, ω⟩ satisfies ψ under any
environment B such that p ∈ λ

(
a
(
B(x1), ..., B(xn)

))
. Thus, for such B’s, BPφ should have an

accepting run from the configuration ⟨[Lp, a(x1, ..., xn)M,B], ω⟩. This is ensured by Item 1
that adds a loop in ⟨[Lp, a(x1, ..., xn)M,B], ω⟩ (since all accepting paths are infinite), and by
the fact that the state [Lp, a(x1, ..., xn)M,B] is accepting thanks to F1. Here the function is id
to ensure that the environment does not change while applying the rule.

If ψ = ¬a(x1, ..., xn) ∈ AP−(φ), then for every ω ∈ Γ∗, ⟨p, ω⟩ satisfies ψ under any
environment B such that p < λ

(
a
(
B(x1), ..., B(xn)

))
. Thus, for such B’s, BPφ should have an

accepting run from the configuration ⟨[Lp,¬a(x1, ..., xn)M,B], ω⟩. This is ensured by Item 1

2 Note that for the case of a procedure that has a possibly infinite loop, this specification can detect
a suspected malware. This formula can be changed slightly to avoid this. We do not present this
here for the sake of presentation.

6

that adds a loop in ⟨[Lp,¬a(x1, ..., xn)M,B], ω⟩ (all accepting paths are infinite). The defini-
tion of F2 guarantees that the state [Lp,¬a(x1, ..., xn)M,B] is accepting.

If ψ = ψ1 ∧ ψ2, Item 2 ensures that for every ω ∈ Γ∗, BPφ has an accepting run
from ⟨[Lp, ψ1 ∧ ψ2M,B], ω⟩ iff it has an accepting run from ⟨[Lp, ψ1M,B], ω⟩ and from
⟨[Lp, ψ2M,B], ω⟩. This means that ⟨p, ω⟩ satisfies ψ under B iff ⟨p, ω⟩ satisfies ψ1 and ψ2
under B. The function equal ensures that the environment B is the same for these three
states. The intuition behind Item 3 is similar.

If ψ = ∃x ψ1, then for every ω ∈ Γ∗, B ∈ B, BPφ has an accepting run
from ⟨[Lp, ψM,B], ω⟩ iff there exists c ∈ D such that BPφ has an accepting run from
⟨[Lp, ψ1M,B[x ← c]], ω⟩ which ensures that ⟨p, ω⟩ satisfies ψ under the environment B iff
⟨p, ω⟩ satisfies ψ1 under B[x← c]. This is expressed by Item 4 since B ∈ meetx

{c}
(
B[x← c]

)
.

If ψ = ∀x ψ1, then for every ω ∈ Γ∗, B ∈ B, BPφ has an accepting run from
⟨[Lp, ψM,B], ω⟩ iff for every c ∈ D, BPφ has an accepting run from ⟨[Lp, ψ1M,B[x← c]], ω⟩
which ensures that ⟨p, ω⟩ satisfies ψ under the environment B iff ⟨p, ω⟩ satisfies ψ1 under
B[x ← c] for every c ∈ D. This is guaranteed by Item 5 and its corresponding function
meetx

D since ifD = {c1, . . . , cm}, then B ∈ meetx
D
(
B[x← c1], . . . ,B[x← cm]

)
.

If ψ = EXψ1, then for every p ∈ P, ω ∈ Γ∗ and B ∈ B, ⟨p, ω⟩ satisfies ψ under B iff
there exists an immediate successor ⟨p′, ω′⟩ of ⟨p, ω⟩ such that ⟨p′, ω′⟩ satisfies ψ1 under
B. Thus, BPφ should have an accepting run from ⟨[Lp, ψM,B], ω⟩ iff it has an accepting run
from ⟨[Lp′, ψ1M,B], ω′⟩. This is expressed by Item 6 where the function id guarantees that
the environment remains the same.

If ψ = AXψ1, then for every p ∈ P, ω ∈ Γ∗ and B ∈ B, ⟨p, ω⟩ satisfies ψ under B iff
⟨p j, ω j⟩ satisfies ψ1 under B for every immediate successor ⟨p j, ω j⟩ of ⟨p, ω⟩. This means
that BPφ should have an accepting run from ⟨[Lp, ψM,B], ω⟩ iff it has an accepting run from
every configuration ⟨[Lp j, ψ1M,B], ω j⟩. Item 7 expresses this. The function equal makes sure
that all these environments are the same.

If ψ = E[ψ1Uψ2], then for every p ∈ P, ω ∈ Γ∗ and B ∈ B, ⟨p, ω⟩ satisfies ψ under B
iff either it satisfies ψ2 under B, or it satisfies ψ1 under B and it has an immediate successor
that satisfies ψ under B. This is expressed by Item 8. The case ψ = A[ψ1Uψ2] is analogous.

If ψ = E[ψ1Ũψ2], then for every p ∈ P, ω ∈ Γ∗, and B ∈ B, ⟨p, ω⟩ satisfies ψ under
B iff it satisfies ψ2 under B, and either it satisfies also ψ1 under B, or it has an immediate
successor that satisfies ψ under B. This is expressed by Item 10. This ensures that either ψ2
holds always, or until both ψ1 and ψ2 hold. F3 ensures that [Lp, ψM,B] is accepting for every
B ∈ B, i.e., that a path where ψ2 always hold is accepting. The case where ψ = A[ψ1Ũψ2]
is similar.

If ψ = e, then the SABPDS BPφ accepts ⟨[Lp, ψM,B], ω⟩ iff (⟨p, ω⟩,B) ∈ L(Me). To
check this, BPφ first goes to state [se,B] by Item 12, where se is the initial state of Me, then
it continues to check whether ω is accepted by Me under the environment B. This is ensured
by Items 14. Item 14 allows BPφ to mimic a run of Me on ω under the environment B: if
BPφ is in state [q,B] and the topmost of its stack is γ, then:

– Item 14(a) deals with the case where q
γ
−→ {q1, ..., q2} is a transition in δe. In this

case, BPφ moves to the next states [q1,B], ..., [qn,B] while popping γ from the stack.
Popping γ allows BPφ to check the rest of the word. The function equal guarantees
that all the environments are the same.

– Item 14(b) deals with the case where q
x−→ {q1, ..., q2}, x ∈ X is a transition in δe. In

this case, BPφ can continue to mimic a run of Me under the environment B only if
B(x) = γ. If this holds, BPφ moves to the next states [q1,B], ..., [qn,B] and pops γ from

7

the stack, which allows BPφ to check the rest content of the stack. The function joinx
γ

ensures that all the environments are the same and the value of B(x) is γ.
– Item 14(c) deals with the case where q

¬x−→ {q1, ..., q2} is a transition in δe. In this
situation, BPφ can continue to mimic a run of Me under the environment B only if
B(x) = ¬γ. If this holds, BPφ moves to the next states [q1,B], ..., [qn,B] and pops γ
from the stack. The function join¬x

γ ensures that all the environments are the same and
the value of B(x) is different from γ.

Thus, (⟨p, ω⟩,B) ∈ L(Me) iff Me reaches final states f1, ..., fn of Me after reading the word w,
i.e., iff BPφ reaches a set of states [f1,B], ..., [fn,B] with an empty stack (a stack containing
only the bottom stack symbol ♯). This is why F4 is a set of accepting states. Moreover, since
all the accepting paths are infinite, Item 15 adds a loop on every configuration ⟨[f ,B], ♯⟩
where f is a final state of M and ♯ is the stack symbol (this makes the paths of BPφ that
reach a state ⟨[f ,B], ♯⟩ accepting).

The case where ψ = ¬e is similar to the previous case.

F Proofs of Section 4.4

Proposition 2. Given a SABPDS BP = (P, Γ, ∆, F), L(BP) = YBP.
Proof (Sketch): The proof follows the lines of [24], where it was shown that for
an ABPDS BP′ = (P, Γ, ∆, F), L(BP′) is equal to

∩
i≥0 Zi, where Z0 = P × Γ∗ and

Zi+1 = Pre+(Zi ∩ F × Γ∗). Here, X0 = (P × B) × Γ∗ since configurations of the SABPDS
BP are in P × B × Γ∗. �

Theorem 4. Algorithm 1 always terminates and produces YBP.
Proof (Sketch): The proof follows the lines of the proof of [24]. Indeed, our algorithm
follows the idea of the algorithm that computes an AMA recognizing the language of an
ABPDS given in [24]. The main differences are:

1. We use states of the form [p, β] instead of p for every p ∈ P, since we now deal with
SABPDS. A symbolic state [p, β] ∈ P × 2B denotes a set of states [p,B] for every
environment B ∈ β which records the valuation of the variables X;

2. To compute the Pre∗ of L(Ai−1) ∩ F × Γ∗, instead of using the following saturation
procedure given in [9] that computes the Pre∗ for alternating pushdown systems:
If ⟨p, γ⟩ ↪→ {⟨p1, ω1⟩, ..., ⟨pn, ωn⟩} and pi

k
ωk−→δ Qk for all 1 ≤ k ≤ n, add a transition

pi γ
−→ ∪n

k=1 Qk.

We use the following saturation procedure: If ⟨p, γ⟩ ℜ
↪→ [⟨p1, ω1⟩, ..., ⟨pn, ωn⟩] and

[pk, βk]i ωk−→δ Qk for all 1 ≤ k ≤ n, add a transition [p, β]i γ
−→ ∪n

k=1 Qk, where β =
ℜ(β1, ..., βn).
Indeed, intuitively, if e.g. ⟨[p,B], γω⟩ is an immediate predecessor of

{⟨[p1,B1], ω1ω⟩, ⟨[p2,B2], ω2ω⟩} by the transition rule ⟨p, γ⟩ ℜ↪→ [⟨p1, ω1⟩, ⟨p2, ω2⟩],
and ⟨[p1,B1], ω1ω⟩ and ⟨[p2,B2], ω2ω⟩ are in L(Ai−1) ∩ F × Γ∗, then, necessarily,
B ∈ ℜ(B1,B2) and there exist β1, β2 ⊆ B and S 1, S 2 ⊆ Q s.t. B1 ∈ β1, B2 ∈ β2,
[p1, β1]

ω1−→δ S 1
ω−→δ q f and [p2, β2]

ω2−→δ S 2
ω−→δ q f . Lines 4 – 8 add the new

transition [p,ℜ(β1, β2)]
γ
−→δ S 1 ∪ S 2. This allows to accept the configuration

⟨[p,B], γω⟩ using the run [p,ℜ(β1, β2)]
γ
−→δ S 1 ∪ S 2

ω−→δ q f .

8

3. In Line 3, instead of adding a new ϵ transition rule pi ϵ−→ pi−1 for every p ∈ F, we
add a new ϵ transition rule [p, β ∩ β′]i ϵ−→ [p, β′]i−1 for every [p, β] ∈ F such that
[p, β′]i−1 γ

−→ Q ∈ δ. Since this step is used to compute L(Ai−1) ∩ F × Γ∗ and F × Γ∗
stands for {⟨[p,B], ω⟩ ∈ (P×B)×Γ∗ | ∃[p, β] ∈ F s.t. B ∈ β }, it is not correct if we only
add the ϵ-transition [p, β]i ϵ−→ [p, β]i−1, for every [p, β] ∈ F. Indeed, it is possible that
Ai−1 recognizes some configurations {⟨[p,B], γω⟩ | B ∈ β′} ⊃ {⟨[p,B], γω⟩ | B ∈ β} by
a path [p, β′]i−1 γω

−→ q f where [p, β] ∈ F whereas [p, β′] < F.

�

F.1 Complexity of Theorem 4

Given an alternating pushdown system with P as set of control states and an AMA A with n
states and having P as the set of initial states, [25] provides a way to efficiently implement
the saturation procedure of [9] that computes the Pre∗ of A in time O(n · |∆| · 22n). We can
show that because of the substitution at Line 10, at each step i, Algorithm 1 only needs
to consider states of the form [p, β]i and [p, β]i−1 in addition to q f . Since the arbitrary
functionsℜ can generate all the possible β ⊆ B, the number of states at each step i should
be 2|P| · 2|B|. loop2 in Algorithm 1 can be seen as an extension of the saturation procedure
of [25]. Thus, by adapting the complexity analysis of [25], we can show that loop2 needs
O(|P| ·2|B| · |∆| ·24|P|·2|B |) time. The substitution (Line 10) and termination condition (Line 11)
can be done in time O(|P| ·2|B| · |Γ| ·22|P|·2|B|) and O(|P| ·2|B| · |Γ| ·2|P|·2|B|), respectively. Putting
all these estimations together, the global complexity of Algorithm 1 is O

(
|P|2 · 22|B| · |Γ| ·

|∆| · 25|P|·2|B|
)
.

9

