
Softw Syst Model (2016) 15:961–985
DOI 10.1007/s10270-015-0473-1

THEME SECTION PAPER

Model-checking software library API usage rules

Fu Song1 · Tayssir Touili2

Received: 5 November 2013 / Revised: 17 March 2015 / Accepted: 30 April 2015 / Published online: 19 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Modern software increasingly relies on using
third-party libraries which are accessed via application
programming interfaces (APIs). Libraries usually impose
constraints on how API functions can be used (API usage
rules) and programmers have to obey these API usage rules.
However, API usage rules often are not well documented
or documented informally. In this work, we show how to
use the SCTPL and SLTPL logics to precisely and formally
specify API usage rules in libraries, where SCTPL/SLTPL
can be seen as an extension of the branching/linear tempo-
ral logic CTL/LTL with variables, quantifiers and predicates
over the stack. This allows library providers to formally
describe API usage rules without knowing how their libraries
will be used by programmers. We propose an automated
approach to check whether programs using libraries violate
API usage rules or not. Our approach consists in modeling
programs as pushdown systems (PDSs) and checking API
usage rules by SCTPL/SLTPL model-checking for PDSs. To
make the model-checking procedure more efficient and pre-
cise, we propose an abstraction that reduces drastically the
size of the program model and integrate may-alias analysis
into our approach to reduce false alarms. Moreover, we char-
acterize two sublogics rSCTPL and rSLTPL of SCTPL and

Communicated by Prof. Einar Broch Johnsen and Luigia Petre.

B Fu Song
fsong@sei.ecnu.edu.cn

Tayssir Touili
touili@liafa.univ-paris-diderot.fr

1 Shanghai Key Laboratory of Trustworthy Computing,
National Trusted Embedded Software Engineering
Technology Research Center, East China
Normal University, Shanghai, China

2 LIAFA, CNRS and Université Paris Diderot, Paris, France

SLTPL that are preserved by the abstraction. We implement
our techniques in a tool and apply the tool to check sev-
eral open-source programs. Our tool finds several previously
unknown bugs in several programs. The may-alias analysis
avoids most of the false alarms that occur using SCTPL or
SLTPLmodel-checking techniques without may-alias analy-
sis.

Keywords Pushdown systems · Model-checking ·
Software API usage rules

1 Introduction

Most modern software increasingly relies on using third-
party libraries and frameworks provided by organizations in
order to shorten time to market. These libraries or frame-
works are accessed via Application Programming Interfaces
(APIs) which are sets of library functions (called API func-
tions) and usually impose constraints (API usage rules) on
how API functions can be used. Programmers have to obey
these constraints when calling API functions. However, most
of API usage rules are not well documented or documented
informally in the API documentation. It is easy to introduce
bugs using API functions. So, it is important to formally
describe and automatically check API usage rules.

Many works addressed this problem [7,25,27,28,31,33,
35–38,43,50,64,65,68]. However, their approaches either
cannot formally describe API usage rules in a precise way or
cannot automatically check API usage rules. In this work, we
propose a novel formalism that can formally and precisely
specify API usage rules without knowing how API functions
will be used by programmers and present an approach that
can automatically verify whether a program satisfies the API
usage rules or not. Our approach consists of (1) modeling

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0473-1&domain=pdf


962 F. Song, T. Touili

n1 : FILE* f1=fopen(“t1”,“w”);
n2 : FILE* f2=fopen(“t2”,“w”);
n3 : FILE* f3=fopen(“t3”,“w”);
n4 : if(f1) then
n5 : fclose(f1);
n6 : fclose(f3);

Fig. 1 File operations

programs as pushdown systems (PDSs), since PDSs are a
natural model of sequential programs [23] (the stack of PDSs
stores the calling procedures which allows us to check API
usage rules context sensitively), (2) formally specifying in a
precise manner API usage rules in SCTPL and SLTPL and
(3) automatically checking whether programs violate or not
API usage rules by SCTPL and SLTPL model-checking for
PDSs.

SCTPL can be seen as an extension of the CTPL logic
[32] with predicates over the stack content. CTPL logic
is an extension of the computation tree logic (CTL) [8]
with variables and quantifiers. In CTPL, propositions can be
predicates of the form p(x1, . . . , xm), where x1, . . . , xm are
constants or free variables that can get values from a finite
domain and can be universally or existentially quantified.
CTPL can specify API usage rules without knowing how
API functions will be used by programmers. For example,
consider the file operation API usage rule “The file should
be closed by calling the API function fclose whenever this
file is opened by calling fopen”. Closing opened files is very
important. Indeed, longtime running programs, such as web
servers, will occupy a huge amount of resources if opened
files are not closed. This API usage rule can be expressed
in CTL as ψ1 ≡ AG( f open �⇒ EF f close) (note that the
formula AG( f open �⇒ AF f close) does not express the
above statement, since if fopen returns a null1 file pointer,
then fclose should not be called). However, ψ1 cannot detect
the bug in Fig. 1, where the file pointed to by f2 will never
be closed. This is due to the fact that we cannot specify the
relation between the return value of fopen and the parameter
of fclose. To detect this bug, one approach is to specify this
rule as ψ2 ≡ AG(

∧3
i=1( fi = f open �⇒ EF f close( fi ))).

However, this formula is too special to specify this rule in the
library, since, e.g., replacing the variable f1 by f ′

1 breaksψ2.
Using CTPL, we can specify this rule as ψ3 ≡ ∀x AG(x =
f open(−,−) �⇒ EF f close(x)) stating that whenever a
file is opened and pointed to by some variable x , it should
be closed in the future, where − denotes a non-important
variable.

Yet, ψ3 cannot express the constraint that fclose is only
called when fopen returns a pointer to some file. Indeed,
fopen returns a null pointer when the file does not exist. In

1 Note that null is regarded as the constant 0.

n′
1 : FILE* f1=fopen(“t1”,“r”);

n′
2 : if(!f1) then{

n′
3 : fread(buf,1,4,f1);

n′
4 : fclose(f1);

Fig. 2 Modified file operations

this case, calling fclose induces an error. Therefore, the API
specification should be able to express the checking of return
value and fclose is called when the return value is not null.
The properties for checking return values are called error
handle in [2]. For this, we introduce an additional predicate
Test(x) which holds at a control point n iff x is tested at the
control point n. We can refine ψ3 into ψ4 ≡ ∀x AG

(
x =

f open(−,−) �⇒ AF(T est (x) ∧ EXAF f close(x))
)
. ψ4

states that whenever the function f open is called and x
stores its return value, one has to check the return value x
(i.e., Test(x)). After this, the file has to be closed in all the
future paths. Themotivation of usingTest(x) is that we cannot
predict how the return value will be checked. We therefore
coarsely specify that the return value is checked. But the exis-
tential path quantifier E in ψ4 cannot distinguish which path
is selected to validate AF f close(x). This may induces false
alarms. Let us consider the program shown in Fig. 2, which
contains a bug at line n′

4, as f close( f1) will be called if f1
points to null. But the program satisfiesψ4. To overcome this
problem,wewill addBoolean constraints intoCTPL. For this
example, we refineψ4 to the following formulaψ5.ψ5 states
that whenever the function call x = f open is made, whether
x is 0 or not should be checked. If x �= 0, then f close(x)
should eventually be called in all the future paths. In a similar
way, we also can specify that f close(x) should not be called
if x is 0.

ψ5 ≡ ∀x AG
(
x = f open(−,−) �⇒ AF(T est (x)

∧ (
EX(x �= 0 �⇒ AF f close(x))

)
)
)
.

Nonetheless, CTPL extended with Boolean constraints
cannot specify stack inspection properties which are impor-
tant [5]. Consider the API usage rule “Calling a function
proc1 in some procedure procmust be followed by a call to
the function proc2 before the procedure proc returns”. This
API usage rule cannot be specified in CTPL. To overcome
this problem,we use the SCTPL logic [52,53] (extendedwith
Boolean constraints) to precisely describe API usage rules.
SCTPL extends CTPL with predicates over the stack. Such
predicates are given in the form of regular expressions over
the stack alphabet and some free variables (which can also be
existentially and universally quantified). Using SCTPL, the
above rule can be specified as ∀l AG(

(proc1 ∧ Γ lΓ ∗) �⇒
AF(proc2 ∧Γ +lΓ ∗)

)
, where Γ lΓ ∗ and Γ +lΓ ∗ are regular

predicates. The subformula (proc1 ∧ Γ lΓ ∗) expresses that

123



Model-checking software library API usage rules 963

proc1 is called inside some procedure proc whose return
address is l (since the return addresses of the called proce-
dures are put into the stack when executing the program).
The above formula states that whenever proc1 is called in
some procedure proc whose return address is l (ensured by
Γ lΓ ∗), a function call to proc2 should be made where the
return address l is still in the stack, i.e., before the procedure
proc returns (this is ensured by Γ +lΓ ∗). Note that, in our
modeling, the topmost symbol of the stack of the PDS stores
the current control point and the rest of the stack stores the
return addresses of the calling procedures, i.e., the procedures
that have not returned yet.

Similarly, the Stack Linear Temporal Predicate Logic
(SLTPL) is an extension of LTL with variables, quantifiers,
Boolean constraints and predicates over the stack. SLTPL is
incomparable with SCTPL. The SCTPL formula ψ5 cannot
be expressed in SLTPL, while SCTPL also cannot express
some SLTPL formulas. Moveover, the complexity of SLTPL
model-checking is better than the complexity of SCTPL
model-checking [53,54]. From a practical point of view,
since LTL is considered by some users as more intuitive than
CTL [17,22], we believe that SLTPL will also be considered
more intuitive than SCTPL.

It is shown in [53,54] that model-checking of SCTPL and
SLTPL for PDSs is decidable. Thus, we can automatically
check whether a program violates or not API usage rules
by SCTPL/SLTPL model-checking for PDSs. To make the
verification of API usage rules more efficient, we introduce
the procedure-cutting abstraction, which is an abstraction
that drastically reduces the size of the program model by
removing some procedures that do not use the API functions
specified in the SCTPL/SLTPL formula. We also consider
rSCTPL and rSLTPL, two sublogics of SCTPL and SLTPL,
respectively, and show that the procedure-cutting abstraction
preserves all rSCTPL/rSLTPL formulas when the removed
procedures are terminating. rSCTPL together with rSLTPL
is sufficient to express all the API usage rules we met.
The procedure-cutting abstraction makes our approach more
efficient and scalable.

With SCTPL model-checking for PDSs without Boolean
constraints, we carried out preliminary experiments in [55].
In our preliminary experiments, several false alarms occurred
due to variable aliasing. For example, our techniques reported
a false negative when checking the program shown in Fig. 3
against the following file operation property

ψ6 ≡ ∀xA[x = f open(−,−)R¬ f read(−,−,−, x)].

ψ6 states that any file can be read by calling f read only
if this file is previously opened by calling f open. We can
see that this program does not satisfy ψ6. To solve this prob-
lem, one has to apply context-sensitive alias analysis which
computes an over-approximation of context-sensitive alias

l1 : void p1(){
l2 : ...
l3 : FILE* f1=fopen(“t1”,“r”);
l4 : if(f1) then{
l5 : stringread(buf1,f1);
l6 : fclose(f1);

} }
l7 : void p2(){
l8 : ...
l9 : FILE* f2=fopen(“t2”,“r”);
l10 : if(f2) then{
l11 : stringread(buf2,f2);
l12 : fclose(f2);

} }
l13 :void stringread(char* buf, FIlE* f){
l14 : fread(buf,1,10,f);}
l15 :void main(){
l16 : p1();
l17 : p2();
l18 :

Fig. 3 A simplified program from verbs

pairs, as context-insensitive alias analysis does not make any
sense for this example. Thus, we integrate may-alias analy-
sis of [44] into our techniques. In [44], may-alias pairs are
computed via solving the generalized reachability problemof
weighted pushdown systems [44]. May-alias result obtained
by solving the generalized reachability problem of weighted
pushdown systems are context-sensitive and is finitely repre-
sented by a weighted finite-state automaton. This is essential
to easily integrate the resulting context-sensitive may-alias
into our techniques due to the stack inspection capability
of SCTPL and SLTPL model-checking. In the experiment
of this work, most of the false alarms reported in [55] are
avoided thanks to the integration of may-alias analysis.

The main contributions of this paper are as follows:

1. We propose a novel approach to formally and precisely
specify API usage rules using two logics SCTPL and
SLTPL. SCTPL and SLTPL allow library providers to
formally describe API usage rules when implementing
the libraries.

2. Our approach can automatically check programs against
API usage rules by SCTPL and SLTPL model-checking
for PDSs and allow program developers to automated
verify API usage rules without any additional inputs, nor
program annotation, nor environment abstractions.

3. We propose a procedure-cutting abstraction. We show
that this abstraction preserves all rSCTPL and rSLTPL
formulas when the cut procedures are terminating. Our
abstraction reduces drastically the size of the program
model, which makes API usage rules verification more
efficient.

4. We implemented our techniques in a tool and applied it
to check several API usage rules on several open-source
programs. Our tool was able to find several previously

123



964 F. Song, T. Touili

unknown bugs in several well-known open-source pro-
grams such asNssl, Verbs, Acacia+,Walksat andGetafix.

Outline. Section 2 introduces the definitions of (weighted)
pushdown systems and shows how to model programs as
PDSs. Section 3 introduces the definitions of SCTPL and
SLTPL, gives an example that illustrates the way in which
properties can be expressed in SCTPL/SLTPL and compares
SCTPL/SLTPL toQBEC and finite-state automata. Section 4
briefly recalls how to perform may-alias analysis via solving
the generalized pushdown reachability problem of weighted
pushdown systems and shows how to integrate the may-
alias result into model-checking. Section 5 describes the
procedure-cutting abstraction and two sublogics rSCTPLand
rSLTPL. Section 6 discusses the experimental results. The
related work and the conclusion are given in Sects. 7 and 8.

This paper is the full version of [55]. In this full version,we
introduce Boolean constraints into SCTPL in order to over-
come the limitation of the existential path quantifier E and
integrate may-alias analysis into model-checking to avoid
false alarms that are found in our preliminary experiments
[55]. These effortsmake our approachmore precise. Besides,
we show how to use SLTPL to specify API usages which is
considered asmore intuitive than SCTPL in practice.We also
compare SLTPL/SCTPL to two classic API specification for-
malisms, QBEC [37] and finite-state automata.

2 Formal model

This section recalls the definitions of pushdown systems,
weighted pushdown systems and its generalized pushdown
reachability problem [44]. We use the approach of [23] to
model a sequential program as a pushdown system.

2.1 Pushdown systems

A Pushdown System (PDS) is a tuple P = (P, Γ,Δ), where
P is a finite set of control locations, Γ is the stack alphabet
and Δ ⊆ (P × Γ ) × (P × Γ ∗) is a finite set of transition
rules.

A configuration 〈p, ω〉 of P is an element of P ×Γ ∗. We
write 〈p, γ 〉 ↪→ 〈q, ω〉 instead of ((p, γ ), (q, ω)) ∈ Δ. The
successor relation �P⊆ (P × Γ ∗) × (P × Γ ∗) is defined
as follows: If 〈p, γ 〉 ↪→ 〈q, ω〉, then 〈p, γω′〉 �P 〈q, ωω′〉
for every ω′ ∈ Γ ∗.

A path π = c0c1c2 . . . of the PDS is a sequence of con-
figurations such that ci+1 is an immediate successor of the
configuration ci , i.e., ci �P ci+1, for every i ≥ 0. Let
π(i) denote the configuration ci and π i denote the suffix
ci ci+1 . . .. Let CP denote the set of all the configurations of
P .

An idempotent semiring W is a tuple (S,⊕,⊗, 0, 1),
where S is a set, 0 and 1 are elements of S and the combine
operation⊕ and the extend operation⊗ are binary operators
on S such that

– (S,⊕) is a commutative monoid with neutral element 0,
and ⊕ is idempotent, i.e., for all s ∈ S, s ⊕ s = s

– (S,⊗) is a monoid with neutral element 1,
– ⊗ distributes over ⊕, i.e., for all s, s1, s2 ∈ S,

s ⊗ (s1 ⊕ s2) = (s ⊗ s1) ⊕ (s ⊗ s2),

(s1 ⊕ s2) ⊗ s = (s1 ⊗ s) ⊕ (s2 ⊗ s),

– 0 is an annihilator for ⊗, i.e., for all s ∈ S:

s ⊗ 0 = 0 = 0 ⊗ s.

We define a binary relation � on the semiring S: for all
s1, s2 ∈ S, s1 � s2 iff ∃s ∈ S : s1 ⊕ s = s2. A semiring is
bounded if there is no infinite ascending chains in the relation
�. In a bounded semiring (S,⊕,⊗, 0, 1), (S,⊕) is a meet
semilattice with no infinite ascending chains.

Definition 1 A weighted pushdown system (WPDS) is a
tuple WP = (P,W, l), where P = (P, Γ,Δ) is a PDS,
W = (S,⊕,⊗, 0, 1) is a semiring, and l : Δ → S is a func-
tion that assigns to each transition rule in Δ an element of
S.

The transition relation �⇒⊆ CP × Δ × CP of WP is
defined as for every transition rule r = pγ ↪→ p′ω ∈ Δ and
every word ω′ ∈ Γ ∗,

pγω′ r�⇒ p′ωω′.

Intuitively, suppose WP is at the configuration pγ u and
there is a transition rule r = pγ ↪→ p′ω ∈ Δ, then WP
can move from the control state p to p′ and pop the topmost
symbol γ from the stack, push the word ω onto the stack by
the transition rule r . The weight of this moving is l(r).

Given a sequence σ = r1 . . . rn ∈ Δ∗ of transition rules,
by abuse of notation, let l(σ ) = l(r1) ⊗ · · · ⊗ l(rn) denote
the weight of the sequence σ .

Let �⇒∗⊆ CP × Δ∗ × CP be the reachability relation
defined as the smallest relation such that

– c
ε

�⇒∗ c, for all c ∈ CP ;
– c

rσ
�⇒∗ c2 if there exists c1 ∈ CP such that c

r�⇒ c1 and

c1
σ

�⇒∗ c2.

Given two configurations c and c′, let trace(c, c′) be the
set of sequences of transition rules such that

123



Model-checking software library API usage rules 965

c
σ

�⇒∗ c′ iff σ ∈ trace(c, c′).

Given a regular set of configurations (defined hereafter)
C (i.e., C can be represented by a finite-state automata [13]),
the generalized pushdown successor (GPS) problem is to find
for every configuration c ∈ CP ,

FWP (C, c) =
⊕

{l(σ ) | σ ∈ trace(c′, c), c′ ∈ C}.

2.2 P-automata

Definition 2 Given a weighted pushdown system WP =
(P,W, l), a P-automaton is a structure WA = (A,W, l ′)
such that A = (Q, Γ, δ, I, Q f ) is a finite-state automaton,
where Q is a finite set of states, δ ⊆ Q × Γ × Q a transition
relation, I and Q f are sets of initial and final states, respec-
tively, W = (S,⊕,⊗, 0, 1) is a semiring and l ′ : δ → S is a
labeling function that assigns to each rule in δ an element of
S.

Given a sequence r0 · · · rn of rules of δ, by abuse of nota-
tion, let l ′(r0 · · · rn) = rn ⊗ · · · ⊗ r0. Given a configuration
c = pγ1 · · · γn ∈ P × Γ ∗, let traceWA(c) denote the
set of all the sequences of transitions {r0 · · · rn−1 | r0 =
(q0, γ1, q1), . . . , rn−1 = (qn−1, γn, qn) ∈ δ, q0 = p ∈
I, qn ∈ Q f }.

We define

BWA(c) =
⊕

{l ′(σ ) | σ ∈ traceWA(c)},

to be the weight of the configuration c. A configuration c
is accepted by WA if BWA(c) �= 0. Let L(WA) denote
the set of all the accepted configurations of WA. A set of
configurations C is called regular if there a is P-automaton
such that L(WA) = C .

Theorem 1 [45,56] Given a WPDS WP = (P,W, l) such
that P = (P, Γ,Δ) is a PDS, W = (S,⊕,⊗, 0, 1) is a
bounded idempotent semiring, if C is a regular set of config-
urations, we can compute aP-automatonWA in polynomial
time such that for every configuration c ∈ L(WA),

BWA(c) = FWP (C, c).

2.3 From programs to pushdown systems

Given a sequential program represented by a control flow
graph (CFG) such that statements are in the form of static
single assignments, we construct a pushdown system using
the standard approach [23] where the stack alphabet Γ cor-
responds to the control points of the program (i.e., the nodes
of the CFG); the set P of control locations is a singleton set
containing p0 (since we do not keep information about the

variables of the program); and every edge n
stmt−→ n′ in the

CFG is represented by the following transition rule of the
PDS:

– 〈p0, n〉 ↪→ 〈p0, n′〉 if the statement stmt is neither a
function call nor a return;

– 〈p0, n〉 ↪→ 〈p0, f0n′〉, if the statement stmt is a function
call y = f (p1, . . . , pm), where f0 is the entry point of
the function f . n′ is regarded as the return address;

– 〈p0, n〉 ↪→ 〈p0, ε〉 if the statement stmt is a return.

Intuitively, a configuration 〈p0, nω〉 where n is a control
point expresses that the run of the program is at the control
point n and ω ∈ Γ ∗ represents the return addresses of the
calling procedures. Using this translation, a run of the PDS
mimics a run of the program.

3 API usage rules specification

In this section, we introduce the extensions of SCTPL [53]
and SLTPL [54] with Boolean constraints and show how to
specify API usage rules in these two logics.

3.1 Environments, predicates and regular variable
expressions

Hereafter, we fix the following notations. Let X = {x1,
x2, . . .}be afinite set of abstract variables rangingover afinite
domain D. In our setting, abstract variables in X are used in
SCTPL/SLTPL formulas. While D is a set of program vari-
ables occurring in the given program. Let B : X ∪ D −→ D
be an environment function that assigns a value v ∈ D to
each variable x ∈ X and such that B(v) = v for every
v ∈ D. B[x ← v] denotes the environment function such
that B[x ← v](x) = v and B[x ← v](y) = B(y) for every
y �= x . Let B be the set of all the environment functions.

Let AP be a finite set of atomic propositions, APX be a
finite set of atomic predicates in the form of a(x1, . . . , xm)

such that a ∈ AP, xi ∈ X ∪ D for every 1 ≤ i ≤ m, or
in the form of x � n such that x ∈ X , n is an integer, and
� ∈ {==,>}. Let APD be a finite set of atomic predicates of
the form a(α1, . . . , αm) such that a ∈ AP, αi ∈ D for every
1 ≤ i ≤ m, or in the form of d � n or ¬(d � n) such that
d ∈ D, n is an integer, and � ∈ {==,>}. x � n ∈ APX is
called Boolean constraint, and d�n ∈ APD is called Boolean
expression.

W.l.o.g., we let ¬¬(y � n) denote (y � n), y �= n denote
¬(y == n) and y ≥ n denote y > n−1. For example, x �= 0
used in ψi in Sect. 1 denotes ¬(x == 0), where x == 0
represents that the value of the programvariableB(x) is 0. For
every boolean expressions b, b′ ∈ APD, b ∧ b′ is satisfiable

123



966 F. Song, T. Touili

iff b1 ∧ b′
1 is true, where b1, b

′
1 are two Boolean expressions

obtained from b, b′ by replaced all the programvariables d by
some integers cd . The satisfiability of a Boolean expression
can be checked by a SAT Solver.

Given aPDSP = (P, Γ,Δ), letR be afinite set of regular
variable expressions over X ∪ Γ defined by:

e : : = ∅ | ε | a ∈ X ∪ Γ | e + e | e · e | e∗.

The language L(e) of a regular variable expression e is a
subset of P × Γ ∗ × B defined inductively as follows:

– L(∅) = ∅;
– L(ε) = {(〈p, ε〉,B) | p ∈ P,B ∈ B};
– L(x), where x ∈ X is the set {(〈p, γ 〉,B) | p ∈ P, γ ∈

Γ,B ∈ B : B(x) = γ };
– L(γ ), where γ ∈ Γ is the set {(〈p, γ 〉,B) | p ∈ P,B ∈

B};
– L(e1 + e2) = L(e1) ∪ L(e2);
– L(e1 ·e2) = {(〈p, ω1ω2〉,B) | (〈p, ω1〉,B)∈ L(e1); (〈p,

ω2〉,B) ∈ L(e2)};
– L(e∗) = {(〈p, ω〉,B) | B ∈ B and ω = ω1 · · ·ωm, s.t.

∀i, 1 ≤ i ≤ m, (〈p, ωi 〉,B) ∈ L(e)}.

For example, (〈p, γ1γ2γ2〉,B) is an element of L(γ1x∗)when
B(x) = γ2.

3.2 Stack computation tree predicate logic

A SCTPL formula is a CTL formula where predicates and
regular variable expressions are used as atomic propositions
and variables can be quantified. Regular variable expressions
are used to express predicates on the stack content of the
PDS. Formally, the set of SCTPL formulas is given by (where
x ∈ X , a(x1, . . . , xm) ∈ APX , b ∈ APX and e ∈ R):

ϕ : : = a(x1, . . . , xm) | e | b | ¬ϕ | ϕ ∧ ϕ | ∀x ϕ | EXϕ |
E[ϕUϕ].

Given a PDS P = (P, Γ,Δ) s.t. Γ ⊆ D, let λ : APD →
2Γ ∗

be a labeling function that assigns a regular set of words
over Γ to a predicate. Let c ∈ P × Γ ∗ be a configuration of
P . P satisfies a SCTPL formula ψ in c, denoted by c |�λ ψ ,
iff there exists an environment B ∈ B s.t. c |�B

λ ψ , where
c |�B

λ ψ is defined by induction as follows: where � ∈ {==
,>},

– c |�B
λ a(x1, . . . , xm) iff ω ∈ λ(a(B(x1), . . . ,B(xm)))

and c = 〈p, ω〉;
– c |�B

λ e iff (c,B) ∈ L(e);
– c |�B

λ x � n iff for every Boolean constraint b such that
ω ∈ λ(b), B(x) � n ∧ b is satisfiable, where c = 〈p, ω〉;

– c |�B
λ ψ1 ∧ ψ2 iff c |�B

λ ψ1 and c |�B
λ ψ2;

– c |�B
λ ∀x ψ iff ∀v ∈ D, c |�B[x←v]

λ ψ ;
– c |�B

λ ¬ψ iff c �|�B
λ ψ ;

– c |�B
λ EX ψ iff there exists a successor c′ of c s.t. c′ |�B

λ

ψ ;
– c |�B

λ E[ψ1Uψ2] iff there exists a path π = c0c1 . . . of
P with c0 = c s.t. ∃i ≥ 0, ci |�B

λ ψ2 and ∀0 ≤ j <

i, c j |�B
λ ψ1.

Intuitively, c |�B
λ ψ holds iff the configuration c satisfies

ψ under the environment B. We will freely use the following
abbreviations: AXψ = ¬EX(¬ψ), EGψ = E[ψU f alse],
EFψ = E[trueUψ], AGψ = ¬EF(¬ψ), AFψ =
¬EG(¬ψ), A[ψ1Uψ2] = ¬E[¬ψ2U(¬ψ1 ∧ ¬ψ2)] ∧
¬EG¬ψ2, A[ψ1Rψ2] = ¬E[¬ψ1U¬ψ2], E[ψ1Rψ2] =
¬A[¬ψ1U¬ψ2], ψ1 ∨ ψ2 = ¬(¬ψ1 ∧ ¬ψ2) and ∃xψ =
¬∀x¬ψ .

Remark 1 In themodel-checking community [23], the label-
ing function for the program model is usually defined in the
form of λ : Γ → 2AP which assigns to each program loca-
tion a set of atomic propositions. In this setting, the validity
of atomic propositions depends only on the locations. In
order to integrate the context-sensitive may-alias analysis
into SCTPL/SLTPL model-checking in which the may-alias
pairs depend on the calling history (cf. Sect. 4), we define the
labeling function as λ : APD → 2Γ ∗

which is more general
than λ : Γ → 2AP (cf. [24]).

Theorem 2 SCTPL model-checking for PDSs is decidable
[53].

Intuitively, given a SCTPL formula and a PDS, check-
ing whether the PDS satisfies the formula or not is reduced
to the emptiness problem of an alternating PDS with Büchi
acceptance (ABPDS), where each valuation of variables are
represented by a relation. Each computation of the ABPDS
mimics the checking procedure of the SCTPL formula on
the transition system of the PDS. This is an extension of
the automata-theoretic approach of CTL model-checking on
Kripke structures to PDSs. The emptiness problem of the
ABPDS is solved by computing a kind of finite automaton
by readapting the saturation procedure of [13], such that the
finite automaton accepts exactly all the configurations of the
ABPDS from which the ABPDS has an accepting run. More
details can be found in [53].

3.3 The stack linear temporal predicate logic

A SLTPL formula is a LTL formula where predicates and
regular variable expressions are used as atomic propositions
and variables can be quantified. Formally, the set of SLTPL
formulas is given by (where x ∈ X , a(x1, . . . , xm) ∈ APX ,
b ∈ APX and e ∈ R):

ϕ : : = a(x1, . . . , xm) |b |e |¬ϕ | ϕ ∧ ϕ | ∀x ϕ | Xϕ | ϕUϕ.

123



Model-checking software library API usage rules 967

The other standard operators of LTL can be expressed by
the above operators similar as for SCTPL.

Given a PDS P = (P, Γ,Δ), let λ : APD → 2Γ ∗
be a

labeling function that assigns a regular set of words over Γ

to each predicate. Let c = 〈p, ω〉 be a configuration of P .
P satisfies a SLTPL formula ψ in c (denoted by c |�λ ψ)
iff there exists an environment B ∈ B s.t. c satisfies ψ under
B (denoted by c |�B

λ ψ). c |�B
λ ψ holds iff P has a path π

starting from c s.t. π satisfies ψ under B (denoted by π |�B
λ

ψ), where π |�B
λ ψ is defined by induction as follows: where

� ∈ {==,>}

– π |�B
λ a(x1, . . . , xm) iff ωλ

(
a(B(x1), . . . ,B(xm))

)
and

c = 〈p, ω〉;
– π |�B

λ e iff (π(0),B) ∈ L(e);
– π |�B

λ x � n iff for every Boolean constraint b such that
ω∈λ(b),B(x)� n ∧ b is satisfiable, whereπ(0)=〈p, ω〉;

– π |�B
λ ¬ψ iff π �|�B

λ ψ ;
– π |�B

λ ψ1 ∧ ψ2 iff π |�B
λ ψ1 and π |�B

λ ψ2;

– π |�B
λ ∀x ψ iff for every v ∈ D, π |�B[x←v]

λ ψ ;
– π |�B

λ Xψ iff π1 |�B
λ ψ ;

– π |�B
λ ψ1Uψ2 iff there exists i ≥ 0 s.t. π i |�B

λ ψ2 and
∀ j, 0 ≤ j < i : π j |�B

λ ψ1.

Theorem 3 [54] SLTPL model-checking for PDSs is decid-
able.

The idea is similar to the SCTPL model-checking prob-
lem for PDSs. We reduce the SLTPL model-checking for
PDSs to the emptiness problem of PDSs with Büchi accep-
tance (BPDS), where each computation of BPDSmimics the
checking procedure of the SLTPL formula on a path of the
PDS. More details can be found in [54].

3.4 Extracting predicates for API specifications

API usage rules often state properties concerning the order
of API function calls and return value tests. Indeed, usually,
after making a call to an API function, one has to check
whether the call was successful. For example, when fopen
is called to open a file “t1”, one has to make sure that the
call was successful or not, i.e., that the file “t1” exists (as
done in Fig. 1, Line n4). Thus, to check API usage rules,
we need to extract predicates about API function calls and
return value tests. To do this, for every API function call y =
f (p1, . . . , pm) at a control point nwhere y denotes the return
value2 and for every 1 ≤ i ≤ m, pi denotes the i th parame-
ter of the function f , we add the predicate f (p1, . . . , pm, y)
to APD and associate this predicate to the control point
n (i.e., we let λ( f (p1, . . . , pm, y)) = {nω | ω ∈ Γ ∗})
2 W.l.o.g., we assume that each function call has a return value assigned
to some variable.

which denotes that the proposition y = f (p1, . . . , pm)

holds at the control point n. By abuse of notation, such
predicates f (p1, . . . , pm, y) will also be denoted by y =
f (p1, . . . , pm).
For every Boolean expression b in a conditional statement

(i.e., if-then-else) at a control point n such that a return value
y of some function call is used in b, we add the proposi-
tion Test(y) in APD and associate this predicate to n (i.e., we
let λ(T est (y)) = {nω | ω ∈ Γ ∗}) which denotes that y is
checked (T est (y)holds) at the control location n. More-
over, if nt is next control point of n when b is true, we
associate theBoolean expressionb to the control pointnt , i.e.,
λ(b) = {ntω | ω ∈ Γ ∗}. Similar, if n f is next control point
of n when b is false, we associate the Boolean expression
¬b to the control point n f , i.e., λ(¬b) = {n f ω | ω ∈ Γ ∗}.
W.l.o.g., we suppose that the return value of some API func-
tion is immediately checked in the same procedure where the
API function is called. This assumption will not restrict the
usefulness of the libraries, and it is recommended to check the
return value immediately after the function call. Without this
assumption, the techniques also work. But with this assump-
tion, we only need to associate, respectively, the Boolean
expressions b and ¬b to the next control points nt and n f

of n.
As mentioned previously, Boolean expressions are used

to differentiate the paths selected by the existential path
quantifier E. A configuration 〈p0, ntω〉 satisfies a Boolean
expression b′ in a SLTPL/SLTPL formula iff b′ ∧ b is satisfi-
able for the Boolean expression b associated with nt . Then,
〈p0, ntω〉 satisfying b′ means that the path from n to nt is
selected. Conversely, the path from n to n f is selected. The
formalisms of T est and Boolean expressions are motivated
by the fact that in practice, a programmer has several ways
to check whether a return value of an API function is good or
not. Thus, it is unpredictable. For example, checkingwhether
the return value x of calling f open is null or not can be done
by checking x == null, x �= null, x > 0, x == 0, etc.

Example Let us consider the fragment of Fig. 1 and the
SCTPL formula ψ3 described in Sect. 1. Then, we have:

– Γ = {n1, n2, n3, n4, n5, n6, n7, f o0, f c0} is the stack
alphabet, where n7 is the next control point of n6, and f o0
(resp. f c0) is the entry point of f open (resp. f close);

– R = ∅, since ψ3 does not have any regular predicate;
– AP = { f open, f close, T est} is the set of atomic
propositions corresponding to the API functions in the
program;

– APD = { f1 �= 0, f1 == 0, T est ( f1), f close( f1),
f close( f3), fi = f open(“ti”, “w”) | 1 ≤ i ≤ 3} is
the set of atomic predicates appearing in the program;3

3 We reformulate i f ( f1) to i f ( f1 �= 0) and i f (¬ f1) to i f ( f1 == 0).

123



968 F. Song, T. Touili

〈p0, n1〉 ↪→ 〈p0, fo0n2〉
〈p0, n2〉 ↪→ 〈p0, fo0n3〉
〈p0, n3〉 ↪→ 〈p0, fo0n4〉
〈p0, n4〉 ↪→ 〈p0, n5〉
〈p0, n4〉 ↪→ 〈p0, n6〉
p , n ↪ p , fc n

λ(f1 = fopen(“t1”, “w”)) = {n1ω | ω ∈ Γ∗}
λ(f2 = fopen(“t2”, “w”)) = {n2ω | ω ∈ Γ∗}
λ(f3 = fopen(“t3”, “w”)) = {n3ω | ω ∈ Γ∗}
λ(Test(f1)) = {n4ω | ω ∈ Γ∗}
λ(fclose(f1)) = {n5ω | ω ∈ Γ∗}
λ(fclose(f3)) = {n6ω | ω ∈ Γ∗}

(a) (b)

Fig. 4 a The labeling function λ and b transition rules Δ

1 i n t s , c , ns ;
2 i f ( ( s= s o c k e t ( AF INET ,SOCK STREAM,0))== − 1)
3 r e t u r n ;
4 i f ( b ind ( s ,& s add r , l e n )== −1)
5 { c l o s e ( s ) ; r e t u r n ; }
6 i f ( l i s t e n ( s ,5 )== − 1){c l o s e ( s ) ; r e t u r n ; }
7 wh i l e ( 1 ) {
8 ns= a c c e p t ( s ,& c add r , &s i z e ) ;
9 do {

10 r e cv ( ns , da t a , 2 5 6 , 0 ) ;
11 . . .
12 send ( ns , da t a , 2 5 6 , 0 ) ;
13 i f ( cond1 ) { c l o s e ( ns ) ; r e t u r n ; }
14 }wh i l e ( cond2 )
15 }
16 c l o s e ( s ) ;

Fig. 5 TCP server side

– D = {“w”, “ti”, fi | 1 ≤ i ≤ 3} is the finite domain
– APX = {x = f open(y, z), f close(x)} is the set of

atomic predicates appearing in ψ3;
– The labeling function λ is shown in Fig. 4a;
– The set of transition rules Δ of the PDS modeling this
fragment is shown in Fig. 4b.

3.5 An illustrating example

To illustrate our approach, we show how to specify the API
usage rules for the GNU socket library.

3.5.1 Description of the socket library

The socket library implements a generalized interprocess
communication channel. It providesTCPandUDPProtocols.
As shown in Fig. 5, a server-side program using the TCP
protocol should first create a socket s by calling socket with
SOCK_STREAM as second parameter, then bind s to some
address by calling bind and listen to the address by calling
listen. When the server receives a connection request, it will
create a new socket ns by calling accept. Then, the server can
communicate with the client by calling send and recv via the
socket ns. Finally, s and ns should be destroyed by calling
close.

1 i n t s ;
2 i f ( ( s= s o c k e t ( AF INET ,SOCK STREAM,0))== − 1)
3 r e t u r n ;
4 . . .
5 c onne c t ( s ,& s add r , l e n )
6 do {
7 send ( s , da t a , 2 5 6 , 0 ) ;
8 . . .
9 r e cv ( s , da t a , 2 5 6 , 0 ) ;
10 }wh i l e ( cond3 )
11 c l o s e ( s ) ;

Fig. 6 TCP client side

1 i n t s ;
2 i f ( ( s= s o c k e t ( AF INET , SOCK DGRAM,0))== − 1)
3 r e t u r n ;
4 i f ( b ind ( s ,& s add r , s i z e o f ( s a d d r ))== − 1)
5 { c l o s e ( s ) ; r e t u r n ; }
6 do {
7 r ecv f rom ( s , da t a ,256 ,0 ,& c add r , l e n ) ;
8 s e nd t o ( s , da ta ,256 ,0 ,& c add r , l e n ) ;
9 }wh i l e ( cond4 )
10 c l o s e ( s ) ;

Fig. 7 UDP server side

1 i n t s ;
2 i f ( ( s= s o c k e t ( AF INET ,SOCK DGRAM,0))== − 1)
3 r e t u r n ;
4 do ( 1 ) {
5 s e nd t o ( s , da t a ,256 ,0 ,& addr , l e n ) ;
6 . . .
7 r e cv f rom ( s , da t a ,256 ,0 ,& addr , l e n ) ;
8 }wh i l e ( cond5 )
9 c l o s e ( s ) ;

Fig. 8 UDP client side

Figure 6 shows a typical application of the TCP protocol
at the client side. It connects to a server by calling connect
after creating the socket s. Then, it can communicate with
the server by calling send and recv via the socket s. Finally,
s should be destroyed by calling close.

The server-side program using the UDP protocol should
create a socket s by calling socket with SOCK_DGRAM as
second parameter as shown in Fig. 7.After that, it should bind
s to some address by calling bind. Then, it can communicate
with a client by calling recvfrom and sendto via s. Finally,
the socket s should be closed by calling close. The client-
side program using the UDP protocol can communicate with
a server by calling recvfrom and sendto via a socket s after
its creation. Figure 8 is a typical implementation of the UDP
protocol at the client side.

123



Model-checking software library API usage rules 969

Table 1 A set of API usage rules of the Socket Library in SCTPL

No. Rule

r1 ∀y ∀l AG
((

y = socket (−,−,−) ∧ Γ lΓ ∗) �⇒ AF
(
T est (y) ∧ Γ lΓ ∗ ∧ EX AF close(y)

))

r ′
1 ∀y ∀l AG

((
y = socket (−,−,−) ∧ Γ lΓ ∗) �⇒ AF

(
T est (y) ∧ Γ lΓ ∗ ∧ EX(y �= −1 �⇒ AF close(y))

))

r2 ∀y A[y = socket (−,−,−) R ¬bind(y,−,−)]
r3 ∀y A[listen(y,−) R ¬accept (y,−,−)]
r4 ∀y A[y = socket (−, SOCK_ST RE AM,−) R ¬connect (y,−,−)]
r5 ∀y A[(y = socket (−, SOCK_ST RE AM,−) ∧ A[bind(y,−,−) R ¬listen(y,−)]) R ¬listen(y,−)]
r6 ∀y A[connect (y,−,−) ∨ y = accept (−,−,−) R ¬send(y,−,−,−)]
r7 ∀y A[connect (y,−,−) ∨ y = accept (−,−,−) R ¬recv(y,−,−,−)]
r8 ∀y A[y = socket (−, SOCK_DGRAM,−) R ¬(sendto(y,−,−,−,−,−) ∨ recv f rom(y,−,−,−,−,−))]
r9 ∀y A[sendto(y,−,−,−,−,−) ∨ bind(y,−,−) R ¬recv f rom(y,−,−,−,−,−)]

3.5.2 Specifying the socket library API usage rules in
SCTPL

Table 1 shows some SCTPL formulas describing some API
usage rules of the socket library. Let us consider the API
usage rule “The return value of socket should be checked
immediately after the call to socket is made, and after a
socket is created, this socket should be destroyed in all the
future paths”. We specify this rule by the SCTPL formula
r1 as shown in Table 1 in our previous work [55]. r1 states
that whenever the call to socket is made in a procedure proc
whose return address is l (the regular predicateΓ lΓ ∗ ensures
that the return address of the procedure proc is l), the return
value stored in the variable y should be eventually checked
in all the future paths (i.e., Test(y)) inside this procedure (this
is ensured by the fact that the stack is still of the form Γ lΓ ∗
when the test of y ismade). After this test, the socket y should
be eventually closed in all the future paths (this is ensured
byEXAF close(y)). With Boolean constraints introduced in
this work, we now can improve the precision of the specifi-
cation as r ′

1 shown in Table 1. r
′
1 states that whenever the call

to socket is made in a procedure proc whose return address
is l, the return value stored in the variable y should be even-
tually checked in all the future paths (i.e., Test(y)) inside this
procedure. After this test, the socket y should be eventually
closed in all the future paths if the creation of the socket is
successful, i.e., y �= −1. Notice that this formula cannot be
expressed in SLTPL. There are many such formulas that can-
not be expressed in SLTPL. The other rules in Table 1 are
explained as follows.

The formula r2 specifies that a socket y should be created
(y = socket (−,−,−)) prior to binding the socket y to some
address (bind(y,−,−)),where−matches any constant (i.e.,
a variable quantified by ∀). r3 is similar to r2. r4 states that
any occurrence of connect (y,−) should be preceded by
an occurrence of y = socket (−, SOCK_ST RE AM,−)

using the TCP protocol. The formula r5 specifies that any
occurrence of listening to a socket y (listen(y,−)) should
be preceded by an occurrence of creating the socket y using
the TCP protocol (y = socket (−, SOCK_ST RE AM,−)),
and the socket y shouldbebound to someaddress (bind(y,−,

−)) before listening. The formula r6 states that before send-
ing a data (send(y,−,−,−)) via a socket y, the socket
y should be connected either to the target server at the
client side (connect (y,−,−)) or the socket created by y =
accept (−,−,−) at the server side. r7 is similar. r8 states
that the socket should be created using the UDP protocol
(y = socket (−, SOCK_DGRAM,−)) prior to sending
(sendto(y,−,−,−,−)) or receiving (recv f rom(y,−,−,

−,−)) some data using the UDP protocol. The formula r9
specifies that before receiving (recv f rom(y,−,−,−,−))
some data using the UDP protocol, one has to send some
data (sendto(y,−,−,−,−)) to the server at the client side
or bind (bind(y,−,−)) the socket to some address at the
server side. Since using the UDP protocol, no connection
is created and the client sends data by specifying the target
address in the third parameter of the function sendto. After
this, the client can receive data from the server. The server
can send data only after receiving the client address from
some client.

3.5.3 Specifying the socket library API usage rules in
SLTPL

In this section, we illustrate how to express API usage rules
of the GNU socket library in SLTPL. Table 2 gives 4 SLTPL
formulas of API usage rules.

The formula τ1 states that whenever bind is called to
bind the socket to some address in a procedure whose return
address is l, the user has to check whether the binding is
correct before this procedure returns. τ2 and τ3 are similar
to τ1. The formula τ4 specifies that the new socket cre-

123



970 F. Song, T. Touili

Table 2 A set of API usage
rules of the Socket Library in
SLTPL

No. Rule

τ1 ∀y ∀l G (
y = bind(−,−,−) ∧ Γ lΓ ∗ �⇒ F (T est (y) ∧ Γ lΓ ∗)

)

τ2 ∀y ∀l G (
y = listen(−,−) ∧ Γ lΓ ∗ �⇒ F (T est (y) ∧ Γ lΓ ∗)

)

τ3 ∀y ∀l G (
y = connect (−,−,−) ∧ Γ lΓ ∗ �⇒ F (T est (y) ∧ Γ lΓ ∗)

)

τ4 G ∀y (
y = accept (−,−,−) �⇒ F close(y)

)

ated by y = accept (−,−,−) should be eventually closed
(close(y)) in all the future paths.

3.5.4 Checking the API usage rules

Consider the program in Fig. 5. If cond1 is true (Fig. 5: line
13), the socket s will never be closed. r1 or r ′

1 can detect
this bug by model-checking the program against r1 or r ′

1.
Consider the program in Fig. 6, if the client managed to con-
nect to a server which only supports the UDP protocol as in
Fig. 7, the connection at line 5 of Fig. 6 will fail, then sending
(Fig. 6: line 7) or receiving (Fig. 6: line 9) some data via the
socket s will induce an error. This error can be detected by
checking the SLTPL formula τ3.

3.6 Expressiveness of SCTPL and SLTPL

In this section, we compare the expressiveness of SCTPL
and SLTPL with some other well-known formalisms for API
usage rule specification.

ComparisonwithQBEC:QBEC is a quantified binary tem-
poral logic with equality constraints which is used to specify
API usage rules [37]. We compare SLTPL/SCTPL to QBEC,
as QBEC includes several classes of API specifications (cf.
[37]).

In QBEC, an event predicate combines a procedure name
with potential constraints on the parameter values or return
value. Formally, an event is a tuple t = [ f, 0, . . . , n] with
equality constraints, f denotes the function name, the con-
straint t[0] = c denotes the return value of f is c, t[i] = ci
for i : 1 ≤ i ≤ n denotes that the (i)th parameter of f
is ci . For example, the event [ f open, 0, 1, 2] with equality
constraint predicates t[0] = f1 ∧ t[1] = “e”∧ t[2] = “r” is
true at a control point iff the function f1 = f open(“e”, “r”)
is called at this control point.

QBEC consists of two temporal operators: the eventual
operator and the alternation operator. But the subformulas
of −→ and ←− should be events, i.e., QBEC does not allow
temporal operators nesting. Formally, t1

∗−→ t2 (forward
eventual operator) represents the rule that any occurrence of
the event t1 must eventually be followed by an occurrence of

the event t2. Similarly, t2
∗←− t1 (backward eventual oper-

ator) represents the rule that any occurrence of t1 must be
preceded by an occurrence of t2. t1

a−→ t2 (forward alter-

nating operator) represents the rule that any occurrence of
t1 must eventually be followed by an occurrence of t2 and
an occurrence of t1 cannot be followed by another occur-
rence of t1 before occurrence of t2. t2

a←− t1 (backward
alternating operator) is defined similar. QBEC allows quan-
tifier ∀ to quantify over variables that occur in an event. For
example, ∀x[x, f open, “e”, “r”] −→ [−, f close, x] spec-
ifies that for any x , x = f open(“e”, “r”) should be followed
by f close(x). The semantics of QBEC formulas are inter-
preted over a trace of a program.

The events of QBEC can be presented as predicates in
SLTPL, and the eventual operator and the alternating operator
can also be represented by temporal operators in SLTPL, as
well as quantifier ∀. Thus, we can show that:

Theorem 4 SLTPL is more expressive than QBEC.

Proof First, we show that every QBEC formula can be
expressed by an equivalent SLTPL formula. An event
[ f, 0, . . . , n] with a set of equality constraint predicates C
can be represented by predicate f (y1, . . . , yn, y0) such that
for every i : 0 ≤ i ≤ n, yi = c if t[i] = c; otherwise,
yi = −.

t1
∗−→ t2 is represented byG(q1 �⇒ Fq2), where q1 and

q2 are predicates corresponding to t1 and t2, respectively.

t2
∗←− t1 is represented by q2R¬q1, where q1 and q2 are

predicates corresponding to t1 and t2, respectively. t1
a−→ t2

is represented by G(q1 �⇒ X(¬q1Uq2)), where q1 and q2
are predicates corresponding to t1 and t2, respectively. t2

a←−
t1 is represented by (q2 ∧ X(¬q2Uq1))R¬q1, where q1 and
q2 are predicates corresponding to t1 and t2, respectively.
∀x1 . . . ∀xnψ such that ψ is a temporal formula of QBEC is
represented by ∀x1 . . . ∀xnψ ′, where ψ ′ is a SLTPL formula
corresponding to the QBEC formula ψ .

Strict inclusion follows from that fact that QBEC dis-
allows the nesting of temporal operators. For example,
the formula SLTPL FG(q1 �⇒ X(¬q1Uq2)) cannot be
expressed by any QBEC formula. ��
Comparison with finite-state automata: Besides QBEC,
finite-state automata and its extensions are well-adapted for-
malisms to specify API usage rules. The expressiveness of
LTL and finite-state automata is well known that LTL is as
expressive as regular star-free language (regular language is
as expressive as finite-state automata). On the other hand,
CTL/LTL can express liveness properties and ω-languages

123



Model-checking software library API usage rules 971

that cannot be expressed in finite-state automata. To address
the parameters problem of API functions, many researchers
introduce variables into finite state automata, such as [7,16].
In these automata, variables are implicitly quantified by ∃
quantifier. The relation between SCTPL/SCTPL and finite-
state automata with variables is similar to the one between
CTL/LTL and finite state automata. Finite-state automata
with variables is called security automata in [47], and it
is concretely realized for the C language in SLAM [9] for
specifying and verifying API usage rules forWindows driver
programs.

4 Integrating may-alias analysis into
model-checking

In our previous study [55] which checks API usage rules by
SCTPL model-checking technique, we found several false
alarms that occurred due to variable aliasing. In order to
avoid these false alarms, we integrate may-alias analysis
for single-level pointers into API usage rule checking. We
use the context-sensitive may-alias analysis of [44] which
computes the context-sensitive may-alias pairs via solving
the GPS problem of WPDSs. In this section, we first briefly
recall the approach of [44]. Then, we show how to integrate
the may-alias pairs into API usage rule checking.

4.1 Context-sensitive may-alias analysis

Given a program M with its model P , two variables x and
y are alias (denoted by [x, y]) at a configuration 〈p, nω〉 if
in some program execution they refer to the same memory
location when the execution reaches the program control
point n withω as the calling history (i.e., the return addresses
of the calling functions that have not yet returned).

Let V denote the set of all the variables and pointer deref-
erences in the given program M . W.l.o.g., we assume that all
variables have different names (local variables can be pre-
fixed by the name of the procedure that contains them) so
that there are no name conflicts. Let V 2 = V × V denote
the set of all the possible may-alias pairs. Let V 2⊥ denote the
set V 2 ∪ {⊥}, where ⊥ represents the absence of an alias
pair. The set of may-alias pairs for all the configurations are
computed via solving the GPS problem of WPDSs. Intu-
itively, the side effect of each statement on may-alias pairs in
a program, called transfer function, is encoded as an element
of the weight S for an idempotent semiring (S,⊕,⊗, 0, 1).
Consider a control point n1 with a set of may-alias pairs v

at n1, the statement stmt with the corresponding transfer
function s at n1 leading to the next control point n2, then
s(v) gives the set of may-alias pairs at the location n2. For
a path π = n1 · · · ni with the transfer functions s1, . . . , si
at the locations n1 up to ni , s1 ⊗ · · · ⊗ si−1 is the transfer

function of the path and (s1 ⊗ · · · ⊗ si−1)(v) is the set of
may-alias pairs at ni after the execution of the path. Con-
sider the set of all the paths π1, . . . , πm from n1 to ni , then
( f1 ⊕· · ·⊕ fm)(v) such that fi is the transfer function of the
path πi gives the set of all the may-alias pairs at ni . When
s1 is the entry point of the program with no may-alias pair
denoted by ⊥, ( f1 ⊕ · · · ⊕ fm)(⊥) is the set of all the pos-
sible may-alias pairs when the program reaches the control
point ni . The transfer functions of all the possible paths are
computed by solving the GPS problem of WPDSs. Then,
the context-sensitive may-alias pairs can be queried from the
solution of the GPS problem.

Formally, we construct a weight domain S = (V 2⊥ →
2V

2
) ∪ 0. The semiring operators are defined as follows: for

every s1, s2 ∈ S\{0}, x ∈ V 2⊥,

(s1 ⊕ s2)(x) = s1(x) ∪ s2(x)

(s1 ⊗ s2)(x) = s2(⊥) ∪
⎛

⎝
⋃

y∈s1(x)
s2(y)

⎞

⎠

1(x) =
{∅ if x = ⊥

{x} otherwise,

where 0 is a special element satisfying all properties of the
bounded idempotent semiring.

Using the modeling approach shown in Sect. 2, we con-
struct a PDSmodelP of the program M , a bounded semiring
W = (S,⊕,⊗, 0, 1) as shown above. The transfer function
of may-alias pairs for each program statement is expressed
by an element s of the weight S. We associate the element s
to the PDS transition rule 〈p0, n〉 ↪→ 〈p0, ω〉 such that s is
the transfer function of the statement at n. We do not present
the transfer functions of the statements, as they are beyond
the scope of this paper and can be found in [44]. To this end,
we obtain aWPDSWP = (P,W, l). By Theorem 1, we get
that:

Theorem 5 Let C = {〈p0,main0〉} be the regular set of
configurations, we can construct a P-automaton WA such
that for every reachable configuration c from 〈p0,main0〉,
the set of all the may-alias pairs at the configuration c is
BWA(c)(⊥).

4.2 Updating predicate via may-alias analysis

By applyingTheorem5,we can get aP-automatonWA such
that for every reachable configuration c from 〈p0,main0〉,
BWA(c)(⊥) is the set of all the may-alias pairs at the con-
figuration c. We update the labeling function λ as follows:

For every predicate a(α1, . . . , αm) ∈ APD such that
nω ∈ λ(a(α1, . . . , αm)), we remove a(α1, . . . , αm)

fromλ, and let nω′ ∈ λ(a(α′
1, . . . , α

′
m)), for every tuple

123



972 F. Song, T. Touili

of program variables (α′
1, . . . , α

′
m) such that ∀i : 1 ≤

i ≤ m, [αi , α
′
i ] ∈ BWA(〈p0, nω′〉).

Intuitively, consider an API function call f (x) made at a
control point n, then we have λ( f (x) = {nω | ω ∈ Γ ∗})
before updating (cf. Sect. 3.4). Suppose that we have only
the may-alias pairs [x, x] and [x, y] at the configuration
〈p0, nω1〉, then the runs of the program reaching 〈p0, nω1〉
call f (x) or f (y). While f (x) may not be called by the runs
reaching another configuration 〈p0, nω′

1〉. Therefore, we let
nω1 ∈ λ( f (x)) and nω1 ∈ λ( f (y)).

Example Consider the example shown in Fig. 3 which does
not satisfy the formula ψ6. After extracting predicates as
argued in Sect. 3.4, we have:

– λ( f1 = f open(“t1”, “r”)) = {l3ω | ω ∈ Γ ∗},
– λ( f close( f1)) = {l6ω | ω ∈ Γ ∗},
– λ( f2 = f open(“t2”, “r”)) = {l9ω | ω ∈ Γ ∗},
– λ( f close( f2)) = {l12ω | ω ∈ Γ ∗},
– λ( f read(bu f, 1, 10, f )) = {l14ω | ω ∈ Γ ∗}.

By applying the above updating, we have:

– λ( f1 = f open(“t1”, “r”)) = {l3ω | ω ∈ Γ ∗},
– λ( f close( f1)) = {l6ω | ω ∈ Γ ∗},
– λ( f2 = f open(“t2”, “r”)) = {l9ω | ω ∈ Γ ∗},
– λ( f close( f2)) = {l12ω | ω ∈ Γ ∗},
– λ( f read(bu f1, 1, 10, f1)) = {l14l6l17},
– λ( f read(bu f2, 1, 10, f2)) = {l14l12l18}.

Using this updated labeling function, we can see that the
program inFig. 3 satisfies the formulaψ6. In our experiments,
integration of API usage rule checkingwith context-sensitive
may-alias analysis avoids most of false alarms.

Remark 2 In this work, we do not consider indirect func-
tion calls. To take indirect function calls into account, we
could perform value-set analysis. However, this will affect
the scalability of API usage rule verification.

5 rSCTPL, rSLTPL and the procedure-cutting
abstraction

To make API usage rules verification more efficient, it is
important to model programs by PDSs having small size.
We propose in this section the procedure-cutting abstrac-
tion to drastically reduce the size of the program model.
The procedure-cutting abstraction eliminates all the proce-
dures whose runs do not call any API function specified in
the given SCTPL/SLTPL formula.We characterize sublogics
rSCTPL and rSLTPL of SCTPL and SLTPL that are suf-
ficient to specify all the API usage rules that we met, and

we show that the procedure-cutting abstraction preserves all
rSCTPL/rSLTPL formulas.

5.1 Procedure-cutting abstraction

Given a programM, let Proc = {proci | 1 ≤ i ≤ m} be the
set of procedures of M. Each procedure proci will generate
transition rules in the PDS model. Imagine there exists some
procedure proc j whose runs do not call any API function
specified in the givenSCTPL/SLTPL formulaψ , then remov-
ing proc j will not change the satisfiability of ψ . This means
that the procedure proc j can be cut. Cutting such procedure
proc j will drastically reduce the size of the PDS model. We
call this procedure-cutting abstraction. From the PDS’s point
of view, a function call statement y = proc j (. . .) at a control
point n (suppose n′ is the next control point of n) is repre-
sented by the transition rule ρ = 〈p0, n〉 ↪→ 〈p0, eproc j n′〉
where eproc j denotes the entry control point of the proce-
dure proc j . Whenever the procedure proc j can be cut, we
will add the transition rule ρ′ = 〈p0, n〉 ↪→ 〈p0, n′〉 instead
of ρ. The transition rule ρ′ expresses that the run from n
will immediately move to n′ without entering the procedure
proc j . By doing the procedure-cutting abstraction, the size
of the stack alphabet and transition rules will be drastically
reduced.

Formally, to compute the abstracted program, we proceed
as follows. LetM be a program, a call graph ofM is a tuple
G = (Proc, E, proc0), where Proc is a finite set of nodes
denoting the procedure names of M; E ⊆ Proc × Proc is
a finite set of edges such that (proci , proc j ) ∈ E , denoted
by proci −→ proc j , iff proc j is called in the procedure
proci ; proc0 ∈ Proc is the initial node corresponding to
the entry procedure (usually, the main function) of M. A
node proci can reach the node proc j iff there exists a set
of edges prock1 −→ prock2 , . . . , prockm −→ prockm+1 in
E such that k1 = i and km+1 = j . Let Op(ψ) denote the
set of atomic propositions (i.e., API function names) used
in the SCTPL or SLTPL formula ψ except the additional
atomic proposition Test. The procedure-cutting abstraction
computes the abstracted program M′ by (1) removing all
the procedures proc ∈ Proc such that the node proc can-
not reach any node of Op(ψ) in G (i.e., the run of proc will
not call any function in Op(ψ)) and (2) replacing each func-
tion call y = proc(p1, . . . , pm) by a skip statement, i.e., no
operation statement.

Proposition 1 Given a program M and a SCTPL/SLTPL
formula ψ , we can compute the abstracted program M′ in
linear time.

Proof To compute the abstracted programM′, we first com-
pute the set Proc′ of procedures that cannot be removed as
follows:

123



Model-checking software library API usage rules 973

1. We can first construct the call graph G = (Proc, E,

proc0) by traversing the programone time. Indeed, Proc
is the set of all the function names in M. For every func-
tion call statement y = f (b1, . . . , bn) in a procedure
proc, we add the edge proc −→ f into E .

2. Let worklist = Proc′ = Op(ψ).
3. Remove a node proc from the worklist .
4. For each edge e = proc′ −→ proc ∈ E : if proc′ /∈

Proc′, then we add the node proc′ into worklist and
Proc′, add the edge e into E ′; otherwise, we jump to
item 2 and continue computing until worklist is empty.

During items 2–4, we only add each node proc into
worklist at most once and the number of the nodes is at
most |Proc|. We can also represent the edges E using a hash
table where the key is the right endpoint of the edge. Thus,
item 4 can be done in a constant time, and items 2–4 can be
done in time |Proc|.

Now, we can compute M′ as follows. We (1) remove
each procedure from M whose name is not in Proc′ and
(2) replace each function call y = f (p1, . . . , pm) in M
such that f /∈ Proc′ by the skip statement. Then, the result
program is M′. ��

The procedure-cutting abstraction can drastically reduce
the size of the program model. However, it cannot preserve
all SCTPL formulas. Indeed, formulas using the X operator
without any restriction are not preserved, since the procedure-
cutting abstraction removes procedures in the programs and
replaces some function calls by skip. However, formulas of
the form a(x1, . . . , xm) ∧ EXφ and a(x1, . . . , xm) ∧ AXφ

are preserved when φ is a regular predicate e or its negation
¬e or a SCTPL formula using the X operator as in the above
form. Indeed, if the predicate a(x1, . . . , xm) occurring in a
SCTPL formula (a function call or a return value test) ismade
in some procedure proc, then all the procedures including
proc whose runs can reach proc will not be removed by the
procedure-cutting abstraction. This implies that the next con-
trol point of a(x1, . . . , xm)will not be removed and the stack
content at the next control point in the abstracted program
M′ is the same as in M.

Moreover, formulas using regular variable expressions
(i.e., e or ¬e) without any restriction are not preserved.
Indeed, control points in M satisfying e or ¬e may be
removed by the procedure-cutting abstraction. Thus, the runs
of M′ cannot reach these control points. However, formulas
of the form a(x1, . . . , xm) ∧ e or a(x1, . . . , xm) ∧ ¬e are
preserved. Since all the procedures which can reach the pro-
cedure proc where a(x1, . . . , xm) is made are not removed,
each control point in M satisfying a(x1, . . . , xm) has the
same calling procedures (i.e., stack content) as in M′. Then,
a configuration ofM satisfies a(x1, . . . , xm)∧ e iff this con-
figuration of M′ satisfies a(x1, . . . , xm) ∧ e.

Based on the above observations, we define rSCTPL as
follows (where a(x1, . . . , xm) ∈ APX , b ∈ APX , x ∈ X ,
and e ∈ R):

ϕ : : = a(x1, . . . , xm) | ¬a(x1, . . . , xm) | ϕ ∧ ϕ | ϕ ∨ ϕ

| ∀x ϕ | ∃x ϕ | A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ]
| E[ϕRϕ] | a(x1, . . . , xm) ∧ ψ

ψ : : = e | ¬e | EX e | AX e | EX¬e | AX¬e | EXϕ | AXϕ

| EX(b ∧ ϕ) | EX((¬b) ∧ ϕ) | AX(b ∧ ϕ)

| AX(b ∨ ϕ) | EX(b ∨ ϕ) | EX((¬b) ∨ ϕ)

| AX((¬b) ∧ ϕ) | AX((¬b) ∨ ϕ).

Intuitively, rSCTPL is a sublogic of SCTPL, where (1) the
next-time operator X is used only to specify that a rSCTPL
formula ψ or a regular predicate e or its negation ¬e or a
Boolean constraint b or its negation ¬b, holds immediately
after an atomic predicate holds (i.e., an API function call is
made or a return value is tested), and (2) regular predicates
and their negations are conjuncted with atomic predicates;
Boolean constraints and their negations are conjuncted with
atomic predicates.

However, the procedure-cutting abstraction does not pre-
serve rSCTPL formulas when a cut procedure has an infinite

execution (i.e., nonterminating). For instance, let n1
stmt−→ n2

be an edge s.t. stmt is a function call y = f (p1, . . . , pm)

and the procedure f has an infinite execution. Suppose we
replace this function call by skip. If n1 and all the control
locations of f do not satisfy the atomic predicate a (i.e.,
API function calls or return value test), while n2 satisfies a,
then the configuration 〈p0, n1ω〉 of M satisfies EG¬a, but
〈p0, n1ω〉 does not satisfy EG¬a in M′ due to the removal
of the infinite execution. On the other hand, if n1 and all
the control locations of f do not satisfy the atomic pred-
icate a, while n2 satisfies the atomic predicate b, then the
configuration 〈p0, n1ω〉 of M′ satisfies A[¬aUb] due to the
removal of the infinite execution, while 〈p0, n1ω〉 does not
satisfy A[¬aUb] in M (since b is never true in the infinite
execution). We can show the following theorem.

Theorem 6 Let ψ be a rSCTPL formula. Let M be a
program andM′ be the program obtained fromM by apply-
ing the procedure-cutting abstraction. LetP (resp.P ′) be the
PDSmodeling the programM (resp.M′). If all the removed
procedures are infinite execution free, then P satisfies ψ iff
P ′ satisfies ψ .

The proof is given in the “Appendix”.

5.2 The rSLTPL logic

Similarly,wedefine rSLTPLas follows: (wherea(x1, . . . , xm)

∈ APX , b ∈ APX , x ∈ X , and e ∈ R):

123



974 F. Song, T. Touili

ϕ : : = a(x1, . . . , xm) | ¬a(x1, . . . , xm) | ϕ ∧ ϕ | ϕ ∨ ϕ

| ∀x ϕ | ∃x ϕ | ϕUϕ

| ϕRϕ | a(x1, . . . , xm) ∧ ψ

ψ : : = e | ¬e | Xe | X¬e | Xϕ

| X(b ∧ ϕ) | X((¬b)∧ϕ) | X(b ∨ ϕ) | X((¬b) ∨ ϕ).

The intuition is similar to the one underlying the definition
of rSCTPL. We can show that the procedure-cutting abstrac-
tion preserves all the rSLTPL formulas when all the removed
procedures are infinite execution free, i.e., terminating.

Theorem 7 Let ψ be a rSLTPL formula, M a program
and M′ the program obtained from M by applying the
procedure-cutting abstraction. Let P (resp. P ′) be the PDS
modeling the programM (resp.M′). If all the removed pro-
cedures are infinite execution free, then P satisfies ψ iff P ′
satisfies ψ .

The proof is similar to the proof of Theorem 6.

6 Experiments

We implemented our techniques in a tool for automated ver-
ifying API usage rules. Given a program M using some
libraries which are equipped with the API usage rules speci-
fied in SCTPL and/or SLTPL, our tool automatically answers
Yes or No, depending on whether the program violates the
API usage rules or not.

In our implementation, we use goto-cc [34] as front end
to parse ANSI-C programs into goto-cc binary programs.
We implemented a translator that transforms goto-cc binary
programs into pushdown systems and outputs the required
predicates as discussed in Sect. 3.4. May-alias analysis is
implemented based on theweighted automaton libraryWALi
[20]. We use the SCTPL model checker of [53] and the
SLTPL model checker of [54] as engines.

In our experiments, we consider several API usage rules:
the socket library API usage rules and the file operation
usage rules. We checked several open-source C programs
against these API usage rules. All the experiments were run
on a Linux platform (Fedora 13) with a 2.4GHz CPU and
2GB of memory. The time limit is fixed to 30min. Our tool
detected several previously unknown errors in some well-
known open-source programs. The runtime consists of the
time spent for parsing goto-cc binary programs, may-alias
analysis and model-checking. It excludes the time for trans-
lating ANSI-C programs into goto-cc binary programs. We
also run our tool without considering the procedure-cutting
abstraction. We observed that the procedure-cutting abstrac-
tion significantly speeds up the analysis. Finally, we apply
our tool integrated with may-alias analysis to verify the API
usage rules that are reported as negative. Essentially, one

can directly check API usage rules with may-alias analysis.
However, not only may-alias analysis, but also SCTPL and
SLTPL model-checking with regular predicates cost times
and affects the scalability. Thus, we first check API usage
rules without may-alias analysis. If a potential bug is found,
we apply API usage rules checking with may-alias analysis
confirm the reported result.

6.1 Checking the socket library API usage rules

To check the socket library API usage rules as shown in
Tables 1 and 2,we checked seven open-source programs from
SourceForge [46] which are written in C and use the socket
library, and four generic tutorial socket programs written by
Seshadri [49].

The benchmark contains the following programs. Com-
serial is a program that helps turn console application into
a web-based service, by reading from TCP connections and
providing commands from each connection to applications
through a socket.MrChaTTY is a chat program that allows
users to chat via UNIX terminals through sockets.Mrhttpd
is a web server. Nerv is a common socket server. Nssl is
a netcat-like program with SSL support. Pop3client is a
mail client which reads mail in a console and connects to
servers using POP3 protocol. Ser2nets is a program allowing
network connections to remote serial ports. TCPC, TCPS,
UDPC and UDPS are a TCP client, a TCP server, a UDP
client and a UDP server tutorial programs, respectively.

Tables 3, 4, 5 and 6 show the results of checking the
socket library API usage rules with and without using the
procedure-cutting abstraction, respectively, butwithoutmay-
alias analysis. The row#LOC gives the number of lines of the
program.Time(s) andMem(MB) give the time consumption
in seconds and memory consumption in MB, respectively.
The result Proved denotes that the program satisfies the cor-
responding API usage rule, FA denotes false alarm, and Bug
denotes a real bug. o.o.m. (resp. o.o.t.) means run out of
memory (resp. time). False alarms are confirmed by manu-
ally reviewing the source codes.

As we can see from Tables 3 and 5, there are 22 alarms
including Bug and FA. We found that 12 of these alarms
are real bugs and the others are false alarms. These false
alarms arose from the fact that we abstract away the data.
We found 12 real errors in these programs. For instance, the
programComserial does not call listen before calling accept
in the file passwdserver.c when argc is 1. Moreover, most of
these programs will not close the socket by calling close nor
check the return values of socket in some paths. For example,
Comserial does not check the return value (i.e., socket) in
the files comserver.c and comclient.c before it is used. In
the file main.c, when it fails in binding a socket to some
address,Mrhttpdwill not close a socket before the program
terminates.

123



Model-checking software library API usage rules 975

Table 3 Results of checking the socket library API usage rules in SCTPL with the procedure-cutting abstraction

Program Comserial MrChaTTY Mrhttpd Nerv Nssl Pop3client Ser2nets TCPC TCPS UDPC UDPS
#LOC 1.0k 1.2k 1.4k 1.1k 1.1k 1.6k 7.3k 70 90 50 60

r1

Time (s) 0.08 0.26 0.29 7.94 1.24 0.41 70.53 0.01 0.01 0.01 0.01

Mem (MB) 0.24 0.44 0.66 5.94 1.44 0.58 11.63 0.09 0.13 0.06 0.06

Result Bug FA Bug FA Bug Bug Bug Bug Bug Bug Bug

r ′
1

Time (s) 1.38 1.32 1.51 10.21 2.67 1.67 81.42 0.02 0.02 0.02 0.02

Mem (MB) 0.84 1.22 1.25 7.87 2.18 0.98 18.77 0.13 0.16 0.08 0.08

Result Bug FA Bug FA Bug Bug Bug Bug Bug Bug Bug

r2

Time (s) 0.01 0.01 0.01 0.01 0.01 0.01 0.18 0.01 0.01 0.01 0.01

Mem (MB) 0.04 0.18 0.05 0.22 0.19 0.14 1.07 0.04 0.06 0.04 0.04

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r3

Time (s) 0.06 0.01 0.01 0.01 0.01 0.01 0.20 0.01 0.03 0.01 0.01

Mem (MB) 0.15 0.18 0.05 0.19 0.01 0.01 1.12 0.01 0.10 0.01 0.01

Result Bug Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r4

Time (s) 0.01 0.01 0.01 0.02 0.02 0.02 0.21 0.01 0.01 0.01 0.01

Mem (MB) 0.04 0.15 0.05 0.22 0.19 0.18 0.92 0.05 0.05 0.04 0.04

Result Proved Proved Proved Proved Bug FA Proved Proved Proved Proved Proved

r5

Time (s) 0.01 0.07 0.01 0.09 0.07 0.03 1.03 0.01 0.01 0.01 0.01

Mem (MB) 0.07 0.47 0.08 0.54 0.44 0.30 2.86 0.07 0.12 0.05 0.05

Result Proved Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r6

Time (s) 0.01 0.01 0.01 0.02 0.01 0.01 0.07 0.02 0.01 0.01 0.01

Mem (MB) 0.11 0.34 0.30 0.50 0.29 0.30 1.46 0.08 0.10 0.01 0.01

Result Proved FA Proved Proved Proved FA Proved Proved Proved Proved Proved

r7

Time (s) 0.01 0.01 0.01 0.05 0.01 0.01 0.07 0.01 0.01 0.01 0.01

Mem (MB) 0.11 0.33 0.33 0.75 0.29 0.35 1.46 0.08 0.09 0.01 0.01

Result Proved FA Proved FA Proved FA Proved Proved Proved Proved Proved

r8

Time (s) 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.01

Mem (MB) 0.04 0.15 0.05 0.18 0.15 0.14 0.71 0.04 0.05 0.05 0.04

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r9

Time (s) 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.03 0.01 0.01

Mem (MB) 0.05 0.31 0.07 0.17 0.30 0.01 1.46 0.01 0.10 0.05 0.05

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

Tables 3, 4, 5 and 6 show that model-checking using the
procedure-cutting abstraction performs better.Without using
the procedure-cutting abstraction, the analysis of several
examples run out of time.

6.2 Checking file operation usage rules

File reading and writing are frequently used in programs. To
read or write a file, a user has to correctly open the file by

123



976 F. Song, T. Touili

Table 4 Results of checking the socket library API usage rules in SCTPL without the procedure-cutting abstraction

Program Comserial MrChaTTY Mrhttpd Nerv Nssl Pop3client Ser2nets TCPC TCPS UDPC UDPS
#LOC 1.0k 1.2k 1.4k 1.1k 1.1k 1.6k 7.3k 70 90 50 60

r1

Time (s) 1.69 1.58 17.98 o.o.t. 27.37 16.33 o.o.t. 0.02 0.04 0.01 0.01

Mem (MB) 1.15 1.63 2.73 – 5.49 3.63 – 0.17 0.25 0.11 0.11

Result Bug FA Bug – Bug Bug – Bug Bug Bug Bug

r ′
1

Time (s) 4.56 3.26 24.31 o.o.t. 33.45 22.53 o.o.t. 0.04 0.08 0.02 0.02

Mem (MB) 3.66 2.44 4.42 – 7.92 5.21 – 0.22 0.41 0.19 0.19

Result Bug FA Bug – Bug Bug – Bug Bug Bug Bug

r2

Time (s) 0.05 0.03 0.16 0.48 0.10 0.04 4.38 0.01 0.01 0.01 0.01

Mem (MB) 0.04 0.52 0.91 4.91 0.82 0.95 7.05 0.07 0.11 0.05 0.06

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r3

Time (s) 0.07 0.03 0.16 0.47 0.11 0.04 4.21 0.01 0.01 0.01 0.01

Mem (MB) 0.40 0.52 0.91 4.82 0.82 0.92 7.08 0.07 0.10 0.05 0.50

Result Bug Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r5

Time (s) 0.02 0.01 0.06 0.48 0.11 0.39 2.34 0.01 0.01 0.01 0.01

Mem (MB) 0.31 0.40 0.68 4.92 0.83 1.31 5.99 0.08 0.09 0.05 0.50

Result Proved Proved Proved Proved Bug FA Proved Proved Proved Proved Proved

r5

Time (s) 0.19 0.14 0.67 0.86 0.48 0.13 15.95 0.01 0.01 0.01 0.01

Mem (MB) 1.02 1.39 2.35 11.46 2.06 2.25 19.50 0.13 0.23 0.09 0.09

Result Proved Proved Proved Proved FA Proved Proved Proved Proved Proved Proved

r6

Time (s) 0.05 0.05 0.21 0.71 0.06 0.48 0.66 0.01 0.01 0.01 0.01

Mem (MB) 0.65 1.02 1.68 10.46 1.28 2.37 9.91 0.14 0.19 0.09 0.09

Result Proved FA Proved Proved Proved FA Proved Proved Proved Proved Proved

r7

Time (s) 0.05 0.05 0.22 0.72 0.06 0.39 0.64 0.01 0.01 0.01 0.01

Mem (MB) 0.65 1.02 1.68 10.46 1.28 2.37 9.91 0.14 0.19 0.09 0.09

Result Proved FA Proved FA Proved FA Proved Proved Proved Proved Proved

r8

Time (s) 0.04 0.02 0.09 0.64 0.04 0.07 0.55 0.01 0.01 0.01 0.01

Mem (MB) 0.46 0.61 1.02 7.36 0.90 1.42 6.92 0.09 0.12 0.08 0.07

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

r9

Time (s) 0.05 0.03 0.13 0.76 0.05 0.09 0.68 0.01 0.01 0.01 0.01

Mem (MB) 0.67 0.89 1.47 10.80 1.32 2.05 10.14 0.13 0.17 0.09 0.09

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

calling fopen which returns a file pointer to the file. Then the
user can read from or write to that file. Finally, the file pointer
should be closed by calling fclose.

For file operation API usage rules, we consider two rules
from stdio.h:

F1 = ∀x AG
(
x = f open(−,−) �⇒ AF(T est (x)

∧ (
EX(x �= 0 �⇒ AF f close(x))

))

F2 = ∀ y A[y = f open(−,−)R¬( f read(−,−,−, y)
∨ f wri te(−,−,−, y))]

123



Model-checking software library API usage rules 977

Table 5 Results of checking the socket library API usage rules in SLTPL with the procedure-cutting abstraction

Program Comserial MrChaTTY Mrhttpd Nerv Nssl Pop3client Ser2nets TCPC TCPS UDPC UDPS
#LOC 1.0k 1.2k 1.4k 1.1k 1.1k 1.6k 7.3k 70 90 50 60

τ1

Time (s) 0.01 0.02 0.01 0.04 0.08 0.01 0.43 0.01 0.01 0.01 0.01

Mem (MB) 0.08 0.32 0.11 0.29 0.52 0.02 2.44 0.10 0.14 0.12 0.07

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

τ2

Time (s) 0.01 0.06 0.01 0.04 0.05 0.02 0.32 0.01 0.01 0.01 0.01

Mem (MB) 0.08 0.32 0.11 0.30 0.41 0.03 2.39 0.08 0.14 0.08 0.05

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

τ3

Time (s) 0.01 0.01 0.01 0.05 0.05 0.06 0.27 0.01 0.01 0.01 0.01

Mem (MB) 0.02 0.38 0.05 0.41 0.48 0.41 2.30 0.10 0.03 0.10 0.04

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

τ4

Time (s) 0.03 0.02 0.06 0.41 0.10 0.05 0.65 0.01 0.03 0.01 0.01

Mem (MB) 0.28 0.38 0.45 2.60 0.65 0.48 3.47 0.10 0.15 0.07 0.03

Result Bug Proved Proved Proved Bug Proved Proved Proved Proved Proved Proved

Table 6 Results of checking the socket library API usage rules in SLTPL without the procedure-cutting abstraction

Program Comserial MrChaTTY Mrhttpd Nerv Nssl Pop3client Ser2nets TCPC TCPS UDPC UDPS
#LOC 1.0k 1.2k 1.4k 1.1k 1.1k 1.6k 7.3k 70 90 50 60

τ1

Time (s) 2.12 2.11 10.16 0.56 4.89 1.23 452.21 0.02 0.08 0.04 0.03

Mem (MB) 2.14 1.51 2.08 3.29 2.76 1.02 24.76 0.16 0.25 0.15 0.13

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

τ2

Time (s) 1.32 2.67 8.24 378.18 4.21 8.67 352.14 0.02 0.03 0.02 0.02

Mem (MB) 1.24 1.23 2.01 8.56 2.02 1.72 15.11 0.12 0.21 0.08 0.09

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

τ3

Time (s) 1.02 0.67 4.02 358.17 3.78 19.52 223.89 0.08 0.07 0.06 0.08

Mem (MB) 0.65 0.72 1.16 9.62 1.92 2.67 13.02 0.21 0.19 0.13 0.14

Result Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved Proved

τ4

Time (s) 4.13 7.61 45.37 42.33 31.17 10.89 52.32 0.12 0.11 0.09 0.11

Mem (MB) 3.42 9.52 17.32 18.44 18.21 5.12 22.14 0.51 1.01 0.12 0.13

Result Bug Proved Proved Proved Bug Proved Proved Proved Proved Proved Proved

where F1 is as explained as the formula ψ5 in Sect. 1. F2
states that the user cannot read from or write to a file pointer
y unless the file pointer y points to some file (i.e., has already
been opened).

To evaluate these two rules, we checked the following
open-source programs which use file API functions from
stdio.h. Verbs is a bounded model checker [60]. Getafix is
a symbolic model checker for recursive Boolean programs
[26].Moped is a model checker for pushdown systems [42].

Acacia+ is a tool for LTL realizability and synthesis [1].Mist
is a solver of the coverability problem for monotonic exten-
sions of Petri nets [41]. Elastic is a translator from Elastic
specifications to hytech or UPPAAL language [21]. Mckit
is a model-checking kit [39]. TSPASS is a fair automated
theorem prover for monodic first-order temporal logic with
expanding domain semantics and propositional linear-time
temporal logic [57].Walksat,MiniSat andUbcsat are three
SAT solvers [40,59,63].

123



978 F. Song, T. Touili

Table 7 Results of checking the API usage rules F1 and F2 with the procedure-cutting abstraction

Program Verbs Getafix Moped Acacia+ Mist Elastic Mckit TSPASS MiniSat Walksat Ubcsat
#LOC 4.0k 11.5k 30.3k 8.0k 16.0k 15.4k 26.7k 62.3k 1.4k 1.4k 16.9k

F1

Time (s) 1.36 0.76 13.23 0.05 0.02 3.81 – 0.74 0.02 0.24 282.45

Mem (MB) 1.72 0.58 15.61 0.20 0.22 4.25 o.o.m. 0.98 0.23 0.46 21.02

Result Bug Bug Proved Bug Proved Proved – Proved Proved Bug FA

F2

Time (s) 0.08 0.29 9.67 0.01 0.26 0.89 23.60 0.01 0.01 0.01 0.06

Mem (MB) 0.50 0.84 10.26 0.09 0.90 2.94 15.00 0.27 0.27 0.13 0.89

Result FA Proved FA Proved FA FA Proved Proved FA Proved Proved

Table 8 Results of checking the API usage rules F1 and F2 without the procedure-cutting abstraction

Program Verbs Getafix Moped Acacia+ Mist Elastic Mckit TSPASS MiniSat Walksat Ubcsat
#LOC 4.0k 11.5k 30.3k 8.0k 16.0k 15.4k 26.7k 62.3k 1.4k 1.4k 16.9k

F1

Time (s) 1654.76 404.63 0.06 198.52 51.23 o.o.t. – o.o.t. 38.24 6.06 o.o.t.

Mem (MB) 45.81 32.56 18.76 27.44 31.45 – o.o.m. – 7.87 5.18 –

Result Bug Bug Proved Bug Proved Proved – Proved Proved Bug FA

F2

Time (s) 0.81 6.19 3.49 0.45 924.14 0.76 375.85 o.o.t. 0.42 0.08 5.80

Mem (MB) 8.66 8.46 21.02 5.74 33.95 8.11 76.82 – 3.10 1.60 27.70

Result FA Proved FA Proved FA FA Proved Proved FA Proved Proved

Tables 7 and 8 show the results of checking these programs
against F1 and F2 with and without the procedure-cutting
abstraction. The results confirm the significance of the
procedure-cutting abstraction.As shown inTable 7,we found
that Verbs, Getafix, Acacia+ and MiniSat have real errors.
For example, in the file main.c, Verbs does not close an
opened file by calling fclose before the program terminates.
Moreover, in the files issat.c,main.c and util.c, a file pointer is
used without checking whether it is null or not (i.e., whether
the file exists or not). Acacia+,Walksat and Getafix do not
close opened files which are opened in main.c, walksat.c,
bpsuspend.y and bp.y, respectively.

6.3 Checking API usage rules with may-alias analysis

To assess the improvement of accuracy and reduction of
scalability ofmay-alias analysis in API usage rules checking,
we apply our tool with may-alias analysis to check the
false alarms reported in Sects. 6.1 and 6.2. The results are
shown in Table 9. Checking API usage rules with may-
alias analysis allows us to avoid 14 false alarms. In the
other cases, one runs out of time. However, the unique false
alarm cannot be avoided even using our may-alias analy-
sis. After a detailed manual analysis, we found that this
false alarm is due to the pointers to pointers which can-

not be handled by our may-alias analysis for single-level
pointers.

7 Related work

There has been a lot of works on API usage rules specifica-
tion and checking such as [2,3,7,10,25,27,28,31,33,35–38,
43,50,64–66,68]. However, all these works cannot specify
context-sensitive specifications, whereas our approach can.

Some tools dedicated to software model-checking were
used to checkAPI usage rules for device drivers, such as SDV
[9] and DDVerify [66], and used to verify security-critical
applications in which security vulnerabilities are expressed
as safety properties over API functions [15,16]. But these
tools can only check safety properties. One could apply some
techniques [12,18,48] that reduce the liveness properties into
safety properties and then apply existing tools. Other works
on software model-checking, such as [11,14,29,61,62], also
could be applied to check API usage rules. All these works
are aimed at either performing a comprehensive verification
of programswhich limit the scalability or do not consider any
data dependencies which may introduce many false alarms,
while our work addresses to the API usage rule specifications
from the library developers’s point of view and to a scal-

123



Model-checking software library API usage rules 979

Ta
bl
e
9

R
es
ul
ts
of

ch
ec
ki
ng

th
e
A
PI

us
ag
e
ru
le
s
w
ith

th
e
m
ay
-a
lia

s
an
al
ys
is

Pr
og
ra
m
&
R
ul
e

M
rC
ha
T
T
Y
&
r 1

M
rC
ha
T
T
Y
&
r 6

M
rC
ha
T
T
Y
&
r 7

N
er
v&

r 1
N
er
v&

r 7
N
ss
l&

r 3
N
ss
l&

r 5
Po

p3
cl
ie
nt
&

r 4

T
im

e
(s
)

10
.2
8

4.
26

4.
27

31
9.
22

21
.0
1

4.
32

3.
11

8.
43

M
em

or
y
(M

B
)

17
.5
5

13
.2
3

13
.1
9

25
0.
23

30
.2
0

4.
40

17
.2
0

7.
98

R
es
ul
t

Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

FA
Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

Pr
og
ra
m
&
R
ul
e

Po
p3
cl
ie
nt
&

r 6
Po

p3
cl
ie
nt
&

r 7
V
er
bs
&
F
2

M
op
ed
&

F
2

M
is
t&

r 2
E
la
st
ic
&

F
2

M
in
iS
at
&

r 2
16
.9
k&

F
1

T
im

e
(s
)

4.
22

4.
23

3.
42

39
2.
08

9.
21

37
.4
3

2.
18

o.
o.
t.

M
em

or
y
(M

B
)

13
.0
7

13
.1
2

22
.0
8

42
1.
32

37
.2
1

11
9.
87

10
.4
3

–

R
es
ul
t

Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

Pr
ov
ed

–

123



980 F. Song, T. Touili

able but yet precise enough approach for automated checking
these API usage rules from a practical point of view.

Code contracts introduced in [25] can specify pre/post-
conditions and invariants for each API function. Program-
mers have to make sure that a precondition (resp. post-
condition) holds at the entry (resp. exit) of each API function
and that invariants always hold inside theAPI function. These
code contracts can be verified via either runtime checking or
static checking at compile time. However, they cannot spec-
ify relations between API functions which are often used in
API usage rules.

Mining-based methods are proposed [2,3,7,27,28,33,35,
36,38,50,65,68] to discover API usage rules from executing
traces or source codes, where API usage rules are repre-
sented by some patterns or finite automata. One can apply
model-checking techniques to check whether programs vio-
late or not API usage rules represented by patterns or finite
automata. All these works cannot specify data dependen-
cies between API functions’ parameters and return values of
API functions, resulting in imprecise API usage rule spec-
ifications. Variables are introduced into finite automata to
specify data dependencies between API functions in [7,31].
However, these works cannot express CTL-like properties
and do not show how to check whether programs violate or
not API usage rules represented by finite automata equipped
with variables.

A class of temporal properties, called QBEC, is used to
specify API usage rules using at most one temporal operator
[37]. We show that SCTPL is more expressive than QBEC.
Indeed, all the temporal operators in QBEC can be expressed
by SCTPL formulas. Ramanathan et al. propose a formalism
in [43] to specify data dependence between API functions.
However, they only consider mining preconditions of API
functions rather than verification. CTL extended with vari-
ables is proposed to specify API usage rules in [64]. This
work cannot specify context-sensitive specifications which
is important for API usage rules.

Alur et al. introduce some nested words/trees related for-
malisms to specify program properties, e.g., [4–6]. These
formalisms allow to express pre-/post-conditions on pro-
cedures, stack inspection properties, call-return matchings,
etc. that cannot be equivalently expressed in CTL, LTL or
ω-regular languages. Regular predicates and Boolean con-
straints in SCTPL and SLTPL can specify stack inspection
properties and post conditions on procedures, but pre con-
ditions and call-return matchings on procedures cannot be
expressed in SCTPL and SLTPL. Their works have not
yet considered how to express API usage rules in nested
words/trees related formalisms. But it is non-trivial to do
this, as API usage rules usually involve the data dependen-
cies between API function calls.

SCTPL and SLTPL are introduced in our previous work
[53,54], in which SCTPL and SLTPL are used to express

malicious behaviors and model-checking is applied to detect
malwares. SCTPL/SLTPL is as expressive as CTL/LTL with
regular valuations [24,51]. In [53,54], we have shown that
SCTPL/SLTPL model-checking for PDSs is more efficient
than CTL/LTLmodel-checking with regular valuations. This
work is not a trivial adaptation of the results of [53,54]. Con-
cerning onAPI usage rules specifications and verification,we
introduceBoolean constraints into SCTPL and SLTPLwhich
can specify API usage rules in a more precise way. To avoid
false alarms, we combine SCTPL/SLTPL model-checking
and context-sensitive may-alias analysis. These efforts avoid
almost all of the false alarms we found in our previous
work [55]. To make the tool more scalable, we propose the
procedure-cutting abstraction that reduces drastically the size
of the program model and makes the verification more effi-
cient.

The sublogics rSCTPL and rSLTPL we proposed are sim-
ilar as stutter-closed fragments of temporal logics (e.g., CTL,
LTL) [8]. Stutter-closed fragments of temporal logics are
preserved by partial order reductions. rSCTPL/rSLTPL and
stutter-closed fragments of temporal logics differ in the next-
time temporal operators. In general, every stutter-invariant
propositional linear temporal property is expressible without
the next-time operators. However, as shown in this work, we
need the next-time operators in order to precisely expressAPI
usage rules, especially for specification of the error handle
[2] of the API function call. Therefore, rSCTPL and rSLTPL
are not preserved under stuttering due to next-time opera-
tors. However, stutter-closed fragments of temporal logics
CTL and LTL will be preserved under the procedure-cutting
abstraction.

The procedure-cutting abstraction is similar to program
slicing [19,30,58,67]. Program slicing is a technique to
extract relevant program fragments from a given program
with respect to some criterion (typically consisting of a pro-
gram point and a subset of program variables) and is widely
used in program debugging, software testing and so on. The
program fragments computed by program slicing have a
direct or indirect effect on the values of the slicing criterion.
Our procedure-cutting abstraction extracts fragments from a
program with respect to the given rSLTPL/rSCTPL specifi-
cation. Our abstraction preserves rSLTPL/rSCTPL formulas,
while program slicing does not due to the next-time operator
X [19,30].

8 Conclusion and future work

We showed how to use SCTPL and SLTPL to formally
and precisely specify API usage rules in libraries without
knowing how the libraries will be used by programmers.
We proposed an approach to automatically verify programs
against API usage rules. It involves the procedure-cutting

123



Model-checking software library API usage rules 981

abstraction that reduces drastically the size of the program
model and makes the verification more efficient. More-
over, we characterize two sublogics rSCTPL and rSLTPL
of SCTPL and SLTPL respectively. rSCTPL and rSLTPL are
preserved by the abstraction. rSCTPL and rSLTPL are suf-
ficient to precisely specify all the API usage rules we met.
We implemented our techniques in a tool that allowed us
to detect several unknown errors in well-known open-source
programs, such asNssl, Verbs,Acacia+,Walksat andGetafix.

However, as said previously, most of API usage rules are
not well documented or explicitly stated. Formalizing API
usages for third-party libraries is a challenge. There aremany
works studying how to discover API usages from existing
source codes (e.g., [2,7]). We plan to integrate API mining
techniques into our tool and construct anAPI usage database.

Acknowledgments We gratefully acknowledge the editor and anony-
mous reviewers for their valuable comments and suggestions to improve
the quality of the paper. This work was partially supported by Shanghai
Pujiang Program (No. 14PJ1403200), NSFC Projects (Nos. 61402179,
91418203), Shanghai ChenGuang Program (No. 13CG21), Shanghai
Knowledge Service Platform for Trustworthy Internet of Things (No.
ZF1213) and ANR Grant (No. ANR-08-SEGI-006).

9 Appendix

In this appendix, we give the proof of Theorem 6.

Theorem 6 Let φ be a rSCTPL formula. Let M be a pro-
gram and M′ be the program obtained from M by applying
the procedure-cutting abstraction. Let P (resp. P ′) be the
PDSmodeling the programM (resp.M′). If all the removed
procedures are infinite execution free, then P satisfies φ iff
P ′ satisfies φ.

Proof Let P = (P, Γ,Δ) be the PDS model of the pro-
gram M, P ′ = (P ′, Γ ′,Δ′) the PDS model of the program
M′. Let main be the entry procedure of the program M,
main0 the entry point of the procedure main. We can get
that P = P ′ = {s0}, Γ ′ ⊆ Γ , and main is also the entry
procedure of the program M′. Thus, the initial configura-
tion of P and P ′ is 〈s0,main0〉. Let λ and λ′ be the labeling
functions of P and P ′, respectively. Then, for every control
point n ∈ Γ ′, environment function B ∈ B and atomic pred-
icate a(x1, . . . , xm) used in φ, n ∈ λ(a(B(x1), . . . ,B(xm)))

iff n ∈ λ′(a(B(x1), . . . ,B(xm))).
To prove thatP satisfies φ iffP ′ satisfiesψ , it is sufficient

to show that 〈s0,main0〉 |�B
λ φ in P iff 〈s0,main0〉 |�B

λ′ φ

inP ′. We prove that for every 〈s0, nω〉 ∈ P×Γ ′∗ s.t. n ∈ Γ ′
and ω ∈ Γ ′∗, B ∈ B, 〈s0, nω〉 |�B

λ φ in P iff 〈s0, nω〉 |�B
λ′ φ

in P ′. The proof proceeds by induction on the structure of φ.
Let �⇒P be the transitive closure of the relation �P ,

�⇒P ′ the transitive closure of the relation �P ′ .

– Case φ ≡ a(x1, . . . , xm): Since n ∈ λ(a(B(x1), . . . ,
B(xm))) iff n ∈ λ′(a(B(x1), . . . ,B(xm))), we obtain that
〈s0, nω〉 |�B

λ φ in P iff 〈s0, nω〉 |�B
λ′ φ in P ′.

– Case φ ≡ ¬a(x1, . . . , xm): Since n /∈ λ(a(B(x1), . . . ,
B(xm))) iff n /∈ λ′(a(B(x1), . . . ,B(xm))), we obtain that
〈s0, nω〉 |�B

λ ¬φ in P iff 〈s0, nω〉 |�B
λ′ ¬φ in P ′.

– Case φ ≡ a(x1, . . . , xm) ∧ e: Whether (〈s0, nω〉,B) is
in L(e) or not is independent of λ and λ′, we obtain that
〈s0, nω〉 |�B

λ e in P iff 〈s0, nω〉 |�B
λ′ e in P ′.

〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ a(x1, . . . , xm)

in P and 〈s0, nω〉 |�B
λ e in P . 〈s0, nω〉 |�B

λ′ φ in P ′ iff
〈s0, nω〉 |�B

λ′ a(x1, . . . , xm) in P ′ and 〈s0, nω〉 |�B
λ′ e in

P ′. By applying the induction hypothesis: 〈s0, nω〉 |�B
λ

a(x1, . . . , xm) inP iff 〈s0, nω〉 |�B
λ′ a(x1, . . . , xm) inP ′.

We obtain that 〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ′ φ

in P ′.

– Case φ ≡ a(x1, . . . , xm) ∧ ¬e: Whether (〈s0, nω〉,B) is
in L(e) or not is independent of λ and λ′, we obtain that
〈s0, nω〉 |�B

λ ¬e in P iff 〈s0, nω〉 |�B
λ′ ¬e in P ′.

〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ a(x1, . . . , xm) in
P and 〈s0, nω〉 |�B

λ ¬e in P . 〈s0, nω〉 |�B
λ′ φ in P ′ iff

〈s0, nω〉 |�B
λ′ a(x1, . . . , xm) in P ′ and 〈s0, nω〉 |�B

λ′ ¬e
inP ′. By applying the induction hypothesis: 〈s0, nω〉 |�B

λ

a(x1, . . . , xm) inP iff 〈s0, nω〉 |�B
λ′ a(x1, . . . , xm) inP ′.

We obtain that 〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ′ φ

in P ′.

– Case φ ≡ φ1 ∧ φ2: 〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ

φ1 in P and 〈s0, nω〉 |�B
λ φ2 in P . 〈s0, nω〉 |�B

λ′ φ in P ′
iff 〈s0, nω〉 |�B

λ′ φ1 in P ′ and 〈s0, nω〉 |�B
λ′ φ2 in P ′.

By applying the induction hypothesis to φ1 and φ2,
we obtain that 〈s0, nω〉 |�B

λ φ1 in P iff 〈s0, nω〉 |�B
λ′ φ1

in P ′, and 〈s0, nω〉 |�B
λ φ2 in P iff 〈s0, nω〉 |�B

λ′ φ2 in
P ′. Thus, 〈s0, nω〉 |�B

λ φ in P iff 〈s0, nω〉 |�B
λ′ φ in P ′.

– Case φ ≡ φ1 ∨ φ2: 〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ

φ1 in P or 〈s0, nω〉 |�B
λ φ2 in P . 〈s0, nω〉 |�B

λ′ φ in P ′
iff 〈s0, nω〉 |�B

λ′ φ1 in P ′ or 〈s0, nω〉 |�B
λ′ φ2 in P ′. By

applying the induction hypothesis toφ1 andφ2, we obtain
that 〈s0, nω〉 |�B

λ φ1 in P iff 〈s0, nω〉 |�B
λ′ φ1 in P ′, and

〈s0, nω〉 |�B
λ φ2 in P iff 〈s0, nω〉 |�B

λ′ φ2 in P ′. Thus,
〈s0, nω〉 |�B

λ φ in P iff 〈s0, nω〉 |�B
λ′ φ in P ′.

– Case φ ≡ ∃xφ′: 〈s0, nω〉 |�B
λ φ in P iff there

exists v ∈ D such that 〈s0, nω〉 |�B[x←v]
λ φ′ in P .

〈s0, nω〉 |�B
λ′ φ in P ′ iff there exists v ∈ D such

that 〈s0, nω〉 |�B[x←v]
λ′ φ′ in P ′. By applying the

induction hypothesis: 〈s0, nω〉 |�B[x←v]
λ φ′ in P iff

〈s0, nω〉 |�B[x←v]
λ′ φ′ inP ′. Thus, 〈s0, nω〉 |�B

λ φ inP iff
〈s0, nω〉 |�B

λ′ φ in P ′.

123



982 F. Song, T. Touili

– Case φ ≡ ∀xφ′: 〈s0, nω〉 |�B
λ φ in P iff for every

v ∈ D, 〈s0, nω〉 |�B[x←v]
λ φ′ in P . 〈s0, nω〉 |�B

λ′ φ

in P ′ iff for every v ∈ D, 〈s0, nω〉 |�B[x←v]
λ′ φ′ in P ′.

By applying the induction hypothesis: for every v ∈ D,
〈s0, nω〉 |�B[x←v]

λ φ′ in P iff 〈s0, nω〉 |�B[x←v]
λ′ φ′ in P ′.

Thus, 〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ′ φ in P ′.

– Case φ ≡ E[φ1Uφ2]: First we show that (Case i) if
〈s0, nω〉 |�B

λ φ in P , then 〈s0, nω〉 |�B
λ′ φ in P ′. Next,

we show that (Case ii) if 〈s0, nω〉 |�B
λ′ φ in P ′, then

〈s0, nω〉 |�B
λ φ in P .

– Case i: Suppose 〈s0, nω〉 |�B
λ φ in P , we show that

〈s0, nω〉 |�B
λ′ φ in P ′.

〈s0, nω〉 |�B
λ φ in P iff there exist a run 〈s0,

n0ω0〉〈s0, n1ω1〉 . . . and k ≥ 0 such that n0ω0 = nω,
for every 0 ≤ i < k: 〈s0, niωi 〉 |�B

λ φ1 in P and
〈s0, nkωk〉 |�B

λ φ2 in P . Suppose k is the minimum
index such that the above holds.

Weconstruct a subsequencen j0 , . . . , n jm ofn0, . . . ,
nk as follows: n j0 is the first control point in the
sequence of n0, . . . , nk such that the statement at the
control point n j0 is a function call y j0 = f j0(. . .) and
is replaced by a skip statement. Since the function
f j0 is infinite execution free, then, necessarily, there
exists a control point n j ′0 in n j0+1, . . . , nk such that

n j0

y j0= f j0 (...)−→ n j ′0 is an edge of the control flow graph
of M and ω j0 = ω j ′0 (note that if f j0 is not infinite
execution free, then such j ′0 may not exist, as the run
of P may never reach the return address of the caller
site.). This means that n j ′0 is the corresponding return
address of the function call f j0(. . .) made at the con-
trol point n j0 . For every 0 < t ≤ m, n jt is the first
control point of the sequence n j ′t−1

, . . . , nk such that
the statement at the control point n jt is a function
call y jt = f jt (. . .) and is replaced by a skip state-
ment. n j ′t is the control point of n jt , . . . , nk such that

n jt
y jt = f jt (...)−→ n j ′t is an edge of the control flow graph

of M and ω jt = ω j ′t , i.e., n j ′t is the corresponding
return address of the function call f jt (. . .) made at
the control point n jt .

Since for every 0 ≤ t ≤ m, each control point
crossed in the run of 〈s0, n jtω jt 〉 �⇒P 〈s0, n j ′t ω j ′t 〉
is a control point of the procedure f jt , we obtain that
〈s0, n jtω jt 〉 �P ′ 〈s0, n j ′t ω j ′t 〉.

Since k is the minimum index, we obtain that
〈s0, nkωk〉 |�B

λ φ2 in P and 〈s0, nk−1ωk−1〉 �|�B
λ φ2

inP . Thus, the control point nk is not in any removed
procedure. This implies that j ′t ≤ k.

According to the above construction, we get that
the sequence 〈s0, n0ω0〉, . . . , 〈s0, n j0ω j0〉, . . . , 〈s0,
n jmω jm 〉, . . . , 〈s0, nkωk〉 is a run of P ′.

By applying the induction hypothesis, we obtain
that 〈s0, nkωk〉 |�B

λ′ φ2 in P ′, 〈s0, n0ω0〉 |�B
λ′ φ1 in

P ′, and for every configuration c crossed in the run of
〈s0, n0ω0〉 �⇒P ′ 〈s0, nkωk〉, c |�B

λ′ φ1 in P ′. Thus,
〈s0, nω〉 |�B

λ′ φ in P ′.

– Case ii: Suppose 〈s0, nω〉 |�B
λ′ φ in P ′, we show that

〈s0, nω〉 |�B
λ φ in P .

Since 〈s0, nω〉 |�B
λ′ φ in P ′, there exist a run

〈s0, n0ω0〉, 〈s0, n1ω1〉 . . . and k ≥ 0 such that
n0ω0 = nω, for every 0 ≤ i < k: 〈s0, niωi 〉 |�B

λ′ φ1

in P ′ and 〈s0, nkωk〉 |�B
λ′ φ2 in P ′. Suppose k is the

minimum index such that the above holds.
By applying the induction hypothesis, we obtain

that 〈s0, nkωk〉 |�B
λ φ2 in P and for every 1 ≤ i < k,

〈s0, niωi 〉 |�B
λ φ1 in P .

Since the removed procedures are infinite execu-
tion free, for every 0 ≤ i < k: 〈s0, niωi 〉 �P ′
〈s0, ni+1ωi+1〉, we have that 〈s0, niωi 〉 �⇒P 〈s0,
ni+1ωi+1〉. Thus, P has a run 〈s0, n0ω0〉 �⇒P
〈s0, n1ω1〉 �⇒P · · · 〈s0, nk−1ωk−1〉 �⇒P 〈s0,
nkωk〉.

To show that 〈s0, nω〉 |�B
λ φ in P , it is suf-

ficient to prove that for every 0 ≤ i < k,
every configuration 〈s0, n′

iω
′
i 〉 crossed in the run of

〈s0, niωi 〉 �⇒P 〈s0, ni+1ωi+1〉, 〈s0, n′
iω

′
i 〉 |�B

λ φ1

holds in P . If 〈s0, n′
iω

′
i 〉 is a configuration crossed

in the run of 〈s0, niωi 〉 �⇒P 〈s0, ni+1ωi+1〉, then
the statement at the control point ni is a function
call y = f (. . .). Moreover, the run of the pro-
cedure f does not reach any control point in any
procedure of Op(φ) and f /∈ Op(φ). Thus, for any
atomic predicate a(x1, . . . , xm), environment func-
tion B′ ∈ B, ni /∈ λ(a(B′(x1), . . . ,B′(xm))) and
n′
i /∈ λ(a(B′(x1), . . . ,B′(xm))).
Now, to prove that 〈s0, n′

iω
′
i 〉 |�B

λ φ1 holds in P ,
it is sufficient to prove that for every regular vari-
able expression e in cl(φ1), 〈s0, n′

iω
′
i 〉 |�B

λ φ1 always
holds in P whether (〈s0, n′

iω
′
i 〉,B) is in L(e) or not.

Since every regular variable expression e can
appear in φ1 only in the form of a(x1, . . . , xm) ∧ e,
ni /∈ λ(a(B′(x1), . . . ,B′(xm))) and n′

i /∈ λ(a(B′

(x1), . . . ,B′(xm))), we obtain that 〈s0, n′
iω

′
i 〉 �|�B′

λ

a(x1, . . . , xm)∧e inP and 〈s0, niωi 〉 �|�B′
λ a(x1, . . . ,

xm) ∧ e in P . These imply that 〈s0, n′
iω

′
i 〉 |�B

λ φ1 in
P . Thus, we obtain that 〈s0, nω〉 |�B

λ φ in P .

– Case φ ≡ A[φ1Uφ2] is similar to φ ≡ E[φ1Uφ2].
– Case φ ≡ E[φ1Rφ2]: First we show that (Case i) if

〈s0, nω〉 |�B
λ φ in P , then 〈s0, nω〉 |�B

λ′ φ in P ′. Next,
we show that (Case ii) if 〈s0, nω〉 |�B

λ′ φ in P ′, then
〈s0, nω〉 |�B

λ φ in P .

123



Model-checking software library API usage rules 983

– Case i: Suppose 〈s0, nω〉 |�B
λ φ in P , we show that

〈s0, nω〉 |�B
λ′ φ in P ′.

Since 〈s0, nω〉 |�B
λ φ in P , there exists a run

〈s0, n0ω0〉, 〈s0, n1ω1〉, . . . inP such that n0ω0 = nω

and, either (Case1) for every i ≥ 0, 〈s0, niωi 〉 |�B
λ φ2

inP , or (Case 2) there existsm ≥ 0 s.t. for every 0 ≤
i ≤ m, 〈s0, niωi 〉 |�B

λ φ2 inP and 〈s0, nmωm〉 |�B
λ φ1

in P . The proof depends on whether Case 1 or Case
2 holds.

• Case 1: For every i ≥ 0, 〈s0, niωi 〉 |�B
λ φ2

in P . As discussed in Case φ ≡ E[φ1Uφ2],
there exists a subsequence 〈s0, n0ω0〉, 〈s0, n j1
ω j1〉, . . . of 〈s0, n0ω0〉, 〈s0, n1ω1〉, . . . such that
the subsequence 〈s0, n′

0ω
′
0〉, 〈s0, n′

1ω
′
1〉, . . . is a

run of P ′ and n′
0ω

′
0 = n0ω0.

By applying the induction hypothesis, we
obtain that for every i ≥ 0, 〈s0, n′

iω
′
i 〉 |�B

λ′ φ2 in
P ′. Thus, 〈s0, nω〉 |�B

λ′ φ in P ′.

• Case 2: There existsm ≥ 0 s.t. for every 0 ≤ i ≤
m, 〈s0, niωi 〉 |�B

λ φ2 in P and 〈s0, nmωm〉 |�B
λ

φ1 in P . We can show that 〈s0, nω〉 |�B
λ′ φ in P ′

as done for the case φ ≡ E[φ1Uφ2].
– Case ii: Suppose 〈s0, nω〉 |�B

λ′ φ in P ′, we show that
〈s0, nω〉 |�B

λ φ in P .
Since 〈s0, nω〉 |�B

λ′ φ in P ′, there exists a run
〈s0, n0ω0〉, 〈s0, n1ω1〉, . . . inP ′ such thatn0ω0 = nω

and, either (Case 1) for every i ≥ 0, 〈s0, niωi 〉 |�B
λ′

φ2 in P ′, or (Case 2) there exists m ≥ 0 s.t. for
every 0 ≤ i ≤ m, 〈s0, niωi 〉 |�B

λ′ φ2 in P ′ and
〈s0, nmωm〉 |�B

λ′ φ1 in P ′. The proof depends on
whether Case 1 or Case 2 holds.

• Case 1: For every i ≥ 0, 〈s0, niωi 〉 |�B
λ′ φ2 in

P ′. As discussed in Case φ ≡ E[φ1Uφ2], there
exists a run 〈s0, n0ω0〉 �⇒P 〈s0, n1ω1〉 �⇒P
. . . in P .

By applying the induction hypothesis, we
obtain that 〈s0, niωi 〉 |�B

λ φ2 in P . As discussed
in Case φ ≡ E[φ1Uφ2], we can show that for
every i ≥ 0, for every configuration c crossed
in the run of 〈s0, niωi 〉 �⇒P 〈s0, ni+1ωi+1〉,
c |�B

λ φ2 in P . Thus, 〈s0, nω〉 |�B
λ φ in P .

• Case 2: There existsm ≥ 0 s.t. for every 0 ≤ i ≤
m, 〈s0, niωi 〉 |�B

λ′ φ2 in P ′ and 〈s0, nmωm〉 |�B
λ′

φ1 in P ′. We can show that 〈s0, nω〉 |�B
λ φ in P

as done for the case φ ≡ E[φ1Uφ2].

– Case φ ≡ A[φ1Rφ2] is similar to φ ≡ E[φ1Rφ2].
– Case φ ≡ a(x1, . . . , xm) ∧ EXϕ′ EXϕ′ is in the syntax

of ψ in the definition of r SCT PL in Sect. 5.1):

By applying the induction hypothesis to a(x1, . . . , xm):
we obtain that 〈s0, nω〉 |�B

λ a(x1, . . . , xm) in P iff
〈s0, nω〉 |�B

λ′ a(x1, . . . , xm) in P ′.
Since the procedure containing the control point n

is preserved due to a(x1, . . . , xm), we obtain that n′ is
a next control point of n in M iff n′ is a next con-
trol point of n in M′. Thus, 〈s0, nω〉 �P 〈s0, n′ω′〉 iff
〈s0, nω〉 �P ′ 〈s0, n′ω′〉.

By applying the induction hypothesis to ϕ′: we obtain
that 〈s0, n′ω′〉 |�B

λ ϕ′ in P iff 〈s0, n′ω′〉 |�B
λ′ ϕ′ in P ′.

Thus, 〈s0, nω〉 |�B
λ φ in P iff 〈s0, nω〉 |�B

λ′ φ in P ′.

– Case φ ≡ a(x1, . . . , xm) ∧AXϕ′ (EXϕ′ is in the syntax
of ψ in the definition of r SCT PL in Sect. 5.1):: We can
show that 〈s0, nω〉 |�B

λ φ in P iff 〈s0, nω〉 |�B
λ′ φ in P ′

as done for the case φ ≡ a(x1, . . . , xm) ∧ EXϕ′. ��

References

1. Acacia+: http://lit2.ulb.ac.be/acaciaplus/
2. Acharya, M., Xie, T.: Mining API error-handling specifications

from source code. In: Proceedings of the 12th International Con-
ference on Fundamental Approaches to Software Engineering
(FASE), Held as Part of the Joint European Conferences on Theory
and Practice of Software (ETAPS), pp. 370–384, York, UK (2009).
doi:10.1007/978-3-642-00593-0_25

3. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as
partial orders from source code: from usage scenarios to speci-
fications. In: Proceedings of the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(ESEC/SIGSOFT FSE), pp. 25–34, Dubrovnik, Croatia (2007).
doi:10.1145/1287624.1287630

4. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N.,
Libkin, L.: First-order and temporal logics for nested words.
Log. Methods Comput. Sci. 4(4) (2008). doi:10.2168/LMCS-4(4:
11)2008

5. Alur, R., Chaudhuri, S., Madhusudan, P.: Software model checking
using languages of nested trees. ACM Trans. Program. Lang. Syst.
33(5), 15 (2011). doi:10.1145/2039346.2039347

6. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested
calls and returns. In: Proceedings of the 10th International Confer-
ence on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Held as Part of the Joint European Confer-
ences on Theory and Practice of Software (ETAPS), pp. 467–481,
Barcelona, Spain (2004). doi:10.1007/978-3-540-24730-2_35

7. Ammons,G., Bodík, R., Larus, J.R.:Mining specifications. In: Pro-
ceedings of the 29th SIGPLAN-SIGACTSymposiumonPrinciples
of Programming Languages (POPL), pp. 4–16, Portland, OR, USA
(2002). doi:10.1145/503272.503275

8. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

9. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model
checking with SLAM. Commun. ACM 54(7), 68–76 (2011).
doi:10.1145/1965724.1965743

10. Besson, F., Jensen, T.P., Métayer, D.L.: Model checking security
properties of control flow graphs. J. Comput. Secur. 9(3), 217–250
(2001)

11. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Proceedings
of the softwaremodel checker BLAST. Int. J. Softw. Tools Technol.
Transf. 9(5–6), 505–525 (2007). doi:10.1007/s10009-007-0044-z

123

http://lit2.ulb.ac.be/acaciaplus/
http://dx.doi.org/10.1007/978-3-642-00593-0_25
http://dx.doi.org/10.1145/1287624.1287630
http://dx.doi.org/10.2168/LMCS-4(4:11)2008
http://dx.doi.org/10.2168/LMCS-4(4:11)2008
http://dx.doi.org/10.1145/2039346.2039347
http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1145/1965724.1965743
http://dx.doi.org/10.1007/s10009-007-0044-z


984 F. Song, T. Touili

12. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety
checking. Electron. Notes Theor. Comput. Sci. 66(2), 160–177
(2002). doi:10.1016/S1571-0661(04)80410-9

13. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of
pushdown automata: application to model-checking. In: Proceed-
ings of the 8th International Conference on Concurrency Theory
(CONCUR), pp. 135–150, Warsaw, Poland (1997). doi:10.1007/
3-540-63141-0_10

14. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular
verification of software components in C. IEEE Trans. Softw. Eng.
30(6), 388–402 (2004). doi:10.1109/TSE.2004.22

15. Chen, H., Dean, D., Wagner, D.: Model checking one million lines
of C code. In: Proceedings of the 11thAnnual Network andDistrib-
uted System Security Symposium (NDSS), San Diego, California,
USA (2004)

16. Chen, H., Wagner, D.: MOPS: an infrastructure for examining
security properties of software. In: ACMConference on Computer
and Communications Security, pp. 235–244 (2002). doi:10.1145/
586110.586142. http://doi.acm.org/10.1145/586110.586142

17. Cook, B., Koskinen, E.: Making prophecies with decision pred-
icates. In: Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pp.
399–410,Austin, TX,USA (2011). doi:10.1145/1926385.1926431

18. Cook,B.,Koskinen,E.,Vardi,M.Y.:Temporal property verification
as a programanalysis task—extendedversion. Form.MethodsSyst.
Des. 41(1), 66–82 (2012). doi:10.1007/s10703-012-0153-5

19. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu,
C.S., Robby, Zheng, H.: Bandera: extracting finite-state models
from java source code. In: Proceedings of the 22nd International
Conference on Software Engineering (ICSE), pp. 439–448, Lim-
erick, Ireland (2000). doi:10.1145/337180.337234

20. Driscoll, E., Thakur, A.V., Reps, T.W.: OpenNWA: A nested-
word automaton library. In: Proceedings of the 24th International
Conference on Computer Aided Verification (CAV), pp. 665–671,
Berkeley, CA, USA (2012). doi:10.1007/978-3-642-31424-7_47

21. elastic: http://www.ulb.ac.be/di/ssd/madewulf/aasap/
22. Elgammal, A., Türetken, O., van den Heuvel, W.J., Papazoglou,

M.P.: On the formal specification of regulatory compliance: a com-
parative analysis. In: Proceedings of International Workshops on
Service-Oriented Computing (ICSOC), PAASC, WESOA, SEE,
and SOC-LOG, pp. 27–38, San Francisco, CA, USA, Revised
Selected Papers (2010). doi:10.1007/978-3-642-19394-1_4

23. Esparza, J.,Hansel,D.,Rossmanith, P., Schwoon, S.: Efficient algo-
rithms for model checking pushdown systems. In: Proceedings of
the 12th International Conference on Computer Aided Verifica-
tion (CAV), pp. 232–247, Chicago, IL, USA (2000). doi:10.1007/
10722167_20

24. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with
regular valuations for pushdown systems. Inf. Comput. 186(2),
355–376 (2003). doi:10.1016/S0890-5401(03)00139-1

25. Fähndrich, M., Logozzo, F.: Static contract checking with abstract
interpretation. In: Proceedings of International Conference on For-
mal Verification of Object-Oriented Software (FoVeOOS), pp.
10–30, Paris, France,RevisedSelected Papers (2010). doi:10.1007/
978-3-642-18070-5_2

26. Getafix: http://www.cs.uiuc.edu/madhu/getafix/
27. Gabel, M., Su, Z.: Javert: fully automatic mining of general tem-

poral properties from dynamic traces. In: Proceedings of the 16th
ACMSIGSOFT International Symposium on Foundations of Soft-
ware Engineering (SIGSOFT FSE), pp. 339–349, Atlanta, GA,
USA (2008). doi:10.1145/1453101.1453150

28. Gabel, M., Su, Z.: Symbolic mining of temporal specifications.
In: Proceedings of the 30th International Conference on Software
Engineering (ICSE), pp. 51–60, Leipzig, Germany (2008). doi:10.
1145/1368088.1368096

29. Godefroid, P.: Software model checking: the Verisoft approach.
Form. Methods Syst. Des. 26(2), 77–101 (2005). doi:10.1007/
s10703-005-1489-x

30. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for
model construction. Higher-Order Symb. Comput. 13(4), 315–353
(2000). doi:10.1023/A:1026599015809

31. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces.
In: Proceedings of the 10th European Software Engineering Con-
ference held jointly with 13th ACM SIGSOFT International Sym-
posiumon Foundations of Software Engineering (ESEC/SIGSOFT
FSE), pp. 31–40, Lisbon, Portugal (2005). doi:10.1145/1081706.
1081713

32. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting
malicious codebymodel checking. In: Proceedings of the 2nd Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), pp. 174–187, Vienna, Austria
(2005). doi:10.1007/11506881_11

33. Kremenek, T., Twohey, P., Back, G., Ng, A.Y., Engler, D.R.: From
uncertainty to belief: Inferring the specification within. In: Pro-
ceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI), pp. 161–176, Seattle, WA, USA
(2006)

34. Kroening, D.: CBMC http://www.cprover.org/cbmc (2012)
35. Liu, C., Ye, E., Richardson, D.J.: Software library usage pattern

extraction using a software model checker. In: Proceedings of the
21st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 301–304, Tokyo, Japan (2006). doi:10.
1109/ASE.2006.63

36. Lo, D., Khoo, S.C.: SMArTIC: towards building an accurate,
robust and scalable specification miner. In: Proceedings of the 14th
ACMSIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE), pp. 265–275, Portland, OR, USA (2006).
doi:10.1145/1181775.1181808

37. Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining
quantified temporal rules: formalism, algorithms, and evaluation.
Sci. Comput. Program. 77(6), 743–759 (2012). doi:10.1016/j.
scico.2010.10.003

38. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of
software behavioral models. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering (ICSE), pp. 501–510,
Leipzig, Germany (2008). doi:10.1145/1368088.1368157

39. Mckit: http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
40. Minisat: C Language Version. http://minisat.se/MiniSat.html
41. Mist2: http://software.imdea.org/pierreganty/software.html
42. Moped: http://www.fmi.uni-stuttgart.de/szs/tools/moped/
43. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specifica-

tion inference using predicate mining. In: Proceedings of ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pp. 123–134, San Diego, California, USA (2007).
doi:10.1145/1250734.1250749

44. Reps, T.W., Lal, A., Kidd, N.: Program analysis using weighted
pushdown systems. In: Proceedings of the 27th International Con-
ference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pp. 23–51, NewDelhi, India (2007).
doi:10.1007/978-3-540-77050-3_4

45. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown
systems and their application to interprocedural dataflow analysis.
Sci. Comput. Program. 58(1–2), 206–263 (2005). doi:10.1016/j.
scico.2005.02.009

46. SourceForge: http://sourceforge.net (2012)
47. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf.

Syst. Secur. 3(1), 30–50 (2000). doi:10.1145/353323.353382
48. Schuppan, V., Biere, A.: Liveness checking as safety checking for

infinite state spaces. Electron. Notes Theor. Comput. Sci. 149(1),
79–96 (2006). doi:10.1016/j.entcs.2005.11.018

123

http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1109/TSE.2004.22
http://dx.doi.org/10.1145/586110.586142
http://dx.doi.org/10.1145/586110.586142
http://doi.acm.org/10.1145/586110.586142
http://dx.doi.org/10.1145/1926385.1926431
http://dx.doi.org/10.1007/s10703-012-0153-5
http://dx.doi.org/10.1145/337180.337234
http://dx.doi.org/10.1007/978-3-642-31424-7_47
http://www.ulb.ac.be/di/ssd/madewulf/aasap/
http://dx.doi.org/10.1007/978-3-642-19394-1_4
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1016/S0890-5401(03)00139-1
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://www.cs.uiuc.edu/madhu/getafix/
http://dx.doi.org/10.1145/1453101.1453150
http://dx.doi.org/10.1145/1368088.1368096
http://dx.doi.org/10.1145/1368088.1368096
http://dx.doi.org/10.1007/s10703-005-1489-x
http://dx.doi.org/10.1007/s10703-005-1489-x
http://dx.doi.org/10.1023/A:1026599015809
http://dx.doi.org/10.1145/1081706.1081713
http://dx.doi.org/10.1145/1081706.1081713
http://dx.doi.org/10.1007/11506881_11
http://www.cprover.org/cbmc
http://dx.doi.org/10.1109/ASE.2006.63
http://dx.doi.org/10.1109/ASE.2006.63
http://dx.doi.org/10.1145/1181775.1181808
http://dx.doi.org/10.1016/j.scico.2010.10.003
http://dx.doi.org/10.1016/j.scico.2010.10.003
http://dx.doi.org/10.1145/1368088.1368157
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
http://minisat.se/MiniSat.html
http://software.imdea.org/pierreganty/software.html
http://www.fmi.uni-stuttgart.de/szs/tools/moped/
http://dx.doi.org/10.1145/1250734.1250749
http://dx.doi.org/10.1007/978-3-540-77050-3_4
http://dx.doi.org/10.1016/j.scico.2005.02.009
http://dx.doi.org/10.1016/j.scico.2005.02.009
http://sourceforge.net
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1016/j.entcs.2005.11.018


Model-checking software library API usage rules 985

49. Seshadri, P.: Generic Socket Programming Tutorial (2008). http://
www.prasannatech.net/2008/07/socket-programming-tutorial.
html

50. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specifica-
tionmining using automata-based abstractions. IEEETrans. Softw.
Eng. 34(5), 651–666 (2008). doi:10.1109/TSE.2008.63

51. Song, F., Touili, T.: Efficient CTL model-checking for pushdown
systems. In: Proceedings of the 22nd International Conference on
Concurrency Theory (CONCUR), pp. 434–449 , Aachen, Germany
(2011). doi:10.1007/978-3-642-23217-6_29

52. Song, F., Touili, T.: Efficient malware detection using model-
checking. In: Proceedings of the 18th International Symposium on
Formal Methods (FM), pp. 418–433, Paris, France (2012). doi:10.
1007/978-3-642-32759-9_34

53. Song, F., Touili, T.: Pushdown model checking for malware detec-
tion. In: Proceedings of the 18th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), Held as Part of the European Joint Conferences on
Theory and Practice of Software (ETAPS), pp. 110–125, Tallinn,
Estonia (2012). doi:10.1007/978-3-642-28756-5_9

54. Song, F., Touili, T.: LTLmodel-checking formalware detection. In:
Proceedings of the 19th InternationalConferene onTools andAlgo-
rithms for the Construction and Analysis of Systems (TACAS),
Held as Part of the European Joint Conferences on Theory and
Practice of Software (ETAPS), pp. 416–431, Rome, Italy (2013).
doi:10.1007/978-3-642-36742-7_29

55. Song, F., Touili, T.: Model-checking software library API usage
rules. In: Proceedings of the 10th International Conference on Inte-
gratedFormalMethods (iFM), pp. 192–207,Turku, Finland (2013).
doi:10.1007/978-3-642-38613-8_14

56. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algo-
rithms for alternating pushdown systems with an application to the
computation of certificate chains. In: Proceedings of the 4th Inter-
national Symposium on Automated Technology for Verification
and Analysis (ATVA), pp. 141–153, Beijing, China (2006). doi:10.
1007/11901914_13

57. Tspass: http://www.csc.liv.ac.uk/michel/software/tspass/
58. Tip, F.: A survey of program slicing techniques. J. Program. Lang.

3(3) (1995)
59. Ubcsat: http://ubcsat.dtompkins.com/
60. Verbs: http://lcs.ios.ac.cn/zwh/verbs/index.html
61. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model

checking programs. Autom. Softw. Eng. 10(2), 203–232 (2003).
doi:10.1023/A:1022920129859

62. Visser, W., Mehlitz, P.C.: Model checking programs with Java
PathFinder. In: Proceedings of the 12th International SPIN Work-
shop on Model Checking Software (SPIN), p. 27, San Francisco,
CA, USA (2005). doi:10.1007/11537328_5

63. Walksat: version 35. http://www.cs.rochester.edu/kautz/walksat/
64. Wasylkowski, A., Zeller, A.: Mining temporal specifications from

object usage.Autom. Softw. Eng. 18(3–4), 263–292 (2011). doi:10.
1007/s10515-011-0084-1

65. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage
anomalies. In: Proceedings of the 6th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing (ESEC/SIGSOFTFSE), pp. 35–44, Dubrovnik, Croatia (2007).
doi:10.1145/1287624.1287632

66. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model
checking concurrent linux device drivers. In: Proceedings of the
22nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 501–504, Atlanta, GA, USA (2007).
doi:10.1145/1321631.1321719

67. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of
program slicing. ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36
(2005). doi:10.1145/1050849.1050865

68. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Per-
racotta: mining temporal API rules from imperfect traces. In:
Proceedings of the 28th International Conference on Software
Engineering (ICSE), pp. 282–291, Shanghai, China (2006). doi:10.
1145/1134325

Fu Song is a lecturer at Soft-
ware Engineering Institute of East
China Normal University, Peo-
ple’s Republic of China. He
received his Ph.D. in Computer
Science from University Paris 7
in 2013 and M.Sc. from Soft-
ware Engineering Institute of
East China Normal University in
2009. His major research inter-
ests include software verifica-
tion (e.g., infinite-state system
modeling, temporal logics and
model-checking), computer secu-
rity (e.g., malware detection and

binary code disassembly). Fu has published more than 15 refereed
papers in international journals and conferences.

Tayssir Touili is a senior CNRS researcher (DR) at the laboratory
LIPN, France. During 2004 and 2014, she was a CNRS researcher at
the laboratory LIAFA, France. She received her Habilitation and PhD in
Computer Science from University of Paris 7 in 2009 and 2003, respec-
tively. Her major research interests include software verification (e.g.,
infinite-state systemmodeling and model-checking), computer security
(e.g., malware detection). Touili has been participating in numerous
research projects in the verification area and contributing about 50 sci-
entific papers on verification-related topics. She has been Co-Chair of
the CAV’10, VECOS’11 and PC of the CAV’15, PLDI’15, VMCAI’14,
POPL’14, etc. conferences.

123

http://www.prasannatech.net/2008/07/socket-programming-tutorial.html
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html
http://www.prasannatech.net/2008/07/socket-programming-tutorial.html
http://dx.doi.org/10.1109/TSE.2008.63
http://dx.doi.org/10.1007/978-3-642-23217-6_29
http://dx.doi.org/10.1007/978-3-642-32759-9_34
http://dx.doi.org/10.1007/978-3-642-32759-9_34
http://dx.doi.org/10.1007/978-3-642-28756-5_9
http://dx.doi.org/10.1007/978-3-642-36742-7_29
http://dx.doi.org/10.1007/978-3-642-38613-8_14
http://dx.doi.org/10.1007/11901914_13
http://dx.doi.org/10.1007/11901914_13
http://www.csc.liv.ac.uk/michel/software/tspass/
http://ubcsat.dtompkins.com/
http://lcs.ios.ac.cn/zwh/verbs/index.html
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1007/11537328_5
http://www.cs.rochester.edu/kautz/walksat/
http://dx.doi.org/10.1007/s10515-011-0084-1
http://dx.doi.org/10.1007/s10515-011-0084-1
http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1145/1321631.1321719
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/1134325
http://dx.doi.org/10.1145/1134325

	Model-checking software library API usage rules
	Abstract
	1 Introduction
	2 Formal model
	2.1 Pushdown systems
	2.2 mathcalP-automata
	2.3 From programs to pushdown systems

	3 API usage rules specification
	3.1 Environments, predicates and regular variable expressions
	3.2 Stack computation tree predicate logic
	3.3 The stack linear temporal predicate logic
	3.4 Extracting predicates for API specifications
	3.5 An illustrating example
	3.5.1 Description of the socket library
	3.5.2 Specifying the socket library API usage rules in SCTPL
	3.5.3 Specifying the socket library API usage rules in SLTPL
	3.5.4 Checking the API usage rules

	3.6 Expressiveness of SCTPL and SLTPL

	4 Integrating may-alias analysis into model-checking
	4.1 Context-sensitive may-alias analysis
	4.2 Updating predicate via may-alias analysis

	5 rSCTPL, rSLTPL and the procedure-cutting abstraction
	5.1 Procedure-cutting abstraction
	5.2 The rSLTPL logic

	6 Experiments
	6.1 Checking the socket library API usage rules
	6.2 Checking file operation usage rules
	6.3 Checking API usage rules with may-alias analysis

	7 Related work
	8 Conclusion and future work
	Acknowledgments
	9 Appendix
	References




