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Abstract The number of malware is growing extraordinar-
ily fast. Therefore, it is important to have efficient malware
detectors. Malware writers try to obfuscate their code by dif-
ferent techniques. Many well-known obfuscation techniques
rely on operations on the stack such as inserting dead code
by adding useless push and pop instructions, or hiding calls
to the operating system, etc. Thus, it is important for mal-
ware detectors to be able to deal with the program’s stack.
In this study, we propose a new model-checking approach
for malware detection that takes into account the behavior
of the stack. Our approach consists in: (1) Modeling the
program using a pushdown system (PDS). (2) Introducing
a new logic, called stack computation tree predicate logic
(SCTPL), to represent the malicious behavior. SCTPL can
be seen as an extension of the branching-time temporal logic
CTL with variables, quantifiers, and predicates over the stack.
(3) Reducing the malware detection problem to the model-
checking problem of PDSs against SCTPL formulas. We
show how our new logic can be used to precisely express
malicious behaviors that could not be specified by exist-
ing specification formalisms. We then consider the model-
checking problem of PDSs against SCTPL specifications.
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We reduce this problem to emptiness checking in Symbolic
Alternating Büchi Pushdown Systems, and we provide an
algorithm to solve this problem. We implemented our tech-
niques in a tool and applied it to detect several viruses. Our
results are encouraging.
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1 Introduction

The number of malwares that produced incidents in 2010 is
more than 1.5 billion [17]. A malware may bring serious dam-
age, e.g., the worm MyDoom slowed down global internet
access by 10 % in 2004 [13]. Thus, it is crucial to have effi-
cient up-to-date virus detectors. Existing antivirus systems
use various detection techniques to identify viruses such as
(1) code emulation where the virus is executed in a virtual
environment to get detected; or (2) signature detection, where
a signature is a pattern of program code that characterizes the
virus. A file is declared as a virus if it contains a sequence of
binary code instructions that matches one of the known sig-
natures. Each virus variant has its corresponding signature.
These techniques have some limitations. Indeed, emulation-
based techniques can only check the program’s behavior in a
limited time interval. They cannot check what happens after
the timeout. Thus, they might miss the viral behavior if it
occurs after this time interval. As for signature-based sys-
tems, it is very easy to virus developers to get around them. It
suffices to apply obfuscation techniques to change the struc-
ture of the code while keeping the same functionality, so
that the new version does not match the known signatures.
Obfuscation techniques can consist in inserting dead code,
substituting instructions by equivalent ones, etc. Virus writ-
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ers update their viruses frequently to make them undetectable
by these antivirus systems.

To sidestep these limitations, instead of executing the pro-
gram or making a syntactic check over it, virus detectors need
to use analysis techniques that check the behavior (not the
syntax) of the program in a static way, i.e., without executing
it. Towards this aim, we propose in this study to use model
checking for virus detection. Model checking has already
been used for virus detection in [5,10,12,20–22,27]. How-
ever, these works model the program as a finite-state graph
(automaton). Thus, they are not able to model the stack of the
programs and cannot track the effects of the push, pop and
call instructions. However, as described in [25], many obfus-
cation techniques rely on operations over the stack. Indeed,
many antivirus systems determine whether a program is mali-
cious by checking the calls it makes to the operating system.
Hence, several virus writers try to hide these calls by replac-
ing them by push and return instructions [25]. Therefore, it
is important to have analysis techniques that can deal with
the program stack.

We propose in this study a novel model-checking tech-
nique for malware detection that takes into account the behav-
ior of the stack. Our approach consists in modeling the pro-
gram using a pushdown system (PDS) and defining a new
logic, called SCTPL, to express the malicious behavior.

Using pushdown systems as program model allows con-
sidering the program stack. In our modeling, the PDS con-
trol locations correspond to the program’s control points,
and the PDS stack mimics the program’s execution stack.
This allows the PDS to mimic the behavior of the program.
This is different from standard program translations to PDSs
where the control points of the program are stored in the
stack [4,16]. These standard translations assume that the pro-
gram follows a standard compilation model, where the return
addresses are never modified. We do not make such assump-
tions since behaviors where the return addresses are modified
can occur in malicious code. We only make the assumption
that pushes and pops can be done only using push, pop, call,
and return operations, not by manipulating the stack pointer,
i.e., the data in the stack cannot be changed via direct memory
access.

The logic SCTPL that we introduce is an extension of the
CTPL logic that allows using the predicates over the stack.
CTPL was introduced in [20–22]. It can be seen as an exten-
sion of CTL with variables and quantifiers. In CTPL, propo-
sitions can be predicates of the form p(x1, . . . , xn), where
x1, . . . , xn are free variables or constants. Free variables can
get their values from a finite domain. Variables can be uni-
versally or existentially quantified. CTPL is as expressive as
CTL, but it allows a more succinct specification of the mali-
cious behavior. For example, consider the statement “The
value data is assigned to some register, and later, the content
of this register is pushed onto the stack.” This statement can

(a)

(b)

Fig. 1 a Worm fragment, b obfuscated fragment

be expressed in CTL as a large formula enumerating all the
possible registers:

EF
(
mov(eax, data) ∧ AF push(eax)

)∨
EF

(
mov(ebx, data) ∧ AF push(ebx)

)∨
EF

(
mov(ecx, data) ∧ AF push(ecx)

) ∨ . . .
where every instruction is regarded as a predicate, i.e.,
mov(eax, data) is a predicate. However, the CTL formula
is large for such a simple statement. Using CTPL, this can
be expressed by the CTPL formula ∃r EF

(
mov(r, data) ∧

AF push(r)
)

which expresses in a succinct way that there
exists a register r such that the above holds. References [20–
22] show how this logic is adequate to specify some mali-
cious behaviors. However, CTPL does not allow to specify
properties about the stack (which is important for malicious
code detection as explained above). For example, consider
Fig. 1a. It corresponds to a critical fragment of the Email-
worm Avron [18] that shows the typical behavior of an email
worm: it calls an API function GetModuleHandleA with 0 as
its parameter. This allows getting the entry address of its own
executable so that later, it can infect other files by copying
this executable into them. (Parameters to a function in assem-
bly are passed by pushing them onto the stack before a call
to the function is made. The code in the called function later
retrieves these parameters from the stack.) Using CTPL, we
can specify this malicious behavior by the following formula:

∃ r1 EF
(

mov(r1, 0) ∧ EX E
[¬∃r2 mov(r1, r2) U

(
push(r1)

∧EX E[¬∃ r3 (push(r3) ∨ pop(r3))

U call(Get ModuleHandleA)])]
)
. (1)

This formula states that there exists a register r1 assigned by
0 such that the value of r1 is not modified until it is pushed
onto the stack. Later the stack is not changed until function
GetModuleHandleA is called. This specification can detect
the fragment in Fig. 1a. However, a worm writer can easily
use some obfuscation techniques to escape this specification.
For example, let us introduce one push followed by one pop
after push eax at line l2 as done in Fig. 1b. By doing so,
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this fragment keeps the same malicious behavior as that of
the fragment in Fig. 1a. However, it cannot be detected by
the above CTPL formula. Since the number of pushes and
pops that can be added by the worm writer can be arbitrarily
large, it is always possible for worm developers to change
their code to escape a given CTPL formula.

To overcome this problem, we introduce the SCTPL which
extends CTPL by predicates over the stack. Such predicates
are given by regular expressions over the stack alphabet and
some free variables (which can also be existentially and uni-
versally quantified). Using our new logic SCTPL, the mali-
cious behavior of Fig. 1a, b can be specified as follows:

ψ = ∃r1EF
(

mov(r1, 0) ∧ EX E
[¬∃r2mov(r1, r2)U

(
push(r1)

∧EX E[¬
(

push(r1) ∨
(∃r3(pop(r3) ∧ r1Γ

∗)
))

U(call(Get ModuleHandleA) ∧ r1Γ
∗)])]

)
(2)

where r1Γ
∗ is a regular predicate expressing that the topmost

symbol of the stack is r1. The SCTPL formula ψ states that
there exists a register r1 assigned by 0 such that the value of
r1 is not changed until it is pushed onto the stack. Then, r1

is never pushed onto the stack again nor popped from it until
the function GetModuleHandleA is called. When this call is
made, the topmost of the stack has to be r1. This ensures that
GetModuleHandleA is called with 0 as parameter. This spec-
ification can detect both fragments in Fig. 1, because it allows
specifying the content of the stack when GetModuleHandleA
is called. Note that it is important to use pushdown systems as
model to have specifications with predicates over the stack.

The main contributions of this paper are:

1. We present a new technique to translate a binary pro-
gram into a pushdown system that mimics the pro-
gram’s behavior (a malicious program is usually an exe-
cutable, i.e., a binary program). Our translation is differ-
ent from standard program translations to PDSs that need
to assume that the program follows a standard compila-
tion model, where the return addresses are never modi-
fied. Our translation does not need to make this assump-
tion since malicious code may have a non-standard form.

2. We introduce the SCTPL and show how it can be used to
efficiently and precisely characterize different malicious
behaviors.

3. We propose an algorithm for model-checking pushdown
systems against SCTPL specifications. We reduce this
problem to checking emptiness in Symbolic Alternat-
ing Büchi Pushdown Systems (SABPDS) and propose
an algorithm to solve this emptiness problem.

4. We implemented our techniques in a tool that we suc-
cessfully applied to detect several viruses.

This paper is the full version of [29].

Outline. We give our translation from binary programs to
PDSs in Sect. 2. In Sect. 3, we introduce our SCTPL and show
how it can be used to precisely specify malicious behavior.
Our SCTPL model-checking algorithm for pushdown sys-
tems is given in Sect. 4. The experiments we made for mal-
ware detection are reported in Sect. 5. Section 6 describes
the related work.

2 Binary code modeling

We represent a binary code program by a set of control flow
graphs (CFGs), one CFG for each procedure. These CFGs
are over-approximations of the concrete program. The nodes
of a CFG correspond to the program locations, and its edges
are annotated with assembly instructions (e.g., mov eax,0).
Several tools allow extracting a set of CFGs from a binary
code, such as IDA Pro [19], CodeSurfer/x86 [3], Jakstab [23],
BAP [8], etc. We can use these tools to extract CFGs from
binary code. Some of these tools involve efficient static analy-
sis techniques that allow computing over-approximations of
the sets of numeric values and addresses that are involved in
every control point of the program. In particular, they pro-
vide informations on the possible values of l in instructions
of the form n1 : jmp l or n1 : call l. Thus, we suppose that
in the CFGs, these instructions are represented by edges of

the form n1
jmp n−−→ n and n1

call n−−→ n2 for all the possible val-
ues n of l (these values are computed by the CFG-extractor
tool). Moreover, we suppose that pushes and pops can be
done only using push, pop, call, and return operations, not
by manipulating the stack pointer.

2.1 Formal model: pushdown systems

A Pushdown System (PDS) is a tuple P = (P, Γ,Δ, �),
where P is a finite set of control locations, Γ is the stack
alphabet, Δ ⊆ (P × Γ ) × (P × Γ ∗) is a finite set of tran-
sition rules, and � ∈ Γ is the bottom stack symbol. A con-
figuration of P is 〈p, ω〉, where p ∈ P and ω ∈ Γ ∗. If
((p, γ ), (q, ω)) ∈ Δ, we write 〈p, γ 〉 ↪→ 〈q, ω〉. For tech-
nical reasons, we assume that the bottom stack symbol � is
never popped from the stack, i.e., there is no transition rule
of the form 〈p, �〉 ↪→ 〈q, ω〉 ∈ Δ.

The successor relation �P⊆ (P × Γ ∗) × (P × Γ ∗) is
defined as follows: if 〈p, γ 〉 ↪→ 〈q, ω〉, then 〈p, γω′〉 �P
〈q, ωω′〉 for every ω′ ∈ Γ ∗. For every configuration c, c′ ∈
P×Γ ∗, c is a successor of c′ iff c �P c′. A path is a sequence
of configurations c0, c1, . . . s.t. ci �P ci+1 for every i ≥ 0.

The reachability relation⇒P⊆ (P×Γ ∗)×(P×Γ ∗) is
the reflexive and transitive closure of the successor relation
�P . Formally ⇒P is defined as follows: (1) c ⇒P c
for every c ∈ P × Γ ∗, (2) if 〈p, γ 〉 ↪→ 〈q, ω〉, then
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〈p, γω′〉 ⇒P 〈q, ωω′〉 for everyω′ ∈ Γ ∗, (3) if c ⇒P c′′
and c′′ ⇒P c′, then c ⇒P c′.

2.2 From binary code to pushdown systems

Given a set of CFGs S, we define a corresponding PDS P =
(P, Γ,Δ, �) such that Γ is the set of symbols α such that

there exists in S an edge of the form n1
push α−−−→ n2 or n1

call proc−−−−→
α. P isΓ ∪N , where N is the set of nodes of S; andΔ contains
transition rules that mimic the behaviors of the program’s
instructions. Let i be an instruction from control point n1 to
control point n2:

– if i is of the form n1
push α−−−→ n2, it is translated into a set

of push rules 〈n1, γ 〉 ↪→ 〈n2, αγ 〉, for every γ ∈ Γ ;

– if i is of the form n1
pop α−−→ n2, it is translated into a set of

pop rules 〈n1, γ 〉 ↪→ 〈n2, ε〉, for every γ ∈ Γ , where ε
is the empty word;

– if i is a call instruction n1
call proc−−−−→ n2, it is translated into

a set of push rules 〈n1, γ 〉 ↪→ 〈eproc, n2 γ 〉, for every
γ ∈ Γ . These rules move the control point to the entry
point eproc of the procedure proc and pushes the return
address n2 of the callee onto the stack. This is how an
assembly program behaves when it executes a call.

– if i is a return instruction n1
ret−→ n2, it is translated into

a set of pop rules 〈n1, γ 〉 ↪→ 〈γ, ε〉, for every γ ∈ Γ .
These rules remove the topmost symbol γ from the stack,
and moves the PDS’s control point to γ , i.e., to the return
address. This is how an assembly program behaves when
it executes a return.

– if i is any other instruction n1
other instruction−−−−−−−−−→ n2, it is

translated into a set of rules 〈n1, γ 〉 ↪→ 〈n2, γ 〉, for every
γ ∈ Γ . These rules move the PDS’s control point from
n1 to n2 without changing the stack.

Note that in our modeling, the PDS control locations cor-
respond to the program’s control points, and the PDS stack
mimics the program’s execution stack. The above transition
rules allow the PDS to mimic the behavior of the program’s
stack. This is different from standard program translations to
PDSs where the control points of the program are stored in
the stack [4,16]. These standard translations assume that the
program follows a standard compilation model, where the
return addresses are never modified. We do not make such
assumptions since behaviors where the return addresses are
modified can occur in malicious code. We only make the
assumption that pushes and pops can be done only using
push, pop, call, and return operations, not by manipulating
the stack pointer, i.e., the data in the stack cannot be changed
via direct memory access.

Fig. 2 The transition rules Δ

(a) (b)

Fig. 3 a A fragment of a benign program and b a fragment of a malware

Example: The fragment of code of Fig. 1b can be encoded
by the PDS P = (P, Γ,Δ, �) such that P = {l ′1, l ′2, l ′3, l ′4 ,
l ′5, l ′6, g0}, where g0 is the entry point of the function Get-
ModuleHandleA and l ′6 is the location just after l ′5. The stack
alphabet is Γ = {eax, ebx, l ′6}. The transition rules Δ are
shown in Fig. 2.

Remark 1 In our binary code modeling, we push the names
of the registers onto the stack. Instead, one can push the
real values of the registers onto stack. This way, the behavior
described in Sect. 1 can be expressed in a more precise way by
the SCTPL formulaψ ′ = EFcall(Get ModuleHandleA)∧
0Γ ∗.ψ ′ expresses that there exists a path where the function
GetModuleHandleA is called when 0 is on the top of the
stack, i.e., 0 is the first parameter of GetModuleHandleA. This
approach is more precise if there is a tool that can provide
the real values of the registers and addresses. However, in
practice, such a precise tool does not exist. All the existing
tools will provide approximated values of the registers and
addresses. Thus, in some situations, our approach consisting
in pushing the names of the registers onto the stack works
better. For example, let us consider the programs shown in
Fig. 3a, b. Figure 3a is a fragment of a benign program calling
GetModuleHandleA with 1 as its parameter, while Fig. 3b is
a fragment of a malware calling GetModuleHandleA with
0 as its parameter. Then, ψ given in Eq. (2) can classify
the malware and benign programs in Fig. 3a, b. However, if
we rely on a tool to provide the values of the registers and
addresses, if this tool is unable to provide the exact value of
the register ebx at the control points l3 and l ′3, respectively,
and if the tool uses over-approximations, then both programs
in Fig. 3a, b might be identified as malwares. While if the
tool uses under-approximations, both programs in Fig. 3a, b
might be identified as benign programs.
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3 Malicious behavior specification

In this section, we introduce the stack computation tree pred-
icate logic (SCTPL), and show how it can be used to specify
malicious behavior.

3.1 Environments, predicates, and regular expressions

From now on, we fix the following notations. Let X =
{x1, x2, . . .} be a finite set of variables ranging over a finite
domain D. Let B : X ∪ D −→ D be an environment func-
tion that assigns a value c ∈ D to each variable x ∈ X
such that B(c) = c for every c ∈ D. B[x ← c] denotes
the environment function such that B[x ← c](x) = c and
B[x ← c](y) = B(y) for every y �= x . Absx (B) is the set of
all the environments B′ s.t. for every y �= x , B′(y) = B(y).
Let B be the set of all the environment functions.

Let AP = {a, b, c, . . .} be a finite set of atomic proposi-
tions, APX be a finite set of atomic predicates of the form
b(α1, . . . , αm) such that b ∈ AP and αi ∈ X ∪ D for every
i, 1 ≤ i ≤ m, and APD be a finite set of atomic predicates
of the form b(α1, . . . , αm) such that b ∈ AP and αi ∈ D for
every i, 1 ≤ i ≤ m.

Let P = (P, Γ,Δ, �) be a PDS s.t. Γ ⊆ D. Let R be a
finite set of regular variable expressions e over X ∪Γ defined
by:

e ::= ∅ | ε | a ∈ X ∪ Γ | e + e | e · e | e∗

The language L(e) of a regular variable expression e is a
subset of P × Γ ∗ × B defined inductively as follows:

– L(∅) = ∅,
– L(ε) = {(〈p, ε〉,B) | p ∈ P,B ∈ B} ,
– L(x), where x ∈ X , is the set {(〈p, γ 〉,B) | p ∈ P, γ ∈
Γ,B ∈ B : B(x) = γ },

– L(γ ), where γ ∈ Γ , is the set {(〈p, γ 〉,B) | p ∈ P,B ∈
B},

– L(e1 + e2) = L(e1) ∪ L(e2),
– L(e1 ·e2) = {(〈p, ω1ω2〉,B) | (〈p, ω1〉,B) ∈ L(e1) and
(〈p, ω2〉,B) ∈ L(e2)},

– L(e∗) = {(〈p, ω〉,B) | ∀B ∈ B s.t. ω ∈ {u ∈ Γ ∗ |
(〈p, u〉,B) ∈ L(e)}∗}.

For example, (〈p, γ1γ1γ2〉,B) is an element of L(x∗γ2)when
B(x) = γ1.

3.2 Stack computation tree predicate logic

We are now ready to define our new logic SCTPL. Intu-
itively, a SCTPL formula is a CTL formula where predicates
and regular variable expressions are used as atomic proposi-
tions. Using regular variable expressions allows expressing
the predicates on the stack content of the PDS. Moreover,

since predicates and regular variable expressions contain
variables, we allow quantifiers over variables. For technical
reasons, we suppose w.l.o.g. that formulas are given in pos-
itive normal form, i.e., negations are applied only to atomic
propositions. Indeed, each CTL formula can be written in
positive normal form by pushing the negations inside. More-
over, we use the operator R as a dual of the until operator for
which the stop condition is not required to occur. Then, stan-
dard CTL operators can be expressed as follows: EFψ =
E[trueUψ], AFψ = A[trueUψ], EGψ = E[ f alseRψ]
and AGψ = A[ f alseRψ].

More precisely, the set of SCTPL formulas is given by
(where x ∈ X , a(x1, . . . , xn) ∈ APX and e ∈ R):

ϕ : := a(x1, . . . , xn) | ¬a(x1, . . . , xn) | e | ¬e | ϕ ∧ ϕ
| ϕ ∨ ϕ | ∀x ϕ | ∃x ϕ | AXϕ | EXϕ | A[ϕUϕ]
| E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ]

Let ϕ be a SCTPL formula. The closure cl(ϕ) denotes
the set of all the subformulas of ϕ including ϕ. The
size |ϕ| of ϕ is the number of elements of cl(ϕ). Let
AP+(ϕ) = {a(x1, . . . , xn) ∈ APX | a(x1, . . . , xn)

∈ cl(ϕ)}, AP−(ϕ) = {a(x1, . . . , xn) ∈ APX | ¬a(x1, . . . ,

xn) ∈ cl(ϕ)}, Reg+(ϕ) = {e ∈ R | e ∈ cl(ϕ)}, Reg−(ϕ)
= {e ∈ R | ¬e ∈ cl(ϕ)}, and clR(ϕ) be the set of formulas
of cl(ϕ) in the form of E[ϕ1Rϕ2] or A[ϕ1Rϕ2].

Given a PDS P = (P, Γ,Δ, �) s.t. Γ ⊆ D, let λ :
APD → 2P be a labeling function that assigns a set of control
locations to a predicate. Let c = 〈p, w〉 be a configuration of
P . P satisfies a SCTPL formula ψ in c, denoted by c |λ ψ ,
iff there exists an environment B ∈ B s.t. c |B

λ ψ , where
c |B

λ ψ is defined by induction as follows:

– c |B
λ a(x1, . . . , xn) iff p ∈ λ

(
a
(
B(x1), . . . ,B(xn)

))
.

– c |B
λ ¬a(x1, . . . , xn) iff p �∈ λ

(
a
(
B(x1), . . . ,B(xn)

))
.

– c |B
λ e iff (c,B) ∈ L(e).

– c |B
λ ¬e iff (c,B) �∈ L(e).

– c |B
λ ψ1 ∧ ψ2 iff c |B

λ ψ1 and c |B
λ ψ2.

– c |B
λ ψ1 ∨ ψ2 iff c |B

λ ψ1 or c |B
λ ψ2.

– c |B
λ ∀x ψ iff ∀v ∈ D, c |B[x←v]

λ ψ .

– c |B
λ ∃x ψ iff ∃v ∈ D s.t. c |B[x←v]

λ ψ .
– c |B

λ AX ψ iff c′ |B
λ ψ for every successor c′ of c.

– c |B
λ EX ψ iff there exists a successor c′ of c s.t. c′ |B

λ

ψ .
– c |B

λ A[ψ1Uψ2] iff for every path π = c0, c1, . . . , of
P with c0 = c, ∃i ≥ 0 s.t. ci |B

λ ψ2 and ∀0 ≤ j < i :
c j |B

λ ψ1.
– c |B

λ E[ψ1Uψ2] iff there exists a path π = c0, c1, . . . ,

of P with c0 = c s.t. ∃i ≥ 0, ci |B
λ ψ2 and ∀0 ≤ j <

i, c j |B
λ ψ1.

– c |B
λ A[ψ1Rψ2] iff for every path π = c0, c1, . . . , of

P with c0 = c, ∀i ≥ 0 s.t. ci �|B
λ ψ2, ∃0 ≤ j < i s.t.

c j |B
λ ψ1.
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Fig. 4 The labeling function λ

– c |B
λ E[ψ1Rψ2] iff there exists a path π = c0, c1, . . . ,

of P with c0 = c s.t. ∀i ≥ 0 s.t. ci �|B
λ ψ2, ∃0 ≤ j < i

s.t. c j |B
λ ψ1.

Intuitively, c |B
λ ψ holds iff the configuration c satisfies

the formula ψ under the environment B. Note that a path π
satisfies ψ1Rψ2 iff either ψ2 holds everywhere in π or the
first occurrence in the path where ψ2 does not hold must be
preceded by a position where ψ1 holds.

Example: Consider the fragment of Fig. 1b, and the SCTPL
formula ψ described in Sect. 1 by formula (2). In this exam-
ple, we have

– X = {r1, r2, r3} is the set of variables that appear in ψ ,
– R = {r1Γ

∗} is the set of regular variable expressions in
ψ ,

– AP = {mov, push, pop, call} is the set of atomic propo-
sitions corresponding to the instructions of the program,

– APX = {mov(r1, 0),mov(r1, r2), push(r1), pop(r3),

call(Get ModuleHandleA)} is the set of predicates that
appear in the formula ψ ,

– D = {eax, ebx, 0,Get ModuleHandleA, l ′6} is defined
such that Γ ⊆ D, and the set of instructions of the pro-
gram are in APD,

– APD = {mov(eax, 0), push(eax), push(ebx), pop(ebx),
call(Get ModuleHandleA)} is the set of labels of the
program’s instructions,

– The labeling function λ is described in Fig. 4.

Consider the PDS of Fig. 2 that describes this fragment of
code. Any configuration 〈l ′1, ω〉, ω ∈ Γ ∗ satisfies the subfor-
mula ϕ:

ϕ = EF
(

mov(r1, 0) ∧ EX E
[¬∃r2 mov(r1, r2)U

(
push(r1) ∧ EX E[¬

(
push(r1) ∨

(∃r3(pop(r3) ∧ r1Γ
∗)

))

U(call(Get ModuleHandleA) ∧ r1Γ
∗)])]

)

under all the environments B s.t. B(r1) = eax . Thus, since
ψ = ∃ r1 ϕ, we get that any configuration 〈l ′1, w〉, w ∈ Γ ∗
satisfies the specificationψ under every environment B′ ∈ B.

Remark 2 CTPL [22] is a subclass of SCTPL where predi-
cates over the stack are not allowed (i.e., SCTPL formulas
that do not use regular variable expressions). SCTPL is more

expressive than CTPL since it allows expressing the predi-
cates over the content of the stack using regular languages.

Remark 3 CTL with regular valuations is an extended ver-
sion of CTL where the atomic propositions can be regu-
lar sets of configurations over the stack alphabet. Since the
domain D is finite, every SCTPL formula ψ can be trans-
formed to an equivalent CTL formula with regular valua-
tions ψ ′. This transformation can be done by enumerating
all the possible valuations of the variables X . Intuitively,
a SCTPL formula ∃xa(x) is equivalent to

∨
c∈D a(c), and

∀xa(x) is equivalent to
∧

c∈D a(c). The obtained formula
has size |ψ ′| = O(|ψ ||D|g), where g is the number of sub-
formulas of ψ in the form of ∀xψ or ∃xψ . Thus, SCTPL
allows to be more succinct than CTL with regular valuations.

3.3 Modeling malicious behaviors using SCTPL

In this section, we show some examples that illustrate how
SCTPL can be used to precisely specify malicious behaviors.
We needed stack predicates to express most of the specifi-
cations. Except the first specification given using a CTPL
formula, all the other malicious behaviors described in this
section need to use predicates over the stack. Thus, SCTPL
is necessary to specify these behaviors, where CTPL is not
sufficient.

3.3.1 Kernel32.dll base address viruses

Many Windows viruses use an API to achieve their malicious
tasks. The Kernel32.dll file includes several API functions
that can be used by the viruses. In order to use these func-
tions, the viruses have to find the entry addresses of these
API functions. To do this, they need to determine the Ker-
nel32.dll entry point. They determine first the Kernel32.dll
PE header in memory and use this information to locate Ker-
nel32.dll export section and find the entry addresses of the
API functions. For this, the virus looks first for the DOS
header (the first word of the DOS header is 5A4Dh in hex
(M Z in ascii)) and then looks for the PE header (the first two
words of the PE header is 4550h in hex (P E00 in ascii)).
Figure 5 presents a disassembled code fragment performing

Fig. 5 Virus
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(a) (b)

Fig. 6 a Email worm, b specification of Email worm

this malicious behavior. This can be specified in SCTPL as
follows:

Ψwv = EG
(

EF
(∃r1 cmp(r1, 5A4Dh) ∧ EF ∃r2

cmp(r2, 4550h)
))
.

This SCTPL formula expresses that the program has a loop
such that there are two variables r1 and r2, and first r1 is
compared to 5A4Dh and then r2 is compared to 4550h. Note
that this formula can detect all the class of viruses that have
such behavior.

3.3.2 Email worms

The typical behavior of an email worm can be summarized
as follows: the worm will first call the API GetModuleFile-
NameA to get the name of its executable. For this, the worm
needs to call this function with 0 and m as parameters (m
corresponds to the address of a memory location), i.e., with
0m on the top of the stack since parameters to a function
in assembly are passed through the stack. GetModuleFile-
NameA will then write the name of the worm executable
on the address m. Then, the worm will copy its file (whose
name is at the address m) to other locations using the func-
tion CopyFileA. It needs to call CopyFileA with m as para-
meter, i.e., with m on the top of the stack. Figure 6a shows a
disassembled fragment of a code corresponding to this typi-
cal behavior. This behavior can be expressed by the SCTPL
formula of Fig. 6b. In this formula, Line 2 expresses that
there exists a register r0 such that the address of the mem-
ory location m is assigned to r0, and such that the value of
r0 does not change until it is pushed onto the stack (sub-
formula ¬∃v(mov(r0, v) ∨ lea(r0, v)) Upush(r0)). Line 3
guarantees that r0 is not pushed nor popped from the stack
until GetModuleFileNameA is called, and 0r0 is on the top of
the stack (the predicate 0r0Γ

∗ ensures this). This guarantees
that when GetModuleFileNameA is called, r0 still contains
the address of m. Thus, the name of the worm file returned
by GetModuleFileNameA will be put at the address m. Line
4 is similar to Line 2. It expresses that there exists a register

(a) (b)

Fig. 7 a Normal call and b obfusated call

r1 such that the address of the memory location m is assigned
to r1, and such that the value of r1 does not change until it is
pushed onto the stack. This guarantees that when r1 is pushed
to the stack, it contains the address of m. Line 5 expresses
that r1 is not pushed nor popped from the stack until Copy-
FileA is called, and r1 is on the top of the stack (the predicate
r1Γ
∗ ensures this). This guarantees that when CopyFileA is

called, the value of r1 is still m. Thus, CopyFileA will copy
the file whose name is at the address m. Note that we need
predicates over the stack to express in a precise manner this
specification.

3.3.3 Obfuscated calls

Virus writers try to obfuscate their code by, for e.g., hiding the
calls to the operating system. For example, a call instruction
can be replaced by pushes and jumps. Figure 7 shows two
equivalent fragments achieving a “call” instruction. Figure
7a shows a normal call/ret where the function f consists just
of a return instruction. When control point f is reached, the
return instruction moves the control point to l1 which is the
return address of the call instruction (at l0). As shown in
Fig. 7b, the call can be equivalently substituted by two other
instructions, where push l ′2 pushes the return address l ′2 onto
the stack, and jmp f moves the control point to the entry
point of f . These instructions do exactly the same thing than
the call instruction. When reaching the control point f , the
ret instruction will pop the stack and thus, move the control
point to l ′2. Such obfuscated calls can be described by the
following SCTPL formula:
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Ψoc = ∃ addr E[¬(∃ proc call(proc) ∧ EX addrΓ ∗)
U(ret ∧ addrΓ ∗)]

The subformula (∃ proc call(proc)∧ EX addrΓ ∗) means
that there exists a procedure call having addr as return
address, since when a procedure call is made, the program
will push its corresponding return address addr to the stack,
and thus, at the next step, we will have addr on the top of
the stack (i.e., addrΓ ∗). The subformula (ret ∧ addrΓ ∗)
expresses that we have a return instruction with addr on the
top of the stack, i.e., a return instruction that will return to
addr . Thus, the formula Ψoc expresses that there exists a
return address addr such that there exists a path where there
is no call to a procedure proc having addr as return address
until a return instruction with addr as return address occurs.
This formula can then detect a return that does not correspond
to a call.

3.3.4 Obfuscated returns

Virus writers usually obfuscate the returns of their calls to
make it difficult to manually or automatically analyze their
code. Benign programs move the control point to the return
address using the ret instruction. Viruses may replace the ret
instruction by other equivalent instructions such as pop eax,
jmp l, etc. For example, the program in Fig. 8 is a disas-
sembled fragment from the virus Klinge that pops the return
address 00401028 from the stack. This phenomenon can be
detected by the following specification:

Ψor = AG
(
∀proc∀addr

(
(call(proc) ∧ AX addrΓ ∗)

⇒ AF(ret ∧ addrΓ ∗)
))

Ψor expresses that for every procedure proc, if proc is called
with addr as the return address of the caller, then there exists
a ret instruction which will return to addr. Indeed, since when
an assembly program runs, if an instruction call proc is exe-
cuted, then the return address addr of the caller is pushed onto
the stack. Thus, in the subformula call(proc)∧AX addrΓ ∗,
addr refers to the return address of the call, because this sub-
formula expresses that in all the immediate successors of the
call, addr is on the top of the stack. Moreover, ret∧addrΓ ∗

Fig. 8 Fragment of the virus Klinge

Fig. 9 A fragement of an
appending virus

means that when the return is executed, then the return
address addr should be on the top of the stack.

3.3.5 Appending viruses

An appending virus is a virus that inserts a copy of its mali-
cious code at the end of the target file. To do this, the virus
has to first calculate its real absolute address in the memory,
because the real OFFSET of the virus’ variables depends on
the size of the infected file. To achieve this, the viruses have
to call the routine in Fig. 9 (this code is a fragment of the virus
Alcaul.b). The instruction call l2 will push the return address
l2 onto the stack. Then, the pop instruction will put the value
of this address into the register eax. In this way, the virus can
get its real absolute address in the memory. This malicious
behavior can be detected using the specification Ψor , since
there does not exist any return instruction corresponding to
the call instruction.

3.3.6 Spywares

The aim of a spyware is to steal information from the host.
To do this, it has to scan the disk of the host to find the inter-
esting file that he wants to steal. If a file is found, it will run
a payload to steal it, then continue searching the next file. If
a directory is found, it will enter this path and continue scan-
ning. Figure 10 shows a fragment of the notorious spyware
Flame. It first calls the function FindFirstFileW to search for
the first object in the given path, then it will check whether
the function call succeeds or not. If the function call fails,
it will call the function GetLastError. Otherwise it will call
either the function FindFirstFileW again if it finds a directory
or the function FindNextFileW with the return value of Find-
FirstFileW as first parameter to search for the next object.
We can specify this behavior in SCTPL as follows:

Fig. 10 A fragment of Flame
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Ψspy = EF
(

call(Find First FileW ) ∧ EX ∃x(
A[¬∃y(mov(eax, y)

∨call(y))U(mov(x, eax) ∧ AF
(
call(Get Last Error) ∨

call(Find First FileW ) ∨ (call(Find Next FileW ) ∧ xΓ ∗)
)
)])

)

This formula states that there exists a control point where
the function FindFirstFileW is called. Later the value of the
register eax is not changed until it is assigned to a variable x
(note that after a function call, the return value will be stored
in the register eax). Then, in all the future paths, it either calls
GetLastError meaning that the function call FindFirstFileW
fails or calls FindFirstFileW when a directory is found or calls
FindNextFileW when x (the return value of FindFirstFileW )
is on the top of the stack. A binary code having this behavior
may be a benign program, but we can combine this behavior
with other malicious behaviors expressing the payload such
as sending a file to determine whether the binary code is a
malware or not. Note that this formula is branching-time and
cannot be expressed in a linear-time temporal logic.

4 SCTPL model checking for pushdown systems

In this section, we give an efficient SCTPL model-checking
algorithm for Pushdown systems. Our procedure works as
follows: we reduce this model-checking problem to the
emptiness problem in Symbolic Alternating Büchi Push-
down Systems (SABPDS) and give an algorithm to solve this
emptiness problem. To achieve this reduction, we use vari-
able automata to represent regular variable expressions. This
section is structured as follows. First, we introduce variable
automata. Then, we define Symbolic Alternating Büchi Push-
down Systems. Next, we show how SCTPL model checking
for PDSs can be reduced to emptiness checking of SABPDSs.
Finally, we give an algorithm that solves this problem.

In the remainder of this section, we let X be a finite set of
variables ranging over a finite domain D and B the set of all
the environment functions B : X ∪D −→ D.

4.1 Variable automata

Given a PDS P = (P, Γ,Δ, �) s.t. Γ ⊆ D, a Variable
Automaton (VA) is a tuple M = (Q, Γ, δ, q0, A), where Q
is a finite set of states; Γ is the input alphabet; q0 ⊆ Q is an
initial state; A ⊆ Q is a finite set of accepting states; and δ is
a finite set of transition rules of the form: p

α−→ {q1, . . . , qn}
where α can be x, ¬x , or γ , for any x ∈ X and γ ∈ Γ , and
p, q1, . . . , qn ∈ Q.

Let B ∈ B. A run of VA on a word γ1, . . . , γm under B is a
tree of height m whose root is labeled by the initial state q0,
and each node at depth k labeled by a state q has h children
labeled by p1, . . . , ph , respectively, such that

– either q
γk−→ {p1, . . . , ph} ∈ δ and γk ∈ Γ ;

– or q
x−→ {p1, . . . , ph} ∈ δ, x ∈ X and B(x) = γk ;

– or q
¬x−→ {p1, . . . , ph} ∈ δ, x ∈ X and B(x) �= γk .

A branch of the tree is accepting iff the leaf of the branch
has an accepting state. A run is accepting iff all its branches
are accepting. A word ω ∈ Γ ∗ is accepted by a VA under an
environment B ∈ B iff the VA has an accepting run on the
word ω under the environment B.

The language of a VA M , denoted by L(M), is a subset of
(P × Γ ∗)× B. (〈p, ω〉,B) ∈ L(M) iff M accepts the word
ω under the environment B.

We can show that:

Theorem 1 VAs are effectively closed under boolean oper-
ations.

The proof is given in Appendix A1. The fact that the tran-
sitions of a VA are alternating is crucial to have this closure
property. One cannot compute the complement of a VA with-
out using alternating transition rules.

Moreover, we show that every regular variable expression
can be effectively represented by a VA:

Theorem 2 For every regular variable expression e ∈ R,
one can effectively compute in polynomial time a VA M such
that L(M) = L(e).

The proof is given in Appendix A2. The construction is
similar to the construction of a finite automaton from a regular
expression.

4.2 Symbolic Alternating Büchi Pushdown Systems

4.2.1 Definition

A Symbolic Alternating Büchi Pushdown System (SABPDS)
is a tuple BP = (P, Γ,Δ, F), where P is a finite set of
control locations; Γ ⊆ D is the stack alphabet; F ⊆ P× 2B
is a set of accepting states; Δ is a finite set of transitions of
the form

〈p, γ 〉 �↪→ [〈p1, ω1〉, . . . , 〈pn, ωn〉],
where p ∈ P, γ ∈ Γ , for every i, 1 ≤ i ≤ n : pi ∈ P, ωi ∈
Γ ∗, and � : (B)n −→ 2B is a function that maps a tuple of
environments to a set of environments.

A configuration of a SABPDS is a tuple 〈[p,B], ω〉,
where p ∈ P is a control location, B ∈ B is an environ-
ment and ω ∈ Γ ∗ is the stack content. [p,B] ∈ P × B
is an accepting state iff ∃[p, β] ∈ F s.t. B ∈ β. Let

t = 〈p, γ 〉 �↪→ [〈p1, ω1〉, . . . , 〈pn, ωn〉] ∈ Δ be a transi-
tion, n is the width of the transition t . For every ω ∈ Γ ∗,
B,B1, . . . ,Bn ∈ B, if B ∈ �(B1, . . . ,Bn), then the config-
uration 〈[p,B], γω〉 (resp. {〈[p1,B1], ω1ω〉, . . . , 〈[pn,Bn],
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ωnω〉}) is an immediate predecessor (resp. immediate succes-
sor) of {〈[p1,B1], ω1ω〉, · · · , 〈[pn,Bn], ωnω〉} (resp. 〈[p,B],
γω〉).

A run ρ of BP from an initial configuration 〈[p0,B0], ω0〉
is a tree in which the root is labeled by 〈[p0,B0], ω0〉, and
the other nodes are labeled by elements of (P × B) ×
Γ ∗. If a node of ρ labeled by 〈[p,B], ω〉 has n chil-
dren labeled by 〈[p1B1], ω1〉, . . . , 〈[pn,Bn], ωn〉, respec-
tively, then, necessarily, 〈[p,B], ω〉 is an immediate prede-
cessor of {〈[p1,B1], ω1〉, . . . , 〈[pn,Bn], ωn〉} in BP .

A path c0c1 . . . of a run ρ is an infinite sequence of config-
urations where c0 is the root of ρ and for every i ≥ 0, ci+1

is one of the children of the node ci in ρ. The path is accept-
ing iff it visits infinitely often configurations with accepting
states. A run ρ is accepting iff all its paths are accepting. Note
that an accepting run has only infinite paths. A configuration
c is accepted (or recognized) by BP iff BP has an accepting
run starting from c. The language of BP , denoted by L(BP),
is the set of configurations accepted by BP .

The predecessor functions PreBP : 2(P×B)×Γ ∗ −→
2(P×B)×Γ ∗ , Pre∗BP : 2(P×B)×Γ ∗ −→ 2(P×B)×Γ ∗ and
Pre+BP : 2(P×B)×Γ ∗ −→ 2(P×B)×Γ ∗ are defined as fol-
lows: PreBP (C) = {c ∈ (P × B) × Γ ∗ | some immediate
successor of c is a subset of C}, Pre∗BP is the reflexive and
transitive closure of PreBP , PreBP ◦ Pre∗BP is denoted by
Pre+BP .

4.2.2 SABPDS versus ABPDS

An Alternating Büchi Pushdown System (ABPDS for short)
[28] can be seen as an SABPDS such that X = ∅, D = {⊥},
and every function � : (B)n −→ 2B is of the form
�(B1, . . . , Bn) = B⊥, where B⊥(⊥) = ⊥. Such a func-
tion will be denoted by �⊥. SABPDSs can be simulated by
ABPDSs. Indeed, each SABPDS rule of the form

〈p, γ 〉 �↪→ [〈p1, ω1〉, . . . , 〈pn, ωn〉] ∈ Δ
can be translated into a set of ABPDS rules of the form

〈(p,B), γ 〉 �⊥↪→ [〈(p1,B1), ω1〉, . . . , 〈(pn,Bn), ωn〉]
where B,B1, . . . ,Bn can be any elements in B s.t. B ∈
�(B1, . . . ,Bn). However, this translation is expensive since
the number of environments in B is large:

Lemma 1 Given a SABPDS BP = (P, Γ,Δ, F), one can
compute an equivalent ABPDS BP ′ that simulates BP in
O(|Δ| · |B|k+1) time, where k is the maximum of the widths
of the transition rules in Δ and |B| = |D||X |.

4.2.3 Symbolic alternating multi-automata

To finitely represent infinite sets of configurations of
SABPDSs, we use Symbolic Alternating Multi-Automata.

Let BP = (P, Γ,Δ, F) be a SABPDS, a Symbolic
Alternating Multi-Automaton (SAMA) is a tuple A =
(Q, Γ, δ, I, Q f ), where Q is a finite set of states, Γ is the
input alphabet, δ ⊆ (Q×Γ )× 2Q is a finite set of transition
rules, I ⊆ P × 2B is a finite set of initial states, Q f ⊆ Q
is a finite set of final states. An Alternating Multi-Automaton
(AMA) is a SAMA such that I ⊆ P × {∅}.

We define the reflexive and transitive transition relation
−→δ⊆ (Q × Γ ∗) × 2Q as follows: (1) q

ε−→δ {q} for

every q ∈ Q, where ε is the empty word and (2) if q
γ−→

{q1, . . . , qn} ∈ δ and qi
ω−→δ Qi for every 1 ≤ i ≤ n, then

q
γω−→δ

⋃n
i=1 Qi . The automaton A recognizes a configu-

ration 〈[p,B], ω〉 iff there exist Q′ ⊆ Q f and β ⊆ B s.t.

B ∈ β, [p, β] ∈ I and [p, β] ω−→δ Q′. The language of A,
denoted by L(A), is the set of configurations recognized by
A. A set of configurations is regular if it can be recognized
by a SAMA. Similarly, AMAs can also be used to recognize
(infinite) regular sets of configurations for ABPDSs.

Proposition 1 Let A = (Q, Γ, δ, I, Q f ) be a SAMA. Then,
deciding whether a configuration 〈[p,B], ω〉 is accepted by
A can be done in O(|Q|·|δ|·|ω|+τ) time, where τ denotes the
time used to check whether B ∈ β for some B ∈ B, β ⊆ B.

Remark 4 The time τ is used to check whether B ∈ β

depends on the representation of B and β. In particular, if we
use BDDs to represent sets of environment functions, check-
ing whether B ∈ β can be done in τ = O(�log|D|� · |X |)
[9].

4.2.4 Examples of functions �

We give some examples of functions � below that will be
used later.

– id(B) = {B}, for every B ∈ B. This is the identity func-
tion.

– equal(B1, . . . ,Bn)

=
{ {B1} if Bi = B j for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether B1, . . . , Bn are equal and
returns {B1} (which is equal to {Bi } for any i) if this is
the case and the emptyset otherwise.

– meet x{c1,...,cn}(B1, . . . , Bn)

=

⎧
⎪⎪⎨

⎪⎪⎩

Absx (B1) if Bi (x) = ci and
Bi (y) = B j (y) for y �= x,
for every 1 ≤ i, j ≤ n,

∅ otherwise.
This function checks whether Bi (x) = ci for every i , 1 ≤
i ≤ n, and for every y �= x and every i, j , 1 ≤ i, j ≤ n
Bi (y) = B j (y). It returns Absx (B1) (which is equal to
Absx (Bi ) for any i) if this is the case and the emptyset
otherwise.
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– joinx
c (B1, . . . ,Bn)

=
⎧
⎨

⎩

{B1} if Bi = B j and Bi (x) = c,
for every 1 ≤ i, j ≤ n,

∅ otherwise.
This function checks whether Bi (x) = c for every i . If
this is the case, it returns equal(B1, . . . ,Bn), otherwise,
it returns the emptyset.

– join¬x
c (B1, . . . ,Bn)

=
⎧
⎨

⎩

{B1} if Bi = B j and Bi (x) �= c,
for every 1 ≤ i, j ≤ n,

∅ otherwise.
This function checks whether Bi (x) �= c for every i . If
this is the case, it returns equal(B1, . . . ,Bn), otherwise,
it returns the emptyset.

4.3 From SCTPL model checking for PDSs to emptiness of
SABPDS

Let P = (P, Γ,Δ, �), λ : APD → 2P be a labeling func-
tion, and ϕ be a SCTPL formula. For every configuration
〈p, ω〉, our goal was to determine whether 〈p, ω〉 |λ ϕ, i.e.,
whether there exists an environment B ∈ B s.t. 〈p, ω〉 |B

λ ϕ.
We proceed as follows: we compute a Symbolic Alternat-
ing Büchi Pushdown System BP s.t. 〈p, ω〉 |B

λ ϕ iff
〈[�p, ϕ�,B], ω〉 ∈ L(BP). Then, 〈p, ω〉 |λ ϕ iff there exists
B ∈ B such that 〈p, ω〉 |B

λ ϕ.
Let Reg+(ϕ) = {e1, . . . , ek} and Reg−(ϕ) = {ek+1, . . . ,

em} be the two sets of regular variable expressions1 that occur
in ϕ. As shown in Theorems 2 and 1, for every i , 1 ≤ i ≤ k
we can construct VAs Mei = (Qei , Γ, δei , sei , Aei ) such that
L(Mei ) = L(ei ); and for every j, k < j ≤ m we can
construct VAs M¬e j = (Q¬e j , Γ, δ¬e j , s¬e j , A¬e j ) such that
L(M¬e j ) = (P × Γ ∗)× B\L(e j ). We suppose w.l.o.g. that
the states of these automata are distinct. Let M be the union
of all these automata, F be the union of all the final states of
these automata Aei s and A¬e j s and S be the union of all the
states of these automata Qei s and Q¬e j s.

Let BPϕ = (P ′, Γ,Δ′, F) be the SABPDS defined as
follows: P ′ = P×cl(ϕ)∪S; F = F1∪ F2∪ F3∪ F4, where

– F1 = {[�p, a(x1, . . . , xn)�, β] | a(x1, . . . , xn) ∈ AP+(ϕ)
and β = {B ∈ B | p ∈ λ

(
a
(
B(x1), . . . ,B(xn)

))}};
– F2 = {[�p,¬a(x1, . . . , xn)�, β] | ¬a(x1, . . . , xn) ∈

AP−(ϕ) andβ = {B ∈ B | p /∈ λ
(

a
(
B(x1), . . . ,B(xn)

))}};
– F3 = P × clR(ϕ)× {B}; and
– F4 = F × {B}.

Δ′ is the smallest set of transition rules that satisfy the fol-
lowing. For every control location p ∈ P , every subformula
ψ ∈ cl(ϕ), and every γ ∈ Γ :

1 AP+(ϕ), AP−(ϕ), Reg+(ϕ) and Reg−(ϕ) are as defined in Sect. 3.2.

1. if ψ = a(x1, . . . , xn); 〈�p, ψ�, γ 〉 id
↪→ 〈�p, ψ�, γ 〉 ∈

Δ′;
2. if ψ = ¬a(x1, . . . , xn); 〈�p, ψ�, γ 〉 id

↪→ 〈�p, ψ�, γ 〉 ∈
Δ′;

3. if ψ = ψ1∧ψ2; 〈�p, ψ�, γ 〉 equal
↪−−→ [〈�p, ψ1�, γ 〉, 〈�p, ψ2�,

γ 〉] ∈ Δ′;
4. if ψ = ψ1 ∨ψ2; 〈�p, ψ�, γ 〉 id

↪→ 〈�p, ψ1�, γ 〉 ∈ Δ′ and

〈�p, ψ�, γ 〉 id
↪→ 〈�p, ψ2�, γ 〉 ∈ Δ′;

5. ifψ = ∃x ψ1; 〈�p, ψ�, γ 〉
meetx{c}
↪−−−→ 〈�p, ψ1�, γ 〉 ∈ Δ′, for

every c ∈ D;

6. if ψ = ∀x ψ1; 〈�p, ψ�, γ 〉
meetx

D
↪−−→

[〈�p, ψ1�, γ 〉, . . . , 〈�p, ψ1�, γ 〉]︸ ︷︷ ︸
m

∈ Δ′, where m is the

number of elements in D and 〈�p, ψ1�, γ 〉 is repeated m
times;

7. if ψ = EXψ1; for every 〈p, γ 〉 ↪→ 〈p′, ω〉 ∈ Δ,

〈�p, ψ�, γ 〉 id
↪→ 〈�p′, ψ1�, ω〉 ∈ Δ′;

8. if ψ = AXψ1; 〈�p, ψ)�, γ 〉 equal
↪−−→ [〈�p1, ψ1�, ω1〉, . . . ,

�p�, ψ1�, ω�〉] ∈ Δ′ such that for every i , 1 ≤ i ≤ �,
〈p, γ 〉 ↪→ 〈pi , ωi 〉 ∈ Δ and these transitions are all the
transitions of Δ that have 〈p, γ 〉 as left-hand side;

9. if ψ = E[ψ1Uψ2]; 〈�p, ψ�, γ 〉 id
↪→ 〈�p, ψ2�, γ 〉 ∈ Δ′

and 〈�p, ψ�, γ 〉 equal
↪−−→ [〈�p, ψ1�, γ 〉, 〈�p′, ψ�, ω〉] ∈ Δ′

for every transition rule 〈p, γ 〉 ↪→ 〈p′, ω〉 ∈ Δ;

10. if ψ = A[ψ1Uψ2]; 〈�p, ψ�, γ 〉 id
↪→ 〈�p, ψ2�, γ 〉 ∈ Δ′,

and 〈�p, ψ�, γ 〉 equal
↪−−→ [〈�p, ψ1�, γ 〉, 〈�p1, ψ�, ω1〉, . . . ,

〈�p�, ψ�, ω�〉] ∈ Δ′ such that for every i, 1 ≤ i ≤
�, 〈p, γ 〉 ↪→ 〈pi , ωi 〉 ∈ Δ and these transitions are all
the transitions of Δ that have 〈p, γ 〉 as left-hand side;

11. ifψ = E[ψ1Rψ2]; 〈�p, ψ�, γ 〉 equal
↪−−→ [〈�p, ψ2�, γ 〉, 〈�p,

ψ1�, γ 〉]∈ Δ′, and 〈�p, ψ�, γ 〉 equal
↪−−→ [〈�p, ψ2�, γ 〉, 〈�p′,

ψ�, ω〉] ∈ Δ′ for every 〈p, γ 〉 ↪→ 〈p′, ω〉 ∈ Δ;

12. ifψ=A[ψ1Rψ2]; 〈�p, ψ�, γ 〉 equal
↪−−→ [〈�p, ψ1�, γ 〉, 〈�p,

ψ2�, γ 〉]∈Δ′, and 〈�p, ψ�, γ 〉 equal
↪−−→ [〈�p, ψ2�, γ 〉, 〈�p1,

ψ�, ω1〉, . . . , 〈�p�, ψ�, ω�〉] ∈ Δ′ such that for every
i, 1 ≤ i ≤ �, 〈p, γ 〉 ↪→ 〈pi , ωi 〉 ∈ Δ and these tran-
sitions are all the transitions of Δ that have 〈p, γ 〉 as
left-hand side;

13. if ψ = e : 〈�p, ψ�, γ 〉 id
↪→ 〈se, γ 〉 ∈ Δ′, where se is the

initial state of Me;

14. if ψ = ¬e: 〈�p, ψ�, γ 〉 id
↪→ 〈s¬e, γ 〉 ∈ Δ′, where s¬e is

the initial state of M¬e;

15. for every transition q
α−→ {q1, . . . , qn} in M; 〈q, γ 〉 �↪→

{〈q1, ε〉, . . . , 〈qn, ε〉} ∈ Δ′, where

(a) � = equal if α = γ ,
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(b) � = joinx
γ if α = x ∈ X ,

(c) � = join¬x
γ if α = ¬x and x ∈ X ; and

16. for every q ∈ F; 〈q, �〉 id
↪→ 〈q, �〉 ∈ Δ′.

Roughly speaking, BPϕ could be seen as the product of P
andϕ.BPϕ recognizes all the configurations 〈[�p, ψ�,B], ω〉
s.t. 〈p, ω〉 satisfies ψ under B. Thus, BPϕ has an accepting
run from 〈[�p, ψ�,B], ω〉 if and only if the configuration
〈p, ω〉 satisfies ψ under B. The intuition behind each rule is
explained as follows.

If ψ = a(x1, . . . , xn) ∈ AP+(ϕ), then for every
ω ∈ Γ ∗, 〈p, ω〉 satisfies ψ under any environment B
such that p ∈ λ(a(B(x1), . . . , B(xn))). Thus, for such B,
BPϕ should have an accepting run from the configura-
tion 〈[�p, a(x1, . . . , xn)�,B], ω〉. This is ensured by Item 1
that adds a loop in 〈[�p, a(x1, . . . , xn)�, B], ω〉 (since all
accepting paths are infinite), and by the fact that the state
[�p, a(x1, . . . , xn)�,B] is accepting thanks to F1. Here the
function is id to ensure that the environment does not change
while applying the rule.

If ψ = ¬a(x1, . . . , xn) ∈ AP−(ϕ), then for every
ω ∈ Γ ∗, 〈p, ω〉 satisfies ψ under any environment B
such that p /∈ λ(a(B(x1), . . . , B(xn))). Thus, for such
B, BPϕ should have an accepting run from the configura-
tion 〈[�p,¬a(x1, . . . , xn)�,B], ω〉. This is ensured by Item 2
that adds a loop in 〈[�p,¬a(x1, . . . , xn)�, B], ω〉 (all accept-
ing paths are infinite). The definition of F2 guarantees that
the state [�p,¬a(x1, . . . , xn)�,B] is accepting.

If ψ = ψ1 ∧ ψ2, Item 3 ensures that for every ω ∈
Γ ∗, BPϕ has an accepting run from 〈[�p, ψ1 ∧ ψ2�,B], ω〉
iff it has an accepting run from 〈[�p, ψ1�,B], ω〉 and from
〈[�p, ψ2�,B], ω〉. This means that 〈p, ω〉 satisfiesψ under B
iff 〈p, ω〉 satisfies ψ1 and ψ2 under B. The function equal
ensures that the environment B is the same for these three
states. The intuition behind Item 4 is similar.

If ψ = ∃x ψ1, then for every ω ∈ Γ ∗, B ∈ B, BPϕ has
an accepting run from 〈[�p, ψ�,B], ω〉 iff there exists c ∈ D
such that BPϕ has an accepting run from 〈[�p, ψ1�,B[x ←
c]], ω〉 which ensures that 〈p, ω〉 satisfies ψ under the envi-
ronment B iff 〈p, ω〉 satisfies ψ1 under B[x ← c]. This is
expressed by Item 5 since B ∈ meet x{c}

(
B[x ← c]).

Ifψ = ∀x ψ1, then for everyω ∈ Γ ∗, B ∈ B, BPϕ has an
accepting run from 〈[�p, ψ�,B], ω〉 iff for every c ∈ D, BPϕ

has an accepting run from 〈[�p, ψ1�,B[x ← c]], ω〉 which
ensures that 〈p, ω〉 satisfies ψ under the environment B iff
〈p, ω〉 satisfies ψ1 under B[x ← c] for every c ∈ D.
This is guaranteed by Item 6 and its corresponding func-
tion meet x

D; if D = {c1, . . . , cm}, then B ∈ meet x
D

(
B[x ←

c1], . . . ,B[x ← cm]
)
.

If ψ = EXψ1, then for every p ∈ P , ω ∈ Γ ∗ and
B ∈ B, 〈p, ω〉 satisfies ψ under B iff there exists an imme-
diate successor 〈p′, ω′〉 of 〈p, ω〉 such that 〈p′, ω′〉 sat-

isfies ψ1 under B. Thus, BPϕ should have an accepting
run from 〈[�p, ψ�,B], ω〉 iff it has an accepting run from
〈[�p′, ψ1�,B], ω′〉. This is expressed by Item 7 where the
function id guarantees that the environment remains the
same.

If ψ = AXψ1, then for every p ∈ P , ω ∈ Γ ∗ and
B ∈ B, 〈p, ω〉 satisfies ψ under B iff 〈p j , ω j 〉 satisfies ψ1

under B for every immediate successor 〈p j , ω j 〉 of 〈p, ω〉.
This means that BPϕ should have an accepting run from
〈[�p, ψ�,B], ω〉 iff it has an accepting run from every config-
uration 〈[�p j , ψ1�,B], ω j 〉. Item 8 expresses this. The func-
tion equal makes sure that all these environments are the
same.

If ψ = E[ψ1Uψ2], then for every p ∈ P , ω ∈ Γ ∗ and
B ∈ B, 〈p, ω〉 satisfies ψ under B iff either it satisfies ψ2

under B or it satisfies ψ1 under B, and it has an immediate
successor that satisfies ψ under B. This is expressed by Item
9. The case ψ = A[ψ1Uψ2] is analogous.

If ψ = E[ψ1Rψ2], then for every p ∈ P , ω ∈ Γ ∗, and
B ∈ B, 〈p, ω〉 satisfies ψ under B iff it satisfies ψ2 under B,
and either it satisfies also ψ1 under B or it has an immediate
successor that satisfies ψ under B. This is expressed by Item
11. This ensures that either ψ2 holds always, or until both
ψ1 and ψ2 hold. F3 ensures that [�p, ψ�,B] is accepting
for every B ∈ B, i.e., that a path where ψ2 always hold is
accepting. The case where ψ = A[ψ1Rψ2] is similar.

Ifψ = e, then the SABPDS BPϕ accepts 〈[�p, ψ�,B], ω〉
iff (〈p, ω〉,B) ∈ L(Me). To check this, BPϕ first goes to state
[se,B] by Item 13, where se is the initial state of Me, then it
continues to check whether ω is accepted by Me under the
environment B. This is ensured by Item 15. Item 15 allows
BPϕ to mimic a run of Me on ω under the environment B: if
BPϕ is in state [q,B] and the topmost of its stack is γ , then:

– Item 15(a) deals with the case where q
γ−→ {q1, . . . , q2}

is a transition in δe. In this case, BPϕ moves to the
next states [q1,B], . . . , [qn,B]while popping γ from the
stack. Popping γ allows BPϕ to check the rest of the
word. The function equal guarantees that all the envi-
ronments are the same.

– Item 15(b) deals with the case where q
x−→ {q1, . . . , q2},

x ∈ X is a transition in δe. In this case, BPϕ can continue
to mimic a run of Me under the environment B only if
B(x) = γ . If this holds, BPϕ moves to the next states
[q1,B], . . . , [qn,B] and pops γ from the stack, which
allows BPϕ to check the rest content of the stack. The
function joinx

γ ensures that all the environments are the
same and the value of B(x) is γ .

– Item 15(c) deals with the case where q
¬x−→ {q1, . . . , q2}

is a transition in δe. In this situation, BPϕ can continue
to mimic a run of Me under the environment B only if
B(x) = ¬γ . If this holds, BPϕ moves to the next states
[q1,B], . . . , [qn,B] and pops γ from the stack. The func-
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tion join¬x
γ ensures that all the environments are the

same and the value of B(x) is different from γ .

Thus, (〈p, ω〉,B) ∈ L(Me) iff Me reaches final states
f1, . . . , fn of Me after reading the word w, i.e., iff BPϕ

reaches a set of states [ f1,B], . . . , [ fn,B] with an empty
stack (a stack containing only the bottom stack symbol �).
This is why F4 is a set of accepting states. Moreover, since
all the accepting paths are infinite, Item 16 adds a loop on
every configuration 〈[ f,B], �〉 where f is a final state of M
and � is the stack symbol (this makes the paths of BPϕ that
reach a state 〈[ f,B], �〉 accepting).

The case where ψ = ¬e is similar to the previous case.

Remark 5 Esparza et al. introduced two approaches to
reduce LTL with regular valuations model checking for PDSs
to LTL model checking for PDSs [14,15]. Our approach is
more direct, since we do not need to compute the product of
the PDS with the finite automata representing the predicates
over the stack.

Formally, we can show the following theorem (Proof
refers to Appendix A3):

Theorem 3 Given a PDS P = (P, Γ,Δ, �), a function
λ : APD −→ 2P , a SCTPL formula ϕ, and a configuration
〈p, ω〉 of P , we have for every B ∈ B, 〈p, ω〉 |B

λ ϕ iff BPϕ

has an accepting run from the configuration 〈[�p, ϕ�,B], ω〉.

4.4 Computing L(BP)

Let BP = (P, Γ,Δ, F) be a SABPDS. In this section,
we give an algorithm to compute a SAMA that recognizes
L(BP). First, we characterize the set of configurations from
which the SABPDS has an accepting run. Then, we show
how to compute this set.

4.4.1 Characterizing L(BP)

Let YBP =
⋂

i≥0 Xi , where X0 = (P × B) × Γ ∗ and for
every i ≥ 0, Xi+1 = Pre+(Xi ∩ F × Γ ∗), where F ×
Γ ∗ stands for {〈[p,B], ω〉 ∈ (P × B) × Γ ∗ | ∃[p, β] ∈
F s.t. B ∈ β }. We can show that:

Proposition 2 Given a SABPDS BP = (P, Γ,Δ, F), L
(BP) = YBP .

Proof (sketch) The proof follows the lines of [28], where it
was shown that for an ABPDSBP ′ = (P, Γ,Δ, F), L(BP ′)
is equal to

⋂
i≥0 Zi , where Z0 = P × Γ ∗ and Zi+1 =

Pre+(Zi ∩ F × Γ ∗). Here, X0 = (P × B) × Γ ∗ since
configurations of the SABPDS BP are in P × B × Γ ∗. ��

4.4.2 Computing YBP

Our goal was to compute YBP =
⋂

i≥0 Xi . We provide a
symbolic algorithm that computes this set. Our procedure is
an extension of the procedure given in [28] that computes an
AMA recognizing the language of an ABPDS. We show that
YBP can be represented by a SAMA A = (Q, Γ, δ, I, Q f )

whose set of states Q is a subset of (P × 2B) × N ∪ {q f },
where q f is a special state that corresponds to the unique final
state (Q f = {q f }). For every [p, β] ∈ P×2B and i ∈ N, let
[p, β]i denote ([p, β], i). To compute YBP , we iteratively
compute a SAMA Ai using states of the form [p, β]i during
the step i . Moreover, we extend the function � : (B)n −→
2B to � : (2B)n −→ 2B as follows: �(β1, . . . , βn) = {B ∈
B | B ∈ �{B1, . . . ,Bn} s.t. for every 1 ≤ i ≤ n : Bi ∈ βi };
and we define two functionsπ−1 andπ i as follows: For every
S ⊆ Q,

π−1(S) =
{ {qi | qi+1 ∈ S} ∪ {q f } if q f ∈ S or ∃q1 ∈ S,
{qi | qi+1 ∈ S} else.

π i (S) = {qi | ∃1 ≤ j ≤ i s.t. q j ∈ S} ∪ {q f | q f ∈ S}.
Algorithm 1 shown in Table 1 computes a SAMA A

recognizing YBP . To understand the idea behind this algo-
rithm, let A0 be the automaton obtained after the initialization
step and Ai be the automaton obtained at step i (a step starts at
Line 2) for every i ≥ 1. Each state [p, β]i represents the state
[p, β] at step i , i.e., Ai recognizes a configuration 〈[p,B], ω〉
iff there exists β ⊆ B s.t. [p, β]i ω−→δ q f and B ∈ β. It is
clear that A0 recognizes X0∩F×Γ ∗. Suppose the algorithm
is at the beginning of the i th iteration (loop1). Line 3 adds the

ε-transition [p, β ′ ∩ β]i ε−→ [p, β ′]i−1, s.t. [p, β ′]i−1 γ−→
Q ∈ δ for every [p, β] ∈ F . After this step, we obtain
L(Ai−1) ∩ F × Γ ∗. loop2 (Lines 4–8) is the saturation pro-
cedure that computes the Pre∗ of L(Ai−1) ∩ F × Γ ∗. Line
9 removes the ε-transition added by Line 3. After Line 9, the
automaton Ai recognizes Pre+(L(Ai−1) ∩ F × Γ ∗). Thus,
in case of termination, the algorithm produces YBP . The sub-
stitution at Line 10 is needed to guarantee the termination of
the algorithm. We show that:

Theorem 4 Algorithm 1 always terminates and produces
YBP .

Proof (sketch) The proof follows the lines of the proof of
[28]. Indeed, our algorithm follows the idea of the algo-
rithm that computes an AMA recognizing the language of
an ABPDS given in [28]. The main differences are:

1. We use states of the form [p, β] instead of p for every
p ∈ P , since we now deal with SABPDS. A symbolic
state [p, β] ∈ P × 2B denotes a set of states [p,B] for
every environment B ∈ β which records the valuation of
the variables X .
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Table 1 Algorithm 1: Computation of YBP

2. To compute the Pre∗ of L(Ai−1) ∩ F × Γ ∗, instead of
using the following saturation procedure given in [7] that
computes the Pre∗ for alternating pushdown systems:

If 〈p, γ 〉 ↪→ {〈p1, ω1〉, . . . , 〈pn, ωn〉} and pi
k

ωk−→δ Qk

for all 1 ≤ k ≤ n,
add a transition pi γ−→⋃n

k=1 Qk .

We use the following saturation procedure:

If 〈p, γ 〉 �↪→ [〈p1, ω1〉, . . . , 〈pn, ωn〉] and [pk, βk]i ωk−→δ

Qk for all 1 ≤ k ≤ n, add a transition [p, β]i γ−→⋃n
k=1 Qk, where β = �(β1, . . . , βn).

Indeed, intuitively, if 〈[p,B], γω〉 is an immediate pre-
decessor of {〈[p1,B1], ω1ω〉, 〈[p2,B2], ω2ω〉} by the

transition rule 〈p, γ 〉 �
↪→ [〈p1, ω1〉, 〈p2, ω2〉], and

〈[p1,B1], ω1ω〉 and 〈[p2,B2], ω2ω〉 are in L(Ai−1) ∩
F×Γ ∗, then, necessarily, B ∈ �(B1,B2) and there exist
β1, β2 ⊆ B and S1, S2 ⊆ Q s.t. B1 ∈ β1, B2 ∈ β2,
[p1, β1] ω1−→δ S1

ω−→δ q f and [p2, β2] ω2−→δ S2
ω−→δ

q f . Lines 4–8 add the new transition [p,�(β1, β2)] γ−→δ

S1 ∪ S2. This allows accepting the configuration 〈[p,B],
γω〉 using the run [p,�(β1, β2)] γ−→δ S1∪S2

ω−→δ q f .
3. In Line 3, instead of adding a new ε transition rule

pi ε−→ pi−1 for every p ∈ F , we add a new ε transition
rule [p, β ∩ β ′]i ε−→ [p, β ′]i−1 for every [p, β] ∈ F

such that [p, β ′]i−1 γ−→ Q ∈ δ. Since this step is used
to compute L(Ai−1) ∩ F × Γ ∗ and F × Γ ∗ stands for
{〈[p,B], ω〉 ∈ (P × B) × Γ ∗ | ∃[p, β] ∈ F s.t. B ∈
β }, it is not correct if we only add the ε-transition
[p, β]i ε−→ [p, β]i−1, for every [p, β] ∈ F . Indeed,
it is possible that Ai−1 recognizes some configurations
{〈[p,B], γω〉 | B ∈ β ′} ⊃ {〈[p,B], γω〉 | B ∈ β} by

a path [p, β ′]i−1 γω−→ q f where [p, β] ∈ F whereas
[p, β ′] /∈ F . ��

Complexity: Given an alternating pushdown system with P
as set of control states and an AMA A with n states and
having P as the set of initial states, [30] provides a way
to efficiently implement the saturation procedure of [7] that
computes the Pre∗ of L(A) in time O(n · |Δ| · 22n). We can
show that because of the substitution at Line 10, at each step i ,
Algorithm 1 only needs to consider states of the form [p, β]i
and [p, β]i−1 in addition to q f . Since the arbitrary functions
� can generate all the possible β ⊆ B, the number of states
at each step i should be 2|P| · 2|B|. loop2 in Algorithm 1
can be seen as an extension of the saturation procedure of
[30]. Thus, by adapting the complexity analysis of [30], we
can show that loop2 needs O(|P| ·2|B| · |Δ| ·24|P|·2|B|) time.
The substitution (Line 10) and termination condition (Line
11) can be done in time O(|P| · 2|B| · |Γ | · 22|P|·2|B|) and
O(|P| · 2|B| · |Γ | · 2|P|·2|B|), respectively. Putting all these
estimations together, the global complexity of Algorithm 1

is O
(
|P|2 · 22|B| · |Γ | · |Δ| · 25|P|·2|B|

)
.

Thus, we get:

Theorem 5 Let BP = (P, Γ,Δ, F) be a SABPDS, then we
can compute a SAMA A that recognizes L(BP) in O(|P|2 ·
22|B| · |Γ | · |Δ| · 25|P|·2|B|) time.

Remark 6 Note that another way to compute L(BP) is to
apply Lemma 1 and produce an equivalent ABPDS BP ′ that
simulates BP , and then apply the algorithm of [28] to com-
pute an AMA that recognizes L(BP ′). The complexity of
such a procedure would be O(|P|2·|Δ|·|B|h+3·|Γ |·25|P|·|B|),
where h is the maximum of the widths of the transition rules
inΔ. This worst case complexity is better than the complex-
ity of Algorithm 1. However, in practice, in the symbolic
case (for SABPDS), the sets of environments can be com-
pactly represented using BDDs for example, whereas in the
explicit case (for ABPDS), all the environments have to be
considered. Thus, Algorithm 1 will behave better in prac-
tice. This is illustrated in Sect. 5. Indeed, in the experiments
we run, in the majority of cases, Algorithm 1 terminates in
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few seconds, whereas if we compute an equivalent ABPDS
and apply the algorithm of [28], we run out of memory.

4.5 SCTPL model checking for PDSs

Given a PDS P = (P, Γ,Δ, �), a labeling function λ, and
a SCTPL formula ϕ, thanks to Theorems 3 and 5, and due
to the fact that BPϕ has O(|P| · |ϕ| + k) states and O((|P| ·
|Γ |+|Δ|)·|ϕ|+d) transitions, where k and d are the number
of states and the number of transitions of the union M of the
Variable Automata involved in ϕ; we get the following:

Corollary 1 Given a PDS P = (P, Γ,Δ, �), a SCTPL for-
mula ϕ and a labeling function λ, we can effectively compute
a SAMA A in time O((|P||ϕ| + k)2 · 22|B| · |Γ | · ((|P||Γ | +
|Δ|)|ϕ|+d)·25(|P||ϕ|+k)·2|B|), where k is the number of states
of M and d is the number of transition rules of M such that
for every configuration 〈p, ω〉 of P:

1. 〈p, ω〉 |λ ϕ iff there exists a B ∈ B s.t. A recognizes
〈[�p, ϕ�,B], ω〉.

2. For every B ∈ B: 〈p, ω〉 |B
λ ϕ iff A recognizes

〈[�p, ϕ�,B], ω〉.

Thus, thanks to this corollary and to Proposition 1, it fol-
lows that it is possible to determine whether a PDS configu-
ration satisfies a SCTPL formula:

Corollary 2 One can decide whether a PDS configuration

satisfies a SCTPL formula in time O
(
(|P||ϕ| + k)2 · 22|B| ·

|Γ | · ((|P||Γ | + |Δ|)|ϕ| + d
) · 25(|P||ϕ|+k)·2|B|

)
.

Remark 7 As described in Remark 3, we can transform every
SCTPL formula ψ to an equivalent CTL with regular valu-
ations formula ψ ′ such that |ψ ′| = O(|ψ | · |D|g) where
g is the number of subformulas of ψ in the form of ∀x ϕ
or ∃x ϕ. Every regular variable expression in ψ will gen-
erate |D||X | “standard” regular expressions over Γ in ψ ′.
Thus, the number of states |S ′| and the number of transi-
tion rules |T ′| of the finite automata corresponding to the
regular expressions in ψ ′ will be |D||X | · k and |D||X | · d,
respectively. Then, applying [28], we can construct an AMA
recognizing all the configurations which satisfy ψ ′ in time
O(|P|3 · |Γ |2 · |ψ ′|3 · |S ′|2 · |Δ| · |T ′| · 25(|P||ψ ′|+|S ′|)),
i.e., O(|P|3 · |Γ |2 · |ψ |3 · |D|3g · |B|3 · k2 · |Δ| · d ·
25(|P|(|ψ |·|D|g)+|B|·k)), where |B| = |D||X |.

This theoretical complexity is better than the complexity
of Corollary 1 obtained using our SCTPL model checker.
However, in practice, thanks to the compact representation
of the sets of environments using BDDs, model-checking
SCTPL using our symbolic techniques behaves much better
than reducing SCTPL to CTL with regular valuations and
then applying [28]. Indeed, the experiments in Sect. 5 show

Fig. 11 Overview of our framework

that in most of the cases, our symbolic algorithm for SCTPL
model checking terminates in few seconds, whereas translat-
ing the SCTPL formula to CTL with regular valuations and
then applying [28] would run out of memory.

5 Experiments

We implemented our techniques in a tool for malware detec-
tion. Our framework consists of four components: a disas-
sembler, a model builder, a set of SCTPL formulas, and a
model checker as shown in Fig. 11. The disassembler extracts
a set of control flow graphs (CFGs) from the binary code. In
our experiments, we use IDA Pro [19] as disassembler. The
model builder translates the CFGs to a Pushdown system
(PDS) as described in Sect. 2. The set of SCTPL formu-
las consists of a set of SCTPL specifications of malicious
behaviors. The model checker determines whether the PDS
satisfies one of the SCTPL specifications. It outputs Yes if
the PDS satisfies one of the specifications, i.e., if the binary
code contains some malicious behaviors, and No otherwise.
We carried out different experiments. We obtained interest-
ing results. In particular, our tool was able to detect several
viruses taken from [18]. Note that in its current form, our
tool can detect only viruses that satisfy the specifications
described in this paper. Several other viruses could not be
detected by our tool, since they have other specifications.
To be able to detect them, we need to add their malicious
specifications into our tool.

5.1 Symbolic versus explicit

As described previously, our approach consists in computing
a SABPDS from the PDS and the SCTPL formula, and then
applying Algorithm 1 to compute the set of configurations
from which the SABPDS has an accepting run, i.e., that sat-
isfy the SCTPL formula. As explained in Remarks 6 and 7,
this can be done differently in two ways: (1) either translate
the SABPDS into an equivalent ABPDS and then apply the
algorithm of [28] to compute the set of configurations that it
accepts; (2) or translate the SCTPL formula into an equiv-
alent CTL with regular valuations formula, and then apply

123



162 F. Song, T. Touili

Table 2 Our techniques versus explicit techniques

PDS SCTPL size |X | |D| Our techniques SABPDS→ABPDS SCTPL→CTLr

|P| + |Γ | + |Δ| SABPDS SAMA Time Mem ABPDS AMA Time Mem Time Mem
|Δs | |δs | (s) (Kb) |Δ1| |δ1| (s) (kb) (s) (kb)

1+2+1 3 2 4 18 6 0.02 27 432 12 0.03 54 0.03 41

1+2+1 4 2 4 20 8 0.02 27 464 20 0.02 56 0.03 42

1+2+1 3 2 5 22 6 0.00 27 1072 14 0.02 94 0.03 47

1+2+1 4 2 5 25 8 0.03 28 1147 28 0.03 102 0.02 48

4+5+3 6 3 11 693 30 0.02 76 5257k 120 40.67 329k 0.33 1236

4+5+3 3 1 13 301 59 0.00 55 2225 169 0.03 190 0.02 140

4+5+3 6 3 13 813 30 0.03 84 – – – MemOut 0.56 1767

4+5+3 5 2 9 393 26 0.02 56 23448 66 0.14 1505 0.05 115

4+5+3 6 3 9 573 30 0.02 67 939k 92 6.75 59k 0.19 845

4+4+5 4 2 10 357 66 0.05 61 96597 335 1.05 6147 0.20 968

4+4+5 6 3 10 521 60 0.02 69 8529k 1077 65.28 634k 0.09 525

4+4+5 4 3 7 373 48 0.02 57 939k 92 6.8 59k 0.06 281

4+4+5 6 3 8 425 60 0.02 63 1895k 609 13.53 119k 0.06 346

4+4+5 6 3 9 473 60 0.02 66 4213k 819 29.81 264k 0.12 425

4+4+5 6 3 11 569 60 0.03 72 – – – MemOut 0.16 622

4+4+5 6 3 12 617 60 0.05 75 – – – MemOut 0.17 724

4+4+5 6 3 20 1001 60 0.05 99 – – – MemOut 0.97 2096

12+12+6 11 1 16 1752 187 0.06 197.60 – – – MemOut 0.36 1094

12+12+6 13 3 16 1896 187 0.11 776.91 – – – MemOut 197.94 27.14k

12+12+6 15 5 24 5928 340 0.27 1.60k – – – MemOut – MemOut

25+35+6 15 5 34 16878 691 1.12 5.72k – – – MemOut – MemOut

34+65+6 15 5 50 32808 967 4.33 14.99k – – – MemOut – MemOut

42+96+6 15 5 58 46641 1284 8.05 24.11k – – – MemOut – MemOut

50+124+6 15 5 70 66360 1555 17.84 40.23k – – – MemOut – MemOut

66+169+7 15 5 71 103437 2334 28.81 63.60k – – – MemOut – MemOut

75+215+7 11 4 14 19051 2493 0.66 4.87k – – – MemOut – MemOut

75+215+7 15 5 26 46696 2697 2.02 13.14k – – – MemOut – MemOut

75+215+7 15 5 59 98699 2724 17.20 51.76k – – – MemOut – MemOut

75+215+7 17 7 59 160649 2738 18.34 55.57k – – – MemOut – MemOut

75+215+7 17 7 99 265677 2771 100.00 140.02k – – – MemOut – MemOut

75+215+7 17 7 139 370698 2799 341.91 262.91k – – – MemOut – MemOut

75+215+7 17 7 174 462601 2837 880.61 401.99k – – – MemOut – MemOut

Bold highlights the improvements of my symbolic techniques

an existing algorithm for model-checking PDSs against CTL
with regular valuations (such as the one given in [28]). In
order to show that our approach is much better than these two
solutions, we run several experiments that compare the three
approaches. The results are summarized in Table 2. Column
PDS |P| + |Γ | + |Δ| gives the number of control locations,
the number of stack alphabet and the number of transitions of
the PDS. Column SCTPL size denotes the size of the consid-
ered SCTPL formula. Columns |X | and |D| denote the num-
ber of variables and the size of the domain. Columns under
“Our techniques” describe the results obtained using our
techniques. Columns under “SABPDS→ABPDS” describe

the results obtained when we translated the SABPDS to
an equivalent ABPDS and then applied the algorithm of
[28]. Columns under “SCTPL→CTLr” describe the results
obtained when the SCTPL formula is translated into a CTL
with regular valuations formula, and then used the algorithm
of [28]. |Δs | and |δs | denote the number of transitions of
the SABPDSs and the SAMAs computed by Algorithm 1.
|Δ1| denotes the number of transitions of the ABPDSs cor-
responding to the SABPDSs. |δ1| gives the number of tran-
sitions of the AMAs computed using the algorithm of [28].
Columns time(s) and mem(kb) give the time (in seconds)
and the memory (in kilobytes). Memout means “memory
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out” (the memory limit is 650 Mb), respectively. The results
described in Table 2 show that our techniques behave much
better than the two other techniques. In most of the cases, our
techniques terminate in few seconds and using less memory,
whereas the two other approaches run out of memory. Using
CTLr model-checking techniques costs a lot of time. This is
due to the fact that the obtained CTLr formulas are large as
described in Remark 3.

5.2 Malware detection

We applied our tool to detect several malicious programs.
Our results are reported in Table 3. Column LOC gives the
number of lines of code in x86 assembly programs. Column
Formula describes the malicious behavior specification that
allowed to detect that the program is a malware. We consid-
ered the SCTPL specifications described in Sect. 3.3:ψwv for

Kernel32.dll base address viruses,ψew for email worms,ψor

for viruses using obfuscated returns (like appending viruses),
and ψoc for viruses using obfuscated calls. ψ ′ew is a CTPL
formula that can specify email worms in a less precise manner
(without taking into account the stack) as described in [20–
22]. Every program is checked against all these specifica-
tions. A program is declared as a potential virus if it satisfies
one of these specifications (some viruses like Alcaul.i and
Alcaul.j can be detected by several specifications). Columns
time(s) and mem(Mb) give the time (in seconds) and the
memory (in Mb), respectively. The last Column result is
Y if the program contains the malicious behaviors given in
Column Formula, and N if not. We also compared our tech-
niques against translating SABPDS to ABPDS, or translat-
ing SCTPL to CTL with regular valuations. We were able to
detect all the viruses that we considered, whereas applying
the translation from SABPDS to ABPDS or from SCTPL to

Table 3 Detection of real malwares

Examples LOC Formula Our techniques SABPDS→ABPDS SCTPL→CTLr Result

Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb)

Windows virus
Adson.1559 32 Ψwv 0.22 2.1 – MemOut – MemOut Y

Adson.1651 33 Ψwv 0.23 2.1 – MemOut – MemOut Y

Adson.1703 32 Ψwv 0.25 2.1 – MemOut – MemOut Y

Adson.1734 40 Ψwv 0.31 2.6 – MemOut – MemOut Y

Alcaul.d 32 Ψwv 0.20 0.8 – MemOut 47.70 51 Y

Alcaul.i 40 Ψwv 4.38 0.28 – MemOut 159.88 169.64 Y

Alcaul.j 48 Ψwv 0.30 2.1 – MemOut 218.25 198.71 Y

Email Worm
Klez.a 32 Ψ ′ew 1.62 10.8 – MemOut – MemOut Y

Klez.b 25 Ψ ′ew 1.55 10.8 – MemOut – MemOut Y

Klez.c 25 Ψ ′ew 1.27 8.9 – MemOut – MemOut Y

Klez.d 26 Ψ ′ew 1.47 10.3 – MemOut – MemOut Y

Klez.e 22 Ψ ′ew 0.77 7.0 – MemOut – MemOut Y

Klez.f 22 Ψ ′ew 0.76 7.0 – MemOut – MemOut Y

Klez.g 22 Ψ ′ew 0.75 7.0 – MemOut – MemOut Y

Klez.i 22 Ψ ′ew 0.74 7.0 – MemOut – MemOut Y

Klez.j 22 Ψ ′ew 0.74 7.0 – MemOut – MemOut Y

Mydoom.c 153 Ψ ′ew 145.20 322.8 – MemOut – MemOut Y

Mydoom.e 130 Ψ ′ew 123.22 267.5 – MemOut – MemOut Y

Mydoom.g 127 Ψ ′ew 117.50 256.7 – MemOut – MemOut Y

Netsky.a 40 Ψ ′ew 573.8 10.1 – MemOut – MemOut Y

Netsky.a 40 Ψew 2.73 14.5 – MemOut – MemOut Y

Netsky.b 40 Ψ ′ew 573.8 10.1 – MemOut – MemOut Y

Netsky.b 40 Ψew 2.73 14.5 – MemOut – MemOut Y

Netsky.c 40 Ψ ′ew 573.8 10.1 – MemOut – MemOut Y

Netsky.c 40 Ψ ′ew 2.73 14.5 – MemOut – MemOut Y

Netsky.d 40 Ψ ′ew 573.8 10.1 – MemOut – MemOut Y

Netsky.d 40 Ψew 2.73 14.5 – MemOut – MemOut Y
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Table 3 continued

Examples LOC Formula Our techniques SABPDS→ABPDS SCTPL→CTLr Result

Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb)

Obfuscated return

Akez 16 Ψor 0.22 0.3 – MemOut 0.44 2.49 Y

Alcaul.b 10 Ψor 0.06 0.2 – MemOut 0.28 1.18 Y

Alcaul.c 13 Ψor 0.12 0.3 – MemOut 0.41 2.19 Y

Alcaul.e 19 Ψor 0.49 0.9 – MemOut 1.03 5.28 Y

Alcaul.f 15 Ψor 0.09 0.3 – MemOut 0.53 2.23 Y

Alcaul.g 18 Ψor 0.31 0.7 – MemOut 0.97 4.45 Y

Alcaul.h 21 Ψor 0.83 0.9 – MemOut 1.14 6.88 Y

Alcaul.i 40 Ψor 54.92 1.17 – MemOut 155.94 169.65 Y

Alcaul.j 48 Ψor 1.41 9.6 – MemOut 190.39 198.71 Y

Alcaul.k 17 Ψor 0.26 0.6 – MemOut 0.76 3.65 Y

Alcaul.l 19 Ψor 0.30 0.7 – MemOut 0.86 3.96 Y

Alcaul.m 18 Ψor 0.20 0.6 – MemOut 0.88 3.37 Y

Alcaul.n 12 Ψor 0.12 0.3 – MemOut 0.44 2.28 Y

Alcaul.o 22 Ψor 0.20 0.6 – MemOut 0.83 3.37 Y

Klinge 34 Ψor 237.50 4.49 – MemOut 0.83 3.37 Y

Evol.a 45 Ψor 9.58 3.22 – MemOut – MemOut Y

Obfuscated call
Oroch.3982 24 Ψoc 3.70 7.72 – MemOut – MemOut Y

KME 99 Ψoc 999.31 20.04 – MemOut – MemOut Y

Anar.a 12 Ψoc 1.16 1.60 885.33 343.24 54.92 34.12 Y

Anar.b 12 Ψoc 1.49 1.60 891.42 348.54 56.14 36.16 Y

Atak.b 87 Ψoc 762.34 18.15 – MemOut – MemOut Y

Predec.j 20 Ψoc 0.23 0.81 – MemOut 56.14 36.16 Y

Bagle.d 56 Ψoc 652.23 16.96 – MemOut – MemOut Y

Benign binary code

Uedit32 91 Ψwv 0.53 5.74 – MemOut – MemOut N

Uedit32 91 Ψor 5.34 28.44 – MemOut – MemOut N

Uedit32 91 Ψew 21.12 111.84 – MemOut – MemOut N

Uedit32 91 Ψoc 92.58 100.94 – MemOut – MemOut N

Cygwin32 67 Ψwv 0.30 5.21 – MemOut – MemOut N

Cygwin32 67 Ψor 5.70 30.44 – MemOut – MemOut N

Cygwin32 67 Ψew 23.72 123.31 – MemOut – MemOut N

Cygwin32 67 Ψoc 45.80 180.42 – MemOut – MemOut N

cmd.exe 100 Ψwv 1.44 25.52 – MemOut – MemOut N

cmd.exe 100 Ψor 325.78 330.67 – MemOut – MemOut N

cmd.exe 100 Ψew 118.11 335.88 – MemOut – MemOut N

cmd.exe 100 Ψoc 1035.52 250.11 – MemOut – MemOut N

CTL with regular valuations would run out of memory in
most of the cases, and thus cannot detect the viruses. It can
also be observed that when both the SCTPL formula ψew

and the CTPL formula ψ ′ew are satisfied (e.g., for the vari-
ants of the Netsky virus), then the time consumption using
SCTPL is less than that using CTPL. Table 3 shows that
our approach is able to efficiently detect several viruses.

Our tool was also able to deduce that some benign pro-
grams are not viruses. E.g. we tried the following benign
programs: Uedit32, a fragment of Ultra Edit Text Editor soft-
ware by IDM Computer Solutions; Cygwin32 a fragment of
the Setup software of Cygwin, a Linux-like environment for
Windows. cmd.exe is the Microsoft-supplied command-line
interpreter.
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5.3 Obfuscated viruses

We run several experiments to check how robust our tech-
niques are for malware detection in case the virus writers use
obfuscation techniques. To this aim, we considered some
of the viruses of Table 3, and we added several obfusca-
tions manually such as instruction reordering (reordering the
instructions inside the code and using jump instructions so
that the control flow is not changed), dead code insertion,
register renaming, splitting the code into several procedures,
adding useless stack operations, etc. We tested five vari-
ants for each type of obfuscation of the viruses Mydoom.g,
Netsky.a, Bagle.d, Adson.1734 and Akez. The results are
reported in Table 4. Our techniques were able to detect all
these variations, whereas the three well known and widely
used free antiviruses Avira [2], and Qihoo 360 [26] and Avast
[1], were not able to detect several of these virus variations.
Moreover, as described in Table 4, some of the viruses we
tried to obfuscate could also be detected by a less precise
CTPL formula. When we add obfuscation based on stack
operations to these viruses, they cannot be detected by this
CTPL formula anymore, whereas SCTPL is still able to detect
them. (Note that the majority of the malwares that we detect
in Table 4 need a SCTPL formula to get detected, whereas
CTPL is not sufficient to detect them.)

6 Related work

These last years, there has been a substantial amount of
research to find efficient techniques that can detect viruses.
A lot of techniques use signature-based or emulation-based
approaches. As already mentioned in Sect. 1, such tech-
niques have some limitations. Indeed, signature matching
fails if the virus does not use a known signature. As for emu-
lation techniques, they can execute the program only in a
given time interval and execute only one trace (while model-
checking techniques can check all the possible traces). Thus,
emulation-based techniques can miss the malicious behav-
iors if they occur after the timeout. Moreover, malwares com-
monly use anti-emulation techniques. For instance, a mal-

ware executes its malicious behaviors at some specific day
or time. Also, a malware can identify whether it is running
in a virtual environment by checking the CPU cycles used
for executing some instructions. If it is running in a virtual
environment, it can stop its malicious behaviors.

Model-checking and static analysis techniques have been
applied to detect malicious behaviors, e.g., in [5,10,12,20–
22,27]. However, all these works are based on modeling
the program as a finite-state system, and thus, they miss the
behavior of the stack. As we have seen, being able to track the
stack is important for many malicious behaviors. Bonfante
et al. [6] use tree automata to represent a set of malicious
behaviors. However, [6] cannot specify predicates over the
stack content.

Lakhotia et al. [25] keep track of the stack by computing
an abstract stack graph which finitely represents the infinite
set of all the possible stacks for every control point of the pro-
gram. Their technique can detect obfuscated calls and obfus-
cated returns. However, they cannot specify the other mali-
cious behaviors that we are able to detect using our SCTPL
specifications.

Lakhotia et al. [24] perform context-sensitive analysis of
call and ret obfuscated binaries. They use abstract interpre-
tation to compute an abstraction of the stack. We believe that
our techniques are more precise since we do not abstract the
stack. Moreover, the techniques of [24] were only tried on toy
examples, they have not been applied for malware detection.

Balakrishnan et al. [4] use pushdown systems for binary
code analysis. However, the translation from programs to
PDSs in [4] assumes that the program follows a standard
compilation model where calls and returns match. As we have
shown, several malicious behaviors do not follow this model.
Our translation from a control flow graph to a PDS does not
make this assumption. They can detect situations where calls
and returns are not matched. However, they consider only
reachability. Our SCTPL logic allows specifying a larger set
of malicious behaviors.

Stack computation tree predicate logic can be seen as
an extension of CTPL with predicates over the stack con-
tent. CTPL was introduced in [20–22]. In these works, the
authors show how CTPL can be used to succinctly specify

Table 4 Detection of obfuscated viruses

Obfuscation Our techniques
detection rate (%)

Avira antivirus
detection rate (%)

Qihoo 360
antivirus detection
rate (%)

Avast antivirus
detection rate (%)

CTPL model-
checking detection
rate (%)

Nop-insertion 100 65 55 60 80

Code-reordering 100 40 35 45 75

Register-renaming 100 25 25 30 50

Stack-operation 100 20 25 20 0

Procedure-split 100 5 5 5 75
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malicious behaviors. Our SCTPL logic is more expressive
than CTPL. Indeed, CTPL cannot specify predicates over
the stack. Thus, SCTPL allows specifying more malicious
behaviors than CTPL. Indeed, most of the malicious behav-
iors we considered cannot be expressed in CTPL. Christodor-
escu et al. [11] use a kind of graph malspec to express mali-
cious behaviors which can specify the dependence of para-
meters between functions. It can express malicious behavior
as a safety property. However, it cannot express malicious
behavior as a liveness property (e.g., Ψor ).

7 Conclusion

In this work, we propose a novel approach to detect malware
by pushdown systems model checking. First, we propose a
new technique to translate binary code to pushdown systems.
Our technique is different from other translations from pro-
grams to PDSs since it does not need to assume that the pro-
gram has matched calls and returns. Then, we introduce our
SCTPL and show how it can precisely and succinctly specify
malicious behaviors that cannot be specified by other exist-
ing specification formalisms. We then provide an algorithm
to model-check pushdown systems against SCTPL specifica-
tions. Our approach consists in reducing this model-checking
problem to checking the emptiness of Symbolic Alternating
Büchi Pushdown Systems. We implemented our techniques
in a tool for malware detection. We obtained encouraging
experimental results. As mentioned previously, our approach
works if the data in the stack cannot be changed by direct
memory access. Since most interesting malicious behaviors
consider the occurrences of API function calls and their para-
meters, our technique still works properly if the direct manip-
ulation of the stack content does not change the value of
the parameters that the malicious specifications involved nor
change other values that could affect whether the API func-
tion calls of the specification are reached or not. If this is
not satisfied by the program, our approach will not work. To
overcome this limitation, we could extend the PDS model
with transitions that modify the whole stack content with a
transducer as done in [31], and model binary codes using this
new formalism. We plan to investigate this idea in the future.

Appendix

A.1 Proof of Theorem 1

Theorem 1 VAs are effectively closed under boolean oper-
ations.

Proof We need to prove that variable automata are closed
under union, complementation and intersection.

Union. Computing the union of two VAs can be done as for
finite automata. Given a PDS P = (P, Γ,Δ, �), let M1 =
(Q1, Γ, δ1, q1

0 , A1) and M2 = (Q2, Γ, δ2, q2
0 , A2) be two

VAs, we can construct a VA M as usual, such that L(M) =
L(M1) ∪ L(M2).

W.l.o.g., we suppose that Q1∩Q2 = ∅, otherwise we can
rename these repeated states. Let M = (Q, Γ, δ, q0, A) such
that

– Q = Q1 ∪ Q2 ∪ {q0}, where q0 is an additional initial
state of M ;

– A = A1 ∪ A2;
– δ = δ1 ∪ δ2 ∪ {q0

ε−→ {q1
0 }, q0

ε−→ {q2
0 }}.

Thus, we obtain that L(M) = L(M1) ∪ L(M2). ε-
transitions can be removed as usual.

Complementation. Given a PDS P = (P, Γ,Δ, �), let M =
(Q, Γ, δ, q0, A) be a VA , we construct a VA M such that
L(M) = (P × Γ ∗)× B\L(M).

W.l.o.g., we assume that if either q
x−→ {p1, . . . , ph} ∈ δ

or q
¬x−→ {p1, . . . , ph} ∈ δ, then there does not exist any

other transition rule in the form of q
α−→ {q1, . . . , qn} in δ.

Indeed, if there exist two transition rules q
x−→ {p1, . . . , pn}

and q
α−→ {q1, . . . , qm}, or q

¬x−→ {p1, . . . , pn} and
q

α−→ {q1, . . . , qm}, we then can replace these two transition
rules by q ′ x−→ {p1, . . . , pn} and q ′′ α−→ {q1, . . . , qm}, or

q ′ ¬x−→ {p1, . . . , pn} and q ′′ α−→ {q1, . . . , qm}, and replace

all the transition rules of the form g
α′−→ {q, g1, . . . , gh}

by two transition rules g
α′−→ {q ′, g1, . . . , gh} and g

α′−→
{q ′′, g1, . . . , gh}.

Let M = (Q∪{q f }, Γ, δ′, q0, A′) be a VA, where q f �∈ Q
is a final state, A′ = Q ∪ {q f }\A, and δ′ is the smallest set
of transition rules satisfying the following: for every p, q ∈
Q, x ∈ X , γ ∈ Γ ,

1. if p
x−→ {q1, . . . , qm} ∈ δ; then p

x−→ qi ∈ δ′ for every

1 ≤ i ≤ m, and p
¬x−→ q f ∈ δ′,

2. if p
¬x−→ {q1, . . . , qm} ∈ δ; then p

¬x−→ qi ∈ δ′ for every
1 ≤ i ≤ m, and p

x−→ q f ∈ δ′,
3. if there does not exist S ⊆ Q s.t. neither p

γ−→ S ∈ δ,
nor p

x−→ S ∈ δ nor p
¬x−→ S ∈ δ; then p

γ−→ q f ∈ δ′,
4. p

γ−→ {q1, . . . , qm | for every 1 ≤ i ≤ m : p
γ−→ Si ∈

δ and qi ∈ Si } ∈ δ′,
5. q f

γ−→ q f ∈ δ′.

Let us show that L(M) = (P × Γ ∗)× B\L(M).
(⇒) First we show that L(M) ⊆ (P ×Γ ∗)×B\L(M).

It is sufficient to prove that for every (〈p, ω〉,B) ∈ (P ×
Γ ∗) × B, if M has an accepting run from a state f ∈ Q on
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the word ω under the environment B, then M does not have
any accepting run from the state f on the word ω under the
environment B. We proceed by induction on the length |ω|
of ω.

– Basis |ω| = 0: Then ω = ε. Since M has an accepting
run from the state f on the word ω under the environment
B, we obtain that the initial state f ∈ A′. Since A′ =
Q ∪ {q f }\A, we get that f �∈ A which implies that M
does not have any accepting run from the state f on the
word ω under the environment B.

– Step:|ω| ≥ 1: Let γ ∈ Γ, u ∈ Γ ∗ such that ω = γ u. M
has an accepting run from the state f on the word ω under
the environment B. Let t ∈ δ′ be the first transition used
by this run, and the left side of t is the state f and the input
is γ . The proof depends on the reasoning of the transition
rule t added by the above construction.

– Case 1: t = f
x−→ qi ∈ δ′ is added by Item 1,

then we get that M has an accepting run from the
state qi on the word u under the environment B and
B(x) = γ . By applying the induction hypothesis, we
obtain that M does not have any accepting run from
the state qi on the word u under the environment B.
Since the transition rule t = f

x−→ qi ∈ δ′ is added
by Item 1, then we get that M has only one transi-
tion f

x−→ {qi , p1, . . . , pm} ∈ δ from the state f
due to the assumption, since M does not have any
accepting run from the state qi on the word u under
the environment B, we obtain that M does not have
any accepting run from the state f on the word γ u
under the environment B.

– Case 2: t = f
¬x−→ qi ∈ δ′ is added by Item 2, then

we get that M has an accepting run from the state qi on
the word u under the environment B and B(x) �= γ .
By the induction hypothesis, we obtain that M does
not have any accepting run from the state qi on the
word u under the environment B.
Since the transition rule t = f

¬x−→ qi ∈ δ′ is added
by Item 2, then we get that M has only one transi-

tion f
¬x−→ {qi , p1, . . . , pm} ∈ δ from the state f

due to the assumption, since M does not have any
accepting run from the state qi on the word u under
the environment B, we obtain that M does not have
any accepting run from the state f on the word γ u
under the environment B.

– Case 3: t = f
¬x−→ q f ∈ δ′ is added by Item 1, then

we get that B(x) �= γ and M has only one transition
f

x−→ {p1, . . . , pm} ∈ δ from the state f due to the
assumption. Since B(x) �= γ , we get that M does not
have any accepting run from the state f on the word
γ u under the environment B.

– Case 4: t = f
x−→ q f ∈ δ′ is added by Item 2, then

we get that B(x) = γ and M has only one transition

f
¬x−→ {p1, . . . , pm} ∈ δ from the state f due to the

assumption. Since B(x) = γ , we get that M does not
have any accepting run from the state f on the word
γ u under the environment B.

– Case 5: t = f
γ−→ q f ∈ δ′ is added by Item 3,

then M does not have any transition in the form of

f
γ−→ S ∈ δ, f

x−→ S ∈ δ or f
¬x−→ S ∈ δ for

any S ⊆ Q, and we get that M does not have any
accepting run from the state f on the word γ u under
the environment B.

– Case 6: t = f
γ−→ {q1, . . . , qm} ∈ δ′ is added by

Item 4, then M has transitions f
γ−→ Si ∈ δ such

that qi ∈ Si for every 1 ≤ i ≤ m. Since M has an
accepting run from the state f on the word ω under
the environment B, we obtain that M has an accept-
ing run from every state qi on the word u under the
environment B. By applying the induction hypoth-
esis, we obtain that M does not have any accepting
run from the state qi on the word u under the environ-
ment B for every 1 ≤ i ≤ m. Since M has transitions

f
γ−→ Si ∈ δ for every 1 ≤ i ≤ m and qi ∈ Si , then

each run from the state f has to go through a state qi

for some 1 ≤ i ≤ m, we get that M does not have
any accepting run from the state f on the word γ u
under the environment B.

(⇐)We show that L(M) ⊇ (P × Γ ∗)× B\L(M). It is
sufficient to prove that for every (〈p, ω〉,B) ∈ (P×Γ ∗)×B,
if M does not have any accepting run from a state f ∈ Q on
the wordω under the environment B, then M has an accepting
run from the state f on the word ω under the environment B.
We proceed by induction on the length |ω|.

– Basis |ω| = 0: Then ω = ε. Since M does not have
any accepting run from the state f on the word ε under
the environment B, we get that f �∈ A. Since A′ = Q ∪
{q f }\A, then f ∈ A′, we get that M has an accepting run
from the state f on the word ε under the environment B.

– Step |ω| ≥ 1: Let γ ∈ Γ, u ∈ Γ ∗ such that ω = γ u. The
proof depends on the case whether M has a transition rule

either of the form f
x−→ {q1, . . . , qm} ∈ δ, or f

¬x−→
{q1, . . . , qm} ∈ δ, or f

γ−→ Si ∈ δ, or does not have any
transition.

– Case 1: f
x−→ {q1, . . . , qm} ∈ δ, then we get that M

does not have any other transition rule from the state
f due to the assumption. The proof depends on the
case whether B(x) = γ .

• B(x) = γ : Then the run of M from the state f
will move to the states q1, . . . , qm . Since M does
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not have any accepting run from the state f on
the word ω under the environment B, we obtain
that there are some states qi ∈ {q1, . . . , qm} such
that M does not have any accepting run from the
state qi ∈ Q on the word u under the environ-
ment B. By applying the induction hypothesis,
we obtain that M has an accepting run from these
states qi on the word u under the environment B.
Since f

x−→ {q1, . . . , qm} ∈ δ, we get that
f

x−→ qi ∈ δ′ for every 1 ≤ i ≤ m. Thus,
M has an accepting run from the state f on the
word γ u under the environment B.
• B(x) �= γ : Since f

x−→ {q1, . . . , qm} ∈ δ, we

get that f
¬x−→ q f ∈ δ′. Since q f

γ1−→ q f ∈ δ′
for every γ1 ∈ Γ and q f ∈ A′, we obtain that
M has an accepting run from the state f on the
word γ u under the environment B.

– Case 2: f
¬x−→ {q1, . . . , qm} ∈ δ, then we get that M

does not have any other transition rule from the state
f due to the assumption. The proof depends on the
case whether B(x) = γ .

• B(x) �= γ : Then the run of M from the state f
will move to the states q1, . . . , qm . Since M does
not have any accepting run from the state f on
the word ω under the environment B, we obtain
that there are some states qi ∈ {q1, . . . , qm} such
that M does not have any accepting run from the
state qi ∈ Q on the word u under the environ-
ment B. By applying the induction hypothesis,
we obtain that M has an accepting run from these
states qi on the word u under the environment B.

Since f
¬x−→ {q1, . . . , qm} ∈ δ, we get that

f
¬x−→ qi ∈ δ′ for every 1 ≤ i ≤ m. Thus,

M has an accepting run from the state f on the
word γ u under the environment B.

• B(x) = γ : Since f
¬x−→ {q1, . . . , qm} ∈ δ, we

get that f
x−→ q f ∈ δ′. Since q f

γ1−→ q f ∈ δ′
for every γ1 ∈ Γ and q f ∈ A′, we obtain that
M has an accepting run from the state f on the
word γ u under the environment B.

– Case 3: f
γ−→ Si ∈ δ for every 1 ≤ i ≤ m. Then, the

run of M from the state f can move to one state Si of
the states {S1, . . . , Sm}. Since M does not have any
accepting run from the state f on the wordω under the
environment B, we obtain that for every 1 ≤ i ≤ m,
there exists a state qi ∈ Si such that M does not have
any accepting run from the state qi on the word u
under the environment B. By applying the induction
hypothesis, we get that M has an accepting run from

these states qi on the word u under the environment
B for every 1 ≤ i ≤ m.

Since f
γ−→ Si ∈ δ for every 1 ≤ i ≤ m, we get

that f
γ−→ {q1, . . . , qm} ∈ δ′. M has an accepting

run from the state f on the word γ u under the envi-
ronment B.

– Case 4: There is no transition in the form f
γ−→ S ∈

δ, or f
x−→ S ∈ δ or f

¬x−→ S ∈ δ: then, we get

that f
γ−→ q f ∈ δ′ and q f

γ1−→ q f ∈ δ′ for every
γ1 ∈ Γ . Since q f ∈ A′, we obtain that M has an
accepting run from the state f on the word γ u under
the environment B.

Intersection. Given a PDS P = (P, Γ,Δ, �), let M1 =
(Q1, Γ, δ1, q1

0 , A1) and M2 = (Q2, Γ, δ2, q2
0 , A2) be two

VAs, we construct a VA M such that L(M) = L(M1) ∩
L(M2).

Since VA are closed under complementation, let M1 and
M2 be two VAs such that L(M1) = (P × Γ ∗)× B\L(M1)

and L(M2) = (P × Γ ∗)× B\L(M2).
Since VA is closed under union, we construct a VA M3

such that L(M3) = L(M1)∪ L(M2). Then, we can compute
a VA M3 such that L(M3) = P × Γ ∗ × B\L(M3).

According to the above constructions, we obtain that
L(M3) = P × Γ ∗ × B\L(M3) = P × Γ ∗ × B\(L(M1) ∪
L(M2)) = L(M1) ∩ L(M2). ��

A.2 Proof of Theorem 2

Theorem 2 For every regular expression e ∈ R, one can
effectively compute in polynomial time a VA M such that
L(M) = L(e).

Proof To construct a VA M s.t. L(M) = L(e). We first
construct a Variable Automaton with ε-transitions (ε-VA)
Mε where transition rules are in the form of:

– p
α−→ q s.t. α ∈ X ∪ Γ, p, q ∈ Q; or

– p
ε−→ q which can be fired without consuming any input

symbol.

Then, we can translate the ε-VA Mε into an equivalent VA
M by performing ε-transitions elimination as usual.

Given a regular expression e ∈ R, we can construct an
ε-VA Mε by induction on the structure of e.

– e = ∅: Let Mε = (Q, Γ, δ, q0, A) where Q =
{q0, f }, A = { f }, δ = ∅. Then, we obtain that
L(Mε) = ∅ = L(∅).

– e = ε: Let Mε = (Q, Γ, δ, q0, A) where Q =
{q0, f }, A = { f }, δ = {q0

ε−→ f }. Then, we obtain
that L(Mε) = {(〈p, ε〉, B) | ∀p ∈ P,B ∈ B} = L(ε).

– e = a ∈ X : Let Mε = (Q, Γ, δ, q0, A) where Q =
{q0, f }, A = { f }, δ = {q0

a−→ f }. Then, we obtain
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that L(Mε) = {(〈p, γ 〉,B) | ∀p ∈ P, γ ∈ Γ,B ∈ B :
B(a) = γ } = L(a).

– e = a ∈ Γ : Let Mε = (Q, Γ, δ, q0, A) where Q =
{q0, f }, A = { f }, δ = {q0

a−→ f }. Then, we obtain
that L(Mε) = {(〈p, a〉,B) | ∀p ∈ P,B ∈ B} = L(a).

– e = e1 + e2: By applying the induction hypothesis,
there exist M1

ε = (Q1, Γ, δ1, q1
0 , { f 1}) and M2

ε =
(Q2, Γ, δ2, q2

0 , { f 2}) such that L(M1
ε ) = L(e1) and

L(M2
ε ) = L(e2). Let Mε = (Q, Γ, δ, q0, { f }), where

Q = Q1 ∪ Q2 ∪ {q0, f }, δ = δ1 ∪ δ2 ∪ δ′, δ′ consists of
the following transitions:

– q0
ε−→ q1

0 ∈ δ′,
– q0

ε−→ q2
0 ∈ δ′,

– f 1 ε−→ f ∈ δ′,
– f 2 ε−→ f ∈ δ′.

For every (〈p, ω〉,B) ∈ P × Γ ∗ × B, (〈p, ω〉,B) ∈
L(M1

ε ) or (〈p, ω〉,B) ∈ L(M2
ε ) iff (〈p, εωε〉,B) ∈

L(Mε). Thus, L(Mε) = L(M1
ε ) ∪ L(M2

ε ) = L(e1) ∪
L(e2) = L(e).

– e = e1 · e2: By applying the induction hypothesis,
there exist M1

ε = (Q1, Γ, δ1, q1
0 , { f 1}) and M2

ε =
(Q2, Γ, δ2, q2

0 , { f 2}) such that L(M1
ε ) = L(e1) and

L(M2
ε ) = L(e2). Let Mε = (Q, Γ, δ, q1

0 , { f 2}), where

Q = Q1 ∪ Q2, δ = δ1 ∪ δ2 ∪ { f 1 ε−→ q2
0 }.

For every (〈p, ω〉,B) ∈ P × Γ ∗ × B, (〈p, ω1〉,B) ∈
L(M1

ε ) and (〈p, ω2〉,B) ∈ L(M2
ε ) iff (〈p, ω1εω2〉,B) ∈

L(Mε) (i.e., (〈p, ω1ω2〉,B) ∈ L(Mε)). Thus, L(Mε) =
L(e).

– e = e∗1: By applying the induction hypothesis, there
exists M1

ε = (Q1, Γ, δ1, q1
0 , { f 1}) such that L(M1

ε ) =
L(e1). Let Mε = (Q, Γ, δ, q0, { f }), where Q = Q1 ∪
{q0, f }, δ = δ1 ∪ δ′, δ′ consists of the following transi-
tions:

– q0
ε−→ q1

0 ∈ δ′,
– q0

ε−→ f ∈ δ′
– f 1 ε−→ q1

0 ∈ δ′,
– f 1 ε−→ f ∈ δ′.

For every (〈p, ω〉,B) ∈ P × Γ ∗ × B : (〈p, ω〉,B) ∈
L(Mε) iff ω ∈ {u | (〈p, u〉,B) ∈ L(M1

ε )}∗. Thus,
L(Mε) = L(e).

Finally, we can eliminate all the ε transitions from Mε in
the standard manner obtaining the VA M , i.e., as done for
finite-state automata. ��

A.3 Proof of Theorem 3

Theorem 3 Given a PDS P = (P, Γ,Δ, �), a function
λ : APD −→ 2P , a SCTPL formula ϕ, and a configuration

〈p, ω〉 of P , we have: for every B ∈ B, 〈p, ω〉 |B
λ ϕ iff BPϕ

has an accepting run from the configuration 〈[�p, ϕ�,B], ω〉.
Proof (⇒) Suppose 〈p, ω〉 |B

λ ϕ, we show that BPϕ has
an accepting run from 〈[�p, ϕ�,B], ω〉 by induction on the
structure of ϕ.
Case ϕ = a(x1, . . . , xn) ∈ AP+(ϕ): Since 〈p, ω〉 |B

λ ϕ,
then 〈p, ω〉 ∈ λ(a(B(x1), . . . ,B(xn))). This implies that
[�p, ϕ�,B] is an accepting control location.

Since 〈�p, ϕ�, γ 〉 id
↪→ 〈�p, ϕ�, γ 〉 ∈ Δ for every γ ∈ Γ .

Thus, BPϕ has an accepting run from the configuration
〈[�p, ϕ�,B], ω〉, i.e., BPϕ has a run from the configuration
〈[�p, ϕ�,B], ω〉which infinitely often visits some configura-
tions with accepting control locations.
Case ϕ = ¬a(x1, . . . , xn) ∈ AP+(ϕ): Since 〈p, ω〉 |B

λ

ϕ, then 〈p, ω〉 �∈ λ(a(B(x1), . . . ,B(xn))). This implies that
[�p, ϕ�,B] is an accepting control location.

Since 〈�p, ϕ�, γ 〉 id
↪→ 〈�p, ϕ�, γ 〉 ∈ Δ for every γ ∈

Γ . Thus, BPϕ has an accepting run from the configuration
〈[�p, ϕ�,B], ω〉.
Case ϕ = e: Since 〈p, ω〉 |B

λ ϕ, then (〈p, ω〉,B) ∈ L(Me).
Since the run of BPϕ starting from 〈[�p, ϕ�,B], ω〉moves

to 〈[se,B], ω〉 where se is the initial state of the VA Me, and
the run of BPϕ starting from 〈[se,B], ω〉 mimics the run of
Me on the word ω. It is sufficient to prove that:

if Me has an accepting run from a state q on the word
u under the environment B, then BPϕ has an accepting run
from 〈[q,B], u〉. We proceed by applying induction on the
length of u.

– Basis |u| = 0: Then u = ε. Then we get that q ∈ Ae.

Since 〈q, �〉 id−→ 〈q, �〉 and [q,B] is an accepting con-
trol location. Thus, BPϕ has an accepting run from
〈[q,B], �〉. Note that � is the bottom of the stack when
the stack content is empty.

– Step |u| ≥ 1: Let γ ∈ Γ, v ∈ Γ ∗ such that u = γ v. Let
t be the first transition rule used by the run of Me. The
proof depends on the type of t .

– Case t = q
x−→ {q1, . . . , qm} and x ∈ X . Then

B(x) = γ , and Me has an accepting run from the
state qi on the word v under the environment B
for every 1 ≤ i ≤ m. By applying the induc-
tion hypothesis, we get that BPϕ has an accepting
run from 〈[qi ,B], v〉 for every 1 ≤ i ≤ m. Since

〈q, γ 〉 joinx
γ

↪→ {〈q1, ε〉, . . . , 〈qm, ε〉} ∈ Δ and the rela-
tion joinx

γ guarantees that B ∈ joinx
γ (B, . . . ,B)

(Since B(x) = γ ). Thus, BPϕ has an accepting run
from 〈[q,B], ω〉.

– Case t = q
¬x−→ {q1, . . . , qm} and x ∈ X . Then

B(x) �= γ , and Me has an accepting run from the
state qi on the word v under the environment B
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for every 1 ≤ i ≤ m. By applying the induc-
tion hypothesis, we get that BPϕ has an accepting
run from 〈[qi ,B], v〉 for every 1 ≤ i ≤ m. Since

〈q, γ 〉 join¬x
γ

↪→ {〈q1, ε〉, . . . , 〈qm, ε〉} ∈ Δ and the
relation join¬x

γ ensures that B ∈ join¬x
γ (B, . . . ,B)

(Since B(x) �= γ ). Thus, BPϕ has an accepting run
from 〈[q,B], ω〉.

– Case t = q
γ−→ {q1, . . . , qm}. Then, Me has an

accepting run from state qi on the word v under the
environment B for every 1 ≤ i ≤ m. By applying
the induction hypothesis, we get that BPϕ has an
accepting run from 〈[qi ,B], v〉 for every 1 ≤ i ≤ m.

Since 〈q, γ 〉 equal
↪→ {〈q1, ε〉, . . . , 〈qm, ε〉} ∈ Δ and the

relation equal ensures that B ∈ equal(B, . . . ,B).
Thus, BPϕ has an accepting run from 〈[q,B], ω〉.

Case ϕ = ¬e: It is similar to the case where ϕ = e.
Caseϕ = ϕ1∧ϕ2: Since 〈p, ω〉 |B

λ ϕ, we get that 〈p, ω〉 |B
λ

ϕ1 and 〈p, ω〉 |B
λ ϕ2.

By applying the induction hypothesis, we get that BPϕ

has an accepting run from 〈[�p, ϕ1�,B], ω〉 and BPϕ has an
accepting run from 〈[�p, ϕ2�,B], ω〉.

Since 〈�p, ϕ�, γ 〉 equal
↪→ [〈�p, ϕ1�, γ 〉, 〈�p, ϕ2�, γ 〉] for

everyγ ∈Γ and B ∈ equal(B,B), we get that 〈[�p, ϕ�,B], ω〉
is an immediate predecessor of {〈[�p, ϕ1�,B], ω〉, 〈[�p, ϕ2�,

B], ω〉}.Thus,BPϕ has an accepting run from 〈[�p, ϕ�,B], ω〉.
Caseϕ = ϕ1∨ϕ2: Since 〈p, ω〉 |B

λ ϕ, we get that 〈p, ω〉 |B
λ

ϕ1 or 〈p, ω〉 |B
λ ϕ2.

By applying the induction hypothesis, we get that BPϕ

has an accepting run from 〈[�p, ϕ1�,B], ω〉 or BPϕ has an
accepting run from 〈[�p, ϕ2�,B], ω〉.

Since 〈�p, ϕ�, γ 〉 id
↪→ 〈�p, ϕ1�, γ 〉 or 〈�p, ϕ�, γ 〉 id

↪→
〈�p, ϕ2�, γ 〉 and B ∈ id(B), we get that 〈[�p, ϕ�,B], ω〉
is an immediate predecessor of 〈[�p, ϕ1�,B], ω〉 and of
〈[�p, ϕ2�,B], ω〉. Thus, BPϕ has an accepting run from
〈[�p, ϕ�,B], ω〉.
Case ϕ = ∀xϕ1: Since 〈p, ω〉 |B

λ ϕ, we get that

〈p, ω〉 |B[x←v]
λ ϕ1, for every v ∈ D. Suppose D =

{c1, . . . , cn}. By applying the induction hypothesis, we get
that BPϕ has an accepting run from 〈[�p, ϕ1�,B[x ←
ci ]], ω〉 for every 1 ≤ i ≤ n. Since 〈�p, ϕ�, γ 〉 meet x

D
↪→

[〈�p, ϕ1�, γ 〉, . . . , 〈�p, ϕ1�, γ 〉] for every γ ∈ Γ and
the relation meet x

D ensures that B ∈ meet x
D(B[x ←

c1], . . . ,B[x ← cn]), we get that 〈[�p, ϕ�,B], ω〉 is an imme-
diate predecessor of {〈[�p, ϕ1�,B[x ← c1]], ω〉, . . . , 〈[�p,
ϕ1�,B[x ← cn]], ω〉}. Thus, BPϕ has an accepting run from
〈[�p, ϕ�,B], ω〉.
Case ϕ = ∃xϕ1: Since 〈p, ω〉 |B

λ ϕ, there exists a v ∈ D
such that 〈p, ω〉 |B[x←v]

λ ϕ1.

By applying the induction hypothesis, we get that BP has
an accepting run from 〈[�p, ϕ1�,B[x ← v]], ω〉.

Since for every γ ∈ Γ 〈�p, ϕ�, γ 〉
meet x{v}
↪→ 〈�p, ϕ1�, γ 〉

and the relation meet x{v} ensures that B ∈ meet x{v}(B), we
get that 〈[�p, ϕ�,B], ω〉 is an immediate predecessor of
〈[�p, ϕ1�,B[x ← v]], ω〉. Thus, BPϕ has an accepting run
from 〈[�p, ϕ�),B], ω〉.
Case ϕ = EXϕ1: Since 〈p, ω〉 |B

λ ϕ, then there exists an
immediate successor 〈p′, ω′〉 of 〈p, ω〉 such that 〈p′, ω′〉 |B

λ

ϕ1 and 〈p, ω〉 ⇒P 〈p′, ω′〉.
By applying the induction hypothesis, we get that BPϕ

has an accepting run from 〈[�p′, ϕ1�,B], ω′〉.
Since 〈�p, ϕ�, γ 〉 id

↪→ 〈�p′, ϕ�, ω〉 and B ∈ id(B), we
get that 〈[�p, ϕ�,B], ω〉 is an immediate predecessor of
〈[�p′, ϕ1�,B], ω′〉. Hence, BPϕ has an accepting run from
〈[�p, ϕ�,B], ω〉.
Case ϕ = AXϕ1: Let n be the number of immediate succes-
sors of 〈p, ω〉. Since 〈p, ω〉 |B

λ ϕ, then for each imme-
diate successors 〈pi , ωi 〉 of 〈p, ω〉: 〈pi , ωi 〉 |B

λ ϕ and
〈p, ω〉 ⇒P 〈pi , ωi 〉, for every 1 ≤ i ≤ n.

By applying the induction hypothesis, we obtain that BPϕ

has an accepting run from 〈[�pi , ϕ1�,B], ωi 〉 for each 1 ≤
i ≤ n.

Since 〈�p, ϕ�, γ 〉 equal
↪→ [〈�p1, ϕ1�, ω1〉, . . . , 〈�pn, ϕ1�,

ωn〉] and B ∈ equal(B, . . . ,B), we get that 〈[�p, ϕ�,B], ω〉 is
an immediate predecessor of {〈[�p1, ϕ1�,B], ω1〉, . . . , 〈[�pn,

ϕ1�,B], ωn〉}. Hence, BPϕ has an accepting run from
〈[�p, ϕ�,B], ω〉.
Caseϕ = E[ϕ1Uϕ2]: Since 〈p, ω〉 |B

λ E[ϕ1Uϕ2], then there
exists a path 〈p0, ω0〉〈p1, ω1〉, 〈p2, ω2〉 · · · from 〈p, ω〉 such
that ∃i ≥ 0, 〈pi , ωi 〉 |B

λ ϕ2 and ∀0 ≤ j < i : 〈p j , ω j 〉 |B
λ

ϕ1. Since 〈pi , ωi 〉 |B
λ ϕ2 and 〈p j , ω j 〉 |B

λ ϕ1 for every
0 ≤ j < i . By applying the induction hypothesis, we get
that BPϕ has an accepting run from 〈[�pi , ϕ2�,B], ωi 〉 and
for every 0 ≤ j < i, BPϕ has an accepting run from
〈[�p j , ϕ1�,B], ω j 〉.

Since 〈�pi , ϕ�, γ 〉 id
↪→ 〈�pi , ϕ2�, γ 〉 and B ∈ id(B), we

obtain that BPϕ has an accepting run from 〈[�pi , ϕ�,B], ωi 〉.
If i = 0, then 〈[�p, ϕ�,B], ω〉 = 〈[�pi , ϕ�,B], ωi 〉, BPϕ

has an accepting run from 〈[�p, ϕ�,B], ω〉.
Otherwise i > 0, we prove that BPϕ has an accepting run

from 〈[�p j , ϕ�,B], ω j 〉 by applying induction on l = i − j .
(Note that 〈[�p0, ϕ�,B], ω0〉 = 〈[�p, ϕ�,B], ω〉.)

– Basis. l = 1. Then there exists 〈p j , ω j 〉 ⇒P
〈pi , ωi 〉. According to the product of BPϕ , We get
that 〈[�p j , ϕ�,B], ω j 〉 is an immediate predecessor of
{〈[�p j , ϕ1�,B], ω j 〉, 〈[�pi , ϕ�, B], ωi 〉}. This implies that
BPϕ has an accepting run from 〈[�p j , ϕ�,B], ω j 〉.

– Step. l > 1. Then there exists 〈p j+1, ω j+1〉 such that
〈p j , ω j 〉 ⇒P 〈p j+1, ω j+1〉 ⇒P 〈pi , ωi 〉. By the
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induction hypothesis (induction on l), we get that BPϕ

has an accepting run from 〈[�p j+1, ϕ�,B], ω j+1〉.
Since 〈p j , ω j 〉 |B

λ ϕ1, by applying the induction
hypothesis (induction on structure of ϕ), we obtain
that BPϕ has an accepting run from 〈[�p j , ϕ1�,B], ω j 〉.
Since 〈[�p j , ϕ�,B], ω j 〉 is an immediate predecessor
of {〈[�p j , ϕ1�,B], ω j 〉, 〈[�p j+1, ϕ�,B], ω j+1〉}, we get
that BPϕ has an accepting run from 〈[�p, ϕ�,B], ω〉.

Case ϕ = A[ϕ1Uϕ2]: We can prove that BPϕ has an accept-
ing run from 〈[�p, ϕ�,B], ω〉 as done for to ϕ = E[ϕ1Uϕ2].
Case ϕ = E[ϕ1Rϕ2]: Since 〈p, ω〉) |B

λ E[ϕ1Rϕ2], then
there exists a path ρ = 〈p0, ω0〉〈p1ω1〉, 〈p2, ω2〉 · · · from
〈p, ω〉 such that

1. ∀i ≥ 0, 〈pi , ωi 〉 |B
λ ϕ2,

2. or there exists i ≥ 0 such that 〈pi , ωi 〉 |B
λ ϕ1 and ∀0 ≤

j ≤ i, 〈pi , ωi 〉 |B
λ ϕ2

– First we consider case (2), it can be proved that BPϕ

has an accepting run from 〈[�p, ϕ�,B], ω〉 by applying
the induction on i − j similar to the case where ϕ =
E[ϕ1Uϕ2].

– Considering the case (1), let us prove that BPϕ has
an accepting run from 〈[�p, ϕ�,B], ω〉. According to
the semantics of SCTPL, P has an infinite path r =
〈p0, ω0〉, 〈p1 ω1〉, 〈p2, ω2〉, . . . , 〈pi , ωi 〉, · · · such that
〈pi , ωi 〉 |B

λ ϕ2 for all i ≥ 0. Since the number of
control locations and stack alphabet of P is finite and
the path r is infinite, then there exists a configuration
〈pm, γ u〉 such that ωm = γ u, 〈p0, ω0〉 ⇒P 〈pm, γ u〉
and 〈pm, γ 〉 ⇒P 〈pm, γ v〉 (Proposition 3 of [7]). This
implies that 〈pm, γ u〉 ⇒P 〈pm, γ vu〉. Let 〈pn, ωn〉 be
the first configuration such that 〈pn, ωn〉 = 〈pm, γ vu〉.
Since for each configuration 〈pk, ωk〉 in the run 〈pm, γ u〉
⇒P 〈pm, γ vu〉 : 〈[�pk, ϕ�,B], ωk〉 is an immedi-
ate predecessor of {〈[�pk, ϕ2�,B], ωk〉, 〈[�pk+1, ϕ�,B],
ωk+1〉}. According to the definition of the reachability
relation of BPϕ , we obtain that
〈[�pm, ϕ�,B], γ u〉 ∈ Pre+({〈[�pm, ϕ�,B], γ vu〉,
〈[�pm+0, ϕ2�, B], ωm+0〉, . . . , 〈[�pn, ϕ2�,B], ωn〉}).
Since 〈pi , ωi 〉 |B

λ ϕ2 for every i ≥ 0, by applying the
induction hypothesis, we obtain that BPϕ has an accept-
ing run from 〈[�pi , ϕ2�,B], ωi 〉.
Since for each i ≥ 0 [�pi , ϕ�,B] ∈ F which implies that
[�pi , ϕ�,B] is an accepting control location, then BPϕ

has a run from 〈[�p, ϕ�,B], ω〉 such that each path will
infinitely often visit some configurations 〈[�pi , ϕ�,B], ωi 〉
with accepting control locations. Thus, BPϕ has an
accepting run from 〈[�p, ϕ�,B], ω〉.

Case ϕ = A[ϕ1Rϕ2]: We can prove that BPϕ has an accept-
ing run from 〈[�p, ϕ�,B], ω〉 as done for ϕ = E[ϕ1Rϕ2].

(⇐)BPϕ has an accepting run from 〈[�p, ϕ�,B], ω〉, we
show that 〈p, ω〉 |B

λ ϕ by applying induction on the structure
of ϕ.
Case ϕ = a(x1, . . . , xn) ∈ AP+(ϕ): Since BPϕ has an

accepting run from 〈[�p, ϕ�,B], ω〉 and 〈�p, ϕ�, ω〉 id
↪→

〈pϕ, ω〉, 〈p, ω〉 ∈ λ(a(B(x1), ..,B(xn)). Thus, 〈p, ω〉 |B
λ

ϕ.
Case ϕ = ¬a(x1, . . . , xn) ∈ AP−(ϕ): Since BPϕ has

an accepting run from 〈[�p, ϕ�,B], ω〉 and 〈�p, ϕ�, ω〉 id
↪→

〈pϕ, ω〉, this implies that 〈p, ω〉 �∈ λ(a(B(x1), . . . ,B(xn))).
Thus, 〈p, ω〉 |B

λ ϕ.
Case ϕ = e: Since BPϕ has an accepting run from

〈[�p, ϕ�,B], ω〉 and 〈�p, ϕ�, ω〉 id
↪→ 〈se, ω〉, we get that BPϕ

has an accepting run from 〈[se,B], ω〉. Since the run of BPϕ

from the configuration 〈[se,B], ω〉 mimics the run of Me. It
is sufficient to prove that if BPϕ has an accepting run from
〈[q,B], u〉 for every q ∈ Q, u ∈ Γ ∗, then Me has an accept-
ing run from the state q on the word u under B. We proceed
by induction on the length |u|.

– Basis |u| = 0: Then u = ε. Since BPϕ has an accepting

run from 〈[q,B], �〉, 〈q, �〉 id−→ 〈q, �〉 ∈ Δ and [q,B] is
accepting, we get that q ∈ Ae. Me has an accepting run
from the state q on the word u under B. Note that � is the
bottom of the stack (i.e., the stack content is ε).

– Step |u| ≥ 1: Let γ ∈ Γ, v ∈ Γ ∗ such that u = γ v. Let
t be the first transition rule used by the run of BPϕ . The
proof depends on the type of t .

– Case t = 〈q, γ 〉 joinx
γ

↪→ {〈q1, ε〉, . . . , 〈qm, ε〉} ∈ Δ,
then q

x−→ {q1, . . . , qm} and x ∈ X . The relation
joinx

γ ensures that B(x) = γ .
BPϕ has an accepting run from 〈[q,B], u〉 for every
q ∈ Q, u ∈ Γ ∗, then BPϕ has an accepting run
from 〈[qi ,B], v〉 for every 1 ≤ i ≤ m. By applying
the induction hypothesis, we obtain that Me has an
accepting run from state qi on the word v under B for
every 1 ≤ i ≤ m.
Since q

x−→ {q1, . . . , qm}, we get that Me has an
accepting run from the state q on the word u under
B.

– Case t = 〈q, γ 〉 join¬x
γ

↪→ {〈q1, ε〉, . . . , 〈qm, ε〉} ∈ Δ,

then q
¬x−→ {q1, . . . , qm} and x ∈ X . The relation

join¬x
γ ensures that B(x) �= γ .

BPϕ has an accepting run from 〈[q,B], u〉 for every
q ∈ Q, u ∈ Γ ∗, then BPϕ has an accepting run
from 〈[qi ,B], v〉 for every 1 ≤ i ≤ m. By applying
the induction hypothesis, we obtain that Me has an
accepting run from state qi on the word v under B for
every 1 ≤ i ≤ m.
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Since q
¬x−→ {q1, . . . , qm}, we get that Me has an

accepting run from the state q on the word u under B.

– Case t = 〈q, γ 〉 equal
↪→ {〈q1, ε〉, . . . , 〈qm, ε〉} ∈ Δ,

then q
γ−→ {q1, . . . , qm}.

BPϕ has an accepting run from 〈[q,B], u〉 for every
q ∈ Q, u ∈ Γ ∗, then BPϕ has an accepting run
from 〈[qi ,B], v〉 for every 1 ≤ i ≤ m. By applying
the induction hypothesis, we obtain that Me has an
accepting run from state qi on the word v under B for
every 1 ≤ i ≤ m.

Since q
γ−→ {q1, . . . , qm}, we get that Me has an

accepting run from the state q on the word u under B.

Case ϕ = ¬e: This case is similar to the case where ϕ = e.

Caseϕ = ϕ1∧ϕ2: Since 〈�p, ϕ�, ω〉 equal
↪→ [〈�p, ϕ1�, ω〉, 〈�p,

ϕ2�, ω〉] and BPϕ has an accepting run from 〈[�p, ϕ�,B], ω〉,
we obtain that BPϕ has an accepting run from 〈[�p, ϕ1�,B],
ω〉 and from 〈[�p, ϕ2�,B], ω〉.

By applying the induction hypothesis, we obtain that
〈p, ω〉 |B

λ ϕ1 and 〈p, ω〉 |B
λ ϕ2. These imply that

〈p, ω〉 |B
λ ϕ.

Case ϕ = ϕ1 ∨ ϕ2: Since 〈�p, ϕ�, ω〉 id
↪→ 〈�p, ϕ1�, ω〉 and

〈�p, ϕ�, ω〉 id
↪→ 〈�p, ϕ2�, ω〉, and BPϕ has an accepting run

from 〈[�p, ϕ�,B], ω〉, we obtain that BPϕ has an accepting
run from 〈[�p, ϕ1�,B], ω〉 or BPϕ has an accepting run from
〈[�p, ϕ2�,B], ω〉. By applying the induction hypothesis, we
have that 〈p, ω〉 |B

λ ϕ1 or 〈p, ω〉 |B
λ ϕ2. These imply that

〈p, ω〉 |B
λ ϕ.

Case ϕ = ∀xϕ1: Let D = {c1, . . . , cn}. Since 〈�p, ϕ�, ω〉
meet x

D
↪→ [〈�p, ϕ1�, ω〉, . . . , 〈�p, ϕ1�, ω〉], the relation meet x

D
implies that the configurations [〈[�p, ϕ1�,B[x ←− c1]], ω〉,
. . . , 〈[�p, ϕ1�, B[x ←− cn]], ω〉] are the children of the con-
figuration 〈[�p, ϕ�, B], ω〉 in the accepting run.

Since BPϕ has an accepting run from 〈[�p, ϕ�,B], ω〉, we
obtain thatBPϕ has an accepting run from 〈[�p, ϕ1�,B[x ←−
ci ]], ω〉 for every 1 ≤ i ≤ n. By applying the induc-
tion hypothesis, we get that 〈p, ω〉 |B[x←−ci ]

λ ϕ1 for every
1 ≤ i ≤ n. Thus, 〈p, ω〉 |B

λ ϕ.
Case ϕ = ∃xϕ1: Let D = {c1, . . . , cn}. Since 〈�p, ϕ�, ω〉
meet x{ci }
↪→ 〈�p, ϕ1�, ω〉 for every 1 ≤ i ≤ n, the relation

meet x{ci } implies that for every 1 ≤ i ≤ n, the configuration
〈[�p, ϕ1�,B[x ←− ci ]], ω〉 can be the child of the configu-
ration 〈[�p, ϕ1�,B], ω〉 in the accepting run.

Since BPϕ has an accepting run from 〈[�p, ϕ�,B], ω〉, we
obtain that there exists i : 1 ≤ i ≤ n such that BPϕ has an
accepting run from 〈[�p, ϕ1�,B[x ←− ci ]], ω〉. By applying
the induction hypothesis, we get that 〈p, ω〉 |B[x←−ci ]

λ ϕ1.
Hence, 〈p, ω〉 |B

λ ϕ.
Case ϕ = EXϕ1: Then, there exists an immediate successor
〈[�p′, ϕ1�,B], ω′〉 of 〈[�p, ϕ�,B], ω〉 such that 〈[�p′, ϕ1�,B],

ω′〉 is a child of 〈[�p, ϕ�,B], ω〉 in the accepting run. Then
BPϕ has an accepting run from 〈[�p′, ϕ1�,B], ω′〉.

By applying the induction hypothesis, 〈p′, ω′〉 |B
λ ϕ1.

Thus, we obtain that 〈p, ω〉 |B
λ ϕ.

Caseϕ = AXϕ1: Then, the immediate successors {〈[�p1, ϕ1�,

B], ω1〉, · · · , 〈[�pn, ϕ1�,B], ωn〉 of 〈[�p, ϕ�,B], ω〉 are the
children of the configuration 〈[�p, ϕ�,B], ω〉 in the accepting
run. Then BPϕ has an accepting run from 〈[�pi , ϕ1�,B], ωi 〉,
for each 1 ≤ i ≤ n.

By applying the induction hypothesis, 〈pi , ωi 〉 |B
λ ϕ1,

for each 1 ≤ i ≤ n. Thus, we obtain that 〈p, ω〉 |B
λ ϕ.

Case ϕ = E[ϕ1Uϕ2]: Let ρ be the accepting run from
〈[�p, ϕ�, B], ω〉, then, each configuration 〈[�pi , ϕ�,B], ωi 〉
in ρ at most have two children 〈[�pi , ϕ1�,B], ωi 〉 and
〈[�pi+1, ϕ�,B], ωi+1〉 or has only one child 〈[�pi , ϕ2�,B],
ωi 〉.

Since ρ is an accepting run, there exists a configuration
〈[�pn, ϕ�,B], ωn〉 in ρ, such that 〈[�pn, ϕ�,B], ωn〉 has only
one child 〈[�pn, ϕ2�,B], ωn〉. Let 〈[�p0, ϕ�,B], ω0〉, . . . ,
〈[�pn, ϕ�,B], ωn〉, · · · be a path of ρ. Then, BPϕ has an
accepting run from 〈[�pi , ϕ1�,B], ωi 〉 for each 0 ≤ i < n,
and BPϕ has an accepting run from 〈[�pn, ϕ2�,B], ωn〉.

By applying the induction hypothesis, we obtain that
〈pn, ωn〉 |B

λ ϕ2 and 〈pi , ωi 〉 |B
λ ϕ1 for each 0 ≤ i < n.

Thus, 〈p, ω〉 |B
λ ϕ.

Case ϕ = A[ϕ1Uϕ2]: This case is similar to the case where
ϕ = E[ϕ1Uϕ2].
Case ϕ = E[ϕ1Rϕ2]: Let ρ be the accepting run from
〈[�p, ϕ,B�], ω〉, then, each configuration 〈[�pi , ϕ�,B], ωi 〉
in ρ has two children:

1. either 〈[�pi , ϕ1�,B], ωi 〉 and 〈[�pi , ϕ2�,B], ωi 〉
2. or 〈[�pi , ϕ2�,B], ωi 〉 and 〈[�pi+1, ϕ�,B], ωi+1〉

1. First we consider Item (1). Since [�pi , ϕ�,B] ∈ F ′,
we obtain that [�pi , ϕ�,B] is an accepting control loca-
tions, then every configuration 〈[�pi , ϕ�,B], ωi 〉 in ρ has
two children 〈[�pi , ϕ2�,B], ωi 〉 and 〈[�pi+1, ϕ�,B], ωi 〉
for every i ≥ 0. By applying the induction hypoth-
esis to 〈[�pi , ϕ2�,B], ωi 〉, we get that 〈pi , ωi 〉 |B

λ

ϕ2 for every i ≥ 0. We obtain that 〈p, ω〉 |B
λ

ϕ

2. Let us consider Item (2). There is a configuration
〈[�pn, ϕ�, B], ωn〉 in ρ such that its two children are
〈[�pn, ϕ1�,B], ωn〉 and 〈[�pn, ϕ2�,B], ωn〉, each con-
figuration 〈[�pi , ϕ�,B], ωi 〉 from 〈[�p0, ϕ�,B], ω0〉 to
〈[�pn, ϕ�,B], ωn〉 has children 〈[�pi , ϕ2�,B], ωi 〉 and
〈[�pi+1, ϕ�,B], ωi 〉. BPϕ has an accepting run from
〈[�pn, ϕ1�,B], ωn〉 and from 〈[�pi , ϕ2�,B], ωi 〉 for 0 ≤
i ≤ n.
By applying the induction hypothesis, 〈pn, ωn〉 |B

λ ϕ1

and 〈pi , ωi 〉 |B
λ ϕ2 for each 0 ≤ i ≤ n. Thus,

〈p, ω〉 |B
λ ϕ.
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Case ϕ = A[ϕ1Rϕ2]: This case is similar to the case
where ϕ = E[ϕ1Rϕ2]. ��
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