
Formal Verification of RISC-V Processor
Chisel Designs

Shidong Shen1,2 , Yicheng Liu1,2 , Lijun Zhang1,2 , Fu Song1,2 ,
and Zhilin Wu1,2(B)

1 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing, China
{shensd,liuyc,zhanglj,songfu,wuzl}@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Chisel is an open-source high-level hardware construction
language embedded in Scala to facilitate parameterizable, reusable cir-
cuit design generators. It is becoming increasingly popular and has been
used to design many RISC-V processor variants. Formal verification has
been adapted to check the (functional) correctness of RISC-V proces-
sor designs. However, the RISC-V instructions therein are specified in
the low-level hardware languages Verilog/SystemVerilog, which are chal-
lenging to develop, maintain, and extend. This considerably lowers the
advantage of RISC-V for designing highly customizable processors. In
this work, we present the first end-to-end approach for formally veri-
fying the correctness of RISC-V processor designs, fully at the Chisel
high-level. Specifically, by utilizing the object-oriented and functional
programming constructs offered by Chisel, we develop a high-level ref-
erence model of RISC-V instructions in Chisel. This reference model is
a succinct, modular, and parameterized RISC-V processor design gen-
erator, thus can produce customized RISC-V processor variants. We
then devise a novel queue-based synchronization mechanism between
the RISC-V processor Chisel design and the reference model by which
the correctness verification of the RISC-V processor design is reduced to
the model-checking problem and off-the-shelf model-checkers can be har-
nessed. We implement our approach in an open-source tool and demon-
strate its efficacy on two representative open-source RISC-V processor
designs in Chisel (i.e., riscv-mini and NutShell). The experiment results
confirm the efficacy of our approach, capable of discovering 7 real-world
unknown non-conformance bugs and all the 10 manually injected bugs. It
is also three-orders-of-magnitude more efficient than the state-of-the-art
symbolic-execution based approach.

Keywords: Chisel · RISC-V · formal verification · reference model ·
synchronization · ISA conformance · model-checking

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
T. Bourke et al. (Eds.): SETTA 2024, LNCS 15469, pp. 142–160, 2025.
https://doi.org/10.1007/978-981-96-0602-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0602-3_8&domain=pdf
http://orcid.org/0009-0000-0369-021X
http://orcid.org/0009-0006-0505-9935
http://orcid.org/0000-0002-3692-2088
http://orcid.org/0000-0002-0581-2679
http://orcid.org/0000-0003-0899-628X
https://doi.org/10.1007/978-981-96-0602-3_8

Formal Verification of RISC-V Processor Chisel Designs 143

1 Introduction

Background. RISC-V is a royalty-free and open standard Instruction Set Archi-
tecture (ISA) based on the well-established principles of Reduced Instruction
Set Computer (RISC). The RISC-V instruction set manual provides detailed
specifications of RISC-V ISA in two volumes. The first volume [30] specifies
the unprivileged ISA, including the base integer instructions (RV32I/64I) and
optional unprivileged extensions, such as Multiplication and Division extension
(M), and Compressed instructions (C). The second volume [31] specifies the priv-
ileged ISA and those beyond the unprivileged ISA, including privileged instruc-
tions and additional functionalities required for running operating systems and
attaching external devices. The scalable and extendable RISC-V ISA brings a
new level of flexibility in designing highly customizable processors.

Along with RISC-V, Chisel (Constructing Hardware in a Scala Embedded
Language) [2], an open-source hardware description language (HDL), was pro-
posed. Chisel features hardware construction primitives and Scala’s object-orien-
ted and functional programming constructs, allowing designers to easily write
complex, modular circuit generators that can produce circuit designs in synthe-
sizable Verilog/SystemVerilog. This generation methodology enables the creation
of parameterizable, reusable components and libraries, such as the FIFO queue
and arbiters in the Chisel Standard Library. Compared to the classic HDLs
(e.g., Verilog, SystemVerilog, and VHDL), Chisel offers a higher level program-
ming abstraction for hardware designs. Since its introduction, Chisel has been
widely used to design many RISC-V processor variants (e.g. RocketChip [26],
BOOM [4], riscv-mini [15], NutShell [23], and XiangShan [35]), and is playing an
indispensable role in the promotion of the agile hardware development method-
ology [17,37].

Motivation. Modern processors are becoming more and more complex, con-
sequently, ensuring their correctness in the pre-silicon stage becomes a central
issue in the processor development. In this work, we focus on formal verification
for the (functional) correctness of RISC-V processor designs in Chisel, that is,
to check whether the implementations of RISC-V instructions in Chisel conform
to their specifications.

The state-of-the-art verification techniques for Chisel (namely, the open-
source tool riscv-formal [39] and the commercial tools FormalISA [1] and One-
Spin [24]) first compile Chisel designs into low-level implementations in Ver-
ilog/SystemVerilog, then check their conformance to the RISC-V ISA specifi-
cations in the form Verilog/SystemVerilog reference models or SystemVerilog
assertions (SVA) via model-checking. Though available, such low-level repre-
sentation of RISC-V ISA specifications makes the development, maintenance,
diagnosis, and extension of the reference models or assertions challenging and
error-prone, hindering the flexibility of RISC-V ISA for designing highly cus-
tomizable processors. Thus, a succinct, modular, and parameterized reference
model, as well as an accompanied formal verification tool, is highly-required.

144 S. Shen et al.

Contribution. In this work, we propose the first end-to-end formal verification
approach for the (functional) correctness of RISC-V processor designs, fully at
the Chisel high-level1. Specifically, we make the following major contributions.

1. We develop a high-level, succinct, modular, and parameterized reference
model for RISC-V ISA specifications in Chisel as a single-clock-cycle RISC-V
processor generator, by utilizing the object-oriented and functional program-
ming constructs offered by Chisel (cf. Sect. 3). The reference model imple-
ments all the common unprivileged instructions and various features of priv-
ileged instructions, including control and status registers (CSR), exception
handling, and virtual memories. Our model not only strictly subsumes the
functionalities of, but also is an-order-of-magnitude more succinct than the
Verilog/SystemVerilog reference model in riscv-formal.

2. We propose an end-to-end formal verification approach for RISC-V processor
designs in Chisel by devising a novel queue-based synchronization mechanism
between the RISC-V processor DUT (design under test) and our reference
model, to deal with the non-fixed delays resulted from the memory accesses
as well as the additional challenges posed by the virtual memory in the DUT
(cf. Sect. 4). With our synchronization mechanism, the correctness verification
of DUT w.r.t. the RISC-V ISA specifications is reduced to the model-checking
problem, that can be solved by off-the-shelf model-checkers.

3. We implement our approach in a tool using the open-source SMT-based
model-checker Pono [20]. We validate the effectiveness and efficiency on riscv-
mini [15] and NutShell [23], two representative open-source RISC-V proces-
sor designs in Chisel (cf. Sect. 5). The results confirm the effectiveness of
our approach, discovered 7 real-world unknown ISA non-conformance bugs
(2 in riscv-mini and 5 in NutShell) and all the 10 manually injected bugs (5
bugs per DUT). Compared with the state-of-the-art open-source tool riscv-
formal [39]2, while our approach is comparable in terms of verification effi-
ciency, riscv-formal only discovered 2 of 7 real-world bugs. We also compare
with a recent symbolic-execution based tool [6,7], which is only able to dis-
cover 1 out of 7 bugs. Moreover, on this bug, our approach is significantly
faster than the symbolic-execution based tool (0.52 s vs. 58 min).

Related Work. Formal verification has been widely studied and adopted for
checking functional correctness of software and hardware designs [9]. Hereafter,
we only discuss formal verification studies on RISC-V and Chisel.

As aforementioned, the open-source tool riscv-formal and the commercial
tools FormalISA and OneSpin verify Chisel designs by first compiling them into
low-level Verilog/SystemVerilog and then checking their correctness using Ver-
ilog/SystemVerilog reference models or SVA. Instead, we develop a high-level,
modular, and parameterized reference model, that is a RISC-V processor design
1 In other words, it is the first work for the formal verification of RISC-V processor

designs in Chisel that do not go through low-level Verilog/SystemVerilog or SVA.
2 We do not compare with the two aforementioned commercial tools FormalISA [1]

and OneSpin [24]), as they are not publicly available.

Formal Verification of RISC-V Processor Chisel Designs 145

generator in Chisel. It is more comprehensive yet more succinct than the Ver-
ilog/SystemVerilog reference model in riscv-formal, thus more convenient for
maintenance, diagnosis, and extension of the reference model. We also propose
the first end-to-end formal verification approach for RISC-V processor Chisel
designs, which is more effective than riscv-formal with comparable verification
efficiency (cf. Sect. 5).

Formal verification of CHERI-RISC-V processor designs was studied using
SVA [12], where CHERI-RISC-V3 is an extension of RISC-V ISA with an alterna-
tive model to offer memory safety. To reduce the manual effort of ISA modeling,
a trace notation was proposed and used to model the RISC-V ISA [10], based on
which a complete set of SVA properties are generated for detecting functional
bugs in RISC-V processor designs.

KLEE, a dynamic symbolic-execution engine, has been utilized to analyze
RISC-V processor designs in SpinalHDL [6,7]. They compile SpinalHDL designs
into Verilog which in turn are compiled into C++. The RISC-V processor design
in C++ is synchronized with a RISC-V Instruction Set Simulator in C++ as
the reference model, on which dynamic symbolic-execution is applied to find
non-conformance bugs. Dynamic symbolic-execution often suffers from the path-
explosion problem when the DUT has many conditional branches, thus limited
in efficiency for a high coverage analysis. The experimental results show that
our approach is significantly more effective and efficient than this approach (cf.
Sect. 5).

Recently, BDD-based formal verification was leveraged to verify the correct-
ness of non-pipelined RISC-V processor designs with polynomial time and space
complexity [32]. While efficient, their approach and closed-source tool cannot
be applied to verify pipelined RISC-V processor designs such as riscv-mini and
NutShell, due to the lack of support for clocks.

Informal verification (i.e., testing and simulation) for the functional correct-
ness of RISC-V processor designs has been studies as well, e.g., [11,13,21]. There
is also a trend of adapting effective software testing techniques (e.g. concolic test-
ing and fuzzing) to the informal verification of hardware designs [8,14,19,36,38].
Nevertheless, they are orthogonal to this work.

Outline. Section 2 gives an overview of our end-to-end verification approach
for RISC-V processor designs in Chisel. Section 3 describes the design of our
reference model. Section 4 presents a queue-based synchronization mechanism
between the RISC-V processor DUT and the reference model. Section 5 reports
experimental results. We conclude this paper in Sect. 6.

The source code of our RISC-V ISA reference model and formal verification
tool is available at: https://github.com/iscas-tis/riscv-spec-core.

2 Overview

In this section, we give an overview of our approach (see Fig. 1), comprising the
following three key components.
3 CHERI is an abbreviation of “Capability Hardware Enhanced RISC Instructions”.

https://github.com/iscas-tis/riscv-spec-core

146 S. Shen et al.

Reference Model. At first, following closely the official two volumes of the
RISC-V ISA manual, we design a succinct and parameterized reference model for
RISC-V processor design generator in Chisel with high confidence of correctness,
where both the unprivileged and privileged instructions are covered.

Fig. 1. Overview of our approach

Synchronization. To verify whether a RISC-V CPU Chisel design conforms to
the RISC-V ISA specifications, the RISC-V CPU DUT is synchronized with the
reference model and the results of the instruction executions in the DUT and
the reference model are compared for equality checking. After synchronization,
a synchronized Chisel design is obtained.

Model-Checking. The synchronized Chisel design is transformed by the for-
mal engine in ChiselTest [16] to a transition system, which is then tackled by
the model-checkers e.g. Pono [20], where various model-checking algorithms e.g.
BMC [3], k-induction [28], and PDR [5], could be harnessed.

3 The RISC-V Reference Model in Chisel

In this section, we elaborate the design of our RISC-V reference model in Chisel.
In particular, we illustrate how to model privileged instructions in a natural
and succinct way by utilizing the object-oriented and functional programming
constructs of Chisel.

The architecture of our RISC-V reference model is shown in Fig. 2. Intuitively,
the RISC-V reference model can be seen as a modular, and parameterized RISC-
V processor design generator in Chisel that can produce customized single-clock-
cycle RISC-V processor variants.

As a result, it involves the common steps of decoding, executing, and register-
status updating (a.k.a. write-back) in a typical RISC-V processor design. The
step of register-status updating is responsible for updating the values of gen-
eral registers and Control and Status Registers (CSR) after the execution of an
instruction is finished. The reference model also involves several components for
modeling privileged instructions, including exception handling and the address
translation unit that translates the virtual addresses into physical addresses.
Equipped with these components, the RISC-V reference model is capable of sup-
porting the modeling of RISC-V 32/64 bit-widths Integer (I), Multiplication and

Formal Verification of RISC-V Processor Chisel Designs 147

Division (M), Compressed (C), and Control and Status Register (Zicsr) instruc-
tion sets, as well as the three privilege levels, namely, Machine (M), Supervisor
(S), and User (U), and finally the Sv39 virtual memory system.

Fig. 2. The RISC-V reference model in Chisel

3.1 Succinct, Modular, and Parameterized Design

One of the notable features of our RISC-V reference model is its succinct, mod-
ular, and parameterized design generator in Chisel, that is,

– the reference model comprises only around 3,000 lines of Chisel code,
– the reference model resembles the modular structure of the RISC-V instruc-

tion set manual,
– the parameters therein can be instantiated to produce customized RISC-V

processor designs with different bit-widths, and ISA extensions.

For a particular instantiation of the parameters, when the reference model is
compiled into FIRRTL (a hardware intermediate representation language for
Chisel) [18], only the ISA specifications that are related to this instantiation will
be compiled in the generated FIRRTL code while the others are dropped. This
design choice often reduces the sizes of the transition systems, thus alleviating
the state-explosion problem of model-checking. On the other hand, if the low-
level Verilog/SystemVerilog language is used to implement a RISC-V reference
model, then the code size would be much larger and it is not very convenient to
support different bit-widths or ISA extensions. For instance, in riscv-formal [39],
around 30,000 lines of Verilog/SystemVerilog code are used to model the RISC-
V ISA specifications, moreover, additional 2,551 lines of Python scripts are used
to configure the bit-widths and ISA extensions of the reference models.

148 S. Shen et al.

3.2 Modeling Privileged Instructions

The object-oriented and functional programming constructs of Chisel are uti-
lized to model the two mechanisms related to privileged instructions, namely,
exception handling and virtual-physical memory address translation.

Exception Handling. At first, thanks to Chisel’s high-level language features,
the enable bit in the exception vector can be turned on directly by calling the des-
ignated exception triggering functions, implemented in Chisel as well. Moreover,
Scala’s collection functions such as foldRight are very effective in implementing
the priority arbitration for exceptions.

Virtual-Physical Memory Address Translation. The virtual memory sys-
tem plays a vital role in modern operating systems, and Translation Lookaside
Buffer (TLB) is one of the critical components in a processor for fast translation
between virtual and physical memory addresses. In a typical processor design, the
TLB component is usually implemented as a state machine to access the memory
for multiple times. Nevertheless, our RISC-V reference model in Chisel only uses
combinational logic, which should be finished in one clock cycle. As a result, it
is necessary for the RISC-V reference model to have more copies of the mem-
ory read/write ports. In our reference model, we implement the virtual-physical
memory address translation component for Sv39, which is a three-level page
table virtual memory system. As a result, three additional page-read ports and
one additional page-write port are included for the address translation, besides
the conventional memory access interface for the load/store instructions. (See
Fig. 3 for the architecture of the address translation component).

Fig. 3. Architecture of the address translation component

Formal Verification of RISC-V Processor Chisel Designs 149

3.3 Validation of the Reference Model

Since the reference model is used as the specification in the formal verification of
the ISA conformance of RISC-V CPU Chisel designs, the correctness of the refer-
ence model itself should also be guaranteed. Nevertheless, the formal verification
of the correctness of the reference model is similar to the formal verification of
the temporal logic specifications in model-checking, which is in some sense a
dead-end. Therefore, we resort to the following two informal means to enhance
our confidence on the correctness of the reference model.

– As a design choice, we utilize the high-level features of Chisel to make the
reference model closely resembling the organization of the RISC-V ISA man-
ual in a succinct and modular way. This definitely reduces the chances of
introducing human-mistakes in the design of the reference model and eases
the manual inspection of its correctness.

– Since the reference model can be seen as a parameterized single-clock-cycle
RISC-V processor, we also use riscv-tests [25], the official RISC-V CPU test
suite, to thoroughly validate the correctness of the reference model.

4 Synchronization

To facilitate the formal verification of the ISA conformance of the RISC-V CPU
DUT with respect to the reference model, it is necessary to synchronize the
DUT with the reference model. However, such a synchronization is non-trivial
since there is a significant gap between the micro-architectures of the DUT and
the reference model. For instance, while the reference model is a (parameterized)
single-clock-cycle processor, the DUTs normally involve pipelines. To bridge this
gap, in the synchronization, we take the signals in the last stage of the pipeline
(usually the write-back stage) and check whether they are equal to those in the
reference model.

To this end, for many instructions (e.g. the integer computational instruc-
tions), the synchronization is not difficult since the number of clock cycles for
their executions in DUTs have a fixed (constant) upper bound. However, the
delays of load/store instructions can be non-fixed, since they involve memory
accesses. In the sequel, we show how to deal with the non-fixed delays of the
load/store instructions in DUTs during synchronization. Moreover, we also dis-
cuss how to tackle the additional challenges when virtual memory are used in
DUTs so that the executions of the load/store instructions involve the transla-
tion of virtual addresses into physical addresses.

4.1 Synchronization of Instructions with Non-fixed Delays

When the execution of an instruction involves memory accesses, the delay can
be non-fixed. For instance, some instructions may be implemented using state
machines so that the delays in their executions may be greater than those of the
other instructions.

150 S. Shen et al.

Let us use the load instructions in NutShell to illustrate the non-fixed delays.
In RISC-V ISA, there are four load instructions, namely, LD, LW, LB, and

LH. In contrast, NutShell [23], a 64-bit RISC-V processor, categorizes the load
instructions into partial reads and full reads. The LW, LH, and LB instructions are
partial reads that read 32, 16, and 8 bits respectively, while the LD instruction
is a full read, that reads 64 bits. The delay for transmitting the signal to the
write-back stage in the execution of a partial-read instruction is different from
that of a full-read instruction.

To deal with the non-fixed delays of instructions in DUTs, we propose to uti-
lize queues. When an instruction in the DUT is executed, some necessary mem-
ory access information (such as validity, address, data and width) is recorded in
a queue. When the execution of an instruction is complete (usually the write-
back stage in pipelines), the information can be retrieved from the queue and
compared with the signals in the reference model. Since Chisel provides an imple-
mentation of queues in its library, it is relatively easy to implement the synchro-
nization mechanism where queues are utilized to deal with non-fixed delays.

4.2 Synchronization of Instructions Involving Virtual Memory

The virtual memory poses additional challenges for the synchronization. As
shown in Fig. 3, three page-read ports and one page-write port are used in the
reference model to model the memory translations of load/store instructions. To
deal with the delays resulted from the virtual memory, it is necessary to intro-
duce five queues to store the memory access information of DUTs: one queue for
each of the three page-read ports, and two queues for the read/write physical
address involved in the load/store instructions (i.e., rpa and wpa respectively).

When a load/store instruction is executed in a DUT involving virtual mem-
ory, the corresponding memory access information is first extracted from the
DUT and added into the three TLB read queues, then the reference model uti-
lizes the information in the three TLB read queues to translate a virtual address
into a physical address, which is finally compared with the value retrieved from
the load/store queues that was added by the DUT to ensure that they are equal.

4.3 Equality Checking of the Execution Results

To verify that the implementation of an instruction in the DUT conforms to the
RISC-V ISA specification of the instruction, it is necessary to check that the
results after the execution of the instruction in the DUT and in the reference
model are equal. Table 1 shows the set of signals of the DUT that are involved in
the equality checking of the execution results in the formal verification. Usually,
the signals in the DUT should be preprocessed before the equality checking.

Formal Verification of RISC-V Processor Chisel Designs 151

Table 1. Set of signals to be checked for equality

Types of signals Fields to be checked

Instruction PC

General Regs All general regs (x0 - x31)

CSR Regs All implemented CSR regs

Exception Valid, No, PC, Inst

Memory Valid, Address, Data, Width

PageTable Valid, Address, Data, Width

5 Evaluation

In this section, we evaluate the effectiveness and efficiency of our approach on
two representative open-source RISC-V processor Chisel designs: riscv-mini and
NutShell. Moreover, we compare the performance of our approach against the
other two state-of-the-art approaches for formal verification of RISC-V processor
designs, that is, riscv-formal and the symbolic-execution based approach in [6,7].
Both tools have been used in formally verifying several RISC-V processor designs
and found real-world bugs [6,34].

5.1 Case Studies on Riscv-Mini and NutShell

We apply the approach proposed in this work to the formal verification of the
ISA conformance of riscv-mini [15] and NutShell [23] w.r.t. the RISC-V ISA
specifications.

– riscv-mini is a simple RISC-V processor with a 3-stage pipeline. It supports
RV32I and the machine-level ISA. It also contains simple instruction caches
(ICache) and data caches (DCache). It includes 3,499 lines of Chisel code in
total. (See Fig. 4a for its architecture.)

– NutShell is a single-issue in-order RISC-V processor with a 9-stage pipeline.
It supports the following instruction extensions: I, M, A, C, Zicsr, and Zifen-
cei. Moreover, it includes three privilege levels, namely, M, S, and U. It also
supports the Sv39 virtual memory system, and implements TLB to translate
virtual addresses to physical addresses. As a result, it is capable of running
Linux. It includes 8,859 lines of Chisel code in total. (See Fig. 4b for its archi-
tecture.) NutShell is configurable. For instance, it can be configured as a
32-bit processor (with a 5-stage pipeline).

RISC-V ISA Specification Conformance Checking. We use the assume
statements of Chisel to restrict the op-codes of RISC-V instructions during the
executions of the processors and the reference model. Then the formal verifi-
cation of DUT’s conformance to the RISC-V ISA specification is reduced to an

152 S. Shen et al.

Fig. 4. Architecture of the two processors

instance of the model-checking problem, which is then solved by the Pono model-
checker [20], a well-known efficient SMT-based open-source model-checker that
can be easily integrated into the ChiselTest formal engine. The model-checking
instances are in the BTOR2 format [22]. Each model-checking instance resulting
from riscv-mini contains 3,395 total state bits and 378 total input bits, and each
model-checking instance resulting from NutShell contains 71,581 total state bits
and 7,312 total input bits. We utilize the bounded model-checking (BMC) engine
of Pono to solve the model-checking problem4, where the max step bound is set
to 40. The model-checking experiments were run under Ubuntu 20.04LTS with
64 GiB RAM and 24 Intel(R) CoreTM i9-13980HX CPU @ 5.60 GHz processors.

We find 2 RISC-V ISA non-conformance bugs in riscv-mini and 5 RISC-V
ISA non-conformance bugs in NutShell. The 2 bugs found in riscv-mini have
been reported to the designers as GitHub issues5. The 5 bugs found in NutShell
have been confirmed by the designers.

Table 2 includes some statistics of the experiments related to the 7 bugs6,
where columns Step and Time show the number of steps and the execution
time respectively when the bug was found, column Assume shows the instruc-
tions that are enforced by the assume statements, and column Insts reports the
instruction represented by the counterexample when the bug was found, column
Hex gives the hexadecimal encoding of the instruction, and column VM shows
whether the virtual memory is enabled or not. The label R/N in the name of a
bug represents that it is a bug of riscv-mini/NutShell.

4 We also tried some other model-checking algorithms (e.g., PDR). It turns out that
the transition systems generated from riscv-mini and NutShell are too large for them
to finish in a reasonable amount of time (24 h).

5 Please refer to the issues 71 and 72 at https://github.com/ucb-bar/riscv-mini/issues.
6 The bugs N:E1 and N:E2 reveal that the values of some signals’ bit-widths in Nut-

Shell do not conform to the RISC-V ISA specification, although they can be seen as
the pragmatic choices made by designers.

https://github.com/ucb-bar/riscv-mini/issues

Formal Verification of RISC-V Processor Chisel Designs 153

We would like to remark that when the virtual memory is enabled in NutShell,
we set the value of the first 20 bits of the satp register7 to be h80000 and the
value of the mstatus register8 to be h000E0800. Among the 5 bugs found in
NutShell, the bugs N:E4 and N:E5 are correlated. When the bug N:E4 was
found, the number of steps in the BMC algorithm is 29 and the execution time
is 97 m31.34 s. Then we adapted the assume statement to enforce that PPN[1:0]
is zero9, thus bypassing the bug N:E4. Finally, we reran the model-checker Pono
and discovered the bug N:E5 after 67 m11.29 s.

Table 2. Bugs found in riscv-mini and NutShell

Bug Step Time Assume Insts Insts Hex VM

R:E1 4 0.52 s RV32I BLTU x29, x1, -2 0xFE1EEFE3 ✗

R:E2 5 2.58 s RV32I
SW x1, 38(x1)

SB x31, -1(x5)

0x0210A323

0xFFF28FA3
✗

N:E1 10 2.56 s RV32/64I LD x4, -377(x1) 0xE870B203 ✗

N:E2 29 47m27.66 s Load/Store SD x1, 1976(x19) 0x7A19BC23 ✓

N:E3 19 11m25.44 s

Zicsr

MRET, SRET

ECALL, EBREAK

SRET

SRET

0x10200073

0x10200073
✗

N:E4 29 97m31.34 s Load/Store SD x0,48(x22) 0x020B3823 ✓

N:E5 29 67m11.29 s Load/Store LD x0,384(x2) 0x18013003 ✓

In the sequel, we describe more details about the 2 bugs found in riscv-mini
and 5 bugs found in NutShell.

R:E1. Instruction-address-misaligned exceptions are missed for bran-
ch instructions: riscv-mini enforces the instruction address alignment only for
(unconditional) jump instructions (e.g., JAL), but not for (conditional) branch
instructions (e.g., BLTU). As a result, when the addresses are misaligned in branch
instructions, no exceptions will be triggered.

R:E2. Store address-misaligned exception does not flush the subse-
quent store instructions correctly: When the address in a store instruction
is misaligned and an exception is triggered, riscv-mini does not flush the subse-
quent store instructions correctly. For instance, if the instruction SW x1, 38(x1)
is followed by the instruction SB x31, -1(x5), then although the execution of
the first store instruction triggers an address-misaligned exception, the second
store instruction, which should be flushed and not be executed, will still be exe-
cuted partially in riscv-mini and a write request will be issued to the memory.
7 The satp register is a read/write register that controls the supervisor-mode address

translation and protection. It only exists when the supervisor mode is enabled.
8 The mstatus register is a read/write register that keeps track of and controls the

core’s current operating state.
9 PPN denotes the physical page number.

154 S. Shen et al.

As we shall see in Sect. 5.2, riscv-formal fails to detect this bug, indicating that
even on unprivileged instructions, riscv-formal can miss some bugs.

N:E1. Non-writable high bits of the mtval register: When an exception
occurs, the high bits of the mtval register (more precisely, mtval[63:39]) in
NutShell are not writable, which violates the RISC-V ISA specification.

N:E2. Invalid PPN[2] bits in Sv39 physical addresses: In RISC-V ISA
specification, the physical addresses in the Sv39 virtual memory system should
be 56 bits, while in NutShell, Sv39 physical addresses have only 32 bits.

N:E3. Missing privilege checking in the execution of xRET instruc-
tions: According to the RISC-V ISA specification, an xRET instruction (where
x = M, S) can only be executed in a privilege mode that is the same as or higher
than x. When the initial value of the mstatus register is set to be h00001800,
and two consecutive SRET instructions are executed, after the execution of the
first SRET instruction, the privilege mode is changed to U, as a result, the exe-
cution of the second SRET instruction should raise an exception. Nevertheless,
NutShell fails to do so.

N:E4. Missing super-page checking in virtual address translation:
According to Step 6 of the virtual address translation process in the RISC-
V ISA specification (see Sect. 4.3.2 of [31]), some lower PPN bits of the Sv39
page table entries (PTE) should be zeros during the page-table translation. For
instance, during the first translation (where level = 2), PPN[level-1:0] (i.e.
PPN[1] and PPN[0]) should be kept as zeros. A violation of this restriction
would raise a page-fault exception. Nevertheless, NutShell does not handle such
unaligned super-page exceptions.

N:E5. Missing some corner cases on X, W, R, V bits of PTE: To deter-
mine whether a leaf PTE has been found, we should do some checks according
to Steps 3 and 4 in the RISC-V ISA specification (Page 82, Volume 2).

Table 3. Truth table of X, W, R, V bits of Bug E5’s PTE Flag.

X W R V Spec NutShell

0/1 0/1 0/1 0 Page Fault Page Fault

0 1 0 1 Page Fault Page Fault

1 1 0 1 Page Fault None

1 0 0 1 Found Found

0/1 0/1 1 1 Found Found

0 0 0 1 Not Found Not Found

NutShell implements these checks by using nested conditional statements.
After converting the counterexample reported by the Pono model-checker to the
truth table (see Table 3), we can see that in the third case, according to the

Formal Verification of RISC-V Processor Chisel Designs 155

RISC-V specification, a page-fault exception should be raised, while NutShell
fails to do so.

A single corner case among 16 combinations of X, W, R, V bits is hard
to be discovered by simulation or testing, which shows that formal verification
is capable of discovering some deep bugs that might be elusive for informal
verification methods (e.g. simulation or testing).

5.2 Performance Comparison with the Other Approaches

As reported in Sect. 5, our approach is able to discover real-world unknown bugs
in the two open-source processor designs riscv-mini and NutShell. In the sequel,
we compare the performance of our approach against the other two approaches
of formal verification of RISC-V processor designs, that is, riscv-formal and the
symbolic-execution based approach in [6,7].

5.2.1 Comparison with Riscv-Formal
We first compare the bug-detection capability of our approach and riscv-formal,
then compare their scalability.

Comparison of the Bug-Detection Capability. We compare the detection
capability of our approach and riscv-formal by checking whether riscv-formal
can discover the 7 bugs found by our approach (see Table 2). It turns out that
it can only discover 2 out of 7 bugs.

– Among the 2 bugs found in riscv-mini by our approach, i.e. R:E1–E2, riscv-
formal fails to find R:E2, although it can find R:E1. It is because riscv-formal
checks the ISA conformance only when an instruction is committed, but the
flushed instruction in R:E2 is not committed, thus fails to detect. In con-
trast, our approach checks the conformance when memory read/write requests
occur, thus does not miss the bug R:E2.

– Among the 5 bugs found in NutShell by our approach, i.e. N:E1–E5, riscv-
formal cannot discover the four bugs related to virtual memories or privileged
instructions, that is, N:E2–E5, namely, it can only find the bug N:E1.

Furthermore, the RVFI interface on which riscv-formal relies on is much
heavier for the developers, compared to the interface in our approach, because
it requires much more information from the DUT than ours.

Comparison of the Scalability. Besides the bug-detection capability, we
would like to compare the scalability of our approach and riscv-formal on riscv-
mini and NutShell. Since riscv-mini supports only the RV32I instructions and
riscv-formal does not support the privileged instructions, we choose to ignore
the privileged instructions and focus on the RV32I instructions. For technical
convenience, we choose the 32-bit version of NutShell for the comparison. As a
result of this choice, in the comparison, we can use the same configuration in
our reference model for both riscv-mini and NutShell. Similarly, we can use the
same configuration in riscv-formal for both riscv-mini and NutShell.

156 S. Shen et al.

To facilitate the comparison, we manually inject into the two processor
designs the following five bugs for RV32I instructions.

– #1. Unsigned comparison for SLTI. The SLTI (Set Less Than Imme-
diate) instruction conducts a signed comparison between a register and an
immediate value. We inject a fault in riscv-mini by neglecting the sign and
apply an unsigned comparison.

– #2. SUB with the highest bit set to 0. We modify the implementation
of the SUB (SUBtraction) instruction in riscv-mini by setting the highest bit
of the result to 0.

– #3. BNE to BEQ. We modify the implementation of the BNE (Branch
Not Equal) instruction in riscv-mini to the BEQ (Branch Equal) instruction.

– #4. Incorrect signed comparison in BLTU. The BLTU instruction com-
pares two registers as unsigned integers. We manually introduced a bug by
modifying it to use signed comparison, causing incorrect branching for large
unsigned values.

– #5. ADDI with the lowest bit set to 0. We modify the implementation
of the ADDI instruction in riscv-mini by setting the lowest bit of the result
to 0.

Then we run our approach and riscv-formal to detect these bugs and compare
their performance. When attempting to find a non-conformance bug for a DUT,
we reduce the problem into the problem of checking multiple assertions against
the DUT. Then we create multiple model-checking problem instances for these
assertions, one instance for each assertion. Since the Pono model-checker is used
as the backend in our approach, we run multiple Pono processes on the 24 Intel
processors in parallel to solve these model-checking problem instances. On the
other hand, in riscv-formal, we run multiple SymbiYosys [33] processes on the
24 processors in parallel, since SymbiYosys is used therein to solve the model-
checking problem. Both our approach and riscv-formal will stop when any of
their processes finds a bug.

Note that we record the time when the first bug is reported. The experiment
results are reported in Table 4. From the results, we can see that the scalability
of our approach is better than that of riscv-formal (except the bug #2).

Table 4. Scalability comparison of our approach and riscv-formal

Bug riscv-mini NutShell

Our approach riscv-formal Our approach riscv-formal

Time[s] Step Time[s] Step Time[s] Step Time[s] Step

1 2.28 4 3.43 4 10.32 6 29.14 6

2 6.72 4 1.81 4 14.84 6 14.73 6

3 0.66 4 3.41 4 5.47 6 32.44 6

4 0.50 4 3.50 4 6.54 6 32.77 6

5 1.62 4 3.36 4 10.28 6 32.75 6

Avg. 2.36 4 3.10 4 9.49 6 28.37 6

Formal Verification of RISC-V Processor Chisel Designs 157

5.2.2 Comparison with Symbolic-Execution Based Approach
We compare the performance of our approach with the symbolic-execution
based approach in [6,7]. For readability, we recall the workflow of the symbolic-
execution based approach in the sequel.

– At first, the RISC-V processor design in the SpinalHDL (an open-source
high-level hardware description language similar to Chisel) is translated into
Verilog using SBT (a build tool for Scala projects).

– The Verilog code is translated into C++ using the tool Verilator.
– A Voter module is utilized to synchronise the C++ code corresponding to

a RISC-V processor with a C++ RISC-V ISS (Instruction Set Simulator),
where the RISC-V Formal Interface (RVFI) [27] is added to the RISC-V
processor to facilitate its connection to the Voter module.

– The C++ code is compiled into LLVM bytecode by Clang.
– Finally, the symbolic-execution engine KLEE is harnessed for verification.

In [6], a non-pipelined RISC-V processor called MicroRV32 was verified.
MicroRV32 supports RV32-IMC, but lacks Cache and TLB modules. It con-
sists of 3,193 lines of Verilog code and 7,497 lines of C++ code (after translating
Verilog to C++).

At first, we try to use the aforementioned symbolic-execution approach to
detect the RISC-V specification non-conformance bugs in riscv-mini and Nut-
Shell that were found by our approach (see Table 2).

We translate the NutShell and riscv-mini Chisel designs into SystemVerilog,
add the RVFI, and establish the connections to the Voter module, so that KLEE
can be utilized eventually to perform symbolic-execution. We set the time bound
to 86,400 s (or 24 h) for detecting these bugs. It turns out that the symbolic-
execution based approach discovers only one bug in Table 2, namely R: E1, within
the time 58m39 s (Recall that R:E1 can be discovered by our approach in 0.52 s).
Note that the C++ RISC-V ISS does support privileged instructions and the
poor performance of the symbolic-execution based approach is due to its poor
scalability. Compared with MicroRV32, riscv-mini has 2,349 lines of Verilog code
and 8,155 lines of C++ code, while NutShell has 18,039 lines of Verilog code and
19,513 lines of C++ code, after translating these Chisel designs into Verilog,
then to C++ with Verilator [29]. Note that although the code sizes of riscv-mini
and MicroRV32 are comparable, riscv-mini contains a 3-stage pipeline, while
MicroRV32 is a non-pipelined processor, therefore, these bugs are hard to detect
in riscv-mini by the symbolic-execution based approach.

With the idea that the manually injected bugs might be easier to detect, we
also manually inject into riscv-mini and NutShell the 5 bugs for RV32I instruc-
tions in Table 4. We also set the time bound to 86,400 s (or 24 h). It turns out that
the symbolic-execution based approach can discover only two bugs in riscv-mini,
namely the bugs #3 and #4, within the time 85m59 s and 1356m10 s, respec-
tively (Recall that the two bugs can be discovered by our approach in 0.66 s and
0.50 s, respectively). It fails to discover the other 3 bugs in riscv-mini and all the

158 S. Shen et al.

5 bugs in NutShell. These experimental results demonstrate that our approach
is significantly more effective and efficient than the symbolic-execution based
approach in the bug detection.

6 Conclusion and Future Work

In this work, we proposed the first end-to-end formal verification approach for
the functional correctness of RISC-V processor Chisel designs, that is, whether a
RISC-V processor Chisel design conforms to the RISC-V ISA specifications,
where both unprivileged and privileged instructions are taken into account. In
particular, we developed a succinct, modular, and parameterized RISC-V refer-
ence model in Chisel. We validated the effectiveness and efficiency of our app-
roach on two representative open-source RISC-V processor designs. Our app-
roach found 7 real-world unknown RISC-V specification non-conformance bugs
in riscv-mini and NutShell. The experimental results show that our approach
can discover more bugs than the state-of-the-art open-source formal verification
approaches, i.e. riscv-formal and symbolic-execution based approach. Further-
more, our approach is also more efficient than them. We should emphasize that
our reference model is of independent interest and might be used in some other
verification approaches, e.g. simulation, emulation, and fuzzing.

For the future work, we would like to validate our approach on more open-
source RISC-V Chisel designs. It is also interesting to combine the formal and
informal approaches in order to achieve a nice balance between precision and
efficiency in the verification.

Acknowledgments. This work is supported by the Strategic Priority Research Pro-
gram of the Chinese Academy of Sciences, Grant No. XDA0320101.

References

1. Axiomise: FormalISA: RISC-V formal verification (2023). https://www.axiomise.
com/riscv-formal-app/

2. Bachrach, J., et al.: Chisel: constructing hardware in a Scala embedded language.
In: DAC, pp. 1216–1225 (2012)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS, pp. 193–207 (1999)

4. RISC-V Boom: The Berkeley out-of-order RISC-V processor (2023). https://
github.com/riscv-boom/riscv-boom

5. Bradley, A.R.: SAT-based model checking without unrolling. In: VMCAI, pp. 70–
87 (2011)

6. Bruns, N., Herdt, V., Drechsler, R.: Processor verification using symbolic execu-
tion: a RISC-V case-study. In: DATE, pp. 1–6 (2023). https://doi.org/10.23919/
DATE56975.2023.10137202

7. Bruns, N., Herdt, V., Drechsler, R.: Symbolic execution framework for RISC-V pro-
cessor verification (2023). https://github.com/agra-uni-bremen/symex processor
verification

https://www.axiomise.com/riscv-formal-app/
https://www.axiomise.com/riscv-formal-app/
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://doi.org/10.23919/DATE56975.2023.10137202
https://doi.org/10.23919/DATE56975.2023.10137202
https://github.com/agra-uni-bremen/symex_processor_verification
https://github.com/agra-uni-bremen/symex_processor_verification

Formal Verification of RISC-V Processor Chisel Designs 159

8. Chen, C., et al.: HyPFuzz: formal-assisted processor fuzzing. In: USENIX Security,
pp. 1361–1378 (2023)

9. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

10. Devarajegowda, K., Kaja, E., Prebeck, S., Ecker, W.: ISA modeling with trace
notation for context free property generation. In: 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 619–624 (2021). https://doi.org/10.1109/
DAC18074.2021.9586264

11. Fine, S., Ziv, A.: Coverage directed test generation for functional verification using
Bayesian networks. In: DAC, pp. 286–291 (2003)

12. Gao, D., Melham, T.: End-to-end formal verification of a RISC-V processor
extended with capability pointers. In: FMCAD, pp. 24–33 (2021)

13. Haedicke, F., Le, H.M., Große, D., Drechsler, R.: Crave: an advanced constrained
random verification environment for systemc. In: SoC, pp. 1–7 (2012)

14. Kande, R., et al.: TheHuzz: instruction fuzzing of processors using Golden-
Reference models for finding Software-Exploitable vulnerabilities. In: USENIX
Security, pp. 3219–3236 (2022)

15. Kim, D.: RISCV-MINI, a simple RISC-V 3-stage pipeline written in chisel (2017).
https://github.com/ucb-bar/riscv-mini

16. Laeufer, K., Bachrach, J., Sen, K.: Open-source formal verification for Chisel. In:
WOSET (2021). https://woset-workshop.github.io/WOSET2021.html

17. Lee, Y., et al.: An agile approach to building RISC-V microprocessors. IEEE Micro
36, 1 (2016). https://doi.org/10.1109/MM.2016.11

18. Li, P.S., Izraelevitz, A.M., Bachrach, J.: Specification for the FIRRTL lan-
guage. Technical report. UCB/EECS-2016-9, EECS Department, University of Cal-
ifornia, Berkeley (2016). http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-9.html

19. Lyu, Y., Mishra, P.: Scalable concolic testing of RTL models. IEEE Trans. Comput.
70(7), 979–991 (2021). https://doi.org/10.1109/TC.2020.2997644

20. Mann, M., et al.: Pono: a flexible and extensible SMT-based model checker. In:
CAV, pp. 461–474 (2021)

21. Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verifi-
cation. AI Mag. 28(3), 13–13 (2007)

22. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, btormc and boolector 3.0. In:
CAV, pp. 587–595 (2018)

23. Nutshell RISC-V CPU (2019). https://github.com/OSCPU/NutShell
24. Onespin formal verification solutions - siemens eda (2024). https://eda.sw.siemens.

com/en-US/ic/questa/onespin-formal-verification/
25. RISCV-tests (2015). https://github.com/riscv-software-src/riscv-tests
26. Rocket chip RISC-V CPU generator (2023). https://github.com/chipsalliance/

rocket-chip
27. RISC-V formal interface (RVFI) (2020). https://github.com/SymbioticEDA/riscv-

formal/blob/master/docs/rvfi.md
28. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction

and a SAT-solver. In: FMCAD, pp. 127–144 (2000)
29. Verilator: Open-Source SystemVerilog simulator and lint system (2024). https://

github.com/verilator/
30. Waterman, A., Asanović, K.: The RISC-V Instruction Set Manual Volume I:

Unprivileged ISA Version 20191213 (2019)
31. Waterman, A., Asanović, K., Hauser, J.: The RISC-V Instruction Set Manual

Volume II: Privileged Architecture Version 20211203 (2021)

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/DAC18074.2021.9586264
https://doi.org/10.1109/DAC18074.2021.9586264
https://github.com/ucb-bar/riscv-mini
https://woset-workshop.github.io/WOSET2021.html
https://doi.org/10.1109/MM.2016.11
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html
https://doi.org/10.1109/TC.2020.2997644
https://github.com/OSCPU/NutShell
https://eda.sw.siemens.com/en-US/ic/questa/onespin-formal-verification/
https://eda.sw.siemens.com/en-US/ic/questa/onespin-formal-verification/
https://github.com/riscv-software-src/riscv-tests
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md
https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md
https://github.com/verilator/
https://github.com/verilator/

160 S. Shen et al.

32. Weingarten, L., Datta, K., Kole, A., Drechsler, R.: Complete and efficient verifica-
tion for a RISC-V processor using formal verification. In: 2024 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1–6 (2024). https://doi.
org/10.23919/DATE58400.2024.10546693

33. Wolf, C., et al.: Symbiyosys (2022). https://symbiyosys.readthedocs.io/
34. Wolf, C.: Formal Verification of RISC-V Cores with RISCV-formal (2018).

https://riscv.org/wp-content/uploads/2018/12/13.30-Humbenberger-Wolf-
Formal-Verification-of-RISC-V-processor-implementations.pdf

35. Xiangshan: An open-source high-performance RISC-V processor (2023). https://
github.com/OpenXiangShan/XiangShan

36. Xu, J., Liu, Y., He, S., Lin, H., Zhou, Y., Wang, C.: MorFuzz: fuzzing processor via
runtime instruction morphing enhanced synchronizable co-simulation. In: USENIX
Security, pp. 1307–1324 (2023)

37. Xu, Y., et al.: Towards developing high performance RISC-V processors using agile
methodology. In: MICRO, pp. 1178–1199 (2022)

38. Xu, et al.: Functional verification for agile processor development: a case for work-
flow integration. J. Comput. Sci. Technol. (2023)

39. YosysHQ: RISC-V Formal Verification Framework (2016). https://github.com/
YosysHQ/riscv-formal

https://doi.org/10.23919/DATE58400.2024.10546693
https://doi.org/10.23919/DATE58400.2024.10546693
https://symbiyosys.readthedocs.io/
https://riscv.org/wp-content/uploads/2018/12/13.30-Humbenberger-Wolf-Formal-Verification-of-RISC-V-processor-implementations.pdf
https://riscv.org/wp-content/uploads/2018/12/13.30-Humbenberger-Wolf-Formal-Verification-of-RISC-V-processor-implementations.pdf
https://github.com/OpenXiangShan/XiangShan
https://github.com/OpenXiangShan/XiangShan
https://github.com/YosysHQ/riscv-formal
https://github.com/YosysHQ/riscv-formal

	Formal Verification of RISC-V Processor Chisel Designs
	1 Introduction
	2 Overview
	3 The RISC-V Reference Model in Chisel
	3.1 Succinct, Modular, and Parameterized Design
	3.2 Modeling Privileged Instructions
	3.3 Validation of the Reference Model

	4 Synchronization
	4.1 Synchronization of Instructions with Non-fixed Delays
	4.2 Synchronization of Instructions Involving Virtual Memory
	4.3 Equality Checking of the Execution Results

	5 Evaluation
	5.1 Case Studies on Riscv-Mini and NutShell
	5.2 Performance Comparison with the Other Approaches

	6 Conclusion and Future Work
	References

