®

Check for
updates

ESAMPLER: Efficient Sampling
of Satisfying Assignments for Boolean
Formulas

Yongjie Xu', Fu Song'®), and Taolue Chen?

! ShanghaiTech University, Shanghai, China
songfu@shanghaitech.edu.cn
2 Birkbeck, University of London, London, UK

Abstract. Boolean satisfiability (SAT) has played a key role in diverse
areas spanning planning, inferencing, data mining, testing and optimiza-
tion. Apart from the classical problem of checking Boolean satisfiability,
generating random satisfying assignments has attracted significant the-
oretical and practical interests over the years. For practical applications,
a large number of satisfying assignments for a given Boolean formula are
needed, the generation of which turns out to be a hard problem in both
theory and practice. In this work, we propose a novel approach to derive
a large set of satisfying assignments from a given one in an efficient way.
Our approach is orthogonal to the previous techniques for generating sat-
isfying assignments and could be integrated into the existing SAT sam-
plers. We implement our approach as an open-source tool ESAMPLER and
conduct extensive experiments on real-world benchmarks. Experimental
results show that ESAMPLER performs better than three state-of-the-art
samplers on a large portion of the benchmarks, and is at least comparable
on the others, showcasing the efficacy of our approach.

Keywords: Boolean satisfiability + Constraint-based sampling + SAT
solving

1 Introduction

Boolean satisfiability, also known as SAT, concerns determining whether a given
Boolean formula is satisfiable. There have been strong theoretical and practical
interests in the SAT problem, which has played a key role in diverse areas span-
ning planning, inferencing, data mining, testing and optimization [1,6]. Apart
from the classical problem of checking Boolean satisfiability, generating random
satisfying assignments has attracted significant theoretical and practical interests

This work is supported by the National Natural Science Foundation of China (NSFC)
under Grants No. 62072309 and No. 61872340, an oversea grant from the State Key
Laboratory of Novel Software Technology, Nanjing University (KFKT2018A16), and
Birkbeck BEI School Project (ARTEFACT).

© Springer Nature Switzerland AG 2021

S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 279-298, 2021.
https://doi.org/10.1007/978-3-030-91265-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_15

280 Y. Xu et al.

over the years [3,4,18,29-32,39,40,43,45-47]. In several practical applications, a
large number of satisfying assignments for a given Boolean formula are needed.
For instance, simulation-based verification is a commonly adopted technique
to test hardware design. In this scenario, the simulated behavior is compared
with the expected behavior where any mismatch is flagged as an indication of a
bug [29,47]. It is a common practice to generate a large number of stimuli satisfy-
ing a given set of constraints in the form of Boolean formulas. These constraints
typically arise from various sources such as application-specific knowledge and
environmental requirements. Another application scenario is the generation of
adversarial examples for adversarial training [11,48]. Adversarial training is a
widely adopted technique to improve the robustness of neural networks against
adversarial attacks where a large number of adversarial inputs (e.g., images)
would be generated explicitly or implicitly. For instance, to adversarially train
a binarized neural network [19,44], adversarial images were generated by encod-
ing a binarized neural network as a Boolean formula based on which satisfying
assignments were sampled [24,28].

Sampling satisfying assignments for a given Boolean formula is, however,
challenging. It is well-known that the SAT problem is NP-complete [12]. In
recent years, we have seen a tremendous progress in SAT solving, supported by
techniques such as conflict-driven clause learning (CDCL [21,33,34]), yielding
powerful solvers such as CryptoMiniSAT [37].

However, generating a large number of satisfying assignments is still com-
putationally prohibitive and often infeasible in practical settings [14,23]. In this
work, we develop ESAMPLER, aiming for generating a large number of satisfying
assignments efficiently for a given Boolean formula. The general strategy is to use
an existing sampler to produce a seed sample as a satisfying assignment, from
which we derive more satisfying assignments by flipping some variables of the
given Boolean formula. Clearly, naively flipping variables may yield unsatisfying
assignments. To tackle this problem, we propose a novel derivation procedure
which explores the semantics of the Boolean formula under the seed sample, so
that the resulting assignments can be guaranteed to satisfy the Boolean formula.
The advantage of our approach lies in that it can be integrated with the existing
SAT samplers, so would enjoy considerably wider applicability.

To demonstrate our approach, we implement a sampler ESAMPLER based on
the recent sampler QQUICKSAMPLER [14]. We carry out extensive experiments
on the publicly available benchmarks from UNIGEN [10] which include Boolean
formulas from real-world testing and verification applications. Our experimental
results show that ESAMPLER performs considerably better than the three state-
of-the-art samplers QUICKSAMPLER, SEARCHTREESAMPLER (ST'S in short) [16]
and UNIGEN3 [36], indicating the effectiveness of our approach.

Our main contributions can be summarized as follows.

— We introduce a novel approach for deriving a large set of satisfying assign-
ments from a given seed. It is generic and could be integrated with the exist-
ing samplers. To the best of our knowledge, it is the first work to generate
satisfying assignments from a given seed.

ESAMPLER: Effcient SAT Sampling 281

— We implement an integrated sampler ESAMPLER. Our tool is available at
https://github.com/ESampler /Esampler.

— We conduct extensive experiments on hundreds of Boolean formulas from
real-world applications and ESAMPLER performs considerably better than
the three state-of-the-art samplers QUICKSAMPLER, ST'S and UNIGEN3.

Related Work. Various techniques have been proposed to tackle the prob-
lem of the satisfying assignment generation for Boolean formulas [26]. Binary
decision diagrams (BDD) and Markov Chain Monte Carlo (MCMC) algorithms
such as simulated annealing and Metropolis-Hastings are widely used for gen-
erating satisfying assignments [22,42,43]. These techniques usually provide the-
oretical guarantees of uniformity but are limited in scalability and efficiency.
Therefore, heuristics are proposed to speed up at the cost of theoretical guaran-
tees of uniformity [22,25,41]. Another class of satisfying assignment generation
techniques with theoretical guarantees of uniformity is based on hashing [5,8-
10,15,17,35,36]. Hashing-based techniques add hash functions (e.g., XOR of a
random subset of variables) to the Boolean formula in order to partition the
search space uniformly and then randomly pick a satisfying assignment from a
randomly chosen cell. These algorithms are also limited in scalability and effi-
ciency. In comparison, our approach primarily aims for efficiency, using fewer
solver calls to generate a large number of solutions. We also provide a parameter
to balance the uniformity of the generated samples and the efficiency of the pro-
cedure. Although we do not provide a theoretical guarantee of uniformity, the
experimental results demonstrate that our approach is able to produce solutions
nearly uniformly when the maximal number of solutions per seed is set in a
reasonable range.

Recently, SAT samplers aiming to quickly generate a large number of assign-
ments have been proposed. Both QUICKSAMPLER [14] and STS [16] share the
same goal as our work, namely, fast generation of a larger number of assign-
ments. QUICKSAMPLER uses the MaxSAT solver [7] to generate random sat-
isfying assignments, and then find more assignments that are close to satisfy-
ing assignments using the diffs of discovered satisfying assignments. However,
the assignments generated by QUICKSAMPLER may not satisfy the Boolean for-
mula, hence a follow-up checking is often needed. In contrast, our approach only
mutates proper variables by which the formula is guaranteed to be satisfied. STS
explores the tree of variable assignments in a breadth-first way with the MiniSat
SAT solver [38] as an oracle. During this procedure, it generates pseudosolutions,
which are partial assignments to the variables that can be completed to full sat-
isfying assignments. However, it has to invoke the SAT solver multiple times
during the breadth-first exploration. In contrast, ESAMPLER does not require
SAT solving when generating satisfying assignments from a seed.

Technically, our derivation procedure aims to generate a large set of satisfying
assignments from a given seed, and is orthogonal to the existing SAT samplers.
It can be integrated into the existing samplers to improve their efficiency as we
demonstrated using QUICKSAMPLER.

Sampling of satisfying assignments is also closely related to the model-
counting problem which counts the number of satisfying assignments for a

https://github.com/ESampler/Esampler

282 Y. Xu et al.

Boolean formula. Model-counting techniques have been used for sampling satisfy-
ing assignments (e.g., SPUR [2]) while satisfying assignment sampling techniques
can also be used for model-counting (e.g., STS [16] and APPROXCOUNT [42]).

Outline. The remainder of this paper is organized as follows. In Sect.2, we
briefly revisit related concepts of Boolean formulas. We present our derivation
procedure in Sect. 3, and show how to integrate it into existing SAT samplers in
Sect. 4. We report evaluation results in Sect. 5 and conclude this work in Sect. 6.

2 Preliminaries

We first recap some basic notions and notations which are used in this work.

Boolean Formulas. Let us fix a set of Boolean variables V. A literal [is either
a Boolean variable z € V or its negation —x. We denote by var(l) the variable
z used in the literal [, namely, var(x) = var(—x) = z.

A Boolean formula @ is a Boolean combination of literals using logical-AND
(A) and logical-OR (V) operators. As a convention, we assume that Boolean
formulas are given in the conjunctive normal form (CNF) /\;”:1 V72, 17, where
foreach 1 < j < m and 1 <i < ny, l{ is a literal, and \/?;1 l{ is referred to a
clause for each 1 < j < m. Given a Boolean formula ¢ and a literal [, let &,
denote the set of clauses that contain the literal . For each clause ¢ = \/}2, I7,
we assume that all literals in ¢ are distinct, and denote by |¢| the number n; of
literals in the clause ¢.

Assignments. An assignment is a function v: ¥V — {0,1} which assigns a
Boolean value to each Boolean variable x € V. Given a Boolean formula ¢ and an
assignment v, v is a satisfying assignment of @, denoted by v |= @, if the Boolean
formula @ evaluates to 1 under the assignment v. For each assignment v, variable
z € V and value ¢ € {0,1}, we denote by v[z +—] the assignment that agrees
with v except for the variable z, i.e., for each variable y € V, v[z — i](y) = v(y)
if y # x, v[x — i](y) = i otherwise.

Satisfiability and Maximum Satisfiability. Given a Boolean formula @, the
satisfiability problem (SAT) is to determine whether a satisfying assignment of
@ exists or not. If @ is satisfied, then a solution is produced as a witness. It is
well-known that the SAT problem is NP-complete [12].

Given a pair of Boolean formulas (@, %), the maximum satisfiability problem
(MaxSAT) is to find a satisfying assignment that satisfies the Boolean formula
@ and meanwhile maximizes the number of satisfied clauses in ¥. The clauses
in @ are usually called hard constraints, while the clauses in ¥ are called soft
constraints. It is easy to see that the MaxSAT problem is at least NP-hard and
can be solved by the state-of-the-art solvers such as Z3 [7].

In this work, by solvers we mean tools that are able to produce one satisfying
assignment of the (Max)SAT problem whilst by samplers we mean those that
are able to generate more than one satisfying assignments.

ESAMPLER: Effcient SAT Sampling 283

Independent Support. Given a Boolean formula @, an independent support
Supp of @ [10], is a set of variables such that for each pair of satisfying assign-
ments (v,v") of @, if v(xz) = v'(z) holds for all variables € Supp, then
v(y) = v'(y) holds for all variables y € V\Supp. Intuitively, the truth values of
the independent support Supp; uniquely determine the truth values of the other
variables. In other words, flipping the truth value of any variable y € V\Supp in
the satisfying assignment v only will make the resulting assignment v[y — —w(y)]
fail to satisfy &.

It is easy to see that any superset of an independent support of @ is also an
independent support. There are tools, such as MIS and SMIS [20], that are able
to compute minimal and minimum independent supports for Boolean formulas,
where minimal means removing any variable from the independent support X
will lead to a non-independent support, and minimum means there does not
exist any independent support whose size is smaller. Remark that the problem
of deciding whether a set of variables is a minimal independent support of a
Boolean formula ¢ is DP-complete, where DP := {A — B | A, B € NP}.

3 Derivation Procedure

In this section, we first present a motivating example which exemplifies the
key insight behind our approach for efficiently generating a large number of
satisfying assignments. We then provide a derivation procedure which is able
to derive more satisfying assignments from a seed by flipping the truth values
of properly chosen variables without invoking computationally expensive SAT
solving. The derivation procedure is the basis for efficiently generating a large
number of satisfying assignments, and can be integrated into other samplers.

3.1 Motivating Example

To exemplify the key insight behind our approach, let us consider the following
Boolean formula

S.=(-aVvVbVe)A(aV-cV-d)A(=bVe)A(bVd).

Suppose we have already obtained one satisfying assignment v (called seed) of
@, with v(a) = v(b) = v(c) = v(d) = 1. We can observe that the clause ~aVbV e
(resp. bV d) contains two literals b and ¢ (resp. b and d) whose values are 1
under the assignment v. Moreover, the common literal b does not appear in
other clauses, namely, a V -¢V —d and —b V c. By flipping the value v(b) of the
variable b in the assignment v, we can obtain a new assignment v[b — —w(b)],
which is also a satisfying assignment of ..

However, by flipping the value v(c) of the variable ¢ in the assignment v,
the new assignment v[c — —w(c)] is not a satisfying assignment of ®.. This is
because the clause —b V ¢ contains only one literal ¢ whose value is 1 under the
assignment v. After flipping the value v(c) of the variable ¢ in the assignment v,
the clause (=bV ¢) is no more satisfied.

284 Y. Xu et al.

Algorithm 1. Deriving satisfying assignments from a seed
1: procedure DERIVATION(®, v, MaxNum, Supp)
2: Derived = {v};

3: Queue = [v];

4: while Queue # () A [Derived| < MaxNum do

5: v = Queue.DEQUEUE();

6: L ={z €5Supp |v(z) =1} U{—z | v(z) =0Ax € Supp};
7 for alll € L do

8: if for each /[, l; € &, there exists 1 <i <m. (I #1; Al; € L) then
9: x = var(l);

10: v = vz — —w()];

11: if v’ ¢ Derived then

12: Derived = Derived U {v'};

13: Queue. ENQUEUE(v');

14: end if

15: end if

16: end for

17: end while

18: return Derived;

19: end procedure

This simple observation suggests that, for a seed v, we may identify proper
variables (such as b but not ¢ in the above example) so that when the value of one
such variable is flipped it is still a satisfying assignment. Furthermore, the new
satisfying assignments can be used as seeds to derive more satisfying assignments.
This often allows generation of a larger number of satisfying assignments without
invoking computationally expensive SAT solving.

3.2 Derivation Algorithm

In this subsection, we present a derivation procedure for deriving new satisfying
assignments from a given seed. Given a Boolean formula @, a seed v and an inde-
pendent support Supp of @, and the maximal number MaxNum of expected satis-
fying assignments, the procedure DERIVATION in Algorithm 1 iteratively derives
new satisfying assignments from the seed v until no new satisfying assignment
can be found or the number of generated satisfying assignments hits the thresh-
old MaxNum. It returns the set of generated satisfying assignments including the
original seed v.

To start, Algorithm 1 initializes the set Derived for recording all the gen-
erated satisfying assignments (Line 2) and the queue Queue for storing the
seeds (Line 3). It then repeats the following procedure until no new satisfying
assignments can be found or the number of the generated satisfying assignments
exceeds the threshold MaxNum (While-loop).

For each seed v in Queue (Line 5), it first identifies all the literals [whose
value is 1 under the assignment v(Line 6). After that, for each literal [€ L
whose variable var(l) € Supp (Line 7), it checks, for each clause /[~ ;1j that

ESAMPLER: Effcient SAT Sampling 285

contains the literal I (i.e., \/;Z;l; € &), whether \/[” l; contains a distinct
literal I; whose value is also 1, i.e., I; € L (Line 8). If this is the case, we can
deduce that the assignment v[z — —w(x)] obtained from the assignment v by
flipping the variable = var(l) is also a satisfying assignement of @. Therefore,
we extract the variable z from the literal [(Line 9) and construct the assignment
v = v[x — —w(x)] (Line 10). If the assignment v’ has not been generated before,
it is inserted to Derived and Queue (Lines 12 and 13).

One may notice that only variables in Supp are considered for flipping
(Line 7). In general, we can take all the variables into account for flipping.
However, as mentioned before (cf. Sect. 2), flipping variables outside of Supp will
definitely lead to unsatisfying assignments. Therefore, it suffices to consider vari-
ables from Supp for flipping. Due to this, the values of each variable outside of
Supp are the same in all the generated satisfying assignments from a given seed.

We remark that the derivation procedure DERIVATION could alternatively
be presented as a recursive procedure which invokes itself when a new satisfying
assignment is generated, or equivalently, use a stack rather than a queue to store
the generated seeds. Intuitively, using the queue Queue to store the seeds, our
algorithm works in a breadth-first fashion, while the other two ways would follow
a depth-first fashion. We adopt the current way because it is more efficient than
the other two.

Theorem 1. Given a Boolean formula @, a seed v and an independent support
Supp of @, the set Derived returned by Algorithm 1 contains only satisfying
assignments of ®. Moreover, these assignments agree on the variables outside of

Supp.

Proof. We show that the set Derived returned by Algorithm 1 contains only
satisfying assignments of @ by applying induction on the sequence vgvy -+ - of
the assignments added into Derived. The base case is trivial as the seed vy
satisfies the Boolean formula @. We prove the inductive step below.

Suppose vg, v1 - - - v _1 have been added into the set Derived and the induc-
tive step adds the assignment v, into the set Derived. Then, v, must be added
due to one v of the previously added satisfying assignments v, v1 - - - v5_1. There
necessarily exists a literal [such that z = var(l) and vy = v[z — —v(z)].

To show that v satisfies @, it is sufficient to prove that v, satisfies all the
clauses of . Let us consider a clause \/Zij l; of &,

- If \/:1 y l; does not contain the literal [, then by applying induction hypothesis,
v satisfies the Boolean formula @ and hence v satisfies the clause \/;7;] l;.
Since vy = v[z — —w(z)] and « = var(l), the truth of the clause \/;_;I; does
not change when the value of x in v is flipped. Therefore, we get that the
assignment vy, satisfies the clause \/;” ; ;.

- If \/:11 l; contains the literal [, then there exists another literal I; €
{li,++ I} such that I; #1land l; € L = {z | v(z) = 1} U {—-z | v(z) = 0}.
From l; € L ={z |v(z) = 1} U{—z | v(z) = 0}, we deduce that the literal ;,
hence the clause \/]~, l;, holds under the assignment vy.

286 Y. Xu et al.
Do (maVbVe)A (aV-oeV—d)A(=bVe) A (bVd)

vp: (OVIVI)A(@AV OV 0A(0VI)A(IVI)
flip b and d respectively |}
va: (OVOVI)A(AV OV 0O)A(LVI)A(OVI
vs: (OVIVI)A(IV OV 1)A(0VI1) A(
flip a §
ve: (LVIVI)AOV OV 1)A(0VI)A(1VO)

Fig. 1. Derivation steps of the motivating example

Example 1. Recall the motivating example &.. Suppose the input seed is v; with
v1(a) = v1(b) = v1(c) = v1(d) = 1 and the independent support Supp = {a, b, d}.
The derivation steps are shown in Fig. 1. At the beginning of the first iteration
of the while-loop, v = v; and L = {a,b,c,d}.

1. Suppose the variable a is chosen for flipping (Line 7), the clause a V —¢V —d
does not have any literals other than a that occur in L, then Algorithm 1 will
not flip the variable a.

2. Next, the variable b is chosen for flipping (Line 7), both clauses —a VbV ¢ and
bV d contain literals ¢ and d that occur in L, then Algorithm 1 will flip the
variable b (Line 9) and produce a new satisfying assignment v = v1[b — 0]
(Line 10).

3. Finally, the variable d is chosen for flipping (Line 7), the clause bV d contains
literal b that occurs in L, then Algorithm 1 will flip the variable d (Line 9)
and produce a new satisfying assignment vz = v1[d — 0] (Line 10).

At the end of the first iteration of the while-loop, Derived = {v,vs,v3} and
Queue = [vq, v3]. After entering the second iteration of the while-loop, v = va,
Queue (resp. L) becomes [v3] (resp. {a,b,c,d}). By applying similar steps as
above, the satisfying assignment vs is regenerated but will not be inserted to
Derived or Queue.

At the end of the second iteration of the while-loop, Derived = {v1,v9,v3}
and Queue = [v3]. After entering the third iteration of the while-loop, v =
v3, Queue (resp. L) becomes () (resp. {a,b,c,—d}). By applying similar steps
as above, Algorithm 1 will flip the variable a and produce a new satisfying
assignment vy = vs[a — 0]. In the end, no more new satisfying assignments can
be generated and Algorithm 1 returns the set {vy, va, v3,v4}. a

4 ESAMPLER

In this section, we show that our derivation procedure is of generic nature in
the sense that it can be integrated with other samplers. The basic idea is to
generate seeds by invoking an existing sampler as an iterator, which returns a
unique satisfying assignment each time. For each seed, we derive more satisfying

ESAMPLER: Effcient SAT Sampling 287

Algorithm 2. Integrated our derivation procedure into an existing sampler

1: procedure INTEGRATEDSAMPLER (Sampler, ¢, T, MaxPerSeed, Supp, RT, DT)
2: Solutions = {);

3: Derivable = false;
4: Round = 0;
5: Iterator = Sampler(®, Supp);
6: repeat
7 v = Iterator.next();
8: if v ==0Null Vv € Solutions then
9: break;
10: end if
11: if Derivable == true V Round<RT then
12: Derived = DERIVATION(®, MaxPerSeed, v, Supp);
13: Solutions = Solutions UDerived;
14: if |Derived| > DT then
15: Derivable = true;
16: else
17: Round = Round + 1;
18: end if
19: else
20: Solutions = Solutions U {v};
21: end if
22: until T is satisfied
23: return Solutions;

24: end procedure

assignments by invoking our derivation procedure. However, our derivation pro-
cedure may not be effective on some Boolean formulas. Therefore, we propose
a heuristic to determine whether our derivation procedure is able to derive a
large number of satisfying assignments or not. If it can derive a large number
of satisfying assignments, we apply the derivation procedure for each satisfying
assignment generated by the sampler, otherwise we disable it.

Our idea is formalized as the procedure INTEGRATEDSAMPLER in Algo-
rithm 2, which takes, as input, an off-the-shelf sampler Sampler, a Boolean
formula @, a threshold T as the termination condition, the maximum number
MaxPerSeed of satisfying assignments per seed, an independent support Supp
of the Boolean formula @, two thresholds RT and DT to determine whether our
derivation procedure is able to derive a large number of satisfying assignments,
and returns a set Solutions of satisfying assignments of the formula @.

The procedure INTEGRATEDSAMPLER first initializes the set Solutions, the
Boolean flag Derivable, the counter Round and the iterator Iterator of the
sampler using the independent support Supp and Boolean formula @ (Lines 2-5),
where the Boolean flag Derivable and counter Round are used to determine if our
derivation procedure is able to derive a large number of satisfying assignments.
Then, it repeats the following procedure until the threshold T is hit.

288 Y. Xu et al.

During each iteration, INTEGRATEDSAMPLER first invokes the iterator to get
a satisfying assignment v, where v is Null if @ is unsatisfiable or the iterator can-
not find new satisfying assignments. If v is NULL or already exists in Solutions,
it breaks the loop (Line 9). Otherwise it checks if the Boolean flag Derivable is
true or the number Round of iterations is less than the threshold RT.

— If neither holds, the derivation procedure is considered to be not able to derive
a large number of satisfying assignments and will be skipped;

— Otherwise, the derivation procedure is invoked to generate more satisfying
assignments which are added to the set Solutions (Lines 12-13). If the num-
ber of satisfying assignments generated by the derivation procedure exceeds
the threshold DT, we consider that the derivation procedure is able to derive a
large number of satisfying assignments and set the Boolean flag Derivable to
true (Line 15). Otherwise, we increase the counter Round by one. In general,
we probe the effectiveness of the derivation procedure by checking the number
of satisfying assignments generated by the derivation procedure in the first
RT iterations. In our experiments, we found few rounds are sufficient to detect
for each benchmark whether a large number of satisfying assignments can be
derived from a seed. Therefore, we set RT = 3 and DT = 16.

By Theorem 1, we obtain that

Theorem 2. The set Solutions returned by Algorithm 2 contains only satisfy-
ing assignments of ®.

5 Implementation and Evaluation

We implement Algorithms 1 and 2 as an open-source tool ESAMPLER in C++,
with QUICKSAMPLER as the underlying seed generator. QUICKSAMPLER takes
a Boolean formula and its independent support as inputs, and outputs a set
of assignments. However, as mentioned above, assignments produced by QUICK-
SAMPLER may be duplicated or not satisfy the formula. As we focus on satisfying
assignments of each Boolean formula in this work, we modify it so that dupli-
cated and unsatisfying assignments are omitted.

ESAMPLER takes a Boolean formula in the DIMACS [13] format and other
required options as inputs, and outputs a set of satisfying assignments for the
given Boolean formula. To reduce the memory usage of storing the satisfying
assignments, we only store and output the satisfying assignments for the vari-
ables in the given independent support. Indeed, the truth values of the inde-
pendent support determine those of the other variables, thereby the satisfying
assignments can be easily completed.

We compare ESAMPLER with three state-of-the-art tools QUICKSAMPLER,
STS and UNIGEN3 [36]. As done by [14], for a fair comparison, we modify STS
so that the additional independent support information can be used by STS.

Benchmarks. To evaluate the performance, we conducted extensive experi-
ments. Industrial testing and verification instances are typically proprietary and

ESAMPLER: Effcient SAT Sampling 289

10 XX x X
,
X4
.
,
10° i
,
.
,
.
,
104 ¥
X
.
x
X,
%
X
,
,
.
.
’ x
x

102 103 10* 10° 108
Q¢ (ms)

Fig. 2. ESAMPLER vs. QUICKSAMPLER

unavailable for published research. Therefore, we conducted experiments on the
publicly available benchmarks from UNIGEN [10], which consist of 370 Boolean
formulas in the DIMACS format and the independent supports thereof. Indeed,
the independent supports of most Boolean formulas could be computed using
MIS [20] in few seconds. These benchmarks come from four classes of problem
instances:

1. ISCASS89: constraints arising from ISCAS89 circuits with parity conditions
on randomly chosen subsets of outputs and next-state variables;

2. SMTLib: bit-blasted versions of SMTLib benchmarks;

3. ProgSyn: constraints arising from automated program synthesis; and

4. BMC: constraints arising in bounded model checking of circuits.

Note that the accompanied independent supports of these benchmarks may con-
tain variables that are not involved in the corresponding Boolean formulas; such
variables are removed from the independent supports in our experiments. We
remark that our approach also works without the given independent supports,
in which case the independent support of a Boolean formula contains all the
involved variables. Since it does not make any sense to compute solutions for
unsatisfiable Boolean formulas or the satisfiability cannot be solved, we checked
the satisfiability of all these Boolean formulas with a timeout of one hour per
Boolean formula using Z3 [27]. There are two unsatisfiable formulas (79.sk_4_40
and 36.sk_3.77), and four unsolvable formulas (logcount.sk_16_86, log2.sk_72_391,
xpose.sk_6_134, and listReverse.sk_11.43). These formulas are not considered
here, leaving 364 Boolean formulas.

290 Y. Xu et al.

Table 1. Comparison of QUICKSAMPLER and ESAMPLER

Benchmark #Vars |#Cls |Q¢(ks)|Qn Qpt(ms) Et(ks) En Egn Ept(ms) %
s27_new_15_7 17 43 0.00 48 1.39 0.00 48 42 0.54 2.56
blasted-case.54 [203 725 0.20 691,127 |0.30 0.20 664,548 0 0.30 0.99
20.sk-1.51 15,475|60,994|3.94 491,074 |8.02 1.67 1,520,152|~1,520k|1.10 7.31
s$35932_7_4 17,849 |44,425|4.22 245,506 |17.17 0.63 1,270,247 |~1,270k|0.50 34

blasted_case.126/302 1,129 |0.34 1,007,411/0.34 0.34 1,022,991 |0 0.33 1.03
blasted_case.40 |245 650 0.41 1,149,017/0.35 0.41 1,149,017 |0 0.36 0.99
s349_3_2 198 469 0.24 1,008,386/0.24 0.07 1,142,757 |~1,088k|0.06 3.81
56.sk_6-38 4,842 |17,828|1.97 1,004,037|1.96 1.18 1,093,080 |~1,092k|1.08 1.81
blasted-case.107|618 1,661 |0.82 1,149,017|0.72 0.84 1,149,017 |0 0.73 0.98
s832a_15_7 693 2,017 |0.53 1,001,732/0.53 0.52 1,000,093 |4 0.52 1.01
s420_new_7_4 312 770 0.35 1,117,085/0.31 0.08 1,048,576 |~1,043k 0.07 4.18
blasted_case.124|133 386 0.23 1,039,563|0.22 0.22 1,008,715 |0 0.22 1.02
35932157 17,918 |44,709|4.29 145,499 |29.46 1.34 1,270,247 |~1,270k|1.06 27

blasted-_case.207|824 2,128 [1.02 1,149,017/0.89 0.98 1,149,017 |0 0.86 1.04
blasted-case.120|284 851 0.41 1,113,780|0.37 0.40 1,044,731 |0 0.38 0.97
63.sk_3_64 7,242 |24,379|4.04 917,681 |4.41 0.30 1,200,120 |~1,200k|0.25 17

s420.7_4 312 770 0.32 1,058,100{0.31 0.10 1,366,784 |~1,363k 0.07 4.14

Experiment Setup. In our experiments, the maximal number MaxPerSeed
of satisfying assignments per seed is 10,000 and the maximal number T of
satisfying assignments to compute is 1,000,000, unless the recent 10 assign-
ments,/pseudosolutions already exist. As aforementioned, we set RT = 3 and
DT = 16 for ESAMPLER. For STS and QUICKSAMPLER, we use their default
parameter settings. All the experiments were conducted on Intel Xeon E5-2620
v4 2.10 GHz CPU with 256 RAM GB and the one-hour timeout.

5.1 Comparison with QUICKSAMPLER

Figure 2 shows the scatter plot comparing the average execution time per satis-
fying assignment between ESAMPLER and QQUICKSAMPLER on all the 364 formu-
las. Timeout occurred along the top or right border; the red color indicates that
Derivable is set true by Algorithm 2, namely, it determines that our deriva-
tion procedure is able to derive a large number of satisfying assignments. Points
below (resp. above) the diagonal line indicate that ESAMPLER performs better
(resp. worse) than QUICKSAMPLER.

Table 1 reports the performance of QUICKSAMPLER and ESAMPLER for a
representative subset of the benchmarks. Columns benchmark, #Vars and #Cls
respectively show the name, numbers of variables and clauses in each Boolean
formula. Columns Q; and E; (resp. Q¢ and Ej;) give the total execution time in
thousand seconds (ks) (resp. execution time per satisfying assignment in millisec-
onds (ms)) of QUICKSAMPLER and ESAMPLER, respectively. Columns @Q,, and
E,, show the total numbers of satisfying assignments generated by QUICKSAM-
PLER and ESAMPLER, respectively. Column FEg, gives the numbers of satisfying
assignments generated by our derivation procedure. The last column provides

ESAMPLER: Effcient SAT Sampling 291

109 XX X XK = X
% .
,
4
10° 0
4
,
L’
104

KX X x

T

10* 10> 106

Fig. 3. ESAMPLER vs. STS

the ratio of execution time per satisfying assignment between QUICKSAMPLER
and ESAMPLER, depicting the speedup of ESAMPLER. We can observe when our
derivation procedure works, it can produce more satisfying assignments (e.g.,
20.sk_1.51 and $35932_7_4) than QQUICKSAMPLER in the same time budget, while
when it does not work well, it often does not produce any satisfying assignments
(e.g., blasted_case.54 and blasted_case.40). Note that, since QUICKSAMPLER is
a randomized approach, QUICKSAMPLER and ESAMPLER may produce different
satisfying assignments when our derivation procedure does not work, although
ESAMPLER is built on QUICKSAMPLER.

Summary. ESAMPLER and QUICKSAMPLER respectively failed on 11 and 7
benchmarks due to the failure of MaxSAT solving. The difference between the
numbers of the failed benchmarks indicates that the soft constraints generated
randomly slightly affect MaxSAT solving. When ESAMPLER determined that
the derivation procedure can generate a large number of satisfying assignments,
ESAMPLER performed better than QUICKSAMPLER on almost all the bench-
marks. While ESAMPLER determined that our derivation procedure was not able
to generate a large number of satisfying assignments, ESAMPLER was compara-
ble to QUICKSAMPLER. Specifically, ESAMPLER was faster than QUICKSAMPLER
on 227 benchmarks. It was 1.66x faster on average and more than 5x faster on
41 benchmarks, while is 1.2 times slower on 16 benchmarks.

292 Y. Xu et al.

Table 2. Comparison of STS and ESAMPLER

Benchmark #Vars |#Cls |S¢(ks)|Sn Spt(ms)|E¢(ks)|En Egn Ept(ms) E—Zi
s27 new_15_7 17 43 0.00 48 0.85 0.00 48 42 0.54 1.57
blasted_case.54 |203 725 1.45 961,782 |1.51 0.20 664,548 0 0.30 5.06
20.sk-1.51 15,475|60,994|3.60 151,948 |23.69 1.67 1,520, 152|~1,520k|1.10 21
835932.7_4 17,849 |44,425|3.49 800 4,361 0.63 1,270,247 |~1,270k|0.50 8,757
blasted_case.126|302 1,129 |0.92 1,000,006(0.92 0.34 1,022,991 |0 0.33 2.78
blasted_case.40 (245 650 1.53 1,000,000(1.53 0.41 1,149,017 |0 0.36 4.30
8349.3-2 198 469 0.31 1,000,028|0.31 0.07 1,142,757 |~1,088k|0.06 4.94
56.sk_6_38 4,842 17,828(1.99 1,000,048(1.99 1.18 1,093,080 |~1,092k|1.08 1.84
blasted_case.107|618 1,661 |3.60 558,950 |6.44 0.84 1,149,017 |0 0.73 8.82
s832a_15_7 693 2,017 |1.55 |1,000,018|1.55 0.52 |1,000,093 |4 0.52 2.97
5420_new_7_4 312 770 0.72 1,000,001/0.72 0.08 1,048,576 |~1,043k|0.07 9.68
blasted_case.124|133 386 0.32 1,000,013|0.32 0.22 1,008,715 |0 0.22 1.47
835932.15.7 17,918 |44,709|3.50 800 4,380 1.34 1,270,247 |~1,270k|1.06 4,140
blasted_case.207|824 2,128 |3.60 276,250 [13.03 0.98 1,149,017 |0 0.86 15
blasted_case.120|284 851 1.59 1,000,000(1.59 0.40 1,044,731 |0 0.38 4.13
63.sk_3_64 7,242 |24,379(3.60 |148,050 |24.31 0.30 1,200,120 |~1,200k|0.25 97
s420.7_4 312 770 0.74 1,000,038/0.74 0.10 1,366,784 |~1,363k|0.07 9.93

5.2 Comparison with STS

Figure 3 shows the scatter plot comparing the average execution time per satis-
fying assignment between ESAMPLER and STS on all the 364 formulas. Recall
that timeout occurred along the top or right border, the red color indicates that
Derivable is set true by Algorithm 2, and points below the diagonal line indicate
that ESAMPLER performs better than QUICKSAMPLER, and vice versa.

Table 2 reports the performance of STS and ESAMPLER for the same rep-
resentative subset of the benchmarks. Column S; (resp. Sp:) gives the total
execution time in thousand seconds (ks) (resp. execution time per satisfying
assignment in milliseconds (ms)) of STS. Column S,, shows the total number
of satisfying assignments generated by STS for each Boolean formula. The last
column provides the ratio of execution time per satisfying assignment between
STS and ESAMPLER, depicting the speedup of ESAMPLER.

Summary. STS failed on 1 benchmark because the underlying SAT solver Min-
isat failed to solve the Boolean formula, while ESAMPLER failed on 11 bench-
marks. In general, ESAMPLER performed better than ST'S on most benchmarks.
It was faster on 316 benchmarks (5.47x faster on average and more than 10x
faster on 93 benchmarks), while was 1.2 times slower on only 45 benchmarks.

ESAMPLER: Effcient SAT Sampling 293

10¥% x X

JOVEC XX RO XXX

102 10! 10 10t 102 10° 104 105 10¢
Fig. 4. ESAMPLER vs. UNIGEN3

5.3 Comparison with UNIGEN3

Figure 4 shows the scatter plot comparing the average execution time per sat-
isfying assignment between ESAMPLER and UNIGEN3 on all the 364 formulas.
Almost all the points are below the diagonal line, indicating ESAMPLER. signifi-
cantly outperforms UNIGENS3.

Table 3 reports the performance of UNIGEN3 and ESAMPLER on the same
representative subset of benchmarks. Column Uy (resp. Up) gives the total exe-
cution time in thousand seconds (ks) (resp. execution time per satisfying assign-
ment in milliseconds (ms)) of UNIGEN3. Column U,, shows the total number of
satisfying assignments generated by UNIGEN3 for each Boolean formula. The last
column provides the ratio of execution time per satisfying assignment between
UNIGEN3 and ESAMPLER, depicting the speedup of ESAMPLER.

Summary. UNIGEN3 failed on 40 benchmarks. Recall that ESAMPLER failed
on 11 benchmarks. No matter whether or not ESAMPLER determined that the
derivation procedure was able to generate a large number of satisfying assign-
ments, ESAMPLER performed significantly better than UNIGEN3 on almost all
the benchmarks. Specifically, ESAMPLER was faster than STS on 348 bench-
marks. It was 69.8x faster on average and more than 100x faster on 194 bench-
marks, while was 1.2 times slower on only 7 benchmarks.

294 Y. Xu et al.

Table 3. Comparison of UNIGEN3 and ESAMPLER

Benchmark #Vars |#Cls |U¢(ks)|Up Upt(ms) E¢(ks)|En Egn Ept(ms) %
s27 new_15_7 17 43 0.00 48 20.83 0.00 48 42 0.54 19.83
blasted_case.54 |203 725 3.60 158,168(22.76 0.20 664,548 0 0.30 3.33
20.sk-1.51 15,475|60,994|3.60 70,312 |51.21 1.67 1,520, 152|~1,520k|1.10 57.83
$35932.7_4 17,849 |44,425|3.60 0 — 0.63 1,270,247 |~1,270k|0.50 —
blasted_case.126|302 1,129 |3.60 77,185 |46.67 0.34 1,022,991 |0 0.33 9.33
blasted_case.40 (245 650 3.60 50,380 |71.46 0.41 1,149,017 |0 0.36 5.78
8349.3.2 198 469 3.60 144,279|24.95 0.07 1,142,757 |~1,088k|0.06 1,643
56.5k_6_38 4,842 17,828|3.60 104,149|34.57 1.18 1,093,080 |~1,092k|1.08 30.63
blasted_case.107|618 1,661 |3.60 0 — 0.84 1,149,017 |0 0.73 —
s832a_15_7 693 2,017 |3.60 |132,705|27.13 0.52 1,000,093 |4 0.52 2.02
8420_new_7_4 312 770 3.60 98,934 |36.39 0.08 1,048,576 |~1,043k|0.07 3,966
blasted_case.124|133 386 3.60 89,376 (40.28 0.22 1,008,715 |0 0.22 14.92
835932157 17,918 |44,709|3.60 0 - 1.34 1,270,247 |~1,270k|1.06 -
blasted_case.207|824 2,128 |3.60 15,026 |239.92 [0.98 1,149,017 |0 0.86 16.89
blasted_case.120|284 851 3.60 51,799 |69.5 0.40 1,044,731 |0 0.38 3.12
63.5k_3_64 7,242 |24,379(3.60 |48,004 |75.01 0.30 1,200,120 |~1,200k|0.25 1,133
s420.7_4 312 770 3.60 95,260 (37.79 0.10 1,366,784 |~1,363k|0.07 3,990

5.4 Execution Time vs Number of Satisfying Assignments

To see the relation between the execution time and the number of satisfying
assignments, we evaluate ESAMPLER on four randomly chosen benchmarks by
varying the execution time and counting the number of satisfying assignments.
Figure5 shows the plot for the four randomly chosen benchmarks, where the
x-axis is the execution time (in seconds) and the y-axis is number of satisfy-
ing assignments (#assignments). We can observe that the number of satisfying
assignments for each benchmark is almost linear in the execution time. These
results demonstrate the effectiveness of our derivation procedure.

5.5 Testing Uniformity

Since QUICKSAMPLER does not provide a guarantee of uniformity, neither does
ESAMPLER. We empirically show that the uniformity of the solutions can be con-
trolled by adjusting the maximal number of solutions per seed, i.e., the parame-
ter MaxNumPerSeed. We run ESAMPLER on a randomly selected benchmark (i.e.,
27.sk_3_32) on which our derivation procedure works, where duplicated solutions
are recorded to measure uniformity and the mutation phase of QUICKSAMPLER
is disabled to be more precise.

Figure 6 depicts the distributions of solutions when MaxNumPerSeed is 0, 10
and 100, where (z,y) denotes that there are y unique solutions each of which
occurs x times. We can observe that the smaller the parameter MaxNumPerSeed
is, the closer the distribution is to the normal distribution, meaning that the
solutions generated by our tool are actually close to uniform.

ESAMPLER: Effcient SAT Sampling 295

1.0x106 i f e 502342 7 4
sort.sk_8 52
reverse.sk_11_258

.8x10°
-3 0.8x10 = blasted_case41
o
g 0.6 6
50 x10
2 ”
<
0.4x10°
0.2x10°
0.0x10°
0 500 1000 1500 2000 2500 3000 3500
Time(s)
Fig. 5. Time vs. #assignments
700
2000 600 T 200 é
21500 gsoo 150 !E
Frowo Faw 100 ii
500 TZZ # \, 50 i %
4 h P £ y !c
%0 20 B e 50 © 300 as w0 575 400 72?‘“;50 0 5}:6 1000 00 00 2500 3000

(a) MaxNumPerSeed=0 (b) MaxNumPerSeed=10 (c) MaxNumPerSeed=100

Fig. 6. Distribution of solutions

6 Conclusion

We have proposed a novel approach to generate a large set of satisfying assign-
ments from a seed assignment without invoking computationally expensive SAT
solving. Our approach is orthogonal to the previous techniques and could be
integrated into the existing SAT samplers. We have also developed a new tool
ESAMPLER, based on the recent sampler QUICKSAMPLER as the seed genera-
tor. We have carried out extensive experiments on real-world benchmarks. The
experimental results confirmed the effectiveness and efficiency of our approach.

In future, we plan to further improve the performance of our tool ESAMPLER,
which will be applied in emerging practical scenarios such as adversarial training
of binaried neural networks and constrained hardware design fuzz testing.

References

1. Abed, S., Abdelaal, A.A., Alshayeji, M.H., Ahmad, I.: Sat-based and CP-based
declarative approaches for top-rank-k closed frequent itemset mining. Int. J. Intell.
Syst. 36(1), 112-151 (2021)

296

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Y. Xu et al.

Achlioptas, D., Hammoudeh, Z.S., Theodoropoulos, P.: Fast sampling of perfectly
uniform satisfying assignments. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 135-147. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8_9

Angluin, D.: On counting problems and the polynomial-time hierarchy. Theoret.
Comput. Sci. 12, 161-173 (1980)

Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: Proceedings of the 44th Symposium on Foundations of
Computer Science, 11-14 October 2003, Cambridge, MA, USA, pp. 340-351 (2003)
Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of np-witnesses using
an NP-oracle. Inf. Comput. 163(2), 510-526 (2000)

Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
Bjgrner, N., Phan, A.: vz - maximal satisfaction with Z3. In: Proceedings of the
6th International Symposium on Symbolic Computation in Software Science, pp.
1-9 (2014)

Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generation. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 304-319. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0_25

Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform gen-
erator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 608-623. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8_40

Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT witness generator. In: Proceedings of the 51st Annual Design Automation
Conference (DAC), pp. 60:1-60:6 (2014)

Chen, G., Zhao, Z., Song, F., Chen, S., Fan, L., Liu, Y.: SEC4SR: a security analysis
platform for speaker recognition. CoRR abs/2109.01766 (2021)

Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pp. 151-158 (1971)
DIMACS: Clique and coloring problems graph format (1993). http://archive.
dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex. Accessed 16 Sept
2021

Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: Proceedings of the 40th International Conference on Software Engi-
neering, pp. 549-559 (2018)

Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and project: discrete
sampling with universal hashing. In: Proceedings of the 27th Annual Conference
on Neural Information Processing Systems, pp. 2085-2093 (2013)

Ermon, S., Gomes, C.P., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, pp. 255-264 (2012)

Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: Proceedings of the 2th Annual Conference on
Neural Information Processing Systems, pp. 481-488 (2006)

Guralnik, E., Aharoni, M., Birnbaum, A.J., Koyfman, A.: Simulation-based verifi-
cation of floating-point division. IEEE Trans. Comput. 60(2), 176-188 (2011)
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neu-
ral networks. In: Proceedings of the Annual Conference on Neural Information
Processing Systems, pp. 4107-4115 (2016)

https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-662-46681-0_25
https://doi.org/10.1007/978-3-662-46681-0_25
https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-39799-8_40
http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex
http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

ESAMPLER: Effcient SAT Sampling 297

Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints 21(1), 41-58
(2015). https://doi.org/10.1007/s10601-015-9204-2

Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference,
27-31 July 1997, Providence, Rhode Island, USA, pp. 203-208 (1997)

Kitchen, N.: Markov chain Monte Carlo stimulus generation for constrained ran-
dom simulation. Ph.D. thesis, University of California, Berkeley, USA (2010)
Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simu-
lation. In: Proceedings of the 2007 International Conference on Computer-Aided
Design, pp. 258-265 (2007)

Korneev, S., Narodytska, N., Pulina, L., Tacchella, A., Bjorner, N., Sagiv, M.:
Constrained image generation using binarized neural networks with decision pro-
cedures. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol.
10929, pp. 438-449. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94144-8_27

Kukula, J.H., Shiple, T.R.: Building circuits from relations. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 113-123. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722167_12

Meel, K.S.: Constrained counting and sampling: bridging the gap between theory
and practice. CoRR abs/1806.02239 (2018)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Narodytska, N.: Formal analysis of deep binarized neural networks. In: Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 5692-5696
2018

1(\Iavelz, R., Metodi, A.: Beyond feasibility: CP usage in constrained-random func-
tional hardware verification. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
823-831. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-
0-60

Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verifica-
tion. In: Proceedings of the 21st National Conference on Artificial Intelligence and
the 18th Innovative Applications of Artificial Intelligence Conference, pp. 1720—
1727 (2006)

Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verifi-
cation. AT Mag. 28(3), 13 (2007)

Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1-2), 273-302
1996

éilva,)J .P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satis-
fiability. IEEE Trans. Comput. 48(5), 506-521 (1999)

Silva, J.P.M., Sakallah, K.A.: Grasp—a new search algorithm for satisfiability. In:
Kuehlmann, A. (ed.) The Best of ICCAD, pp. 73-89. Springer, Boston (2003).
https://doi.org/10.1007/978-1-4615-0292-0_7

Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the
15th Annual ACM Symposium on Theory of Computing, pp. 330-335 (1983)
Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 463-484. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8_22

https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.1007/978-3-319-94144-8_27
https://doi.org/10.1007/978-3-319-94144-8_27
https://doi.org/10.1007/10722167_12
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-40627-0_60
https://doi.org/10.1007/978-3-642-40627-0_60
https://doi.org/10.1007/978-1-4615-0292-0_7
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22

298

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Y. Xu et al.

Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244-257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

Sorensson, N., Eén, N.: MiniSat: a SAT solver with conflict-clause minimization.
Solver Description (2005)

Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410-421 (1979)

Vorobyov, K., Krishnan, P.: Combining static analysis and constraint solving for
automatic test case generation. In: Proceedings of the 5th IEEE International
Conference on Software Testing, Verification and Validation, pp. 915-920 (2012)
Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: exploiting random
walk strategies. In: Proceedings of the 19th National Conference on Artificial Intel-
ligence, 16th Conference on Innovative Applications of Artificial Intelligence, pp.
670-676 (2004)

Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh,
T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 324-339. Springer, Heidelberg (2005).
https://doi.org/10.1007/11499107_24

Yuan, J., Aziz, A., Pixley, C., Albin, K.: Simplifying boolean constraint solving for
random simulation-vector generation. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 23(3), 412420 (2004)

Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based
quantitative analysis framework for binarized neural networks. In: Proceedings of
the 33rd International Conference on Computer Aided Verification, pp. 175-200
(2021)

Zhang, Y., Li, J., Zhang, M., Pu, G., Song, F.: Optimizing backbone filtering.
In: Proceedings of the 11th International Symposium on Theoretical Aspects of
Software Engineering, pp. 1-8 (2017)

Zhang, Y., Zhang, M., Pu, G., Song, F., Li, J.: Towards backbone computing: a
greedy-whitening based approach. Al Commun. 31(3), 267-280 (2018)

Zhao, Y., Bian, J., Deng, S., Kong, Z.: Random stimulus generation with self-
tuning. In: Proceedings of the 13th International Conference on Computers Sup-
ported Cooperative Work in Design, pp. 62-65. IEEE (2009)

Zhao, Z., Chen, G., Wang, J., Yang, Y., Song, F., Sun, J.: Attack as defense:
characterizing adversarial examples using robustness. In: Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
42-55 (2021)

https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/11499107_24

	ESampler: Efficient Sampling of Satisfying Assignments for Boolean Formulas
	1 Introduction
	2 Preliminaries
	3 Derivation Procedure
	3.1 Motivating Example
	3.2 Derivation Algorithm

	4 ESampler
	5 Implementation and Evaluation
	5.1 Comparison with QuickSampler
	5.2 Comparison with STS
	5.3 Comparison with UniGen3
	5.4 Execution Time vs Number of Satisfying Assignments
	5.5 Testing Uniformity

	6 Conclusion
	References

