
CLEVEREST: Accelerating CEGAR-based
Neural Network Verification

via Adversarial Attacks

Zhe Zhao1, Yedi Zhang1, Guangke Chen1, Fu Song1(B), Taolue Chen2,
and Jiaxiang Liu3

1 ShanghaiTech University, Shanghai, China
{zhaozhe1,zhangyd1,chengk,songfu}@shanghaitech.edu.cn

2 Birkbeck, University of London, London, UK
t.chen@bbk.ac.uk

3 Shenzhen University, Shenzhen, China
jiaxiang.liu@szu.edu.cn

Abstract. Deep neural networks (DNNs) have achieved remarkable per-
formance in a myriad of complex tasks. However, lacking of robustness
and black-box nature hinder their deployment in safety-critical systems.
A large number of testing and formal verification techniques have been
proposed recently, aiming to provide quality assurance for DNNs. Gen-
erally speaking, testing is a fast and simple way to disprove—but not
to prove—certain properties of DNNs, while formal verification can pro-
vide correctness guarantees but often suffers from scalability and effi-
ciency issues. In this work, we present a novel methodology, CLEVEREST,
to accelerate formal verification of DNNs by synergistically combining
testing and formal verification techniques based on the counterexample
guided abstraction refinement (CEGAR) framework. We instantiate our
methodology by leveraging CEGAR-NN, a CEGAR-based neural network
verification method, and a representative adversarial attack method for
testing. We conduct extensive experiments on the widely-used ACAS
Xu DNN benchmark. The experimental results show that the testing
can effectively reduce the usage of formal verification in the check-refine
loop, hence significantly improves the efficiency.

1 Introduction

As a new programming paradigm, deep learning has achieved incredible per-
formance in a large number of complex tasks such as computer vision [31],
autonomous driving [1] and cyber-security [7,8,51]. Nevertheless, deep neural
networks (DNNs) have shown to be intrinsically vulnerable to perturbations [54],

This work is supported by the National Natural Science Foundation of China (62072309
and 62272397), an oversea grant from the State Key Laboratory of Novel Software Tech-
nology, Nanjing University (KFKT2022A03), Birkbeck BEI School Project (EFFECT)
and the Natural Science Foundation of Guangdong Province (2022A1515011458).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 449–473, 2022.
https://doi.org/10.1007/978-3-031-22308-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22308-2_20&domain=pdf
https://doi.org/10.1007/978-3-031-22308-2_20

450 Z. Zhao et al.

which significantly hinders their applications in safety-critical domains. Insofar
approaches on quality assurance of DNNs can be roughly classified into two
(complementary) categories: testing (e.g., [4,6,20,32,38,41,45,54,69]) and for-
mal verification (e.g. [15,18,21,23,24,26,28,33,35,39,40,49,50,59,60,67]). The
purpose of testing is to disprove the robustness of DNNs by providing adver-
sarial examples (i.e., counterexamples). In contrast, formal verification is often
used to provide theoretical guarantees of DNNs, and, once violated, counterex-
amples may be provided. Computationally, testing is able to scale up to large
DNN models, whereas formal verification is currently limited in scalability.

Early efforts on robustness verification reduce the problem to constraint solv-
ing (e.g., SMT [15,24,28,29,48], LP and MILP [5,14,34,55,61,68]). Such tech-
niques are often both sound (i.e., no false negative) and complete (i.e., no false
positive), but are limited in scalability. To improve the scalability, abstraction
techniques have been proposed including abstract interpretation [18,49,50,56,60,
63,65] and network abstraction [2,16,19,47,52]. Abstract interpretation approx-
imates the output ranges of neurons for a given input region while network
structure abstraction approximates the network via a smaller network which
could be verified using existing verification approaches. Unfortunately, abstrac-
tion techniques often compromise accuracy. Refinement techniques thus have been
adopted which, guided by counterexamples, refine either the estimated output
ranges [50,60,63,65] or the abstract network [16,44]. Despite these advances, scal-
ability remains a major challenge in formal verification of DNNs.

In this work, we propose CLEVEREST (CEGAR neural network verification
adversarial attacks), a novel methodology to accelerate robustness verification
of DNNs by synergistically combining robustness testing and formal verifica-
tion in the celebrated counterexample guided abstraction refinement (CEGAR)
framework [10]. To the best of our knowledge, this is the first attempt to syn-
ergistically integrate efficient testing with formal verification for DNN quality
assurance. We note that prior work [66] only utilizes testing methods to find
adversarial examples before the complete verification, which is to reduce time
overhead, but is simply a sequential composition of testing and verification and
cannot improve the verification itself.

The methodology of CEGAR follows an abstract-check-refine paradigm. To
verify a DNN N against a property, an over-approximation ̂N of N is built and
then the check-refine loop is executed. First, we check if the property holds for ̂N .
If ̂N satisfies the property, we can conclude that N satisfies the property as well
(because ̂N is an over-approximation) and stop. Otherwise a counterexample x

is found on ̂N . We check if x is also a counterexample for N . If it is, we conclude
that N does not satisfy the property and stop. Otherwise, the counterexample is
spurious and ̂N is refined to exclude the counterexample x. Note that the existing
CEGAR-based DNN verification utilizes computational expensive verification
techniques to check the abstract systems and to obtain counterexamples in the
check-refine loop [16,44].

Our insight of CEGAR in DNN verification is that the abstract systems in
early stages of the check-refine loop are often coarse-grained where counterex-
amples could be easily found by existing robustness testing techniques. Based

CLEVEREST 451

on this observation, we propose to verify the robustness of DNNs by applying
an abstract-test-refine paradigm. The abstract-test-refine paradigm is similar to
the standard abstract-check-refine paradigm, except that the abstract systems
are to be checked by testing. If the testing fails to find a counterexample, the
check-refine is leveraged after which the test-refine loop is applied again.

Our framework can be instantiated by any robustness testing and CEGAR-
based verification technique. To evaluate its effectiveness, we implement a veri-
fication tool, named CLEVEREST-NN, by leveraging the preprocessing, abstrac-
tion, refinement and verification procedures from the CEGAR-NN framework [16]
and the PGD adversarial attack [38] for testing. In particular, we show how to
encode properties as loss functions so that an adversarial attack could be lever-
aged. We also propose an attack guided abstraction which allows us to avoid too
coarse abstract systems by leveraging an adversarial attack during the iterative
abstraction. We thoroughly conduct experiments on the widely used ACAS Xu
benchmark [27,28], an airborne collision avoidance system built for unmanned
aircraft. The experimental results based on 45 DNNs show that our tool is very
promising. For instance, compared with CEGAR-NN, CLEVEREST-NN solved 21
more (62 vs. 41 out of 90) clear-of-conflict related verification instances within
the same time limit. Furthermore, on the verification instances solved by both
tools, the average execution time (per verification instance) is reduced by 42%
(from 3,584s to 2,076s).

To summarize, our main contributions are as follows.

– We propose CLEVEREST, a methodology to accelerate DNN verification by
synergistically combining robustness testing and CEGAR-based verification.

– We implement our methodology based on CEGAR-NN and PGD adversarial
attack, giving rise to a new DNN verification tool CLEVEREST-NN.

– We conduct extensive experiments on ACAS Xu. The experimental results
show that our method significantly improve the performance of CEGAR-NN.

Outline. Section 2 presents the background for DNNs, their verification and
adversarial attacks. We propose our methodology in Sect. 3 and instantiate
the methodology for DNN verification in Sect. 4. Section 5 reports experimen-
tal results. Section 6 discusses related work. We conclude this work in Sect. 7.

2 Background

In this section, we introduce the background of DNNs as well as their verification
and adversarial attacks.

Deep Neural Networks. An �-layer (� ≥ 2) deep neural network (DNN) N is
a graph structured in layers (cf. Figure 1), where the first layer is called an input
layer, the last layer is called an output layer, and the � − 2 intermediate layers
are called hidden layers. All the nodes in these layers are called neurons and
neurons in hidden layers are called hidden neurons. Each neuron in a non-input
layer is associated with a bias and could be pointed to by other neurons via

452 Z. Zhao et al.

x1

x2

y1

y2

z1

z2

1

−2

y3

3
2

−4
−1

0

2

1

1
3

0

1

4

0

1

0

Input

Layer

Hidden

Layer

Output

Layer

y1 = x1 − 2x2 + 2
y2 = 3x1 − 4x2
y3 = 2x1 − x2 + 1

x1 ∈ [0,1]
x2 ∈ [0,1]

z1 = y1 + 4y3 + 1
z2 = 3y1 + y2

Fig. 1. A fully connected FNN with 2 input nodes (x1, x2), 2 output nodes (z1, z2) and
1 hidden layers, the activation function is not included. Each edge is associated with a
weight value and each node except for inputs is associated with a bias.

weighted, directed edges. The DNN is called a feed-forward deep neural network
(FNN) if all the weighted, directed edges are from the i-th layer to the (i+1)-th
layer. An FNN is fully connected if each neuron in the i-th layer is connected
from all the neurons in the (i−1)-th layer. Given an input, the DNN propagates
it through the network layer by layer and computes an output. In this work, we
consider (fully connected) FNNs, though our methodology is generic.

Formally, an �-layer FNN N is a function N : X → Y , which maps an input
vector �x ∈ X to an output vector �y = N(�x) ∈ Y . Here, N(�x) = �W��v�−1 +�b�,
and the output vector �vi of the i-th layer is recursively defined as follows:

�v1 = �x, �vi = σ(�Wi�vi−1 +�bi) for i = 2, · · · , � − 1,

where �Wi and �bi (for 2 ≤ i ≤ �) are the weight matrix and bias vector of the i-th
layer respectively, and σ is an activation function (e.g., ReLU, sigmoid, tanh)
applied to the input vector entrywise. For classification tasks, the output class
of a given input �x is the first index i such that N(�x) at the index i is of the
highest value. In this work, we denote by Nc(�x) the output class.

Neural Network Verification. The (neural network) verification query for a
given FNN N is often formalized as a triple 〈P,N,Q〉, where the pre-condition
P is a property on inputs and the post-condition Q is a property on outputs.
The verification query amounts to checking if N(�x) satisfies the post-condition
Q for all inputs �x ∈ X that fulfil the pre-condition P . A counterexample of
the verification query 〈P,N,Q〉 is an input �x ∈ X such that �x satisfies the
pre-condition P but N(�x) does not satisfy the post-condition Q. In practice,
pre-conditions (resp. post-conditions) are often given as conjunctions of linear
constraints on the input values (resp. output values).

Robustness, originated with the study of adversarial attacks [54], is a typical
property of DNNs which requires a DNN to produce the same classification
result for an input when a small perturbation is added. The perturbation range
of an input is usually represented as a ball centered at the input under the L-
norm distance. There are three widely-used L-norms: L0, L2 and L∞ norms [6].

CLEVEREST 453

Given two inputs �x, �x′, the L0 norm distance ‖�x−�x′‖0 is the number of non-zero
elements in the vector �x − �x′, the L2 norm distance ‖�x − �x′‖2 is the Euclidean
distance between �x and �x′, and the L∞ norm distance ‖�x−�x′‖∞ is the maximal
entry in the vector |�x − �x′|. A DNN is (local) robust w.r.t. an input �x ∈ X and
a threshold ε > 0 if Nc(�x) = Nc(�x′) for any �x′ ∈ X such that ‖�x − �x′‖p ≤
ε. Counterexamples in this setting are often called adversarial examples. The
robustness property for any L-norm could be expressed as a neural network
verification query, where the constraints ‖�x−�x′‖p ≤ ε for p = 0,∞ and Nc(�x) =
Nc(�x′) for any �x′ ∈ X can be encoded as conjunctions of linear constraints.
Therefore, we define a robustness property as a verification query 〈P,N,Q〉,
where P is given by an input �x and a threshold ε > 0, and Q is given by a
conjunction of linear constraints on the output. Towards robustness of DNNs,
instead of qualitatively verifying if a given robustness property holds or not, one
may have an interest in computing a maximum robustness radius ε such that
〈(�x, ε), N,Q〉 holds but 〈(�x, ε′), N,Q〉 does not hold for any ε′ > ε.

Reachability is another property of DNNs which specifies that inputs from
a given input region must produce outputs that lie in a given output region.
For example, a DNN model controlling the velocity of an autonomous vehicle
may have a safety property specifying that the model never produces a desired
velocity value greater than the vehicle’s maximum physical speed for any input.

As a convention in neural network verification [16], we say the verification
query 〈P,N,Q〉 is satisfiable (SAT) if it has a counterexample, otherwise 〈P,N,Q〉
is unsatisfiable (UNSAT) indicating no counterexample can be found.

Adversarial Attacks. Consider a DNN N , an input �x ∈ X and a distance
threshold ε (based on Lp norms), an adversarial attack task is to find an adver-
sarial example �x′ ∈ X such that Nc(�x)
= Nc(�x′) and ‖�x − �x′‖p ≤ ε. Note that it
is the same as finding a counterexample that violates the corresponding robust-
ness property. Since the discovery of adversarial examples [54], many adversar-
ial attacks have been invented as efficient methods for testing the robustness of
DNNs [4,6,20,32,38,41,45]. We only briefly recap one representative and promis-
ing attack, Project Gradient Descent (PGD) adversarial attack [38], which will
be used in our implementation.

The PGD adversarial attack is an iterative attack with a randomized start
seed. It first adds a Gaussian noise to the input �x, resulting in a randomized
seed �x0 ∈ X such that ‖�x − �x0‖∞ ≤ ε. After that, it iteratively computes
a sequence of input samples �x1, �x2, · · · , �xm until an adversarial example is suc-
cessfully found or the number of iterations exceeds a given threshold m. Namely,
�xi+1 = clipε,�x(�xi + α · sign(∇�xJ(�xi, y))) where

– 0 < α < ε is a small step size;
– y is the ground-truth class Nc(�x) of the input �x;
– sign(·) is a sign function such that sign(z) is +1 if z > 0, −1 if z < 0 and 0

if z = 0; (it is used in the entry-wise way.)
– clipε,�x(�x′) is a clip function which performs per-entry clipping of the sample

�x′ to ensure that ‖�x − �x′‖∞ ≤ ε;

454 Z. Zhao et al.

– J(�x, y) is a loss function (e.g., the mean-squared error or the categorical cross-
entropy of the DNN);

– ∇�x is the partial derivative of the loss function J(�x, y) at �x.

Intuitively, the attack is to search an input sample �x′ ∈ X to maximize the loss
function. To prevent the attack from trapping in local optima, the above search
of an adversarial example is often repeated multiple times. The details of the
PGD adversarial attack algorithm are given in Appendix A.1.

Example 1. Consider the illustrative example shown in Fig. 1. we can obtain the
computational flow of the neural network in terms of the specific weights and
biases. Suppose we want to verify if z1 > z2, from the neural network verification
point of view, we can treat these equations and properties as constraints for
SMT solving [28], or perform symbolic interval analysis from the input layer-
by-layer [59], etc. From the adversarial attack point of view, we simply need
to find a counterexample in the input interval to disprove z1 > z2. When this
problem is easy to disprove, the use of attack algorithm saves substantial time
over formal verification. We explore how to synergistically combine SMT-based
formal verification and adversarial attacks in this work.

3 Methodology

In this section, we present our methodology based on counterexample-guided
abstraction refinement (CEGAR). We start by presenting the standard CEGAR
in literature, and then explain how to integrate it with testing.

3.1 The Standard CEGAR Framework

The standard CEGAR framework based on the abstract-check-refine paradigm
is shown in Algorithm 1 (without the blue-colored code at lines 3–9). Given a
verification query 〈P,N,Q〉, upon termination Algorithm 1 returns either UNSAT
indicating that the verification query 〈P,N,Q〉 holds, or (SAT,cex) indicating
that the query 〈P,N,Q〉 does not hold where cex is a counterexample. In detail,
Algorithm 1 first builds an initial abstract model ̂N via invoking the procedure
abstract (line 1). It then iteratively verifies and refines ̂N until the verification
query is proved UNSAT or a genuine counterexample cex in the target system N
is found (lines 10–15). In each iteration, the verification query 〈P, ̂N,Q〉 with
the up-to-date abstract system ̂N is verified by invoking the underlying verifica-
tion engine verify (line 10). If it is proved UNSAT, Algorithm 1 returns UNSAT

and the verification query 〈P,N,Q〉 holds. In case 〈P, ̂N,Q〉 is proved SAT, a
counterexample cex is returned by verify whose feasibility in the target system
N is checked (line 12). If cex is a genuine counterexample in the target system
N , Algorithm 1 returns (SAT,cex) (line 13); otherwise the abstract system ̂N is
refined via invoking the refinement procedure refine (line 14).

Remark that it is implicitly assumed that the abstraction abstract and the
refinement refine procedures only generate over-approximations of the target

CLEVEREST 455

Algorithm 1: Our CEGAR framework
Input : a verification query 〈P, N, Q〉
Output: verification result UNSAT, or SAT with a counterexample cex

1 ̂N ← abstract(P,N,Q); /* Generate an initial abstract system */

2 while True do

3 cex ←test(P, ̂N, Q); /* Test the abstract system */

4 if cex �= NULL then /* Find a counterexample by testing */

5 if cex is a counterexample of 〈P, N, Q〉 then
6 return (SAT, cex); /* Find a genuine counterexample */

7 else

8 ̂N ← refine(̂N, cex); /* Refine the abstract system */

9 continue; /* Skip verify and back to test */

10 cex ←verify(P, ̂N, Q); /* Verify the abstract system */

11 if cex �= NULL then /* Find a counterexample by verification */

12 if cex is a counterexample of 〈P, N, Q〉 then
13 return (SAT, cex); /* Find a genuine counterexample */

14 else ̂N ← refine(̂N, cex); /* Refine the abstract system */

15 else return UNSAT

system N and the underlying verification engine verify is sound. Otherwise,
one cannot conclude that verification query 〈P,N,Q〉 holds even if Algorithm 1
returns UNSAT. Furthermore, the underlying verification engine is often required
to be complete and has the capability for producing a counterexample if the
verification query is SAT, namely, the verification of 〈P, ̂N,Q〉 returns either
UNSAT or a counterexample cex if SAT.

3.2 Our CEGAR Framework

Our CEGAR framework is based on the key observation that it is fast to find
counterexamples in the coarse-grained, abstract systems via testing techniques.
As a result, we propose an abstract-test-refine paradigm, where check-refine is
applied only when the testing fails to find a counterexample. Our CEGAR frame-
work is shown in Algorithm 1, where the blue-colored code (lines 3–9) follows the
abstract-test-refine paradigm while the other code is the same as in the standard
CEGAR framework.

Given a verification query 〈P,N,Q〉, after building the initial abstract system
̂N (line 1), Algorithm 1 first repeatedly tests and refines the abstract system ̂N

until either a counterexample found in the abstract system ̂N is genuine in the
target system N ; or the procedure test fails to find a counterexample in the
abstract system ̂N (within a given test budget) (lines 3–9). It is easy to see that
the test-refine (lines 3–9) is the same as the original check-refine (lines 10–15),
except that the verify procedure is replaced by the test procedure. When the
testing fails to found an adversarial example, check-refine is applied as in the
de facto CEGAR scheme except that the refined system ̂N is retested again in

456 Z. Zhao et al.

the test-refine loop. At this moment, the abstract system ̂N may have already
been significantly refined by the test-refine loop so that computational expensive
verification of many coarse-grained abstract systems could be avoided. Ideally, if
the testing method is powerful enough, it would be able to find a counterexample
in most cases. Consequently, for the verification query that does not hold, the
test-refine loop could more likely find a genuine counterexample and avoid calls
to verification, thus, the verify procedure would be rarely invoked. We note that
for the verification query that holds, verify would be invoked at least once.

Proposition 1. If Algorithm 1 returns (SAT,cex), then cex is a counterexam-
ple of the verification query 〈P,N,Q〉. If Algorithm 1 returns UNSAT, then the
verification query 〈P,N,Q〉 holds. �

Remark that, the new CEGAR scheme may not be effective in verifying
general software/hardware systems, as finding counterexamples is still non-trivial
via testing. However, for neural networks, counterexamples (adversarial attacks)
are pervasive and there have been advanced techniques to find them (cf. Sect. 2).

4 DNN Verification in Our CEGAR Scheme

In this section, we first recall the preprocessing, abstraction and refinement pro-
cedures provided in CEGAR-NN based on which we show how to instantiate our
CEGAR framework by leveraging the PGD adversarial attack [38] for testing
due to its effectiveness and efficiency. We should emphasize that our CEGAR
scheme can be used on any de facto CEGAR-based DNN verification approaches
and leverage any promising testing methods such as BIM [32], DeepFool [41],
C&W [6] and DeepXplore [46].

4.1 CEGAR-NN

CEGAR-NN instantiates the abstract, verify and refineprocedures inCEGAR,
where verify is implemented by the Marabou DNN verification engine [29].

Preprocessing. CEGAR-NN first preprocesses a verification query 〈P,N,Q〉,
by transforming it into an equivalent verification query 〈P,N ′, Q′〉 such that
the post-condition Q′ is a conjunction of linear inequalities of form y > c for
some constant c. Furthermore, each hidden neuron should be classified as a
pos/neg neuron, and a dec/inc neuron. A hidden neuron is pos (resp. neg)
if all the weights on its outgoing edges are positive (resp. negative), while a
hidden neuron is inc (resp. dec) if increasing the value of this neuron while
keeping all the inputs unchanged increases (resp. decreases) the values of the
output neurons. As stated by Elboher et al. [16], these restrictions are for the
sake of simplicity, and can be achieved by adding a few neurons (at most 4×
increase in network size) during preprocessing. From now on, we assume the
verification query 〈P,N,Q〉 has already been preprocessed and satisfies the above
assumptions.

CLEVEREST 457

The abstract and refine Procedures. CEGAR-NN has two abstraction
strategies, called abstraction-to-saturation and indicator-guided abstraction. Both
strategies are based on the merge operator, which merges a pair of hidden neu-
rons in a same layer that share the same pos/neg and inc/dec attributes, result-
ing in an over-approximated DNN. The abstraction-to-saturation strategy iter-
atively applies the merge operator, producing the smallest abstract DNN. How-
ever, this strategy may obtain DNNs that are too coarse so that multiple rounds of
refinement are required. The indicator-guided abstraction strategy is proposed to
address this issue by estimating when the abstraction has become too coarse using
a finite set of chosen inputs XI . After each abstraction step, the post-condition Q
is checked in the abstract DNN using the chosen inputs. If the post-condition Q
is violated by some input in XI , the abstraction is then stopped.

Generally speaking, the refine procedure is the inverse of abstract, which
refines an abstract DNN by iteratively recovering two merged neurons from the
corresponding abstract neuron until the counterexample is excluded.

4.2 Instantiating Our CEGAR Scheme

To instantiate our CEGAR framework, we show how to disprove a verification
query 〈P,N,Q〉 and improve the abstract procedure, both via an adversarial
attack based testing.

Disproving Verification Query. Given a verification query 〈P,N,Q〉, we
assume that P is a conjunction of linear constraints

∧m
i=1 lpi ≤ xi ≤ upi on

the input values and Q is a conjunction of linear inequalities of
∧n

i=1 yi > ci,
where the variables xi’s and yi’s correspond to the values of input neurons and
output neurons respectively, and lpi’s, upi’s and ci’s are constants. Such proper-
ties are widely considered in the DNN verification community, e.g., [18,28,58,66].
To leverage an adversarial attack for testing, we encode the pre-condition P by
transforming a conjunction of linear constraints

∧m
i=1 lpi ≤ xi ≤ upi into a non-

standard L∞ epsilon ball, and encode the post-condition Q in a loss function J
which is maximized by the adversarial attack to find a counterexample.

– Encoding the pre-condition P . From the pre-condition P , we let �̂x be an
input such that for every 1 ≤ i ≤ m, �̂x[i] = upi+lpi

2 , and �ε be a vector such
that �ε[i] = upi−lpi

2 for every 1 ≤ i ≤ m. Clearly, for each �x′ ∈ X, |�̂x−�x′| ≤ �ε iff
�x′ satisfies P . We denote by encode(P) the pair (�̂x,�ε). For example, suppose
m = 2 and the constraints lpi and upi are [0, 0.5] and [1, 1] for i = 1, 2,
respectively, then we can obtain �̂x = [0.5, 0.75], �ε = [0.5, 0.25].

– Encoding the post-condition Q. From the post-condition Q, we define
the loss function J as

J(�x) := −
n

∏

i=1

(

max(N(�x)[i] − ci, 0)
)

where N(�x)[i] denotes the value of the output neuron yi. The output property
Q in general can be an arbitrary Boolean structure and involve multiple

458 Z. Zhao et al.

Algorithm 2: PGD adversarial attack based testing
Input : a verification query 〈P, N, Q〉, restart times n, number of steps per

time m, a small step size α
Output: an adversarial example cex or NULL

1 (�̂x,�ε) ← encode(P);
2 J ← encode(Q);
3 for i ← 1 to n do

4 Generate a vector of Gaussian noises �δ such that |�δ| ≤ �ε;

5 �x′ ← �̂x + �δ; /* Create a randomized seed */

6 for j ← 1 to m do
7 �y ← N(�x′); /* Get the output */

8 if �y does not satisfy the post-condition Q then
9 return �x′; /* Find a counterexample */

10 else
11 ∇ ← back propagate(N, J(�x′)); /* Get gradient of J(�x′) */

12 �x′ ← clip�ε,̂�x(�x′ + α × sign(∇)); /* Compute a new sample */

13 return NULL;

neurons which can be transformed into a conjunction of linear inequalities
(cf. [16]). Recall that an adversarial attack attempts to maximize J(�x), hence
to minimize each term max(N(�x)[i] − ci, 0) until it is 0. When J(�x′) is 0 for
some input �x′, there exists some i such that N(�x′)[i] > ci does not hold, hence
the output N(�x′) does not satisfy Q. This input �x′ is a counterexample. We
denote by encode(Q) the loss function J . We should emphasize that our loss
function J is different from the cross-entropy loss function used in the PGD
adversarial attack [38], which is not applicable when the output property
involves lower or upper bounds. Our loss function is constructed for each
output property given as a conjunction of linear inequalities, and can be
applied in a variety of verification problems [18,28,58,66].

Based on the above encodings, we implement the test procedure for Algo-
rithm 1 via a PGD adversarial attack based testing (cf. Algorithm 2). Given a
verification query 〈P,N,Q〉, the number of restart times n, the number of iter-
ation steps per time m, a small step size α, Algorithm 2 returns either a coun-
terexample �x′ that satisfies the pre-condition P but violates the post-condition
Q, or NULL indicating that no counterexample can be found. Note that the pair
of the parameters (n,m) is regarded as the test budget.

In detail, Algorithm 2 first computes the pair (�̂x,�ε) that encodes the inputs
fulfilling the pre-condition P (line 1) and the loss function J that encodes the
post-condition Q (line 2). Then, it iteratively executes the outer for-loop (lines 3–
12) up to n times. During each iteration, a randomized seed �x′ is obtained by
adding Gaussian noises �δ to �̂x (lines 4–5) and then the inner for-loop (lines 6–
12) is executed, which iteratively computes a series of new samples (up to m
samples) starting from the randomized seed �x′.

CLEVEREST 459

During each iteration of the inner for-loop (lines 6–12), Algorithm 2 first
computes the output �y = N(�x′) of the DNN N by forward propagating the
input �x′. If �y does not satisfy the post-condition Q, then �x′ is a counterexample
and Algorithm 2 returns �x′. Otherwise, Algorithm 2 performs a backward prop-
agation to get the gradient ∇ of J using J(�x′) (line 11) from which a new sample
�x′ is created (line 12), where the clip function clip

�ε,̂�x
ensures that |�̂x − �x′| ≤ �ε

after updating, hence the new sample �x′ still satisfies the pre-condition P .

Lemma 1. If Algorithm 2 returns cex for the verification query 〈P,N,Q〉, then
cex is a counterexample of the verification query 〈P,N,Q〉.

One may be wondering how to choose hyper-parameters such as restart
times n, number of steps per time m, and step size α, and how to handle non-
differentiable layers when leveraging adversarial attacks. According to our exper-
iments, the time consumed by attacks is marginal compared to that used in the
complete verification method, and the parameters can be selected as in the prior
work [32,38]. For non-differentiable layers, gradient estimation methods (e.g. [9])
can be used to approximate the gradient of J .

Improving abstract via Attacks. We exploit the adversarial attack based
testing in the building of the initial abstract system, i.e., the abstract procedure
in Algorithm 1.

Recall that Elboher et al. [16] proposed two abstraction strategies in CEGAR-
NN: abstraction-to-saturation and indicator-guided abstraction, where the for-
mer may produce DNNs that are too coarse so that multiple rounds of refinement
are required, while the latter is proposed to address this issue by checking if the
abstraction has become too coarse using a finite set of chosen inputs XI , all
of which satisfy the pre-condition P . It was mentioned that the set XI can be
generated randomly (adopted in their tool), or according to some coverage cri-
terion of the input region. In this work, we present a more effective way, i.e.,
attack-guided abstraction, to generate the set XI via an adversarial attack based
testing which are more likely to be counterexamples in abstract systems.

We first adjust Algorithm 2 to return all generated n × m samples, named
Algorithm 2*. Our attack-guided abstraction is formalized in Algorithm 3. Given
a verification query 〈P,N,Q〉, and the parameters (restart times n, number of
steps per time m, step size α) for the adversarial attack (cf. Algorithm 2*),
Algorithm 3 returns an abstract DNN ̂N .

In detail, the abstract DNN ̂N is initialized with the given DNN N (line 1)
and a set XI of samples is created by applying Algorithm 2* to 〈P, ̂N,Q〉 (line 2).
After that, we check if the post-condition Q holds using the samples from XI

(line 3). If Q is violated by some sample �x ∈ XI , Algorithm 3 returns ̂N (line 4).
Otherwise, it iteratively performs the merge operation to compute a less accurate
abstract DNN ̂N ′ and tests ̂N ′ against Q until either no neurons that can be
merged or 〈P, ̂N ′, Q〉 becomes SAT, i.e., a counterexample is found (lines 5–15).

During each iteration of the while-loop (lines 5–15), Algorithm 3 first chooses
a mergeable pair (vi, vj) of neurons (line 6), for which we adopt an approach

460 Z. Zhao et al.

Algorithm 3: Attack-guided abstraction
Input : a verification query 〈P, N, Q〉, restart times n, number of steps per

time m, step size α
Output: an abstract DNN ̂N

1 ̂N ← N ;

2 XI ← the set of samples created by applying Algorithm 2* to 〈P, ̂N, Q〉;
3 if ∃�x ∈ XI . ̂N(�x) does not satisfy Q then

4 return ̂N ;

5 while ∃ a pair of neurons that can be merged do

6 (vi, vj) ←ChooseBestMergeablePair(̂N);

7 ̂N ′ ← merge(̂N, vi, vj);

8 if ∃�x ∈ XI . ̂N ′(�x) does not satisfy Q then

9 return ̂N ;

10 else

11 X ′ ← the set of samples created by applying Algorithm 2* to 〈P, ̂N ′, Q〉;
12 if ∃�x ∈ X ′. ̂N ′(�x) does not satisfy Q then

13 return ̂N ;

14 else XI ← XI ∪ X ′

15 ̂N ← ̂N ′;

16 return ̂N ;

by Elboher et al. [16]. Next, we build a less accurate abstract DNN ̂N ′ by
merging (vi, vj) in ̂N (line 7) and test if there exists some counterexample �x ∈ XI

for 〈P, ̂N ′, Q〉 (line 8). If so, we return the previous abstract DNN ̂N (line 9).
Otherwise, we create a new set X ′ of samples by applying Algorithm 2* to the
query 〈P, ̂N ′, Q〉 (line 11). After that, the query 〈P, ̂N ′, Q〉 is tested again using
the new samples from X ′ (line 12). If a counterexample �x ∈ X ′ for 〈P, ̂N ′, Q〉
exists, we return the previous abstract DNN ̂N (line 13); otherwise the set XI

and the abstract DNN ̂N are updated accordingly for the next iteration.

Lemma 2. For any verification query 〈P,N,Q〉, if Algorithm 3 returns an
abstract DNN ̂N , then either 〈P, ̂N,Q〉 or 〈P, ̂N ′, Q〉 has a counterexample, where
̂N ′ is the abstract DNN obtained from ̂N by merging a pair of neurons in the
while-loop of Algorithm 3. Furthermore, ̂N is an over-approximation of the DNN
N according to soundness of the merge operator [16].

CLEVEREST-NN. By instantiating the abstract and test procedures in Algo-
rithm 3 and Algorithm 2 respectively, as well as the refine and verify pro-
cedures implemented as in CEGAR-NN, we obtain a concrete CEGAR-based
neural network verification algorithm, named CLEVEREST-NN. Thanks to the
completeness of verify in CEGAR-NN and the termination guarantee of the
refinement, CLEVEREST-NN is both sound and complete.

CLEVEREST 461

Ownship

Intruder

ρ

vown
vint

θ
ψ

Fig. 2. An illustrating scenario of the ACAS Xu system

In addition to solving verification queries, CLEVEREST-NN also features a
binary-search based approach to approximate the maximum robustness radius ε
such that 〈(�x, ε), N,Q〉 holds for a given DNN N , an input �x ∈ X and a post-
condition Q. To this end, for each candidate ε, we leverage the CEGAR-based
approach to verify 〈(�x, ε), N,Q〉.

5 Implementation and Evaluation

We have implemented our method in the tool CLEVEREST-NN, where the verify
and refine modules are the same as CEGAR-NN [16]. (Indeed, verify is the
Marabou DNN verification engine [29].) The input of CLEVEREST-NN is a DNN
in the NNet format, pre- and post-conditions, forming a verification query, and
the parameters (n,m,α) for adversarial attack based testing. When computing
a maximal robustness radius, the pre-condition should be an input sample, the
lower bound and upper bound of the radius, instead of a linear constraint.

We conduct experiments on 45 ACAS Xu DNNs for airborne collision avoid-
ance [27,28]. ACAS Xu is a system (cf. Figure 2) designed for an unmanned
aircraft (called Ownship) to produce horizontal turning advisories in order to
prevent a collision with another nearby aircraft (called Intruder). Each ACAS
Xu DNN has 310 neurons, 5 inputs, 6 hidden layers and 5 outputs. The five
inputs are normalized data from airborne sensors, indicating the distance ρ
between Intruder and Ownship, the relative angles θ, ψ between Ownship and
Intruder, the speeds vown and vint of Ownship and Intruder. The five outputs
represent turning advisories: strong left, weak left, strong right, weak right, or
clear-of-conflict (i.e., safe to continue along the current trajectory). The ACAS
Xu system selects one of 45 DNNs according to the data reading from the air-
borne sensors and the turning advisory of the selected DNN with the lowest
score is the final turning advisory of the system.

In our experiments, we consider two groups of verification queries and one
group of queries for computing maximal robustness radii, where the former two
groups are provided by CEGAR-NN and the latter one is obtained from Relu-
plex [28]. The first group, called COC-queries, consists of 2 verification queries
for each ACAS Xu DNN, which ensure that the DNN always advises clear-of-
conflict for distant intruders, i.e., the output of clear-of-conflict is always smaller
than the other labels (e.g., the previous runner-up operation). The second group,

462 Z. Zhao et al.

called ROB-queries, consists of 20 robustness properties with ε = 0.1 which
ensure that the DNN is robust against small input perturbations.

The third group, called MR-queries, consists of 5 queries for one chosen
ACAS Xu DNN, which are used to compute maximal robustness radii, where
the five inputs are Points 1–5 of Reluplex [28].

We first evaluate the effectiveness of our attack-guided abstraction strategy
(i.e., Algorithm 3), and then evaluate the effectiveness of our CEGAR scheme
(cf. Sect. 3.2) using the PGD adversarial attack based testing (i.e., Algorithm 2)
both for solving verification queries, and finally evaluate the performance of
the overall framework for computing maximal robustness radii. For the sake
of presentation, we refer to the different CEGAR schemes with two different
abstraction strategies as follows.

– SAT-CLEVEREST-NN = CLEVEREST-NN + abstraction-to-saturation,
– SAT-CEGAR-NN = CEGAR-NN + abstraction-to-saturation,
– ATT-CLEVEREST-NN = CLEVEREST-NN + attack-guided abstraction,
– ATT-CEGAR-NN = CEGAR-NN + attack-guided abstraction.

The experiments were conducted on a machine with Intel Xeon CPU E5-
2690 2.60GHz CPU, 64-bit Ubuntu 18.04 LTS operating systems, 256G RAM,
with a 3 h timeout per query unless stated explicitly. Note that all experiments
were performed on the CPU only for a fair comparison with CEGAR-NN. We
remark that the adversarial attack in our CLEVEREST-NN could be accelerated
using GPU. The restart times n, number of steps per time m and step size α
of the PGD adversarial attack based testing are 10, 10 and up−lp

4 , respectively,
where up and lp are the upper bound and lower bound of the inputs. Note that
we compare with [16] only because it is the only publicly available CEGAR-
based tool that abstracts/refines network structures. We expect to verify more
properties and datasets in the future, with the development and implementation
of the CEGAR-based neural network verification framework.

5.1 Performance of Our Attack-guided Abstraction

To evaluate the effectiveness of our attack-guided abstraction strategy, we com-
pare it with the abstraction-to-saturation strategy in both the CEGAR-NN
and CLEVEREST-NN frameworks (i.e., ATT-CEGAR-NN vs. SAT-CEGAR-NN
and ATT-CLEVEREST-NN vs. SAT-CLEVEREST-NN) for solving 90 (2 × 45)
COC-queries. We exclude the indicator-guided abstraction strategy, as it was
shown in [16] that the indicator-guided abstraction strategy is significantly worse
than the abstraction-to-saturation strategy in the CEGAR-NN framework.

SAT-CEGAR-NN vs. ATT-CEGAR-NN. Figure 3(a) depicts a compari-
son between ATT-CEGAR-NN and SAT-CEGAR-NN. The blue marks above the
red dashed line are the verification queries where ATT-CEGAR-NN (i.e., the
attack-guided abstraction strategy) is faster. The red marks on the top are the
verification queries where SAT-CEGAR-NN time-outs, while those on the right

CLEVEREST 463

Fig. 3. (a) Comparison between SAT-CEGAR-NN and ATT-CEGAR-NN and (b) com-
parison between SAT-CLEVEREST-NN and ATT-CLEVEREST-NN, for solving the 90
COC-queries, where the scatter plots compare execution time (log-scale, in seconds);
TO denotes timeout; ERR denotes erroneous results on abstract DNNs; the curve plots
the number of solved queries with the increased time limit per query.

are where ATT-CEGAR-NN time-outs. The yellow marks on the top are verifica-
tion queries where SAT-CEGAR-NN reported incorrect results on abstract DNNs.
SAT-CEGAR-NN reported UNSAT on 28 abstract DNNs that are indeed SAT.1

In summary, ATT-CEGAR-NN solved 55 out of 90 verification queries while
SAT-CEGAR-NN solved 41. On those solved by both tools, ATT-CEGAR-NN
is faster than SAT-CEGAR-NN on 75.68% verification queries and the average
speed-up is 2.23×. From the curve plot in Fig. 3(a), we can observe that ATT-
CEGAR-NN constantly solve more verification queries than SAT-CEGAR-NN with
the increased time limit per query. We conclude that our attack-guided abstrac-
tion strategy outperforms the abstraction-to-saturation strategy in CEGAR-NN.

SAT-CLEVEREST-NN vs. ATT-CLEVEREST-NN. Figure 3(b) depicts
a comparison between ATT-CLEVEREST-NN and SAT-CLEVEREST-NN on solv-
ing the 90 COC-queries.

In summary, ATT-CLEVEREST-NN solved 62 out of 90 verification queries
while SAT-CLEVEREST-NN solved 61. On those solved by both tools, ATT-
CLEVEREST-NN is faster than SAT-CLEVEREST-NN on 76.92% of the verifica-
tion queries and the average speed-up is 2.17×. From the curve plot in Fig. 3(b),
we can observe that ATT-CLEVEREST-NN can solve more verification queries

1 This issue has been reported to and confirmed by some authors of Marabou and
CEGAR-NN; they replied that this problem is triggered by networks having both
very small and very large weights. ATT-CEGAR-NN avoided these errors because
these abstract DNNs were proved SAT via our adversarial attack based testing. We
have performed differential verification using another sound and complete tool on
all intermediate abstract DNNs to confirm our findings.

464 Z. Zhao et al.

than SAT-CLEVEREST-NN with the increased time limit per query up to 5,500 s,
while SAT-CLEVEREST-NN becomes slightly better than ATT-CLEVEREST-NN
when the time limit per query is greater than 5,500 s.

5.2 Performance of Our CEGAR Framework CLEVEREST-NN

To evaluate the effectiveness of CLEVEREST-NN, we compare CLEVEREST-NN
and CEGAR-NN configured with the same abstraction strategy, i.e., SAT-CEGAR-
NN vs. SAT-CLEVEREST-NN and ATT-CEGAR-NN vs. ATT-CLEVEREST-NN.
We use the 90 (2 × 45) COC-queries and 900 (20 × 45) ROB-queries.

Fig. 4. (a) Comparison between SAT-CEGAR-NN and SAT-CLEVEREST-NN and (b)
comparison between ATT-CEGAR-NN and ATT-CLEVEREST-NN, for solving the 90
COC-queries.

SAT-CEGAR-NN vs. SAT-CLEVEREST-NN on COC-queries.
Figure 4(a) depicts a comparison between SAT-CEGAR-NN and SAT-
CLEVEREST-NN for solving the 90 COC-queries.

In summary, SAT-CLEVEREST-NN solved 61 out of 90 verification queries,
while SAT-CEGAR-NN solved 41 and reported erroneous results on abstract
DNNs for 28 verification queries. On those solved by both tools, SAT-
CLEVEREST-NN is faster than SAT-CEGAR-NN on 53.66% verification queries
and the average speed-up is 1.09×.

ATT-CEGAR-NN vs. ATT-CLEVEREST-NN on COC-queries.
Figure 4(b) depicts a comparison between ATT-CEGAR-NN and ATT-
CLEVEREST-NN for solving the 90 COC-queries. ATT-CLEVEREST-NN solved
62 out of 90 verification queries, while ATT-CEGAR-NN solved only 55 verifi-
cation queries without reporting erroneous results on abstract DNNs. On those
solved by both tools, ATT-CLEVEREST-NN is faster than SAT-CEGAR-NN on
74.54% verification queries and the average speed-up is 1.64×. From the curve

CLEVEREST 465

plot in Fig. 4(a) (resp. Figure 4(b)), we can observe that SAT-CLEVEREST-NN
(resp. ATT-CLEVEREST-NN) constantly solved more verification queries than
SAT-CEGAR-NN (resp. ATT-CEGAR-NN) with the increased the time limit per
query with just a handful of exceptions. These results suggest that our CEGAR
framework CLEVEREST-NN is more effective than CEGAR-NN for both the
abstraction-to-saturation and attack-guided-saturation strategies.

Fig. 5. (a) Comparison between SAT-CEGAR-NN and ATT-CLEVEREST-NN for solv-
ing the 90 COC-queries, and (b) Comparison between ATT-CEGAR-NN and ATT-
CLEVEREST-NN, for solving the 900 (20 × 45) ROB-queries.

SAT-CEGAR-NN vs. ATT-CLEVEREST-NN on COC-queries.
Figure 5(a) depicts a comparison between SAT-CEGAR-NN and ATT-
CLEVEREST-NN for solving the 90 COC-queries. ATT-CLEVEREST-NN solved
62 out of 90 verification queries, while SAT-CEGAR-NN solved only 41 verifica-
tion queries and reported erroneous results on abstract DNNs for 28 verification
queries. On those solved by both tools, ATT-CLEVEREST-NN is faster than SAT-
CEGAR-NN on 81.58% verification queries and the average speed-up is 3.75×.
From the curve plot in Fig. 5(a), we can observe that ATT-CLEVEREST-NN
solved more verification queries than SAT-CEGAR-NN with the increased time
limit per query. These results reveal the improvement brought by this work over
CEGAR-NN.

ATT-CEGAR-NN vs. ATT-CLEVEREST-NN on ROB-queries.
Figure 5(b) depicts a comparison of between ATT-CEGAR-NN and ATT-
CLEVEREST-NN for solving the 900 (20 × 45) ROB-queries.

ATT-CLEVEREST-NN solved 877 out of 900 verification queries, while ATT-
CEGAR-NN solved 860 verification queries without reporting any incorrect results
on the abstract DNNs. On those solved by both tools, ATT-CLEVEREST-NN
is faster than SAT-CEGAR-NN on all the verification queries and the average
speed-up is 29.52×. These results indicate that our CEGAR framework is signif-
icantly more efficient in verifying robustness properties. We found that almost all

466 Z. Zhao et al.

Table 1. #Call per query to the
verification engine

Tool #Call

SAT-CEGAR-NN 2.24

SAT-CLEVEREST-NN 1.09

ATT-CEGAR-NN 2.49

ATT-CLEVEREST-NN 1.00

Table 2. #Binary search step

Index 1 Index 2 Index 3 Index 4 Average

Noc Noa Noc Noa Noc Noa Noc Noa Noc Noa

Point 1 1 3 1 8 4 9 2 2 2.0 5.5

Point 2 1 2 1 3 1 3 1 3 1.0 2.75

Point 3 1 3 1 2 1 1 1 1 1.0 1.75

Point 4 1 5 1 6 1 6 1 6 1.0 5.75

Point 5 1 1 1 1 1 1 1 1 1.0 1.0

ROB-queries are non-robust on which ATT-CLEVEREST-NN is able to disprove
most of the verification queries without invoking the verification engine.

Understanding the Improvements. To understand why ours can improve
the performance, we analyze the usage of the underlying verification engine and
compare the execution time of test and verify operations on abstract DNNs,
for verifying the 90 COC-queries.

Table 1 reports the number of average calls to the verification engine per
verification query (where the verification queries on which CEGAR-NN reported
erroneous results on abstract DNNs are excluded). We can observe that both
our attack-guided abstraction and abstract-test-refine paradigm can reduce the
usage of formal verification (except for SAT-CEGAR-NN vs. ATT-CEGAR-NN),
which play a major role in improving the efficiency. When ATT-CLEVEREST-NN
is used, the verification engine is invoked only once per verification query. (Note
that the only verification is unavoidable, because all the 90 COC-queries are
UNSAT, so the verification engine has to be used to prove UNSAT.) The number of
calls to the verification engine for SAT-CEGAR-NN and ATT-CEGAR-NN is some-
how counter-intuitive. We found it is because SAT-CEGAR-NN often performs
a large number of merge operations in one refinement step to exclude a coun-
terexample, while ATT-CEGAR-NN only performs few merge operations in one
refinement step to exclude a counterexample. The execution time is improved
by reducing the number merge operations.

Fig. 6. Comparison of test and verify operations on abstract DNNs between
CLEVEREST-NN and CEGAR-NN.

CLEVEREST 467

Figure 6 depicts the execution time of test and verify operations on
abstract DNNs between CLEVEREST-NN and CEGAR-NN using both abstrac-
tion strategies, where the last calls to the verification engine are executed. We
can observe that testing is significantly faster than formal verification. Indeed,
the average testing time used by CLEVEREST-NN is 0.26s while the average ver-
ification time used by CEGAR-NN is 1006.94s, with average speed-up 31,513×
per verification query.

5.3 Approximating Maximum Robustness Radii

To evaluate CLEVEREST-NN for approximating maximum robustness radii, we
compare the number of binary-search steps of ATT-CLEVEREST-NN and ATT-
CEGAR-NN within 6 h on the 20 MR-queries, where the larger number indi-
cates better capability for approximating maximum robustness radii. The 20
MR-queries are obtained from the Points 1–5 of Reluplex [28] each of which has
four queries (named Index 1–4) for approximating maximum robustness radii
without changing the clear-of-conflict output advisory.

The results are shown in Table 2, where columns (Noc) and (Noa) give the
number of binary search steps of ATT-CEGAR-NN and ATT-CLEVEREST-NN
respectively. We can observe that ATT-CLEVEREST-NN excels in this case.

6 Related Work

CLEVEREST proposes a synergy between testing and CEGAR-based formal ver-
ification for neural networks. As there is a vast amount of literature regarding
these topics, we discuss here the most relevant ones.

Robustness Testing. The robustness of neural networks have received exten-
sive attention over the past few years. Many adversarial attacks under the white-
box setting have been proposed [6,12,20,32,38,45], where white-box means that
all information about the network is available. White-box adversarial attacks
often find counterexamples by leverage gradient information, therefore are highly
efficient. There also exist black-box adversarial attacks [4,9] that use only the
inputs and outputs of the network to find counterexamples. We instantiate our
methodology by leveraging the PGD adversarial attack which is a white-box one,
as it is generally assumed that all network details are known during network ver-
ification. Remarkably, both black-box and white-box adversarial attacks could
be leveraged in our CEGAR scheme thanks to the generality of our methodology.

Neural networks have also received attention from the perspective of tra-
ditional software testing. For example, DeepXplore [46] proposes the notion of
neuron coverage to guide the testing process. Following their idea, a series of
coverage criteria have been suggested for neural network testing [30,36]. Con-
ventional testing techniques have also been adapted to test neural networks, such
as concolic testing [53] and mutation testing [37]. We did not use neuron cov-
erage to guide testing in this work, as several coverage metrics are not related

468 Z. Zhao et al.

to robustness [13] and coverage-guided testing is mainly used to improve the
coverage, instead of quickly finding counterexamples.

Neural Network Verification. Various formal verification techniques have
been proposed to verify neural networks including robustness and fairness prop-
erties, based on abstract interpretation [18,21,33,40,42,49,50,56,57,59,60,62,
63,65], and constraint solving (e.g., SMT [15,24,28,29,48], LP and MILP [5,
14,34,55,61]). Although these approaches feature theoretical guarantees, they
usually suffer limitations in either scalability or efficiency, hence are difficult to
be applied to precisely verify large models in practice. To address the issue,
different approaches have emerged. A few approaches, such as proof reuse [17],
input quantization [26], divide-and-conquer [5], eager falsification [23] and net-
work abstraction [2,16,19,47,52], have been proposed to accelerate the veri-
fication while some others were proposed to refine either the estimated output
ranges [50,60,63,65] or the abstract network [16,44]. We instead offer an alterna-
tive solution by integrating the efficient yet inaccurate testing techniques into the
CEGAR-based verification framework. As mentioned before, we did not compare
with these approaches, as our main goal is to push the frontier of CEGAR-based
verification approaches towards which this work makes a significant step.

Our methodology is general and can leverage any testing methods, iterative
abstractions, CEGAR-based schemes and back-end verification engines. As these
continue to improve, it is expected that our method will become more scalable.

Combination of Testing and Verification. There also exist techniques in
the conventional software verification field combining testing and verification to
mitigate the high complexity of verification. For instance, the authors in [11,25]
combine both techniques together but the techniques do not assist each other.
Instead, they test and verify different subprograms separately by program par-
titioning or constructing residual programs. The approaches proposed in [43,64]
leverage testing techniques to choose a good abstraction for verification, whilst
the authors utilize the information from testing to refine the abstraction in the
case spurious counterexamples are found [3,22]. Our methodology CLEVEREST
presents the first attempt to synergistically combine these two complementary
techniques under the neural network setting, specifically, accelerating the de
facto CEGAR framework by integrating the abstract-test-refine paradigm.

7 Conclusion

In this paper, we have proposed a new CEGAR-based framework CLEVEREST
for DNN verification by synergistically combining testing and CEGAR-based ver-
ification techniques, which brings the best of both worlds. We have instantiated
and implemented our methodology by leveraging the CEGAR-NN verification
approach and the PGD adversarial attack, giving rise to the tool CLEVEREST-
NN. Extensive experiments on the ACAS Xu DNN benchmark demonstrated the
efficacy of our methodology.

CLEVEREST 469

A Appendix

A.1 PGD Adversarial Attack Algorithm

Algorithm 4 describes the process of the PGD adversarial attack. Given a DNN
N , an input �x ∈ X, the number of restart times n, the number of iteration steps
per time m, a step size α, a L∞ norm distance threshold ε, Algorithm 4 returns
either an adversarial example �x′ such that Nc(�x)
= Nc(�x′) and ‖�x − �x′‖∞ ≤ ε,
or NULL indicating that no adversarial example can be found.

In detail, the outer for-loop (lines 1–11) performs up to n times of iterations,
each of which has a randomized seed �x′ obtained by adding a Gaussian noise
δ onto the input �x (lines 2–3). During each iteration of the outer for-loop, the
inner for-loop (lines 4–10) iteratively computes a seises of new samples (up to
m samples) starting from the randomized seed �x′.

During each iteration of the inner for-loop (lines 4–10), Algorithm 4 first com-
putes the classification result y = Nc(�x′) of the DNN N by forward propagating
the input �x′ and then compares the result with the ground-truth class Nc(�x). If
they are different, �x′ is an adversarial example and Algorithm 4 returns �x′. If
they are the same, then �x′ not is an adversarial example. Algorithm 4 performs a
backward propagation to get the gradient ∇�x (line 9) from which a new sample
�x′ is created (line 10).

Algorithm 4: PGD adversarial attack
input : a DNN N , an input �x, restart times n, number of steps per time m,

step size α, L∞ norm distance threshold ε
output: adversarial example �x′ or NULL

1 for i ← 1 to n do

2 Generate a Gaussian noise �δ such that ‖�δ‖∞ ≤ ε;

3 �x′ ← �x + �δ; /* Create a randomized seed */

4 for j ← 1 to m do
5 y ← Nc(�x

′); /* Get the model output */

6 if y �= Nc(�x) then
7 return �x′; /* Find an adversarial example */

8 else
9 ∇�x ← back propagate(N, J(�x′, Nc(�x))); /* Get gradient */

10 �x′ ← clipε,�x(�x′ + α × sign(∇�x)); /* Compute a new sample */

11 return NULL;

References

1. Apollo: an open, reliable and secure software platform for autonomous driving
systems. http://apollo.auto (2018)

2. Ashok, P., Hashemi, V., Kret́ınský, J., Mohr, S.: Deepabstract: neural network
abstraction for accelerating verification. In: Proceedings of the 18th International
Symposium on Automated Technology for Verification and Analysis, pp. 92–107
(2020)

http://apollo.auto

470 Z. Zhao et al.

3. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S.D., Thakur,
A.V.: Proofs from tests. IEEE Trans. Softw. Eng. 36, 495–508 (2010)

4. Bu, L., Zhao, Z., Duan, Y., Song, F.: Taking care of the discretization problem:
a comprehensive study of the discretization problem and a black-box adversarial
attack in discrete integer domain. IEEE Trans. Dependable Secur. Comput. 19(5),
3200–3217 (2022)

5. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21,
1–39 (2020)

6. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: Proceedings of IEEE Symposium on Security and Privacy, pp. 39–57 (2017)

7. Chen, G., et al.: Who is real Bob? adversarial attacks on speaker recognition sys-
tems. In: Proceedings of the 42nd IEEE Symposium on Security and Privacy, pp.
694–711 (2021)

8. Chen, G., Zhao, Z., Song, F., Chen, S., Fan, L., Liu, Y.: AS2T: Arbitrary source-to-
target adversarial attack on speaker recognition systems. IEEE Trans. Dependable
Secur. Comput., 1–17 (2022)

9. Chen, P., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.: ZOO: zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security. pp. 15–26 (2017)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

11. Czech, M., Jakobs, M.C., Wehrheim, H.: Just test what you cannot verify. In:
Proceedings of the 18th International Conference on Fundamental Approaches to
Software Engineering, pp. 100–114 (2015)

12. Dimitrov, D.I., Singh, G., Gehr, T., Vechev, M.: Provably robust adversarial exam-
ples. In: Proceedings of the International Conference on Learning Representations
(2021)

13. Dong, Y., et al.: An empirical study on correlation between coverage and robustness
for deep neural networks. In: Proceedings of the 25th International Conference on
Engineering of Complex Computer Systems, pp. 73–82 (2020)

14. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep
feedforward neural networks. In: Proceedings of the 10th International Symposium
NASA Formal Methods, pp. 121–138 (2018)

15. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings of the 15th International Symposium on Automated Technology
for Verification and Analysis, pp. 269–286 (2017)

16. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: Proceedings of the 32nd International Conference on
Computer Aided Verification (2020)

17. Fischer, M., Sprecher, C., Dimitrov, D.I., Singh, G., Vechev, M.T.: Shared cer-
tificates for neural network verification. In: Proceedings of the 34th International
Conference on Computer Aided Verification, pp. 127–148 (2022)

18. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of the 2018 IEEE Symposium on Security and Pri-
vacy, pp. 3–18 (2018)

19. Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C.W., Katz, G.: Simplifying
neural networks using formal verification. In: Proceedings of the 12th International
Symposium NASA Formal Methods, pp. 85–93 (2020)

CLEVEREST 471

20. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: Proceedings of the 3th International Conference on Learning Representa-
tions (2015)

21. Goubault, E., Palumby, S., Putot, S., Rustenholz, L., Sankaranarayanan, S.: Static
analysis of ReLU neural networks with tropical polyhedra. In: Proceedings of the
28th International Symposium Static Analysis, pp. 166–190 (2021)

22. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: a new algorithm for property checking. In: Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
117–127 (2006)

23. Guo, X., Wan, W., Zhang, Z., Zhang, M., Song, F., Wen, X.: Eager falsification
for accelerating robustness verification of deep neural networks. In: Proceedings of
the 32nd IEEE International Symposium on Software Reliability Engineering, pp.
345–356 (2021)

24. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Proceedings of the 29th International Conference on Computer Aided
Verification, pp. 3–29 (2017)

25. Jalote, P., Vangala, V., Singh, T., Jain, P.: Program partitioning: a framework
for combining static and dynamic analysis. In: Proceedings of the International
Workshop on Dynamic Analysis (2006)

26. Jia, K., Rinard, M.C.: Verifying low-dimensional input neural networks via input
quantization. In: Proceedings of the 28th International Symposium Static Analysis,
pp. 206–214 (2021)

27. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: IEEE/AIAA Digital Avionics
Systems Conference (2016)

28. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient smt solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

29. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Proceedings of the International Conference on Computer
Aided Verification, pp. 443–452 (2019)

30. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: Proceedings of the IEEE/ACM 41st International Conference on
Software Engineering, pp. 1039–1049 (2019)

31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

32. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
In: Proceedings of International Conference on Learning Representations (2017)

33. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural
networks with symbolic propagation: Towards higher precision and faster verifi-
cation. In: Proceedings of the 26th International Symposium Static Analysis, pp.
296–319 (2019)

34. Lin, W., Yang, Z., Chen, X., Zhao, Q., Li, X., Liu, Z., He, J.: Robustness verification
of classification deep neural networks via linear programming. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11418–
11427 (2019)

35. Liu, W., Song, F., Zhang, T., Wang, J.: Verifying ReLU neural networks from a
model checking perspective. J. Comput. Sci. Technol. 35(6), 1365–1381 (2020)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

472 Z. Zhao et al.

36. Ma, L., et al.: DeepGauge: multi-granularity testing criteria for deep learning sys-
tems. In: Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pp. 120–131 (2018)

37. Ma, L., et al.: DeepMutation: mutation testing of deep learning systems. In: Pro-
ceedings of the 29th IEEE International Symposium on Software Reliability Engi-
neering, pp. 100–111 (2018)

38. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learn-
ing models resistant to adversarial attacks. In: Proceedings of the International
Conference on Learning Representations (2018)

39. Mangal, R., Sarangmath, K., Nori, A.V., Orso, A.: Probabilistic Lipschitz analysis
of neural networks. In: Proceedings of the 27th International Symposium Static
Analysis, pp. 274–309 (2020)

40. Mazzucato, D., Urban, C.: Reduced products of abstract domains for fairness cer-
tification of neural networks. In: Proceedings of the 28th International Symposium
Static Analysis, pp. 308–322 (2021)

41. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

42. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.T.: PRIMA:
general and precise neural network certification via scalable convex hull approxi-
mations. Proc. ACM Program. Lang. 6(POPL), 1–33 (2022)

43. Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 373–386 (2012)

44. Ostrovsky, M., Barrett, C.W., Katz, G.: An abstraction-refinement approach to
verifying convolutional neural networks. CoRR abs/2201.01978 (2022)

45. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.:
The limitations of deep learning in adversarial settings. In: Proceedings of IEEE
European Symposium on Security and Privacy, pp. 372–387 (2016)

46. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: automated whitebox testing of
deep learning systems. In: Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pp. 1–18 (2017)

47. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural net-
works. In: Proceedings of the Annual Conference on Neural Information Processing
Systems (2019)

48. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Proceedings of the 22nd International Conference on
Computer Aided Verification (2010)

49. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems, pp. 10825–10836 (2018)

50. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019)

51. Song, F., Lei, Y., Chen, S., Fan, L., Liu, Y.: Advanced evasion attacks and mitiga-
tions on practical ml-based phishing website classifiers. Int. J. Intell. Syst. 36(9),
5210–5240 (2021)

52. Sotoudeh, M., Thakur, A.V.: Abstract neural networks. In: Proceedings of the 27th
International Symposium Static Analysis, pp. 65–88 (2020)

53. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Con-
colic testing for deep neural networks. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineerin, pp. 109–119 (2018)

CLEVEREST 473

54. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the
2nd International Conference on Learning Representations (2014)

55. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings of the 7th International Conference
on Learning Representations (2019)

56. Tran, H., et al.: Star-based reachability analysis of deep neural networks. In: Pro-
ceedings of the 3rd World Congress on Formal Methods, pp. 670–686 (2019)

57. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness
certification of neural networks. Proc. ACM Program. Lang. 4(OOPSLA), 185:1–
185:30 (2020)

58. VNN-COMP: 2nd international verification of neural networks competition.
https://sites.google.com/view/vnn2021 (2021)

59. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Proceedings of Annual Conference on Neural Information
Processing Systems (2018)

60. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Security Symposium on Security, pp. 1599–1614 (2018)

61. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Proceedings of the 35th International Con-
ference on Machine Learning, pp. 5283–5292 (2018)

62. Yang, P., Li, J., Liu, J., Huang, C., Li, R., Chen, L., Huang, X., Zhang, L.: Enhanc-
ing robustness verification for deep neural networks via symbolic propagation. For-
mal Aspects Comput. 33(3), 407–435 (2021)

63. Yang, P., et al.: Improving neural network verification through spurious region
guided refinement. In: Proceedings of 27th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pp. 389–408 (2021)

64. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: better
together! In: Proceedings of the International Symposium on Software Testing and
Analysis, pp. 145–156 (2006)

65. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verifica-
tion of recurrent neural networks for cognitive tasks via reachability analysis. In:
Proceedings of 24th European Conference on Artificial Intelligence, pp. 1690–1697
(2020)

66. Zhang, H., et al.: Alpha-Beta-CROWN: a fast and scalable neural network verifier
with efficient bound propagation (2021). https://github.com/huanzhang12/alpha-
beta-CROWN

67. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based
quantitative analysis framework for binarized neural networks. In: Proceedings of
the 33rd International Conference on Computer Aided Verification, pp. 175–200
(2021)

68. Zhang, Y., Zhao, Z., Chen, G., Song, F., Zhang, M., Chen, T.: QVIP: an ILP-based
formal verification approach for quantized neural networks. In: Proceedings of the
37th IEEE/ACM International Conference on Automated Software Engineering
(2022)

69. Zhao, Z., Chen, G., Wang, J., Yang, Y., Song, F., Sun, J.: Attack as defense:
characterizing adversarial examples using robustness. In: Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
42–55 (2021)

https://sites.google.com/view/vnn2021
https://github.com/huanzhang12/alpha-beta-CROWN
https://github.com/huanzhang12/alpha-beta-CROWN

	CLEVEREST: Accelerating CEGAR-based Neural Network Verification via Adversarial Attacks
	1 Introduction
	2 Background
	3 Methodology
	3.1 The Standard CEGAR Framework
	3.2 Our CEGAR Framework

	4 DNN Verification in Our CEGAR Scheme
	4.1 CEGAR-NN
	4.2 Instantiating Our CEGAR Scheme

	5 Implementation and Evaluation
	5.1 Performance of Our Attack-guided Abstraction
	5.2 Performance of Our CEGAR Framework CLEVEREST-NN
	5.3 Approximating Maximum Robustness Radii

	6 Related Work
	7 Conclusion
	A Appendix
	A.1 PGD Adversarial Attack Algorithm

	References

