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Di�erential cryptanalysis is a powerful algorithmic-level attack, playing a central role in evaluating the security
of symmetric cryptographic primitives. In general, the resistance against di�erential cryptanalysis can be
characterized by the maximum expected di�erential characteristic probability. In this paper, we present generic
and extensible approaches based on mixed integer linear programming (MILP) to bound such probability. We
design a high-level cryptography-speci�c language EasyBC tailored for block ciphers and provide various
rigorous procedures as di�erential denotational semantics, to automate the generation of MILP from block
ciphers written in EasyBC. We implement an open-sourced tool that provides support for fully automated
resistance evaluation of block ciphers against di�erential cryptanalysis. The tool is extensively evaluated
on 23 real-life cryptographic primitives including all the 10 �nalists of the NIST lightweight cryptography
standardization process. The experiments con�rm the expressivity of EasyBC and show that the tool can
e�ectively prove the resistance against di�erential cryptanalysis for all block ciphers under consideration.
EasyBC makes resistance evaluation against di�erential cryptanalysis easily accessible to cryptographers.
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1 INTRODUCTION

A block cipher is a symmetric cryptographic technique that uses the same key to encrypt and
decrypt data in �xed-size blocks. Guided by the design principles of block ciphers [Shannon 1949],
a vast number of block ciphers have been proposed, varying in, e.g., network structures and
block sizes. Many of them have been standardized and are widely used in daily life to provide
con�dentiality, integrity, and authentication. Di�erential cryptanalysis, proposed by [Biham and
Shamir 1990], is a powerful algorithmic-level attack against block ciphers by analyzing the e�ect
of particular di�erences in input pairs on the di�erences of pairs of intermediate states under
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the same key. It has proved to be a very e�ective attack, which has broken block ciphers such
as DES [Biham and Shamir 1990], FEAL [Aoki et al. 1997], WARP [Teh and Biryukov 2022], and
K-Cipher [Mahzoun et al. 2022]. As a result, a provable guarantee of the resistance of block ciphers
against di�erential cryptanalysis has become a standard criterion for new block ciphers and indeed
a basic requirement for them to be standardized [Katz and Lindell 2014]. In light of the diversity
and wide deployment of block ciphers, a generic, and ideally automated, approach which can be
used to evaluate their resistance against di�erential cryptanalysis, becomes indispensable.

In general, the resistance of block ciphers against di�erential cryptanalysis is commonly charac-
terized by the maximum expected di�erential characteristic probability (MaxEDCP for short, the
de�nition of which is fairly standard but technical, and will be given in Section 2.1). A block cipher
is considered to be resistant against di�erential cryptanalysis if theMaxEDCP is no greater than
2−� , where � is the block size of the block cipher [Heys 2002; Lai et al. 1991]. In light of this, the
central task of security analysis for block ciphers against di�erential cryptanalysis is reduced to
computing such probability. To this end, [Matsui 1994] proposed a branch-and-bound searching
algorithm that traverses di�erential characteristics in a depth-�rst manner and computes their
probabilities during traversal. However, it becomes ine�cient with the increasing of candidate
di�erential characteristics. Various heuristics are then proposed to improve the e�ciency [Aoki
et al. 1997; Bao et al. 2014; Biryukov and Nikolić 2010; Ji et al. 2021], but they harness cipher-speci�c
optimizations and thus require sophisticated programming skills.
Several alternative methods are introduced, which reduce to mixed integer linear program

(MILP [Mouha et al. 2011]), Boolean satis�ability problem (SAT [Mouha and Preneel 2013]), or
satis�ability modulo theory (SMT [Aumasson et al. 2014]). These methods allow cryptanalysts
to specify the problem for each cipher using the input language of MILP/SAT/SMT solvers so
that respective solvers can be harnessed. Plenty of modeling methods for cryptography-speci�c
operations such as substitution-box (S-box), Exclusive-OR (XOR), and linear transformations, as well
as heuristics, are proposed to improve e�ciency and accuracy. However, insofar cryptanalysts have
to manually model each cipher in the tool they choose to use, or at best write a model generation
script for each cipher, which is usually intricate, error-prone, and laborious, as it requires the
cryptanalysts to be familiar with the speci�c tool and a wide range of modeling methods. There
appears to be a lack of language support, uni�ed computational approaches, and fully automated
tools for evaluating the resistance of block ciphers against di�erential cryptanalysis.

Contributions. In this work, our primary aim is to develop a generic and automated approach
for evaluating the resistance of block ciphers against di�erential cryptanalysis. To achieve this
goal, we begin by designing a novel high-level statically-typed, C-like cryptography-speci�c
language, EasyBC (Easy Block Cipher), tailored for block ciphers. Besides standard types and
operations, EasyBC provides cryptography-speci�c types (e.g., S-boxes, P-boxes) and operations
(e.g., substitution via S-box, linear transformation via P-box, or matrix-vector product), to facilitate
the implementation of block ciphers. (Note that an S-box takes< input bits and transforms them
into = output bits and P-box, short for Permutation-box, is an array specifying a permutation
of inputs.) The language is fully speci�ed by a formal grammar together with typing rules and
operational semantics, enabling further automatic analysis.
Concretely speaking, the analysis of block cipher resistance against di�erential cryptanalysis

primarily involves computing theMaxEDCP. However, calculatingMaxEDCP precisely is practically
infeasible. As a result, we employ a strategy to calculate a tight upper bound that is su�cient
to demonstrate resistance. Speci�cally, we adopt the typical MILP-based approach where linear
constraints are used to characterize the dependency (i.e., feasibility) between input and output
di�erences of each operation, and the optimization objective is to minimize an upper bound. In
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particular, we give a rigorous procedure, formalized as a di�erential denotational semantics, to
automate the generation of MILP from EasyBC programs, which not only uni�es and optimizes
the existing but also discovers new generation processes. Our approach is of generic nature, thanks
to the expressivity of the EasyBC langauge, namely, a multitude of block ciphers can be handled in
a uni�ed way.
Technically, the generation of MILP can be done either at the word or bit level. The former is

less involved and generates fewer constraints, but is limited to certain block ciphers; the latter
approach is more �ne-grained and has wider applicability. In both cases, the general strategy is to
determine the lower bound of the minimum number of (di�erentially) active S-boxes, i.e., S-boxes
whose input di�erences are nonzero under two executions [Biryukov and Nikolić 2010; Heys 2002],
from which the upper bound of theMaxEDCP can be deduced according to [Heys 2002; Sun et al.
2014a]. While this strategy is e�cient, it is important to note that the obtained upper bound may
not always be su�ciently tight and may not be applicable for certain ciphers. To address this
limitation, we introduce an extended bit-wise approach that directly bounds the MaxEDCP by
encoding probabilities using additional Boolean variables. We have successfully implemented our
approach as the �rst fully automated tool for evaluating the resistance of block ciphers against
di�erential cryptanalysis. This tool eliminates the need for cryptanalysts to possess knowledge
of MILP generation for cryptographic operations. Instead, they can simply write a program in
EasyBC for a block cipher. Moreover, the generation of MILP from EasyBC program is modular, i.e.,
each cryptographic operation in EasyBC is associated with its own MILP generation rule and new
generation rules could be easily added by implementing designated APIs. As a result, our approach
exhibits excellent extensibility for new block ciphers, enabling a wider range of applicability.

To evaluate the tool, we implement 23 realistic cryptographic primitives with EasyBC, including
all the 10 �nalists of the NIST lightweight cryptography standardization process [NIST 2023] and
other commonly used block ciphers, covering both substitution-permutation network (SPN) based
ciphers (e.g., AES, PRESENT, and GIFT) and balanced Feistel networks (BFN) based ciphers (e.g., DES,
LBLOCK, and TWINE). It turns out that EasyBC can express these block ciphers in a considerably
more succinct way, demonstrating our language’s expressiveness. Moreover, it turns out that our
tool is able to e�ectively handle all realistic block ciphers under consideration, showcasing its
capability in proving the resistance of block ciphers against di�erential cryptanalysis.

In addition, we compare various alternative MILP generation methods for cryptographic opera-
tions. Interestingly, we observe that certain methods may generate fewer constraints and variables.
However, it is worth noting that such reductions may actually have a negative impact on the overall
MILP-solving process. For instance, the recent S-box modeling method proposed by [Udovenko
2021] produces the fewest constraints, but also exhibits the least performance to solve those con-
straints. (Overall, it is signi�cantly less e�cient than some alternatives.) Our �ndings shed light on
the selection of generation methods among various alternatives for practical applications.
We summarize the main contributions as follows.

• We design a high-level cryptography-speci�c language EasyBC tailored for block ciphers, en-
abling further automatic analysis.

• We give generic and extensible approaches for automated resistance evaluation of block ciphers
written in EasyBC against di�erential cryptanalysis.

• We implement and extensively evaluate an open-sourced prototype of EasyBC, which con�rms
the expressiveness of EasyBC and the e�ectiveness of our approach.

Structure. The rest of the paper is organized as follows. Section 2 presents the background of
block ciphers and di�erential cryptanalysis. Section 3 introduces EasyBC and an overview of our
approach. Section 4 presents three key utilities used in our MILP generation. Section 5 and Section 6
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describe the word-wise and bit-wise approach. Section 7 describes the extended bit-wise approach.
Section 8 reports the experimental results. We discuss related work in Section 9 and conclude this
work in Section 10.

2 BACKGROUND

Throughout this paper, B denotes the Boolean domain {0, 1}, and N denotes the set of non-negative
integers. Boolean values are treated as integers in arithmetic computations. Given a vector/array ®G ,
®G8 denotes the (8 + 1)-th entry. Given a matrix" ,"8 denotes the (8 + 1)-th row, and"8, 9 denotes

the ( 9 + 1)-th entry of "8 . An<-bitstream is Boolean vector ®1 with< entries. We denote by ⊕

the bit-wise XOR operator. ®1∥ ®1 ′ = (10, · · · , 1<, 1
′
0, · · · , 1

′
=) is the concatenation of two bitstreams

®1 = (10, · · · , 1<) and ®1 ′ = (1 ′0, · · · , 1
′
=). We denote by bin(G) the binary representation of an

unsigned integer G as a bitstream.

2.1 Block ciphers

Block ciphers are a type of symmetric cryptography, which encrypts and decrypts data in �xed-size
(e.g., 64 or 128 bits) blocks using the same key [Bogdanov 2010; Knudsen 1997].

De�nition 2.1. A block cipher is a function Enc : B$ × B� → B� such that for every key  ∈ B$,
Enc( , ·) is a bijective function, where � is the block size and $ is the key size.

Intuitively, Enc( , ·) is a keyed-permutation that maps an input block to an output block, where
a block is a �-bitstream, the key  determines which permutation to perform. The input and
output of Enc( , ·) are called plaintext and ciphertext, respectively. A block cipher Enc is ideal if
it is de�ned by assigning a uniformly drawn permutation to each of the 2$ keyed-permutations.
An ideal block cipher is commonly considered to be computationally secure if the key size $ is
large enough since the brute-force attack requires $ (2$) time. However, it is extremely di�cult to
implement an ideal block cipher for practical block sizes (e.g., 64 or 128), as one randomly drawn
permutation Enc( , ·) has to be stored for each given key  .

To be e�cient yet strong, modern block ciphers apply several (possibly distinct) keyed permuta-
tions, where one keyed permutation is a round and implemented by a round function.

De�nition 2.2. A +-round iterative block cipher (+-IBC) is a function Enc : B$ × B� → B� such
that for every key  ∈ B$,

Enc( , ·) = Enc+ ( 
+, ·) ◦ · · · ◦ Enc1 ( 

1, ·),

where Enc8 : B$ × B� → B� is the 8-th round with its subkey  8 for 1 ≤ 8 ≤ +, symbol ◦ denotes
function composition, and the subkeys are generated via a key schedule algorithm 6 : B$ → (B$)+ ,
i.e., 6( ) = ( 1, · · · ,  +).

Given a key  ∈ B$, Enc( , ·) is used for encryption and Dec( , ·) is used for decryption, i.e.,
Dec( , ·) = Enc−11 ( 1, ·) ◦ · · · ◦ Enc−1+ ( +, ·), where  8 is the 8-th round subkey in De�nition 2.2.
Block ciphers can be built in various ways following iterative cipher schemes. The two most

widely used are substitution-permutation networks (SPN) [Kam and Davida 1979] and balanced
Feistel networks (BFN) [Nyberg 1996]. Note that BFN is used in the former U.S. encryption standard
(DES-Data Encryption Standard) [Fox 2000] and SPN is used in the current one (AES-Advanced
Encryption Standard) [Daemen and Rijmen 1999]. A brief introduction of BFN and SPN is given in
[Sun et al. 2023, Section A].

In the sequel, we �x a +-IBC Enc : B$ × B� → B� with rounds Enc1, · · · , Enc+ . We assume that
the attacker knows all dethe tails of the encryption and decryption except for the secret key.
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2.2 Di�erential Cryptanalysis

Di�erential cryptanalysis recovers the secret key by exploiting the fact that the probability of some
output di�erences of rounds in a non-ideal block cipher is higher than the expected value (i.e., 2−�)
for certain input di�erences [Biham and Shamir 1990]. We review the related concepts below.
Di�erence and di�erential. Given two �-bitstreams- ∈ B� and- ′ ∈ B� , their (XOR-) di�erence
Δ- is de�ned by Δ- = - ⊕ - ′. Note that for any �xed di�erence Δ- , there are exactly 2� pairs
(-,- ′) such that - ⊕ - ′

= Δ- . A di�erential is de�ned to be a pair of di�erences (Δ-,Δ. ).
Given a pair of inputs (-,- ′) ∈ B= × B= for a (deterministic) function 5 : B= → B< , the input

di�erence of the function 5 is the di�erence Δ- = - ⊕ - ′ of the inputs (-,- ′), and the output
di�erence of 5 is the di�erence 5 (- ) ⊕ 5 (- ′) of the outputs (5 (- ), 5 (- ′)). Clearly, when the input
di�erence is �xed to be Δ- , the output di�erence of an input - is 5 (- ) ⊕ 5 (- ⊕ Δ- ).

The probability Pr5 (Δ-,Δ. ) of a given di�erential (Δ-,Δ. ) for the function 5 is the proportion
of inputs - ∈ B= such that the output di�erence 5 (- ) ⊕ 5 (- ⊕ Δ- ) is equal to Δ. , i.e.,

Pr5 (Δ-,Δ. ) =
|{- ∈ B= | 5 (- ) ⊕ 5 (- ⊕ Δ- ) = Δ. }|

2=
.

In particular, for an 8-th round Enc8 : B$×B� → B� , with �xed subkey  8 , PrEnc8 ( 8 , ·) (Δ-
8−1,Δ- 8 )

is the probability of a di�erential (Δ- 8−1,Δ- 8 ) for the function Enc8 ( 
8 , ·).

It is worth mentioning that in di�erential cryptanalysis, a key assumption is that the output
di�erence Enc8 ( 8 , - 8−1) ⊕ Enc8 ( 

8 , - 8−1 ⊕ Δ- 8−1) of the 8-th round is independent of the subkey
 8 for any �xed input - 8−1 and input di�erence Δ- 8−1. As a result, for clarity, PrEnc8 ( 8 , ·) (·) is
simply written as PrEnc8 (·).
Di�erential characteristic. An B-round di�erential characteristic is a vector (Δ- 0, · · · ,Δ- B ) of
di�erences, where

• Δ- 0 a nonzero input di�erence to the cipher Enc : B$ × B� → B� ,
• for 1 ≤ 8 ≤ B , (Δ- 8−1,Δ- 8 ) is a di�erential of the 8-th round Enc8 ( 

8 , ·).

De�nition 2.3. The di�erential characteristic probability PrEnc( , ·) (Δ-
0, · · · ,Δ- B ) of an B-round

di�erential characteristic (Δ- 0, · · · ,Δ- B ) is the proportion of inputs - 0 ∈ B� to the cipher Enc
such that the output di�erence of the 8-th round Enc8 is Δ- 8 for every 1 ≤ 8 ≤ B in the two
executions of Enc under the two inputs ( ,- 0) and ( ,- 0 ⊕ Δ- 0), namely,

PrEnc( , ·) (Δ-
0, · · · ,Δ- B ) =

��{- 0 ∈ B� | ∀8 .1 ≤ 8 ≤ B .Enc≤8 (-0) ⊕ Enc≤8 (-0 ⊕ Δ- 0) = Δ- 8
}��

2�

where Enc≤8 := Enc8 ( 
8 , ·) ◦ · · · ◦ Enc1 ( 

1, ·) for 1 ≤ 8 ≤ B .

Recall that we assumed that the output di�erence Enc8 ( 8 , - 8−1) ⊕ Enc8 ( 
8 , - 8−1 ⊕ Δ- 8−1) of

the 8-th round is independent upon the subkey  8 for any �xed input - 8−1 and input di�erence
Δ- 8−1. Thus, the probability PrEnc( , ·) (Δ-

0, · · · ,Δ- B ) does not depend on the B-round subkey
 B , but depends on the other subkeys  1, · · · ,  B−1. It is known that PrEnc( , ·) (Δ- 0, · · · ,Δ- B ) is
upper bound by

∏B
8=1 PrEnc8 (Δ-

8−1,Δ- 8 ) [Heys and Tavares 1996], and they are the same if Enc is
a Markov cipher and its round subkeys are independent [Lai et al. 1991].

In a resistant block cipher, for any �xed key , the probability PrEnc( , ·) (Δ- 0, · · · ,Δ- B ) should be
small enough for any di�erential characteristic (Δ- 0, · · · ,Δ- B ) if the input- 0 is sampled uniformly.
However, in practice, PrEnc( , ·) (Δ- 0, · · · ,Δ- B ) may be higher than 2−� based on which an attacker

can e�ciently recover the subkey  B+1. The di�erential characteristic (Δ̃-
0
, · · · , Δ̃-

B
) is said to

be optimal if it attains the greatest expected di�erential characteristic probability among all the B-
round di�erential characteristics. We remark that optimal di�erential characteristics are commonly
assumed to be identical for di�erent keys  during the attack, as the actual key is unknown to
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the adversary before attacking. In the sequel, for simplicity, PrEnc( , ·) (·) is written as PrEnc (·)

and PrEnc (Δ̃-
0
, · · · , Δ̃-

B
) is refer to as the maximum expected di�erential characteristic probability

(MaxEDCP). The key recovering procedure is given in [Sun et al. 2023, Section B], where the number
of plaintexts required to infer the (B+1)-round subkey B+1 is proportional to 1

PrEnc (Δ̃-
0
, · · · ,Δ̃-

B
)
[Heys

2002], i.e., the reciprocal of the MaxEDCP of B-round di�erential characteristics. As a result, if

one could show that an upper bound of PrEnc (Δ̃-
0
, · · · , Δ̃-

B
) is no greater than 2−� , one would

conclude the resistance of the block cipher against such di�erential cryptanalysis.

2.3 Active S-box, Di�erential Distribution Table and Branch Number

We introduce some notions of active S-box, di�erential distribution table and branch number which
will be used in our approach.

Active S-boxes. The number of active S-boxes can be used to upper bound theMaxEDCP. Assume
S-boxes are distinct in the cipher Enc.

De�nition 2.4. [Heys 2002] Given a key  , an input - 0 and an input di�erence Δ- 0 to the cipher
Enc, an S-box S is active if the two inputs to S are distinct in the two executions of the cipher Enc
under two inputs ( ,- 0) and ( ,- 0 ⊕ Δ- 0), otherwise it is inactive.

We denote by Ndiff the minimum number of the active S-boxes in all the possible pairs of
executions. The probability of optimal B-round di�erential characteristics is bounded from above by
?Ndiff [Heys 2002], where ? denotes the maximum probability PrS (Δ-,Δ. ) among all the nonzero
di�erentials (Δ-,Δ. ) for any S-box S which is active in the B-round di�erential characteristics.

Di�erential distribution table. A di�erential distribution table (DDT) is a data structure to
represent the distribution Pr5 of a function 5 for all possible di�erentials. It also explicitly expresses
the dependency (i.e., feasibility) between input and output di�erences of the function 5 .

De�nition 2.5. Given a function 5 : B=1 × · · · ×B=8 → B<1 × · · · ×B< 9 , its DDT D5 is table such
that for every vector of input di�erences (Δ- 1, · · · ,Δ- 8 ) and every vector of output di�erences
(Δ. 1, · · · ,Δ. 9 ), the entry D5 (Δ-

1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) gives the number of vectors of inputs
(- 1, · · · , - 8 ) ∈ B=1 × · · · × B=8 such that

5 (- 1, · · · , - 8 ) ⊕ 5 (- 1 ⊕ Δ- 1, · · · , - 8 ⊕ Δ- 8 ) = (Δ. 1, · · · ,Δ. 9 ).

The probability Pr5 (Δ-
1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) can be deduced from the DDT D5 :

Pr5 (Δ-
1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) =

D5 (Δ-
1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 )

2=1+···+=8
.

We say the the vector of input and output di�erences (Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) is feasible
for 5 , if the probability Pr5 (Δ-

1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) is nonzero, otherwise it is infeasible.
When the input space of the function 5 is small, its DDT D5 can be computed by enumeration.

Example 2.6. Consider the AND operation ∧ : B × B→ B. We have that

Δ. = (- 1 ∧ - 2) ⊕ ((- 1 ⊕ Δ- 1) ∧ (- 2 ⊕ Δ- 2)) .

The DDT D∧ is shown in Table 1, e.g., Pr∧ (0, 0, 0) =
4
4
= 1, and Pr∧ (Δ-

1,Δ- 2,Δ. ) = 2
4
=

1
2
if

Δ- 1
= 1 or/and Δ- 2

= 1 for any �xed Δ. .
The DDTD∨ of the OR operation∨ : B×B→ B is the same asD∧. We can observe that the input

di�erence (0, 0) cannot lead to the output di�erence 0 for both the AND and OR operations. □

Branch number. The (di�erential) branch number of a function is also used to characterize the
dependency between input and output di�erences of the function [Daemen and Rijmen 1999].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 29. Publication date: January 2024.



EasyBC: A Cryptography-Specific Language for Security Analysis of Block Ciphers 29:7

Table 1. The DDT (D∧, D∨) for ∧/∨ : B × B→ B.

(Δ- 1,Δ- 2) (0,0) (0,1) (1,0) (1,1)
Δ. = 0 4 2 2 2
Δ. = 1 0 2 2 2

Table 2. Branch numbers of +,−,∧,∨, ⊕.
+ − ∧ ∨ ⊕

Bmin
ww and Bmin

bw
2 2 1 1 2

Bmax
ww 3 3 3 3 3

Bmax
bw

3n-1 3n-1 3n 3n 2n

De�nition 2.7. Given a function 5 : B=1 × · · · × B=8 → B
<1 × · · · × B< 9 , its minimum (resp.

maximum) word-wise branch number Bmin
ww (5 ) (resp. Bmax

ww (5 )) is de�ned as

Bmax
ww (5 ) = max

{
cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) | ∀1 ≤ ℓ ≤ =. - ℓ ,Δ- ℓ ∈ B=ℓ .BNCond(5 )

}

Bmin
ww (5 ) = min

{
cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) | ∀1 ≤ ℓ ≤ =. - ℓ ,Δ- ℓ ∈ B=ℓ .BNCond(5 )

}

where cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) counts the number of nonzero entries in the vector
(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) and the branch-number condition BNCond(5 ) is:

BNCond(5 ) =

(
(Δ- 1

≠ 0 ∨ · · · ∨ Δ- 8 ≠ 0) ∧ (. 1, · · · , . 9 ) = 5 (- 1, · · · , - 8 )
∧(. 1 ⊕ Δ. 1, · · · , . 9 ⊕ Δ. 9 ) = 5 (- 1 ⊕ Δ- 1, · · · , - 8 ⊕ Δ- 8 )

)
.

Likewise, the minimum (resp. maximum) bit-wise branch number Bmin
bw

(5 ) (resp. Bmax
bw

(5 )) of the
function 5 is de�ned except that cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) counts the number of 1 bits in
the bitstream Δ- 1∥ · · · ∥Δ- 8 ∥Δ. 1∥ · · · ∥Δ. 9 , i.e., Hamming weight.

Intuitively, when the input di�erences of the function 5 are not all 0 bits (i.e.,Δ- 1
≠ 0∨· · ·∨Δ- 8 ≠

0), the number of nonzero entries in any input and output di�erences (Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 )
of the function 5 ranges from Bmin

ww (5 ) to Bmax
ww (5 ), and the Hamming weight of any bitstream

Δ- 1∥ · · · ∥Δ- 8 ∥Δ. 1∥ · · · ∥Δ. 9 ranges from Bmin
bw

(5 ) to Bmax
bw

(5 ).

Example 2.8. Consider the function 5⊕ : B= ×B= → B= such that 5⊕ (- 1, - 2) = - 1 ⊕- 2. We have:
Bmin
ww (5⊕) = Bmax

ww (5⊕) = Bmin
bw

(5⊕) = 2 and Bmax
bw

(5⊕) = 2=. From Bmin
ww (5⊕) = 2, we can deduce that

at least two of (- 1, - 2, - 1 ⊕ - 2) are nonzero if some of (- 1, - 2) is nonzero.
Similarly,Bmin

ww (5⊙),Bmax
ww (5⊙),Bmin

bw
(5⊙) andBmax

bw
(5⊙) for each bit-wise operation ⊙ ∈ {+,−,∧,∨}

can be de�ned, whose values are given in Table 2, where for clarity, we denote byBmin
ww,⊙ ,B

max
ww,⊙ ,B

min
bw,⊙

and Bmax
bw,⊙ the corresponding numbers of the bit-wise operation ⊙ ∈ {+,−,∧,∨, ⊕}. Furthermore,

for a given matrix " and S-box S, Bmin
ww,"

, Bmax
ww,"

, Bmin
bw,"

, Bmax
bw,"

, Bmin
ww,(

, Bmax
ww,(

, Bmin
bw,(

and Bmax
bw,(

are
de�ned accordingly for the linear transformation 5" (G) = " ∗ G and substitution 5S = S(G). □

3 THE DESIGN OF EASYBC

EasyBC is a high-level, statically-typed, C-like cryptography-speci�c language, designed for con-
veniently describing block ciphers but without complicating the subsequent automated security
analysis, so that cryptographers can quickly implement and analyze a block cipher especially during
the design phase.

3.1 Syntax

The syntax of EasyBC is given in Figure 1.
Boxes. EasyBC features one standard array type and four cryptography-speci�c array types
decorated by sbox, pbox, pboxm and ffm, respectively, that are commonly used for implementing
block ciphers. The cryptography-speci�c arrays are global and immutable, thus called boxes in this
paper. In particular, sbox de�nes an array that acts as a lookup-table based S-box for transforming
< input bits to = output bits; pbox de�nes an array for performing permutation; pboxm de�nes a
matrix for linear transformation via matrix-vector product. (Note that pbox can be implemented via
pboxm, we provide both for convenience.) ffm describes the �nite-�eld multiplication (⊗) which may
vary in block ciphers, thus should be de�ned by users. An ffm box is required only for performing
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Operation ⊙ ∈ {+,−,∧,∨, ⊕}
Operation2 ★ ∈ {,−, ∗, /,%}

Width B ::= 1 | 4 | 6 | 8 | 16 | · · ·
Constant = ::= 0 | 1 | 2 | 3 | · · ·
Base Type g ::= uintB | uintB [=] | uint
Position b ::= = | G | b ★ b

Expression 4 ::= = | G | 41 ⊙ 42 |∼ 4 | " ∗ 4

| G ⟨·4 ·⟩ | G ⟨4⟩ | View(4, b1, b2)

| touint(40, · · · , 4B−1) | touint(4) | 4 ≪ b | 4 ≫ b | 4 [b ]

STMT ( ::= g G Declaration
| G = 4; Assignment

| G [b ] = 4 ; Array put

| G = 5 (41, · · · , 4= ); Function call

| g G = 4; Decl-Init
| for (G from =1 to =2){(

+} Range-for

Round_fn rnd::= r_fn uintB [=] 5 (uint A, uintB [=1] B:, uintB [=] ?){(
+ return ~; }

Sbox_fn sbox::= s_fn uintB1 5 (uintB2 G){(
+ return ~; }

Box box::= uintB [=] G = {=0, · · · , =<}
| sbox uintB [=] G = {=0, · · · , =<} | pbox uint[=] G = {=0, · · · , =<}
| pboxm uintB [=] [=] " =

{
{=0,0, · · · , =0,<}, · · · , {=<,0, · · · , =<,<}

}

| ffm uintB [=] [=] " =

{
{=0,0, · · · , =0,<}, · · · , {=C,0, · · · , =C,<}

}

Def defs::= box | sbox | rnd | defs defs
Program P::= @cipher name defs fn uintB [=] 5 (uintB [=1] :, uintB [=] ?){(+ return ~; }

Fig. 1. Syntax of EasyBC.

linear transformations using pboxm, i.e., evaluating expressions of the form" ∗ G , thus cannot be
explicitly involved in any statements. In this work, we assume a �nite �eld of characteristic 2, so
the �nite-�eld addition is the bit-wise XOR (⊕).

Positions. Position b is used to express array indices for array get (4 [b]), array slice (View(4, b1, b2)),
array put (G [b] = 4) and array left/right-rotation (4 ≪ b and 4 ≫ b) via the common operations
{+,−, ∗, /,%}, whose values can be statically determined after preprocessing (i.e., independent of
inputs). After preprocessing, all the positions b will be constants.

Expressions. Expressions are de�ned as usual, includingmodular addition (+), modular substitution
(−), bit-wise AND (∧), bit-wise OR (∨), bit-wise NOT (∼) and bit-wise XOR (⊕), as well as common
cryptography-speci�c operations.
" ∗ 4 is a matrix-vector product using �nite-�eld multiplication (⊗) and addition (⊕), where the

matrix " must be de�ned as an array of type pboxm uintB [=] [=] and the vector 4 should be an
array of type uintB [=]. G ⟨·4 ·⟩ is provided for performing permutation, where G is a P-box. Similarly,
G ⟨4⟩ is provided for performing substitution, where G is an S-box. View(4, b1, b2) is a slice of the
array 4 starting at the index b1 and ending at the index b2 (inclusive), e.g., View((0, 1, 2, 3), 1, 3)
is (1, 2, 3). touint(40, · · · , 4B−1) transforms the B-bitstream (40, · · · , 4B−1) into an B-bit unsigned
integer G such that bin(G) = (40, · · · , 4B−1), e.g., touint(1, 1, 0, 1) is the 4-bit unsigned integer 13.
touint(4) is the same as touint(4 [0], · · · , 4 [= − 1]) for the array 4 of type uint1[=]. An array 4
can be left (resp. right) rotated b positions via 4 ≪ b (resp. 4 ≫ b), which can be seen special
length-preserving permutations. 4 [b] is array get, the same as View(4, b, b).

Statements. Statements in EasyBC can be declarations, assignments, array puts, returns and
round function calls. Note that EasyBC does not support branching statements (e.g., if-then-else),
because current EasyBC su�ces to implement both encryption and decryption processes of block
ciphers while branching statements will make modeling complicated when analyzing security. We
will evaluate the expressive capability of EasyBC in Section 8.1.

Statement g G = 4 is a syntactic sugar of g G ;G = 4 . Statement for (G from =1 to =2){(} is a
range-for loop. Note that the range [=1, =2] is limited to constants, which su�ces to express block
ciphers. The range variable G should be typed as uint, thus could be used in computing indices b .
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Functions. EasyBC has three types of functions decorated by r_fn, s_fn or fn. A function deco-
rated by r_fn is a round function, whose formal parameters are �xed to be the round number A ,
subkey B: , and text CGC . Note that the subkey B: and input text CGC should have the same element
type uintB but may di�er in number of elements, and the input text CGC and output of a round
function should have the same type uintB [=]. An s_fn function is an alternative way to perform
substitution instead of using arrays. Small S-boxes (e.g., 4-bit S-box in PRESENT [Bogdanov et al.
2007]) can be easily expressed as arrays, which can facilitate the follow-up security analysis. How-
ever, it would be infeasible to express large S-boxes as arrays (e.g., 64-bit S-box [Beierle et al. 2020]),
for which s_fn functions can be used. An fn function de�nes the encryption (resp. decryption)
process of a block cipher. Its parameters include the key : and plaintext (resp. ciphertext) CGC . The
function body comprises declarations and round function calls for computing the ciphertext (resp.
plaintext).

Programs. A program % in EasyBC consists of a cipher name (decorated by @cipher), de�nitions
of global boxes and functions, and a de�nition of an fn function describing the cipher.

In this work, following [Mouha et al. 2011;Wu andWang 2012; Zhang et al. 2018; Zhou et al. 2019],
we consider single-key di�erential cryptanalysis, namely, the key is �xed and has no di�erence in
any pair of executions, thus key schedule algorithms are omitted in EasyBC programs. Nevertheless,
EasyBC can be easily extended to related-key di�erential cryptanalysis [Biryukov and Nikolić 2010]
where the key may di�er in some pairs of executions, by introducing a key schedule function. We
leave this as interesting future work.

Core language. The (full) language of EasyBC is designed for conveniently describing block
ciphers with rich but redundant constructs. To ease the automation of the subsequent security
analysis, we have identi�ed a subset of EasyBC as the core language (cf. Figure 1), i.e., in the

places highlighted in yellow, positions b and expressions 4 are limited to constants and variables,

respectively; in the places highlighted in grey constructs will not be present (i.e., they are to be
eliminated by preprocessing the program written in the full language). A program in the core
language is obtained by performing loop unrolling, constant-folding, constant propagation and
dead-code elimination, on which type checking and security analysis are performed.

Example 3.1. Figure 2 shows a snippet of the 64-bit block cipher PRESENT in EasyBC. The array
s is an S-box for substitution, the array p is the P-box for permutation. The round function f1 is
invoked during the 1-st to the 31-st round. Given the subkey sk and text t, f1(8 ,sk,t) for 1 ≤ 8 ≤ 31

produces the output rtn of 8-th round. In detail, the input t is XORed with the subkey sk and
results in the array nt, then the second range-for loop slices nt into 16 arrays via calling View, each
of which is substituted via the S-box s, resulting in the array s_out. The array s_out is processed
by applying the array p to perform permutation. Finally, the result rtn returned.

Remarks on the design choice of EasyBC. In EasyBC, we introduce high-level constructs View,
touint and permutations (i.e., G ⟨·4 ·⟩ and" ∗ 4) to ease the implementation of block ciphers. The
inputs and outputs of round functions are �xed-size blocks which can be implemented by arrays
(e.g., t and rtn in Figure 2). Typically, a block is to be split into small ones on which a look-up table
based S-box (e.g., array in EasyBC) of suitable size is applied (e.g., 4-bit S-box s in Figure 2). The
outputs of S-boxes will be juxtaposed to form a large block on which permutations are performed
via either matrix-vector product or P-boxes (e.g., p1⟨·s_out·⟩ in Figure 2). On the other hand, to
ease the automation of the subsequent security analysis, most indices are limited to positions b
whose values can be statically determined (e.g., 4 [b] and View(4, b1, b2)), and thus become constants
after preprocessing. The loop-up table based S-boxes (i.e., G ⟨4⟩) are an exception as they require a
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1 @cipher PRESENT
2 sbox uint4[16] s = { 1 2 , 5 , 6 , 1 1 , 9 , 0 , 1 0 , 1 3 , 3 , 1 4 , 1 5 , 8 , 4 , 7 , 1 , 2 } ;
3 pbox uint[64] p = { 0 , 1 6 , 3 2 , 4 8 , 1 , 1 7 , 3 3 , . . . 1 5 , 3 1 , 4 7 , 6 3 } ;
4 r _ f n uint1[64] f 1 ( uint r , uint 1 [ 6 4 ] sk , uint 1 [ 6 4 ] t ) {
5 uint1[64] nt ;
6 f o r ( i from 0 to 6 3 ) { n t [ i ] = t [ i ] ^ sk [ i ] ; }
7 uint1[64] s_ou t ;
8 f o r ( i from 0 to 1 5 ) {
9 uint1[4] temp = View ( nt , i ∗ 4 , i ∗ 4 + 3 ) ;
10 uint4 sbox_ in = touint ( temp [ 0 ] , temp [ 1 ] , temp [ 2 ] , temp [ 3 ] ) ;
11 uint4 sbox_out = s1 ⟨ sbox_ in ⟩ # s u b s t i t u t i o n v i a S−box
12 s_ou t [ i ∗4 ]= sbox_out [ 0 ] ; s _ou t [ i ∗4+1]= sbox_out [ 1 ] ;
13 s_ou t [ i ∗4+2]= sbox_out [ 2 ] ; s _ou t [ i ∗4+3]= sbox_out [ 3 ] ;
14 }
15 uint1[64] r t n = p1 ⟨· s_ou t ·⟩ ; # pe rmuta t i on v i a P−box
16 r e t u r n r t n ; }
17 fn uint1[64] enc ( uint 1 [ 2 0 4 8 ] key , uint 1 [ 6 4 ] p l a i n t e x t ) {
18 uint1[64] t e x t = p l a i n t e x t ;
19 f o r ( i from 1 to 3 1 ) { t e x t = f 1 ( i , View ( key , ( i − 1 ) ∗ 6 4 , i ∗ 6 4 − 1 ) , t e x t ) ; }
20 . . . . # e x e cu t e the l a s t rounds
21 r e t u r n t e x t ; }

Fig. 2. Code snippet of the 64-bit block cipher PRESENT in EasyBC.

complicated modeling method. It remains open how to handle generic array access with variable
indices although currently there appears no such need to specify block ciphers.

3.2 Operational Semantics

LetX denote a set of variables. An (evaluation) context f : X→
⋃
8≥1 N

8 is a mapping from variables
to values, where a value can be a (�xed-width) non-negative integer or an array. Let f [G ↦→ E] be
the context such that f [G ↦→ E] (~) = E if G = ~, otherwise f [G ↦→ E] (~) = f (~).

The evaluation judgement is in the form of

f |= 4 : E

meaning that the expression 4 evaluates to the value E under the evaluation context f .
The evaluation rules are given in Figure 3 (top-part), most of which are standard. Rule (S-Box)

states that G ⟨~⟩ is a substitution, namely, the entry of the S-box f (G) at the index f (~). Rule (P-Box1)
states that" ∗ G is the matrix-vector product of the matrix" and the array f (G). Rule (P-Box2)
states that G ⟨·~·⟩ is a permutation of the array f (~) according to the indices given by the P-box
f (G) = ( 90, · · · , 9=−1), where its entry at the index 8 is the entry of the array f (~) at the index 98 .

The operational semantics of statements is de�ned as transition rules of the form

(f, () ⇒ f ′

meaning that the execution of the statement ( from the state f results in the state f ′. For a sequence
of statements (1; (2; · · · (= ;, (f0, (1; (2; · · · (= ; ) ⇒+ f= denotes the transitive transition of ⇒, i.e.,
(f0, (1) ⇒ f1, (f1, (2) ⇒ f2, · · · , (f=−1, (=) ⇒ f= . The transition rules of EasyBC are listed in
Figure 3 (bottom-part), which are standard. We denote by f0(1f1(2f2 · · · (=f= the execution of the
program % starting from the state f0 and ending at the state f= , and (f8−1, (8 ) ⇒ f8 for 1 ≤ 8 ≤ =.
For an execution of an A -IBC, we have

(1) round functions can only be invoked in the fn function,
(2) the �rst arguments in the invoked round functions are the round numbers 1, 2, 3, · · · , A , and
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f |= = : =
(Const)

f (G) = E

f |= G : E
(Var)

f (G) = E E ′ =∼ E

f |=∼ G : E ′
(Not)

f (G1) = =1 f (G2) = =2 = = =1 ⊙ =2

f |= G1 ⊙ G2 : =
(Op)

f (G) = (E0, · · · , E=−1) f (~) = 8

f |= G ⟨~⟩ : E8
(S-Box)

f (G) = (E0, · · · , E=−1), ®E =
(⊕=−1

9=0 ("0, 9 ⊗ E 9 ), · · · ,
⊕=−1

9=0 ("=−1, 9 ⊗ E 9 )
)

f |= " ∗ G : ®E
(P-Box1)

f (G) = ( 90, · · · , 9=−1) f (~) = (E0, · · · , E=−1) ®E = (E 90 , · · · , E 9=−1 )

f |= G ⟨·~·⟩ : ®E
(P-Box2)

f (G) = (E0, · · · , E=−1) ®E = (E8 , · · · , E 9 )

f |= View(G, 8, 9) : ®E
(View)

bin(=) = (10, · · · , 1−1)

f |= touint(10, · · · , 1−1) : =
(Touint)

(f, g G) ⇒ f
(Decl)

f |= 4 : E f ′ = f [G ↦→ E]

(f, G = 4) ⇒ f ′
(Ass)

f (G) = (E0, · · · , E=−1) f (~) = E f ′ = f [G ↦→ (E0, · · · , E8−1, E, E8+1, · · · , E=−1)]

(f, G [8] = ~) ⇒ f ′
(Arr-Put)

g0 5 (g1 G1, · · · , g< G<){(+ return ~; } E1 = f (~1), · · · , E< = f (~<)
fin = f [G1 ↦→ E1] · · · [G< ↦→ E<] (fin, (

+) ⇒+ fout fout (~) = E fret = f [G ↦→ E]

(f, G = 5 (~1, · · · , ~<)) ⇒ fin (fout, return ~) ⇒ fret
(Call-Ret)

Fig. 3. The operational semantics of core EasyBC, where ⊙ ∈ {+,−, ⊕,∧,∨}.

(3) the input and output of 8-th round are the third argument and return value of the invoked round
function whose �rst argument is 8 .

3.3 Type System of Core EasyBC

The type system of core EasyBC is designed to disallow certain kinds of illegal programs and
provide type information for security analysis.
EasyBC supports the following types, i.e.,

V ::= uintB | uint | uintB [=] | sbox uintB [=] | pbox uint[=] | pboxm uintB [=] [=] .

Here, uintB is for B-bit unsigned integers, uintB [=] is for vectors (or arrays) of B-bit unsigned
integers, uint is for unsigned integers, and uint[=] is for vectors (or arrays) of unsigned integers.
Note that uintB is identical to uint1[B] and uintB [1]. uint and uint[=] are used only when the
variables under typing are independent of inputs.

Typing expressions. The typing judgement is of the form of

)6,); ⊢ 4 : V,

where ()6,); ) is a typing context, 4 is an expression under typing, and V is a type. The global
environment )6 is a mapping from global variables to their types and from function names to
function signatures (V0, · · · , V=) where V0 is the return type and V1, · · · , V= are the types of the
formal parameters. The local environment ); is a mapping from local variables to their types. The
typing judgement )6,); ⊢ 4 : V is valid if 4 has type V under the typing context ()6,); ).

Figure 4 (top-part) gives typing rules for expressions. Rule (T-Uints) express that a non-negative
integer = can be typed as uintB if = ≤ 2B − 1. Rules (T-Var) and (T-Not) are de�ned as usual. Rule
(T-Op) ensures that the two operands and result of the operation ⊙ ∈ {+,−, ⊕,∧,∨} have the same
type uintB . Rule (T-Pbox1) ensures that the array G has suitable type w.r.t. the type of the matrix
" for matrix-vector product. Rule (T-Pbox2) requires that the elements in the array G ⟨·~·⟩ and the
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0 ≤ = ≤ 2B − 1

)6,); ⊢ = : uintB
(T-Uints)

⊙ ∈ {+,−, ⊕,∧,∨} )6,); ⊢ G8 : uintB for 8 = 1, 2

)6,); ⊢ G1 ⊙ G2 : uintB
(T-Op)

) = (G ∈ X5 ? ); : )6)

)6,); ⊢ G : ) (G)
(T-Var)

)6 (") = pboxm uintB [=] [=] )6,); ⊢ G : uintB [=]

)6,); ⊢ " ∗ G : uintB [=]
(T-Pbox1)

)6,); ⊢ 4 : g

)6,); ⊢∼ 4 : g
(T-Not)

)6 (G) = pbox uint[=1] )6,); ⊢ ~ : uintB [=2]

)6,); ⊢ G ⟨·~·⟩ : uintB [=1]
(T-Pbox2)

)6 (G) = sbox uintB1 [=] )6,); ⊢ ~ : uintB2 = ≥ 2B2

)6,); ⊢ G ⟨~⟩ : uintB1
(T-Sbox)

)6,); ⊢ G : uintB [=] 0 ≤ =1 ≤ =2 < = =′ = =2 − =1 + 1

)6,); ⊢ View(G, =1, =2) : uintB [=
′]

(T-View)

)6,); ⊢ G8 : uint1 for 0 ≤ 8 < B

)6,); ⊢ touint(G0, ..., GB−1) : uintB
(T-Touint)

); (G) = g

)6,); , 5 ⊢ g G
(T-Decl)

); (G) = uintB [=] )6,); ⊢ ~ : uintB 0 ≤ 8 < =

)6,); , 5 ⊢ G [8] = ~
(T-Arr-Put)

); (G) = g
)6,); ⊢ 4 : g

)6,); , 5 ⊢ G = 4
(T-Ass)

)6 (5
′) = (g0, · · · , g<)

)6,); ⊢ G : g0 )6,); ⊢ G8 : g8 for 1 ≤ 8 ≤ <

)6,); , 5 ⊢ G = 5 ′(G1, · · · , G<)
(T-Call)

ℓ ∈ {fn, r_fn, s_fn} )6 (5 ) = (g0, · · · , g<)
)6,); [?1 ↦→ g1, · · · , ?< ↦→ C<, ~ ↦→ g0], 5 ⊢ (8 for 1 ≤ 8 ≤ =

)6,); ⊢ ℓ g0 5 (g1 ?1, · · · , g< ?<){(1; · · · ; (= ; return ~; }
(T-Fn-Def)

Fig. 4. The typing rules of core EasyBC.

operand ~ have the same type, as the P-box G only speci�es the element order for the permutation.
Rule (T-Sbox) requires that the S-box has a su�cient number of elements (i.e., = ≥ 2B2 ) and the
result G ⟨~⟩ has the same type as the elements in the S-box G . Note that both S-boxes and P-boxes
do not necessarily preserve the length which may occur, e.g., DES. Rule (T-View) requires that
the indices =1 and =2 are within the bounds of the array G , moreover, the slice View(G, =1, =2) is
an array with length =2 − =1 + 1 and its elements have the same type as the elements in the array
G . Rule (T-Toint) requires that all the operands G8 have type uint1 and the result has type uintB
where B is the number of operands.

Typing statements. The typing judgement of a statement is in the form of

)6,); , 5 ⊢ (

where ()6,); ) is a typing context, ( is the statement under typing in the function 5 . We write
)6,); , 5 ⊢ ( is valid if ( is well-typed.

The typing rules are given in Figure 4 (middle-part). Rule (T-Decl) is de�ned as usual. Rule
(T-Ass) requires that the type of the expression 4 conforms to the declared type of the variable G .
Rule (T-Arr-Put) requires that the index 8 is within the bounds of the array G and the operand ~
has the same type as the elements in the array G . Rule (T-Call) requires that the types of actual
arguments and return conform to the corresponding function signature )6 (5 ′).

Typing programs. Each program % is typed by iteratively typing each function de�nition. The
program is well-typed if all the function de�nitions are well-typed. The typing judgement of a
function de�nition fn_def is in the form of

)6,); ⊢ fn_def,
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EasyBC

Cipher 

program in

EasyBC

Option

MILP Generation

MILP solver 

(Gurobi)

Solvers

SAT solver 

(Z3)

Utilities

Bit-w ise S-box

modeling

techniques

MaxSMT-based

extended bit-w ise 

S-box modeling 

SMT-based method

for determining 

branch number 

Preprocessing

Bit-w ise 

approach  

Extended bit-w ise

approach  

Word-wise

approach

Result

Type-checking

Fig. 5. Overview of our approach.

where ()6,); ) is a typing context and fn_def is a function de�nition under typing. The typing
judgement )6,); ⊢ fn_def is valid if the function de�nition fn_def is well-typed. The typing rule
(T-Fn-Def) is given in Figure 4 (bottom-part), which enforces the well-typed function body when
the formal parameters and return have declared types.

3.4 Compilation

We have implemented an interpreter in C++ for EasyBC to test the operational semantics of
programs, making sure that they are consistent with the execution of reference block ciphers. In
particular, we compare the output of EasyBC programs with that of running the binary executable
compiled from C/C++ programs by GNU C++ compiler (G++). For each cryptographic primitive,
we randomly generate inputs and then run the EasyBC program (with our interpreter) and the
binary executable. We record their output, as well as the execution time for analysis. The results
are given in Section 8.1.

3.5 Overview of Analysis

Recall that we are interested in evaluating the resistance of block ciphers against di�erential
cryptanalysis by bounding theMaxEDCP. A block cipher is considered to be resistant to di�erential
cryptanalysis ifMaxEDCP is no greater than $ (2�) for the block size �.
Figure 5 gives an overview of our approach. Given a program in full EasyBC together with

an option for selecting a particular MILP generation approach and an S-box modeling technique,
EasyBC computes an upper bound of the MaxEDCP. The result is conclusive if this upper bound is
su�cient to show the resistance of the program. Our approach is not necessarily complete (e.g., in
most cases we only compute an upper bound ofMaxEDCP), so it may fail to prove the resistance
of some programs, although this does not happen in our evaluation (cf. Section 8).

First, the input program is preprocessed to eliminate range-for loops and positional variables by
performing loop unrolling, constant-folding, constant propagation and dead-code elimination. The
�nal program will be in the core language of EasyBC. Hereafter, we assume that the given EasyBC

program has been preprocessed.
Next, the program is type-checked to disallow certain kinds of illegal programs, e.g., the types

of operands in expressions, formal parameters in function de�nitions and actual arguments in
function calls are proper. It also provides type information for security analysis, in particular, the
lengths of arrays, the type and the bit widths of array elements, which are used for MILP generation.

After type-checking, we reduce the problem of bounding theMaxEDCP to MILP. The key insight
of the reduction is to characterize the dependency (i.e., feasibility) between input and output
di�erences of each operation using integer linear (IL) constraints and bound the MaxEDCP by
minimizing an objective function subject to the IL constraints. By utilizing an MILP solver (e.g.,
Gurobi [Gurobi Optimization 2018]), we can obtain an upper bound of the MaxEDCP. In practice,
one may be only interested in proving the resistance against di�erential cryptanalysis. Hence we
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also verify whether theMaxEDCP is no greater than a given threshold, an a�rmative answer to
which would be su�cient to show that the given cipher is resistant against di�erential cryptanalysis.
This strategy is very e�ective in practice, as few rounds are often su�cient to prove the resistance
by leveraging the decomposition approach (cf. Proposition 5.3 and Proposition 7.3).
To this end, we present two di�erent approaches for reducing to MILP. The �rst one is by

determining the lower bound of the minimum number Ndiff of active S-boxes in either word-
wise (Section 5) or bit-wise (Section 6) manner, because the MaxEDCP of B-round di�erential
characteristics is bounded from above by ?Ndiff [Heys 2002; Sun et al. 2014a], where ? denotes the
maximum probability PrS (Δ-,Δ. ) among all the nonzero di�erentials (Δ-,Δ. ) for any active
S-box. Intuitively, the word-wise one models the di�erence of an B-bitstream under two executions
by only one Boolean variable, thus is less involved and produces fewer constraints, but is limited
to certain block ciphers e.g., it cannot be directly applied to bit-oriented block ciphers such as
PRESENT). In contrast, the bit-wise approach models the di�erence of each bit by one Boolean
variable, thus is more �ne-grained and has wider applicability. One may understand that the bit-
wise approach implicitly bit-blasts the program and then generates MILP similar to the word-wise
approach. The MILP generation in this approach requires the (maximum/minimum word-/bit-wise)
branch numbers of some operations and representing S-boxes as IL constraints, for which we
propose novel SMT-based methods to automatically determine branch numbers for each operation
and implement some recent promising bit-wise S-box modeling techniques.
The �rst approach is e�cient and often e�ective, but the obtained upper bound may not be

su�ciently tight and is not applicable for some ciphers. We provide an extended bit-wise approach
to directly bound theMaxEDCP (Section 7). In the extended bit-wise approach, the probabilities
between input and output di�erences for each operation are further encoded into IL constraints
using additional Boolean variables. This approach may be less e�cient but is more accurate than the
�rst approach. We also propose a novel Maximal Satis�ability Modulo Theories (MaxSMT) [Bjørner
and Phan 2014] based extended bit-wise S-box modeling method which guarantees that the least
number of Boolean variables is used for encoding di�erential probabilities of S-boxes.

4 UTILITIES

In this section, we present the three key utilities used in our MILP generation.

4.1 SMT-based Method for Determining Branch Numbers

The branch numbers of some operations are required in MILP generation. However, to our best
knowledge, existing work usually relies on manual analysis. In this paper, we propose to determine
branch numbers of a given operation/function, by reducing to the optimization problem modulo
bit-vector theory, which can be solved by o�-the-shelf optimizing SMT solver, e.g., Z3 [Bjørner
et al. 2015].

Given a function 5 : B=1 ×· · ·×B=8 → B<1 ×· · ·×B< 9 , to compute its minimum (resp. maximum)
word-wise branch number Bmin

ww (5 ) (resp. Bmax
ww (5 )), by De�nition 2.7, we express the condition

BNCond(5 ) and the additional condition 3 = cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) as a quanti�er-free
SMT formula q 5 in the bit-vector theory, and use Z3 to minimize (resp. maximize) the variable 3
subject to the SMT formula q 5 . The optimized value of 3 is Bmin

ww (5 ) (resp. Bmax
ww (5 )). An illustrating

example is given in [Sun et al. 2023, Section C.1].
The minimum (resp. maximum) bit-wise branch number Bmin

bw
(5 ) (resp. Bmax

bw
(5 )) can be com-

puted the same as above, except that cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) counts the number of 1
bits in the bitstream Δ- 1∥ · · · ∥Δ- 8 ∥Δ. 1∥ · · · ∥Δ. 9 .

Proposition 4.1. The minimized (maximized) value of 3 is
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• Bmin
ww (5 ) (resp.Bmax

ww (5 )) when cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) counts the number of nonzero

entries in the vector (Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ),
• Bmin

bw
(5 ) (resp. Bmax

bw
(5 )) when cnt(Δ- 1, · · · ,Δ- 8 ,Δ. 1, · · · ,Δ. 9 ) counts the number of 1 bits

in the bitstream Δ- 1∥ · · · ∥Δ- 8 ∥Δ. 1∥ · · · ∥Δ. 9 .

4.2 Bit-wise S-box Modeling

Consider an expression S⟨- ⟩ where S : B= → B< is a lookup-table based S-box. It is non-trivial to
specify the bit-level dependency of di�erences between the input- and the result of S⟨- ⟩ (denoted
by . ), as the S-box provides only input and output pairs. To resolve this issue, we �rst compute
its DDT DS : B= × B< → N from which IL constraints are generated to characterize the bit-level
dependency of di�erences between - and . . Recall that for every di�erential (Δ-,Δ. ) ∈ B= ×B< ,
DS (Δ-,Δ. ) gives the number of inputs - ∈ B= such that S(- ) ⊕ S(- ⊕ Δ- ) = Δ. .

Let ®1 be the input di�erence Δ- and ®1 ′ be the output di�erence Δ. of the S-box S. We have

•
∑=−1
8=0

®18 = 0 ⇒
∑<−1
8=0

®1 ′8 = 0, i.e., no output di�erence if no input di�erence, namely, if two inputs
to S are the same, then the two outputs are the same. This condition can be characterized by the

IL constraint< ·
∑=−1
8=0

®18 ≥
∑<−1
8=0

®1 ′8 , denoted by Ψ
1
S
.

•
∑<−1
8=0

®1 ′8 = 0 ⇒
∑=−1
8=0

®18 = 0 if S is injective, i.e., no input di�erence if no output di�erence,
namely, if two outputs of S are the same, then the two inputs must be the same. This condition

can be exactly characterized by the IL constraint = ·
∑<−1
8=0

®1 ′8 ≥
∑=−1
8=0

®18 , denoted by Ψ
2
S
.

• DS ( ®1, ®1
′) ≠ 0, namely, ( ®1, ®1 ′) should be feasible for S. We implement and compare the promising

techniques [Abdelkhalek et al. 2017; Boura and Coggia 2020; Li and Sun 2022; Sasaki and Todo

2017; Sun et al. 2014b; Udovenko 2021] that can characterize DS ( ®1, ®1
′) ≠ 0 by IL constraints.

Hereafter, we denote by Ψ
3
S
the set of IL constraints such that ( ®1, ®1 ′) is a solution of Ψ3

S
i�

DS ( ®1, ®1
′) ≠ 0.

Proposition 4.2. ( ®1, ®1 ′) is feasible input and output di�erences of S i� ( ®1, ®1 ′) is a solution of Ψ3
S
.

We denote by ΨS the set Ψ1
S
∪ Ψ

2
S
∪ Ψ

3
S
if the S-box S is injective, otherwise Ψ1

S
∪ Ψ

3
S
.

4.3 MaxSMT-based Extended Bit-wise S-box Modeling

The above bit-wise S-box modeling method is able to characterize all the feasible di�erentials

(Δ-,Δ. ) ∈ B= × B< of the S-box S, but the probability PrS (Δ-,Δ. ) =
DS (Δ-,Δ. )

2=
of di�erentials

is not present in the IL constraints, so it is impossible to bound the MaxEDCP directly. We propose
a novel MaxSMT-based method which guarantees that the least number of Boolean variables is
used for encoding probabilities of di�erentials.

De�nition 4.3. Given two sets of constraints (Φ1,Φ2), the MaxSMT problem is to �nd a solution
that satis�es all the constraints in Φ1 and maximizes the number of satis�ed constraints in Φ2.

Let + = {E1, · · · , Eℎ} be the set of nonzero probabilities PrS (Δ-,Δ. ) for (Δ-,Δ. ) ∈ B= × B< .
We de�ne the MaxSMT problem (ΦS

1 ,Φ
S
2 ) for the S-box S, where

Φ
S
1 = {

∑ℎ
8=1 28 · ?8, 9 = − log2 E 9 | 1 ≤ 9 ≤ ℎ} and Φ

S
2 = {21 = 0, · · · , 2ℎ = 0},

for 1 ≤ 8, 9 ≤ ℎ, 28 is a variable over real numbers and ?8, 9 is a Boolean variable. Clearly, for every

1 ≤ 9 ≤ ℎ, 2−
∑ℎ

8=1 28 ·?8,9 retains the probability E 9 . Since the Boolean variable ?8, 9 can be treated as a
variable over real numbers by adding ?8, 9 = 0∨?8, 9 = 1 to ΦS

1 , and E 9 (hence log2 E 9 ) is a constant for
each 1 ≤ 9 ≤ ℎ, the problem (ΦS

1 ,Φ
S
2 ) is a MaxSMT problem (modulo the theory of real numbers).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 29. Publication date: January 2024.



29:16 Pu Sun, Fu Song, Yuqi Chen, and Taolue Chen

A solution of the MaxSMT problem (ΦS
1 ,Φ

S
2 ) assigns values to the variables 28 ’s and ?8, 9 ’s from

which the probability E 9 for every 1 ≤ 9 ≤ ℎ can be obtained. Suppose the solution assigns the
values {11, 9 , · · · , 1ℎ,9 } to the Boolean variables {?1, 9 , · · · , ?ℎ,9 } and the values {C1, · · · , Cℎ} to the

variables {21, · · · , 2ℎ}, we have: 2−
∑ℎ

8=1 C8 ·18,9 = E 9 . Note that (ΦS
1 ,Φ

S
2 ) is always satis�able.

We can observe that if C8 = 0, the value 18, 9 of the Boolean variable ?8, 9 for 1 ≤ 9 ≤ ℎ can be
omitted for retaining all the probabilities in + . We will see later that the values {11, 9 , · · · , 1ℎ,9 }
of the Boolean variables ?8, 9 ’s will be used to encode the probabilities in + , we de�ne Φ

S
2 as

{21 = 0, · · · , 2ℎ = 0} so that a solution of the MaxSMT problem (ΦS
1 ,Φ

S
2 ) maximizes the number

of 0 bits in the values {C1, · · · , Cℎ} of the variables {21, · · · , 2ℎ}, thus minimizing the number of
additional Boolean variables used for encoding the probabilities in + .
Let {81, · · · , 8: } be the set of indices of the nonzero values in {C1, · · · , Cℎ}. To encode all the

probabilities in + , we de�ne an extended DDT D†
S
of the S-box S as follows:

∀(Δ-,Δ. ) ∈ B= × B< .1 ≤ 9 ≤ ℎ. D†
S
(Δ-,Δ.,181, 9 , · · · , 18: , 9 ) ≠ 0 i� PrS (Δ-,Δ. ) = E 9 .

A set Ψ4
S
of constraints over the Boolean variables ®1, ®1 ′, ?81 , · · · , ?8: can be generated from the

extended DDT D†
S
(cf. Section 4.2) such that

D†
S
(Δ-,Δ.,181 , · · · , 18: ) ≠ 0 i� (Δ-,Δ.,181 , · · · , 18: ) is a solution of Ψ4

S
.

Proposition 4.4. For any solution (Δ-,Δ.,181 , · · · , 18: ) of Ψ
4
S
, PrS (Δ-,Δ. ) = 2

−
∑:

9=1 C8 9 ·18 9 .

We denote by Ψ
†
S
the set Ψ1

S
∪ Ψ

2
S
∪ Ψ

4
S
if the S-box S is injective, otherwise Ψ

1
S
∪ Ψ

4
S
. An

illustrating example is given in [Sun et al. 2023, Section C.2].

5 WORD-WISE APPROACH

In this section, we present an approach for determining the lower bound of the minimum number
of active S-boxes by reducing to MILP in a word-wise fashion. It works for programs % where types
are uintB [=] for a �xed bit size B of the involved S-boxes and individual bits of any entry in an
array cannot be changed. Our tool can automatically check if the word-wise approach is applicable.
Recall that uintB , uint1[B] and uintB [1] are identical, and we shall use uintB [1] hereafter. Note
that, in this setting, the program % is free of touint expressions.

High-level intuition. Each entry of an array variable G in the program % is modeled as a Boolean
variable 1, where 1 = 1 in the MILP solution indicates that the entry has a di�erence when % is
executed under two distinct inputs for some �xed key. Thus, a variable of type uintB [=] is modeled

by a vector ®1 of = Boolean variables. Each statement is modeled by a set of IL constraints over
the Boolean variables which characterize the propagation of di�erences through the statement.
Furthermore, each S-box S is associated with a unique Boolean variable 1S such that the S-box S
is active under two execution if 1S = 1 (cf. De�nition 2.4). The objective function is to minimize
the sum of Boolean variables 1S for all the S-boxes S, subject to the extracted IL constraints. The
MILP solution gives the lower bound of the minimum number of active S-boxes in the program.
The word-wise MILP generation rules are given by a word-wise di�erential denotational se-

mantics of EasyBC. We present the denotational semantics for expressions in Section 5.1 and the
denotational semantics for statements in Section 5.2.

5.1 Word-wise Di�erential Denotational Semantics for Expressions

W denotes by X5 the set of its local variables of a function 5 , and by K5 ⊆ X5 the set of variables
that are subkeys. We denote by |G | = = if G has type uintB [=].
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⟦View(G, 8, 9)⟧WW =
(
∅, ( ®18 , · · · , ®1 9 )

)
, where ®1 = W (G) ⟦∼ G⟧WW =

(
∅, W (G)

)

⟦G1 + G2⟧
W
W = ⟦G1 − G2⟧

W
W = ⟦G1 ⊕ G2⟧

W
W =

(
Ψ
8
2,3 (10, 11, 12), 10

)
, where 8 = 1, 2, 10 = newBV()

Ψ
1
2,3 (10, 11, 12) =

{
11 + 12 ≥ 10, 10 + 11 ≥ 12, 10 + 12 ≥ 11

}
[Li et al. 2019], 11 = W (G1), 12 = W (G2)

Ψ
2
2,3 (10, 11, 12) =

{
1 ′ ≥ 10, 1

′ ≥ 11, 1
′ ≥ 12,

∑2
8=0 18 ≥ 21 ′

}
[Mouha et al. 2011], 1 ′ = newBV()

⟦G1 ∧ G2⟧
W
W = ⟦G1 ∨ G2⟧

W
W =

(
{11 + 12 ≥ 10}, 10

)
, where 10 = newBV(), 11 = W (G1), 12 = W (G2)

⟦" ∗ G⟧WW = (Ψ8
"

(®1, ®1 ′), ®1 ′
)
, where 8 = 1, 2, ®1 = W (G), ®1 ′ = newBV(), 1 ′′ = newBV()

Ψ
1
"
( ®1, ®1 ′) =

{
Bmin
ww,"

· 1 ′′ ≤
∑ |G |−1
8=0 ( ®18 + ®1 ′8 ) ≤ Bmax

ww,"
, 2|G | · 1 ′′ ≥

∑ |G |−1
8=0 ( ®18 + ®1 ′8 )

}

Ψ
2
"
( ®1, ®1 ′) =

{
Bmin
ww,"

· 1 ′′ ≤
∑ |G |−1
8=0 ( ®18 + ®1 ′8 ) ≤ Bmax

ww,"
, 1 ′′ ≥ ®10, 1

′′ ≥ ®1 ′0, · · · , 1
′′ ≥ ®1 |G |−1, 1

′′ ≥ ®1 ′
|G |−1

}

⟦G ⟨·~·⟩⟧WW =
(
∅, ( ®1 90 , · · · ,

®1 9=−1 )
)
, where G is P-box ( 90, · · · , 9=−1) and ®1 = W (~)

⟦G ⟨~⟩⟧WW =
(
{1 ⋄1 ′}, 1 ′

)
, where 1 = W (~), 1 ′ = newBV(), ⋄ is = if G is injective, otherwise ≥

Fig. 6. The word-wise di�erential denotational semantic rules for expressions.

State. A state W is a mapping from array entries (G, 8) ∈ (X5 \ K5 ) × N to Boolean variables that
model the di�erences of array entries under two executions. For each variable G ∈ X5 \ K5 ,

• W (G) gives the sequence of Boolean variables W (G, 0), · · · , W (G, |G | − 1) of the array G .

• W [(G, 8) ↦→ 1] denotes the update of W by mapping (G, 8) to the Boolean variable 1, and W [G ↦→ ®1]

denotes the update W [(G, 0) ↦→ ®10] · · · [(G, |G | − 1) ↦→ ®1 |G |−1] for a Boolean vector ®1 with | ®1 | = |G |.

By abuse of notation, W (G) gives the vector ®0 with |®0| = |G | if G is a constant or subkey variable in
K5 . Note that W (G) is W (G, 0) if G has type uintB [1]. We denote by Γ the set of states.

Denotational semantics. The (word-wise di�erential) denotational semantics of an expression 4

is given by ⟦4⟧W that maps each state W ∈ Γ to a pair (Ψ, ®1), denoted by ⟦4⟧WW , where

• Ψ is a set of IL constraints over Boolean variables characterizing the dependency/feasiblity of the
di�erences between the support variables and result of 4 such that the di�erences is a solution of
Ψ i� these di�erences are feasible for support variables and result of 4;

• ®1 such that | ®1 | = |4 | is a vector of the Boolean variables/values that models the di�erence of the
result of 4 under two executions (®1 may be written as 1 if | ®1 | = 1 and ®10 = 1).

Denotational semantic rules. The semantics for expressions in EasyBC is shown in Figure 6,

where the function newBV() returns a fresh Boolean variable 1 or a vector ®1 of fresh Boolean
variables according to the context. The semantic rules ⟦∼ G⟧WW , ⟦View(G, 8, 9)⟧

W
W and ⟦G ⟨·~·⟩⟧WW are

straightforward according to their operational semantics. We explain the others below.

• ⟦G1 ⊙ G2⟧
W
W for ⊙ ∈ {+,−, ⊕,∧,∨} gives a pair

(
Ψ(10, 11, 12), 10

)
, where Ψ(10, 11, 12) characterizes

the dependency of the di�erences 10, 11 and 12 between G1 ⊙ G2, G1 and G2 according to the
maximum and minimum word-wise branch numbers of ⊙ (cf. De�nition 2.7), and 10 = 0 if
11 = 12 = 0. For instance,Bmin

ww,+ = 2 andBmax
ww,+ = 3 (cf. Table 2), meaning that either10 = 11 = 12 = 0

or at least two of them are 1 (i.e., 2 ≤ 10 +11 +12 ≤ 3). For easy reference, these IL constraints are
denoted by Ψ

1
2,3 or Ψ

2
2,3. Note that the auxiliary Boolean variable 1 ′ in Ψ

2
2,3 is 0 i� 10 + 11 + 12 = 0.

• ⟦" ∗ G⟧WW gives the pair
(
Ψ
8
"
( ®1, ®1 ′), ®1 ′

)
, where Ψ

8
"
( ®1, ®1 ′) characterizes the dependency of the

di�erences ®1 and ®1 ′ between the entries in the arrays G and" ⊙ G according to the maximum

and minimum word-wise branch numbers of the linear transformation" ⊙ G . Indeed, Ψ8
"
( ®1, ®1 ′)

enforces that the sum of their input and output di�erences
∑ |G |−1
8=0 ( ®18 + ®1 ′8 ) either ranges from
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⟦g G⟧WW = (∅, W, ∅)

W ′ = W [(G, 8) ↦→ W (~)]

⟦G [8] = ~⟧WW = (∅, W ′, ∅)

⟦4⟧WW = (Ψ, ®1) W ′ = W [G ↦→ ®1]

Θ =
(
4 is G ′⟨~⟩? W (~) : ∅

)

⟦G = 4⟧WW = (Ψ, W ′,Θ)

g0 5 (g1 G1, · · · , g< G<){(1; · · · ; (= ; return ~; } W0 = W [G1 ↦→ W (~1)] · · · [G< ↦→ W (~<)]
⟦(1⟧

W
W0 = (Ψ1, W1,Θ1), · · · , ⟦(=⟧

W
W=−1 = (Ψ=, W=,Θ=) Ψ =

⋃=
8=1 Ψ8 W ′ = W [G ↦→ W= (~)] Θ =

⋃=
8=1 Θ8

⟦G = 6(~1, · · · , ~<)⟧WW = (Ψ, W ′,Θ)

Fig. 7. The word-wise di�erential denotational semantic rules for statements.

Bmin
ww,"

to Bmax
ww,"

or is 0 in two alternative ways Ψ
1
"
( ®1, ®1 ′) and Ψ

2
"
( ®1, ®1 ′), where the auxiliary

Boolean variable 1 ′′ in an MILP solution is 0 i�
∑ |G |−1
8=0 ( ®18 + ®1 ′8 ) = 0. Note that Bmin

ww,"
≥ 1.

• ⟦G ⟨~⟩⟧WW for S-box G depends upon whether G is injective, which is determined by checking
whether some constant in the array appears more than once if the S-box is given by an array, or
by checking the satis�ability of the constraint G ≠ G ′ ∧ 5 (G) = 5 (G ′) (via SMT solving) if the
S-box is de�ned by an s_fn function 5 . If it is injective, ⟦G ⟨~⟩⟧WW gives the pair

(
{1 = 1 ′}, 1 ′

)
,

where the Boolean variable 1 models the di�erence of ~; the fresh Boolean variable 1 ′ models
the di�erence of the result G ⟨~⟩; and the constraint 1 = 1 ′ ensures that 1 = 1 i� 1 ′ = 1. If it
is non-injective, the constraint 1 ≥ 1 ′ is imposed instead of 1 = 1 ′, as G ⟨~⟩ may di�er in two
executions only if ~ di�ers in the two executions.

Lemma 5.1. Suppose ⟦4⟧WW = (Ψ, ®1) with Ψ ≠ ∅. ®1 = (11, · · · , 1<) is a solution of Ψ if and only

if (11, · · · , 18 ) is feasible di�erences of the operands and result of 4 , where (18+1, · · · , 1<) is for the
possible auxiliary Boolean variables.

5.2 Word-wise Di�erential Denotational Semantics for Statements

Denotational semantics for statements. The (word-wise di�erential) denotational semantics of
a statement ( is given by ⟦(⟧W that maps each state W ∈ Γ to a triple (Ψ, W ′,Θ), denoted by ⟦(⟧WW ,
where Ψ is de�ned as above (i.e., set of IL constraints), W ′ is the updated state, and Θ is a set of
Boolean variables each of which models the input di�erence of an S-box under two executions.

Denotational semantic rules. The semantics for statements in EasyBC is shown in Figure 7.
The semantic rules ⟦g G⟧WW , ⟦G [8] = ~⟧

W
W and ⟦G = 4⟧WW for declaration g G , array put G [8] = ~,

assignment G = 4 are straightforward, which updates the state W accordingly to track the mapping
from variables G to Boolean variables W (G) that models the di�erence of G under two executions,
the set of constraints Ψ is collected from the semantics ⟦4⟧WW of the expression 4 , and moreover, the
Boolean variable W (~) modeling the di�erence of the input ~ of an S-box is recorded in Θ.
The semantic rule ⟦G = 6(~1, · · · , ~<)⟧

W
W for a function call G = 6(~1, · · · , ~<) follows its opera-

tional semantics. We �rst pass the Boolean variables W (~8 ) for 1 ≤ 8 ≤ < that model the di�erences
of the actual arguments ~8 to the formal parameters G8 , then iteratively evaluate each statement (8
in its function body, and �nally maps the variable G to the Boolean variable W (~) that models the
di�erence of the return ~. The set Ψ of IL constraints and the set Θ of Boolean variables modeling
the input di�erences of S-boxes are collected from them of the statements, i.e., Ψ8 ’s and Θ8 ’s

5.3 Word-wise Resistance Evaluation

To evaluate the resistance of the program % , we de�ne the semantics ⟦%⟧W of the program % as the
semantics of its fn function as follows:

⟦%⟧W = ⟦uintB [=] 5 (uintB [=1] :, uintB [=] CGC){(1; · · · ; (= ; return ~; }⟧
W
= (Ψ, W=,Θ)
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where Ψ =
⋃=
8=1 Ψ8 , Θ =

⋃=
8=1 Θ8 , ⟦(1⟧

W
W0

= (Ψ1, W1,Θ1), · · · , ⟦(=⟧
W
W=−1

= (Ψ=, W=,Θ=) and W0 is an
initial state mapping each array element of the formal parameter CGC to a fresh Boolean variable.

Clearly, Φ is the set of IL constraints imposed by the dependency of di�erences between support
variables and results of all the operations in the program % , and

∑
1∈Θ 1 gives the sum of the number

of active S-boxes under two executions of the program % . Determining the lower bound of the
minimum number of active S-boxes under two executions of % amounts to minimizing

∑
1∈Θ 1

subject to Φ ∪ {(
∑=−1
8=0 W (CGC, 8)) ≥ 1}, where (

∑=−1
8=0 W (CGC, 8)) ≥ 1 ensures that the input di�erence

of text CGC is nonzero, otherwise
∑
1∈Θ 1 would trivially be 0.

Recall from Section 3.5 that Ndiff denotes the minimum number of active S-boxes in all the
possible pairs of executions.

Theorem 5.2. Let ⟦%⟧W = (Φ, W,Θ) and # be the minimum value of the objective function
∑
1∈Θ 1

subject to Φ ∪ {(
∑=−1
8=0 W (CGC, 8)) ≥ 1}. We have that # ≤ Ndiff.

When the MILP program cannot be solved e�ciently with large round number B , one can turn
to the following decomposition approach.

Proposition 5.3. Let =1 and =2 be the minimum number of the active S-boxes of the �rst A1-round

and the subsequent A2-round di�erential characteristics respectively, then =1 + =2 is a lower bound of
the minimum number of the active S-boxes of the (A1 + A2)-round di�erential characteristics.

In practice, one may be only interested in proving the resistance against di�erential cryptanalysis
instead of computing a bound. In this case, it su�ces to prove that Ndiff ≥ −�

log2 ?
, where ? denotes

the maximum probability PrS (Δ-,Δ. ) among all the nonzero di�erentials (Δ-,Δ. ) for any S-
box S that is active in B-round di�erential characteristics and � is the block size of the cipher. By
Theorem 5.2, we only need to verify if {

∑
1∈Θ 1 <

−�
log2 ?

}∪Φ∪{(
∑=−1
8=0 W (CGC, 8)) ≥ 1} is unsatis�able.

Corollary 5.4. Let ⟦%⟧W = (Φ, W,Θ). If {
∑
1∈Θ 1 <

−�
log2 ?

} ∪ Φ ∪ {(
∑=−1
8=0 W (CGC, 8)) ≥ 1} is

unsatis�able, then the program % with block size � is resistant against di�erential cryptanalysis.

If the B-round cipher % can be partitioned into B
B′
identical B ′-round ciphers % ′, by Proposition 5.3

and Corollary 5.4, we can conclude that the cipher % is resistant against di�erential cryptanalysis if
the number of active S-boxes of the cipher % ′ is no less than −B′ ·�

B ·log2 ?
.

Corollary 5.5. Let ⟦% ′⟧W = (Φ, W,Θ). If {
∑
1∈Θ 1 <

−B′ ·�
B ·log2 ?

} ∪ Φ ∪ {(
∑=−1
8=0 W (CGC, 8)) ≥ 1} is

unsatis�able, then the program % with block size � is resistant against di�erential cryptanalysis.

6 BIT-WISE APPROACH

In this section, we present a bit-wise approach which, as the word-wise approach, determines the
lower bound of the minimum number of active S-boxes, but lifts its limitation requiring that a
program uses types uintB [=] for a �xed bit size B of involved S-boxes and individual bits of any
entry in an array cannot be changed.

High-level intuition. Fix a program % , which we normally assume cannot be handled by the word-
wise approach. A straightforward idea is to transform the program % to its Boolean counterpart % ′

by bit-blasting. However, this would introduce a large number of variables and statements, resulting
in a prohibitively large MILP problem. In this work, we adopt a strategy to “implicitly” bit-blast,
meaning that bit-blasting is performed in the generation of MILP. To this end, each bit of a variable
in the program % is modeled by one Boolean variable 1, where 1 = 1 in an MILP solution indicates
that the corresponding bit di�ers in % when executed under two distinct inputs for some �xed key.

Thus, a variable of type uintB [=] is modeled by a vector ®1 of B ·= Boolean variables. The word-wise
di�erential denotational semantics is then lifted to the bit-wise one.
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6.1 Bit-wise Di�erential Denotational Semantics for Expressions

State. We �rst lift the state W from word-wise to bit-wise. Let ∥G ∥ = B ·= for a variable G of the type
uintB [=]. A state W now maps each pair (G, 8) ∈ (X5 \ K5 ) × N to a Boolean variable, where

• for each variable G of type uintB [=], W (G, 8 ·B + 9) gives a Boolean variable modeling the di�erence
of the ( 9 + 1)-th most signi�cant bit of the (8 + 1)-th entry G8 in the array G ;

• W (G) denotes the sequence W (G, 0), W (G, 1), · · · , W (G, ∥G ∥ − 1), W [(G, 8) ↦→ 1] denotes the update

of the state W by mapping (G, 8) to the Boolean variable 1, and W [G ↦→ ®1] denotes the update

W [(G, 0) ↦→ ®10] · · · [(G, ∥G ∥ − 1) ↦→ ®1 ∥G ∥−1] for a Boolean vector ®1 with ∥G ∥ = ∥ ®1∥.

Denotational semantics. The (bit-wise di�erential) denotational semantics of an expression 4 is

given by ⟦4⟧B that maps each state W ∈ Γ to a pair (Ψ, ®1), denoted by ⟦4⟧BW , where

• Ψ is a set of IL constraints over Boolean variables characterizing the bit-level dependency of
di�erences between the support variables and result of 4 such that the di�erences are a solution
of Ψ i� these bit-level di�erences are feasible for support variables and result of 4;

• ®1 such that ∥ ®1∥ = ∥4 ∥ is a Boolean vector modeling the bit-level di�erences of the result of 4 .

Denotational semantic rules. The semantics for expressions in EasyBC is shown in Figure 8. The
semantic rules ⟦∼ G⟧BW , ⟦View(G, 8, 9)⟧

B
W , ⟦touint(G1, · · · , G<)⟧

B
W and ⟦G ⟨·~·⟩⟧

W
W are trivial according

to their operational semantics. Below, we explain the other non-trivial ones.

• The semantic rule ⟦G ⊙ ~⟧BW for ⊙ ∈ {∧,∨} gives the pair
(
{®118 +

®128 ≥ ®108 | 0 ≤ 8 < ∥G ∥}, ®10
)
,

where for every 0 ≤ 8 < ∥G ∥, ®118 +
®128 ≥

®108 characterizes that if the (8 + 1)-th bits of the operands

G and ~ have no di�erences (i.e., ®118 =
®128 = 0), then the (8 + 1)-th bit of the result G ⊙ ~ has no

di�erences (i.e., ®108 = 0). Otherwise, it may have di�erences (with the probability of 1
2
).

• The semantic rule ⟦G ⊕ ~⟧BW gives the pair
( ⋃∥G ∥−1

8=0 k
9
⊕ (

®118 ,
®128 ,

®108 ),
®10
)
, where for each 0 ≤ 8 < ∥G ∥,

k
9
⊕ (

®118 ,
®128 ,

®108 ) characterizes that either the (8 + 1)-th bits of the operands G , ~ and result G ⊕~ have

no di�erences (i.e., ®108 =
®118 =

®128 = 0) or exactly two of them have di�erences (i.e., ®108 +
®118 +

®128 = 2).

• The semantic rule ⟦G ⊙ ~⟧BW for ⊙ ∈ {+,−} gives the pair
( ⋃∥G ∥−1

8=0 Ψ8 , ®1
0
)
, where Ψ8 characterizes

the dependency of the di�erences between the 8-th and (8 + 1)-th bits of the operands G , ~ and
result G ⊙ ~. The dependency is obtained by bit-blasting G + ~ via a ripple-carry adder, i.e.,
– bin8 (G + ~) = bin8 (G) ⊕ bin8 (~) ⊕ ®28 , for every 0 ≤ 8 < ∥G ∥;
– the carry bit ®28 = 1 i� bin8−1 (G) + bin8−1 (~) + ®28−1 ≥ 2, for every 1 ≤ 8 < ∥G ∥, with ®20 = 0,

where bin8 (G) denotes the (8 + 1)-th most signi�cant bit of G . Clearly, the di�erence ®108 of the

bit bin8 (G + ~) depends upon the di�erences ®118−1,
®128−1,

®118 and
®128 of the bits bin8−1 (G), bin8−1 (~),

bin8 (G) and bin8 (~). Indeed, we can deduce the dependency:

– if ®108−1 =
®118−1 =

®128−1 = 1, then ®28−1 ⊕ ®2 ′8−1 =
®138−1 =

®138 = 1 and ®108 = ¬(®118 ⊕
®128 ),

– if ®108−1 =
®118−1 =

®128−1 = 0, then ®28−1 ⊕ ®2 ′8−1 =
®138−1 =

®138 = 0 and ®108 =
®118 ⊕

®128 ,

– otherwise 1 ≤ ®108−1+
®118−1+

®128−1 ≤ 2. Indeed, the probability of ®108 = ¬(®118 ⊕
®128 ), (resp.

®108 =
®118 ⊕

®128
and ®108 = 1) is 1

2
.

The above dependency is characterized by the set of IL constraints Ψ8 . Furthermore, Ψ0 and Ψ1

can be simpli�ed by ®20 = 0. The semantic rule ⟦G − ~⟧BW is de�ned the same as ⟦G + ~⟧BW because

I = G − ~ i� G = I + ~, and the Boolean variables ®108 ,
®118 and

®128 in Ψ8 are symmetric.

• The semantic rule ⟦" ∗ G⟧BW gives the pair
( ⋃ |G |−1

8=0

⋃B−1
ℎ=0 Ψ

E
M,i,h

, ®1 ′
)
, where for each 0 ≤ 8 < |G |

and each 0 ≤ ℎ < B , ΨE
M,i,h

characterizes the bit-level dependency of the di�erences between the
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⟦∼ G⟧BW =
(
∅, W (G)

)
⟦touint(G1, · · · , G<)⟧BW =

(
∅, (W (G1), · · · , W (G<))

)

⟦View(G, 8, 9)⟧BW =
(
∅, ( ®18 ·B+0, · · · , ®18 ·B+B−1, · · · , ®1 9 ·B+0, · · · , ®1 9 ·B+B−1)

)
, where ®1 = W (G)

⟦G ∧ ~⟧BW = ⟦G ∨ ~⟧BW =
(
{®118 +

®128 ≥ ®108 | 0 ≤ 8 < ∥G ∥}, ®10
)
, where ®11 = W (G), ®12 = W (~), ®10 = newBV()

⟦G ⊕ ~⟧BW =
( ⋃∥G ∥−1

8=0 k
9
⊕ (

®118 ,
®128 ,

®108 ),
®10
)
, where ®11 = W (G), ®12 = W (~), ®10 = newBV(), 1 ′ = newBV()

k1
⊕ (1

1, 12, 10) =
{
2 ≥ 10 + 11 + 12 ≥ 21 ′, 1 ′ ≥ 10, 1 ′ ≥ 11, 1 ′ ≥ 12

}
[Sun et al. 2014a]

k2
⊕ (1

1, 12, 10) =
{
10 + 11 + 12 ≤ 2, 11 + 12 ≥ 10, 10 + 11 ≥ 12, 10 + 12 ≥ 11

}
[Sasaki and Todo 2017]

k3
⊕ (1

1, 12, 10) =
{
10 + 11 + 12 = 21 ′

}
[Cui et al. 2016]

⟦G + ~⟧BW = ⟦G − ~⟧BW =
( ⋃∥G ∥−1

8=0 Ψ8 , ®1
0
)
, where ®11 = W (G), ®12 = W (~), ®10 = newBV(),

Ψ0 = Ψ
8
⊕ (

®100,
®110,

®120) Ψ1 =

{
®101 +

®111 +
®121 ≤ ®110 +

®120 + 2, −®101 +
®111 −

®121 ≤ ®110 +
®120,

−®101 −
®111 +

®121 ≤ ®110 +
®120,

®101 −
®111 −

®121 ≤ ®110 +
®120

}

∀2 ≤ 8 < ∥G ∥ . Ψ8 =

{
4 ≥

∑2
9=0

®1
9
8−1 −

®108 +
®118 +

®128 ≥ 0, 4 ≥
∑2
9=0

®1
9
8−1 +

®108 +
®118 −

®128 ≥ 0,

4 ≥
∑2
9=0

®1
9
8−1 +

®108 −
®118 +

®128 ≥ 0,
∑2
9=0

®1
9
8−1 + 2 ≥ ®108 +

®118 +
®128 ≥

∑2
9=0

®1
9
8−1 − 2

}

⟦" ∗ G⟧BW =
( ⋃ |G |−1

8=0

⋃B−1
ℎ=0

Ψ
E
M,i,h

, ®1 ′
)
, where ®1 = W (G), ®1 ′ = newBV(), 18new = newBV(), E ∈ {1, 2}

Ψ
E
M,i,h

= k E⊕ (1
0, 11, 11new) ∪k

E
⊕ (1

1
new, 1

2, 12new) ∪ · · · ∪k E⊕ (1
<−2
new , 1

<−1, 1<−1
new ) ∪k E⊕ (1

<−1
new , 1

<, ®1 ′
8 ·B+ℎ

)

Ψ
3
M,i,h

=

{
®1 ′
8 ·B+ℎ

+
∑<
9=0 1

9
= 23, 0 ≤ 3 ≤ ⌊<+2

2 ⌋
}
, where 3 is a fresh integer variable, {10, · · · , 1<} is the

set of support variables of
(⊕

0≤ 9< |G |, ℎ≤:<B, "8,9,:=1
®1 9 ·B+:

)
⊕
(
®2ℎ ∧

⊕
0≤ 9< |G |, 0≤:< ⌊ B2 ⌋

®1 9 ·B+2:

)

⟦G ⟨·~·⟩⟧BW =
(
∅, ®10 | | · · · | | ®1 |G |−1

)
, where ®1 = W (~), G is P-box ( 90, · · · , 9=−1), and

®18 = ( ®1 98 ·B+0, · · · ,
®1 98 ·B+B−1) for 0 ≤ 8 ≤ |G | − 1

⟦G ⟨~⟩⟧BW =
(
ΨS ∪ Ψ

bn
S
, ®1 ′

)
, where ®1 = W (~), G : B= → B< is an S-box S, ®1 ′ = newBV(), 1 = newBV(),

and Ψ
bn
S

=

{
Bmin
bw,G

· 1 ≤
∑=−1
8=0

®18 +
∑<−1
8=0

®1 ′8 ≤ Bmax
bw,G

, 1 ≥ ®18 , 1 ≥ ®1 ′9 | 0 ≤ 8 < =, 0 ≤ 9 < <
}

Fig. 8. The bit-wise di�erential denotational semantic rules for expressions, where B =
∥G ∥
|G | denotes the bit

width of the entries of the array G , and ®2 = bin(2 ⊗ 2B−1) is the B-bitstream corresponding to the coe�icients

of the irreducible polynomial for the underlying finite-field.

array G and the (ℎ + 1)-th bit binℎ (~8 ) of the (8 + 1)-th entry ~8 in the resulting array ~ = " ∗ G .
The dependency is obtained by expanding the matrix-vector product as follows:

" ∗ G =
(⊕ |G |−1

9=0 ("0, 9 ⊗ G 9 ), · · · ,
⊕ |G |−1

9=0 (" |G |−1, 9 ⊗ G 9 )
)
.

Clearly, the (8 + 1)-th entry ~8 is
⊕ |G |−1

9=0 ("8, 9 ⊗ G 9 ) and thus the di�erence ®1 ′
8 ·B+ℎ

of its (ℎ + 1)-th
bit binℎ (~8 ) is the parity of the di�erences of the (ℎ + 1)-th bits in"8, 9 ⊗ G 9 for 0 ≤ 9 < ℎ. The
expression"8, 9 ⊗ G 9 is bit-blasted by expanding the �nite-�eld multiplication (⊗) using a series
of modular left shifts, XOR operations and the coe�cients ®2 of the irreducible polynomial for
the underlying �nite �eld, where ®2 = bin(2 ⊗ 2B−1). We �nally can deduce that the parity of the
di�erences of the (ℎ + 1)-th bits in"8, 9 ⊗ G 9 for 0 ≤ 9 < ℎ is

(⊕
0≤ 9< |G |, ℎ≤:<B, "8,9,:=1

®1 9 ·B+:

)
⊕
(
®2ℎ ∧

⊕
0≤ 9< |G |, 0≤:< ⌊ B2 ⌋

®1 9 ·B+2:

)
.

Let {10, · · · , 1<} be the set of support variables of the above expression. We have:

®1 ′
8 ·B+ℎ

=

⊕<
C=0 1C ,

which can be alternatively characterized by Ψ
E
M,i,h

for E ∈ {1, 2, 3}.
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• The semantic rule ⟦G ⟨~⟩⟧WW for S-box G = S gives the pair
(
ΨS ∪ Ψ

bn
S
, ®1 ′

)
, where ΨS is a set of

IL constraints characterizing the bit-level dependency of di�erences between the input ~ and

the result S(~) (cf. Section 4.2) and Ψ
bn
S

enforces that the Hamming weight of the bitstream ®1∥ ®1 ′

ranges from Bmin
bw,S

to Bmax
bw,S

. Though Ψ
bn
S

is redundant, it often boosts MILP solving.

Lemma 6.1. Suppose ⟦4⟧BW = (Ψ, ®1) with Ψ ≠ ∅. The assignment (11, · · · , 1<) is a solution of

Ψ if and only if (11, · · · , 18 ) is feasible bit-level di�erences of the operands and result of 4 , where

(18+1, · · · , 1<) is for the possible auxiliary Boolean variables.

6.2 Bit-wise Di�erential Denotational Semantics for Statements

The (bit-wise di�erential) denotational semantics of a statement ( is given by ⟦(⟧B that maps each
state W ∈ Γ to a triple (Ψ, W ′,Θ), denoted by ⟦(⟧BW , where Ψ, W

′ and Θ are the same as above.
The bit-wise di�erential semantic rules for statements in EasyBC are the same as those word-wise

ones except for array put and S-box access, which are given below:

®1 = W (~) G has type uintB [=] W ′ = W [(G, 8 · B + 0) ↦→ ®10] · · · [(G, 8 · B + B − 1) ↦→ ®1B−1]

⟦G [8] = ~⟧BW =
(
∅, W ′, ∅

)

⟦G ′⟨~⟩⟧BW = (Ψ, ®1) ®1 ′ = W (~) 1G = newBV()

Ψ
′
= Ψ ∪ {

∑∥~ ∥−1
9=0

®1 ′9 ≥ 1G ≥ ®1 ′8 | 0 ≤ 8 < ∥~∥ W ′ = W [G ↦→ ®1]}

⟦G = G ′⟨~⟩⟧BW = (Ψ′, W ′, {1G })

Intuitively, the semantic rule ⟦G [8] = ~⟧BW updates the state W accordingly by mapping the bits of

the (8 + 1)-th entry in the array G to the Boolean variables ®1 that model the di�erences of the bits
of the result 4 . The semantic rule ⟦G = G ′⟨~⟩⟧BW adds a fresh Boolean variable 1G , where if 1G = 1,

then the S-box is active, i.e., some bit ®1 ′8 that models the di�erence of one bit of input ~ is nonzero.

6.3 Bit-wise Resistance Evaluation

To evaluate the resistance of the program % in a bit-wise manner, similar to ⟦%⟧W (cf. Section 5.3),
we de�ne the (bit-wise) semantics ⟦%⟧B of the program % using its fn function 5 as follows.

⟦%⟧B = ⟦uintB [=] 5 (uintB [=1] :, uintB [=] CGC){(1; · · · ; (= ; return ~; }⟧
B
= (Ψ, W=,Θ)

where Ψ =
⋃=
8=1 Ψ8 , Θ =

⋃=
8=1 Θ8 , ⟦(1⟧

B
W0

= (Ψ1, W1,Θ1), · · · , ⟦(=⟧
B
W=−1

= (Ψ=, W=,Θ=) and W0 is an
initial state mapping each bit of array elements of CGC to a fresh Boolean variable. We get that:

Theorem 6.2. Let ⟦%⟧B = (Φ, W,Θ) and # be the minimum value of the objective function
∑
1∈Θ 1

subject to the set of IL constraints Φ ∪ {
∑B ·=−1
8=0 W (CGC, 8) ≥ 1}. We have that # ≤ Ndiff.

Corollary 5.4 and Corollary 5.5 still hold when ⟦%⟧W = (Φ, W,Θ) is replaced by ⟦%⟧B = (Φ, W,Θ).

7 EXTENDED BIT-WISE APPROACH

The lower bound of the minimum number of the active S-boxes is often e�ective, but it may not be
su�ciently tight to prove the resistance [Sun et al. 2014b], as the probabilities between input and
output di�erences for the operations ∧,∨, +,− and S-boxes are not fully addressed. Furthermore,
the bit-wise approach is not applicable if non-linear layers are implemented in other operations
than S-boxes (e.g., SIMON), or S-boxes are too large to be given as arrays (e.g., SPARKLE). In this
section, we extend the bit-wise approach to directly bound the MaxEDCP rather than by bounding
the minimum number of the active S-boxes.
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⟦G ∧ ~⟧EBW = ⟦G ∨ ~⟧EBW =
( ⋃∥G ∥−1

8=0 Ψ8 , ®1
0,

∑∥G ∥−1
8=0

®?8
)
, where ®11 = Γ(G), ®12 = Γ(~), ®10 = newBV()

Ψ8 =
{
®118 +

®128 ≥ ®?8 , ®1
0
8 +

®118 +
®128 ≤ 3®?8

}

⟦G + ~⟧EBW = ⟦G − ~⟧EBW =
( ⋃∥G ∥−1

8=0 Ψ8 , ®1
0,

∑∥G ∥−1
8=1

®?8
)
, where ®11 = Γ(G), ®12 = Γ(~), ®10 = newBV()

Ψ0 = Ψ
8
⊕

(®100, ®110, ®120
)

Ψ1 =

{
®101 +

®111 +
®121 ≤ ®?1 + 2, −®101 +

®111 −
®121 ≤ ®?1, −®101 −

®111 +
®121 ≤ ®?1,

®101 −
®111 −

®121 ≤ ®?1, ®?1 ≤ ®110 +
®120 ≤ 2®?1

}

∀2 ≤ 8 < ∥G ∥. Ψ8 = Ψ
1
8 ∪ Ψ

2
8 Ψ

1
8 =

{
3 − ®?8 ≥

∑2
9=0

®1
9
8−1 ≥ ®?8 , ®?8 ≥ ®108−1 −

®118−1,

®?8 ≥ ®118−1 −
®128−1, ®?8 ≥ ®128−1 −

®108−1

}

Ψ
2
8 =

{
2 − ®118−1 + ®?8 ≥ −®108 +

®118 +
®128 ≥ −®118−1 − ®?8 , 2 − ®118−1 + ®?8 ≥ ®108 +

®118 −
®128 ≥ −®118−1 − ®?8 ,

2 − ®118−1 + ®?8 ≥ ®108 −
®118 +

®128 ≥ −®118−1 − ®?8 , 2 + ®118−1 + ®?8 ≥ ®108 +
®118 +

®128 ≥ ®118−1 − ®?8

}

⟦G ⟨~⟩⟧EBW =
(
Ψ
†
S
∪ Ψ

bn
S
, ®1 ′,

∑:
9=1 C8 9 · ?8 9

)
, where G is an S-box S : B= → B<

Fig. 9. The extended bit-wise di�erential denotational semantic rules for expressions, where ®? = newBV() is

a vector of fresh Boolean variables used to encode probabilities, Ψ8⊕
(®100, ®110, ®120

)
for 8 ∈ {1, 2, 3} and Ψ

bn
S

are

defined in Figure 8, Ψ†
S
and

∑:
9=1 C8 9 · ?8 9 are defined in Section 4.3.

High-level intuition. Apart from the encoding presented in Section 4.3 for S-boxes, we further
encode the probabilities between input and output di�erences for the operations ∧,∨, +,− into IL
constraints using additional Boolean variables. The weighted sum r of these additional Boolean
variables retains the probability 2−r . Thus, the objective function is designed to minimize r instead
of the number of the active S-boxes.

7.1 Extended Bit-wise Di�erential Denotational Semantics for Expressions

Denotational semantics. The (extended bit-wise di�erential) denotational semantics of an ex-

pression 4 is given by ⟦4⟧EB that maps each state W ∈ Γ to a triple (Ψ, ®1, r ), denoted by ⟦4⟧EBW , where

the state W , set of IL constraint Ψ and Boolean vector ®1 are the same as in Section 6.1, and the
expression r is a weighted sum of Boolean variables encoding the probability 2−r .

Denotational semantic rules. The semantic rules ⟦4⟧EBW for ∧,∨, +,− and S-boxes are shown in

Figure 9, otherwise ⟦4⟧EBW = (Ψ, ®1, 0) if ⟦4⟧BW = (Ψ, ®1), meaning that the probability between the

input and output di�erences characterized by Ψ is 1 (i.e., 2−0).

• The semantic rule ⟦G ⊙ ~⟧EBW for ⊙ ∈ {∧,∨} gives the triple
( ⋃∥G ∥−1

8=0 Ψ8 , ®1
0,

∑∥G ∥−1
8=0

®?8
)
, where

for every 0 ≤ 8 < ∥G ∥, Ψ8 ensures that the probability of the di�erence ®108 of the (8 + 1)-th bit in

the result G ⊙ ~ is 2−®?8 when the di�erences of the (8 + 1)-th bits of the operands G and ~ are ®118
and ®128 , respectively. Indeed, the probability of ®108 = 0 is 2−0 when ®118 =

®128 = 0, then ®?8 must be 0.

The probability of ®108 = 1 is 2−1 when ®118 +
®128 ≥ 1, then ®?8 must be 1.

• The semantic rule ⟦G ⊙ ~⟧EBW for ⊙ ∈ {+,−} gives the triple
( ⋃∥G ∥−1

8=0 Ψ8 , ®1
0,

∑∥G ∥−1
8=1

®?8
)
, where

for every 0 ≤ 8 < ∥G ∥, Ψ8 ensures that for any �xed ®118 and
®128 ,

– if ®108−1 =
®118−1 =

®128−1, ®?8 = 0 (i.e., the probability 2−®?8 of ®108 = ¬(®118 ⊕
®128 ) or

®108 =
®118 ⊕

®128 is 1),

– if 1 ≤
∑2
9=0

®1 98−1 ≤ 2, ®?8 = 1 (i.e., the probability 2−®?8 of ®108 = 1 or ®108 = 0 is 1
2
).

We remark that Ψ0 and Ψ1 can be simpli�ed by ®20 = 0, and the semantic rule ⟦G − ~⟧EBW is de�ned

the same as ⟦G + ~⟧EBW because I = G − ~ i� G = I + ~.
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• The semantic rule ⟦G ⟨~⟩⟧EBW follows the result given in Section 4.3, namely, ( ®1, ®1 ′, ?81 , · · · , ?8: )

is a solution of Ψ†
S
i� the probability PrS ( ®1, ®1

′) is 2−
∑:

9=1 C8 9 ·?8 9 . Note that C8 9 ’s are constants and

Ψ
bn
S

is added to boost MILP solving.

Lemma 7.1. Suppose ⟦4⟧EBW = (Ψ, ®1, r ) with Ψ ≠ ∅. The assignment {11, · · · , 1<, ?1, · · · , ?=} is a
solution of Ψ i� the probability of {11, · · · , 18 } being bit-level di�erences of the operands and result
of 4 is 2−r [?1, · · · ,?= ] , where r [?1, · · · , ?=] denotes the value of r under the assignment {?1, · · · , ?=} of
the Boolean variables for encoding probabilities, and {18+1, · · · , 1<} is the assignment of the auxiliary

Boolean variables if exist.

7.2 Extended Bit-wise Di�erential Denotational Semantics for Statements

The (extended bit-wise di�erential) denotational semantics of a statement ( is given by ⟦(⟧EB that
maps each state W ∈ Γ to a triple (Ψ, W ′, r ), denoted by ⟦(⟧EBW , where Ψ, W ′ and r are the same as
above. The extended bit-wise di�erential semantic rules for statements in EasyBC are similar to
those word-wise ones, where ⟦(⟧EBW = (Ψ, W ′, 0) if ⟦(⟧BW = (Ψ, W ′, ∅), except for

⟦4⟧EBW = (Ψ, ®1, r )

⟦G = 4⟧EBW = (Ψ, W [G/®1], r )

g0 5 (g1 G1, · · · , g< G<){(1; · · · ; (= ; return ~; } W0 = W [G1/W (~1)] · · · [G</W (~<)]
⟦(1⟧

EB
W0 = (Ψ1, W1, r1), · · · , ⟦(=⟧

EB
W=−1 = (Ψ=, W=, r=)

⟦G = 6(~1, · · · , ~<)⟧EBW = (
⋃=
8=1 Ψ8 , W [G/W= (~)],

∑=
8=1 r8 )

Intuitively, the semantic rule ⟦G = 6(~1, · · · , ~<)⟧
EB
W sums up the expressions r8 ’s of the state-

ments (8 ’s in the function body because of
∏=
8=1 2

−r8 = 2−
∑=

8=1 r8 .

7.3 Extended Bit-wise Resistance Evaluation

To evaluate the resistance of the program % in an extended bit-wise manner, we de�ne the (extended
bit-wise) semantics ⟦%⟧EB of the program % using its fn function 5 as follows:

⟦%⟧EB = ⟦uintB [=] 5 (uintB [=1] :, uintB [=] CGC){(1; · · · ; (= ; return ~; }⟧
EB

= (Ψ, W=, r )

where Ψ =
⋃=
8=1 Ψ8 , r =

∑=
8=1 r8 , ⟦(1⟧

B
W0

= (Ψ1, W1, r1), · · · , ⟦(=⟧
B
W=−1

= (Ψ=, W=, r=) and W0 is an initial
state mapping each bit of array elements of CGC to a fresh Boolean variable. We get that:

Theorem 7.2. Let ⟦%⟧EB = (Φ, W, r ) and D be the minimum value of r subject to the set of IL

constraints Φ ∪ {
∑B ·=−1
8=0 W (CGC, 8) ≥ 1}. TheMaxEDCP of the program % is no greater than 2−D .

Similar to the decomposition approach given in Proposition 5.3, we have

Proposition 7.3. Let D1 and D2 be the MaxEDCP of the �rst B1-round and the subsequent B2-

round di�erential characteristics. Then, D1 · D2 is an upper bound of the MaxEDCP of (B1 + B2)-round
di�erential characteristics.

By Theorem 7.2 and Proposition 7.3, we have the following corollaries.

Corollary 7.4. Let ⟦%⟧EB = (Φ, W, r ). If {r < �} ∪ Φ ∪ {(
∑=−1
8=0 W (CGC, 8)) ≥ 1} is unsatis�able,

then the program % with block size � is resistant against di�erential cryptanalysis.

Corollary 7.5. If the B-round cipher % can be partitioned into B
B′
identical B ′-round ciphers % ′ such

that ⟦% ′⟧EB = (Φ, W, r ) and {r <
B′ ·�
B
} ∪Φ∪ {(

∑=−1
8=0 W (CGC, 8)) ≥ 1} is unsatis�able, then the program

% with block size � is resistant against di�erential cryptanalysis.
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Table 3. Statistics of NIST candidates.

Name
EasyBC C/C++

LOCbw LOCww Time LOC Time

ASCON(?0) [Dobraunig et al. 2016]♦ 55 N/A 27.7 42 1.4
ELEPHANT [Beyne et al. 2020]♦ 37 N/A 65.3 69 6.6
GIFT-COFB-128 [Banik et al. 2020] 34 N/A 23.9 81 3.0
GRAIN(AEAD) [Hell et al. 2021]★ 99 N/A 0.1 146 0.1
ISAP(v2.0) [Dobraunig et al. 2020]♦ 72 N/A 141.8 94 0.0
PHOTON(Beetle) [Bao et al. 2019]♦ - 51 24.4 104 1.8
ROMULUS-128 [Iwata et al. 2020] 57 N/A 32.3 113 0.2
SPARKLE256(slim) [Beierle et al. 2019]♦ 39 N/A 0.3 19 0.0
TinyJAMBU [Wu and Huang 2019]♦ 15 N/A 143.3 18 0.5
XOODYAK [Daemen et al. 2020]♦ 38 N/A 21.1 63 0.1

Time is in milliseconds. N/A: word-wise is not applicable. -� gives
the block size required for security evaluation of block ciphers.
LOCbw/LOCww : LOC of bit-/word-wise implementation. ♦ indicates key-
less permutations and ★ indicates stream cipher where no block size is
given.

Table 4. Statistics of other block ciphers.

Name
EasyBC C/C++

LOCbw LOCww Time LOC Time

AES-128 [Daemen and Rijmen 1999] - 71 9.0 106 12.5
DES-64 [Fox 2000] 50 N/A 4.0 77 2.4
GIFT-64 [Banik et al. 2017] 34 N/A 6.5 63 1.9
KLEIN-64 [Gong et al. 2011] - 64 8.1 97 0.5
LBLOCK-64 [Wu and Zhang 2011] - 44 6.0 78 1.7
MIBS-64 [Izadi et al. 2009] - 37 13.9 69 0.3
PICCOLO-64 [Shibutani et al. 2011] - 85 7.4 90 84.5
PRESENT-64 [Bogdanov et al. 2007] 28 N/A 8.1 87 0.6
RECTANGLE-64 [Zhang et al. 2015] 28 N/A 6.6 80 1.6
SIMON-32 [Beaulieu et al. 2015] 35 N/A 3.0 46 0.8
SIMON-48 [Beaulieu et al. 2015] 35 N/A 5.9 46 7.1
SKINNY-64 [Beierle et al. 2016] 38 N/A 10.7 67 0.3
TWINE-64 [Suzaki et al. 2012] - 43 9.8 61 4.4

8 EVALUATION

Our approach is implemented as an open-source tool. As shown in Figure 5, it utilizes the SMT
solver Z3 for computing the branch number and solving MaxSMT problems and Gurobi [Gurobi Op-
timization 2018] for solving MILP. In general, EasyBC iteratively increases the round number from
1 (cf. Corollary 5.4 and Corollary 7.4). It also partitions an B-round cipher to the maximum number
of identical B ′-round ciphers and iteratively increases the round number B ′ (cf. Corollary 5.5 and
Corollary 7.5), until the resistance is proved. The tool is designed to be modular and extensible,
where each semantic rule has an API wrapper and alternative generation methods can be easily
chosen and added. We also incorporate the bounding condition [Matsui 1994; Zhang et al. 2018]
into MILP to prune search space which often improves the overall MILP solving. (The detail is
given in [Sun et al. 2023, Section E.4].)

All the experiments were conducted on a machine with two Intel Xeon Gold 5118 CPUs (12 cores,
2.30GHz), 64-bit Ubuntu 20.04 LTS, and 128GB RAM. The number of threads for Gurobi is set to 16.

8.1 Expressiveness of EasyBC

To evaluate the expressiveness of EasyBC, we implement 23 realistic cryptographic primitives with
EasyBC, consisting of all the 10 �nalists of the NIST lightweight cryptography standardization
process [NIST 2023] and 13 commonly used block ciphers, covering both SPN ciphers (e.g., AES,
PRESENT, and GIFT-COFB) and BFN ciphers (e.g., DES, LBLOCK, TWINE). We stress that we focus
on the underlying primitives (i.e., block ciphers and key-less permutations) rather than the full
authenticated encryption, message authentication, or hash protocols in the NIST �nalists.

The physical source lines of code (LOC [Nguyen et al. 2007]) counted by cloc [Danial 2021] are
reported in Tables 3 and 4. We report LOC of word-wise (when available, or otherwise bit-wise)
EasyBC implementations. As a comparison, we also report LOC of the C/C++ reference implemen-
tations of the NIST �nalists and (randomly selected) GitHub open-source C/C++ implementations
of other block ciphers. To some extent, a smaller number (highlighted in bold) indicates that the
language is more succinct in implementing cryptographic primitives.
We observe that EasyBC is su�ciently expressive to easily implement all the 23 cryptographic

primitives either in word-wise or bit-wise fashion. More speci�cally, when cryptographic prim-
itives can be implemented in a word-wise fashion (i.e., PHOTON, AES, KLEIN, LBLOCK, MIBS,
PICCOLO, and TWINE), their EasyBC implementations always require considerably less code
than the baselines. The main reason is that EasyBC provides high-level constructs of P-box and
matrix-vector products for permutations and linear transformations. For cryptographic primitives
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Table 5. Results of the word-wise approach, where (=) indicates the number of entire rounds of the cipher

and #AS denotes the lower bound of the minimum number of active S-boxes.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

#AS 1 5 9 25 26 30 34 50 51 55 59 75 76 80 N/A
AES (14)

Time 0s 0s 0s 0s 0s 0s 1s 0s 0s 0s 1s 0s 0s 0s N/A

#AS 1 5 8 15 16 20 23 30 31 35 38 45 N/A
KLEIN (12)

Time 1s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s N/A

#AS 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 35 36 39 41 44 45 48 50 53 54
LBLOCK (32)

Time 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 1s 0s 1s 1s 1s 3s 3s 2s 6s 5s 62s 62s 80s

#AS 0 1 2 5 6 7 8 11 12 13 14 17 18 19 20 23 24 25 26 29 30 31 32 35 36
MIBS (32)

Time 0s 0s 0s 0s 0s 0s 0s 1s 0s 0s 1s 1s 1s 3s 4s 2s 4s 2s 3s 2s 3s 4s 5s 4s 7s

#AS 1 9 17 81 82 90 98 162 163 171 179 243 N/A
PHOTON (12)

Time 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 1s 0s N/A

#AS 0 5 10 15 20 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
PICCOLO (25)

Time 0s 0s 0s 0s 0s 0s 0s 1s 0s 1s 0s 1s 3s 6s 4s 6s 28s 30s 31s 38s 187s 93s 122s 289s 560s

#AS 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 35 36 39 41 44 45 48 50 53 54
TWINE (36)

Time 0s 0s 0s 0s 0s 0s 0s 0s 0s 1s 0s 0s 0s 1s 0s 1s 2s 2s 3s 2s 5s 6s 26s 79s 72s

that are implemented in a bit-wise fashion with EasyBC, their EasyBC implementations also require
signi�cantly less code than their baselines except for ASCON and SPARKLE, due to the following
reasons. (1) One 320-bit block is stored in �ve 64-bit variables in the reference implementation of
ASCON each of which is permuted, while one 320-bit block is stored in one Boolean array in the
EasyBC implementation so that the 320-bit Boolean array has to be split before the permutation and
merged after permutation. (2) The C++ reference implementation of SPARKLE uses function-like
macro de�nitions and thus is more succinct.

Results of EasyBC interpreter. For each realistic cryptographic primitive, we randomly generate
100 inputs to EasyBC programs and binary executables of C/C++ programs. We run the EasyBC
program (using our interpreter) and the binary executable for each input and record the output
and the execution time. The outputs of the respective programs have been compared with 100%
match, which validates the semantics and the interpreter of EasyBC, as well as EasyBC programs.
The average execution times over 100 inputs are reported in Tables 3 and 4. While executing via
our interpreter is less e�cient, it is acceptable for testing EasyBC programs.

8.2 E�ectiveness of EasyBC

To evaluate the e�ectiveness of EasyBC, we �rst compare the performance of various alternative
methods to generate MILP. According to our experiment results (cf. [Sun et al. 2023, Section E]),
we select the optimal modeling methods for cryptographic primitives, i.e., Ψ1

2,3 and Ψ
1
"
are used for

modeling the modular addition, substitution, XOR and matrix-vector product respectively in the
word-wise approach (cf. Figure 6);k 2

⊕ , Ψ
2
M,i,h

and the technique of [Boura and Coggia 2020, Alg. 2,

Alg. 3 and Proposition 3] are used for modeling XOR, matrix-vector product and constructing Ψ
3
S

in the bit-wise approach (cf. Figure 8 and Section 4.2); the technique of [Sasaki and Todo 2017] is
used for constructing Ψ

4
S
in the extended bit-wise approach (cf. Section 4.3). We remark that there

is no consensus on the security of key-less permutations yet, and they are used to evaluate the
performance of EasyBC instead of security evaluation.

8.2.1 Word-wise Approach. The word-wise approach is evaluated on all the word-wise implemen-
tations. The results are reported in Table 5 up to 25 rounds which su�ce to prove security. The
results for the entire rounds are given in [Sun et al. 2023, Section E.1].
We observe that the execution time (i.e., the MILP solving time) in seconds (s) increases with

the round number. The execution time of PICCOLO is considerably higher than that of the others
when the round number is large (e.g., ≥13), because PICCOLO generates more constraints. For
instance, the number of constraints for the 20-round LBLOCK and TWINE are both 481, while it is
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Table 6. Results of the bit-wise approach with the bounding condition, where Timeout is 24 hours.
Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#AS 1 4 15 N/A
ASCON (12)

Time 0s 1061s 1573s Timeout
#AS 0 1 2 4 6 8 9 12 12 N/A

DES (16)
Time 0s 0s 0s 6s 61s 355s 1073s 27294s 57344s Timeout
#AS 1 2 4 6 10 12 14 16 18 20 22 24 N/A

ELEPHANT (80)
Time 0s 0s 4s 5s 50s 394s 1653s 1592s 2994s 4353s 18294s 20404s Timeout
#AS 1 2 3 5 7 10 13 17 19 21 N/A

GIFT-COFB (40)
Time 0s 0s 1s 7s 7s 38s 775s 2222s 6725s 77870s Timeout
#AS 1 2 3 5 7 10 13 16 18 20 22 24 26 N/A

GIFT (28)
Time 0s 0s 1s 1s 2s 3s 7s 52s 43s 136s 518s 846s 25561s Timeout
#AS 1 2 4 6 10 12 14 16 18 20 22 24 26 28 N/A

PRESENT (31)
Time 0s 0s 0s 1s 6s 8s 15s 65s 95s 539s 1884s 10271s 38907s 50931s Timeout
#AS 1 2 3 4 6 8 11 13 15 17 19 21 23 25 27

RECTANGLE (25)
Time 1s 0s 0s 1s 8s 21s 6s 436s 63s 603s 1135s 1221s 2841s 36333s 37860s
#AS 1 2 5 8 12 16 26 36 41 N/A

ROMULUS (40)
Time 0s 0s 5s 48s 87s 378s 1526s 17266s 4043s Timeout
#AS 1 2 5 8 12 16 26 36 41 46 51 55 N/A

SKINNY (36)
Time 0s 0s 1s 2s 15s 24s 78s 967s 2041s 3610s 15502s 26989s Timeout
#AS 1 2 5 6 7 N/A

SPARKLE (7)
Time 2s 44s 1624s 4416s 17592s Timeout

641 for the 20-round PICCOLO. However, the large round number is not always necessary, as the
security may have been proved with a small round number (see below).
For block ciphers, ? = 2−6 and � = 128 for AES; ? = 2−2 and � = 64 for KLEIN, LBLOCK, MIBS,

PICCOLO and TWINE; ? = 2−2 and � = 128 for PHOTON, where the maximum probability ? of
the involved S-boxes that are arrays is computed by enumeration. By Corollary 5.4, EasyBC proved
that AES (resp. KLEIN, LBLOCK, MIBS, PHOTON, PICCOLO and TWINE) is resistant when the
round number B is 4 (resp. 10, 15, 23, 4, 7 and 15), as highlighted in boldface in Table 5.

8.2.2 Bit-wise Approach. The bit-wise approach is evaluated on all bit-wise implementations with
S-boxes. (The word-wise implementations are excluded.) The results are given in Table 6 up to 15
rounds within 24 hours, where the execution time is the MILP solving time.

Unsurprisingly, we observe that the execution time increases very quickly with the round number
due to the blow-up of constraints. For instance, the numbers of constraints and involved variables
of ASCON are 6,913 and 1,408 respectively for 1 round, but become 13,825 and 2,496 (resp. 20,737
and 3,584) for 2 (resp. 3) rounds.

For block ciphers, ? = 2−2 and � = 64 for DES, PRESENT, RECTANGLE and SKINNY; ? = 2−1.415

and � = 128 for GIFT-COFB; ? = 2−1.415 and � = 64 for GIFT; and ? = 2−2 and � = 128 for
ROMULUS. We found that by Corollary 5.4, EasyBC cannot prove that DES (resp. GIFT-COFB,
GIFT, PRESENT, RECTANGLE, ROMULUS and SKINNY) is resistant using the lower bounds of
numbers of active S-boxes reported in Table 6. Fortunately, by Corollary 5.5, EasyBC proved that
GIFT (resp. PRESENT, RECTANGLE, ROMULUS and SKINNY) is resistant with 6 (resp. 3, 6, 3 and
1) rounds, as highlighted in boldface in Table 6. Note that the resistance of GIFT-COFB cannot be
proved here which will be done by applying the extended bit-wise approach later, while DES is
indeed vulnerable to di�erential cryptanalysis [Biham and Shamir 1990] and EasyBC can return
the di�erential characteristics up to 9 rounds within 24-hour time limit.

We also compared theMILP solving timewith/without bounding conditions. Adding the bounding
condition often (5 out of 8) improves the e�ciency by 1 to 3 times, but does not necessarily improve
(and sometimes even worsens) the e�ciency (3 out of 8). The results without the bounding condition
are given in [Sun et al. 2023, Section E.5].

8.2.3 Extended Bit-wise Approach. The capability of the extended bit-wise approach is evaluated on
all the bit-wise implementations of block ciphers and the S-box of SPARKLE (i.e., 4-round Alzette)
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Table 7. Results of the extended bit-wise approach with the bounding condition, where Pr denotes the upper

bound of the probability of optimal di�erential characteristics, and Timeout is 24 hours.

Rounds A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pr 2−1.415 2−3.415 2−7 2−11.415 2−17 2−22.415 2−28.415 N/A
GIFT-COFB (40)

Time 0s 6s 9s 124s 1297s 5811s 11538s Timeout

Pr 20 2
−2 2−4 2−6 2−8 2−12 2−14 2−18 2−20 2−26 2−30 2−34 2−36 2−38 2−40

SIMON-32 (32)
Time 0s 0s 0s 0s 0s 0s 1s 4s 3s 7s 84s 57s 820s 191s 6327s

Pr 20 2−2 2
−4 2−6 2−8 2−12 2−14 2−18 2−20 2−26 2−30 2−36 2−38 2−44 2−46

SIMON-48 (36)
Time 0s 0s 1s 0s 0s 1s 3s 5s 14s 16s 101s 95s 402s 505s 53920s

Pr 20 2−1 2−2 2−6 2−10 2−18 N/A
Alzette (12)

Time 0s 1s 2s 75s 221s 3897s Timeout

that cannot be proved or analyzed before. The results are given in Table 7 up to 15 rounds within
24 hours, where the execution time is the MILP solving time.

Unsurprisingly, the execution time of the extended bit-wise approach is longer than that of the
bit-wise approach. For instance, on the 7-round GIFT-COFB, the execution time of the extended
bit-wise approach is 11,538s while the execution time of the bit-wise approach is 1,074s. This is
because probabilities are explicitly encoded using additional Boolean variables in the extended
bit-wise approach, resulting in more di�cult MILP instances.
Note the block size: GIFT-COFB � = 128, SIMON-32 � = 32, and SIMON-48 � = 48. By

Corollary 7.5, EasyBC prove that GIFT-COFB (resp. SIMON-32 and SIMON-48) is resistant with 5
(resp. 2 and 3) rounds.

9 RELATED WORK

[Matsui 1994] proposed the �rst algorithm for automated resistance analysis of block ciphers against
di�erential cryptanalysis. To further enhance e�ciency, various heuristics have been proposed
to reduce the search space [Aoki et al. 1997; Bao et al. 2014; Biryukov and Nikolić 2010; Ji et al.
2021]. However, these heuristics generally rely on cipher-speci�c optimizations, necessitating
sophisticated programming skills. Additionally, creating highly reusable code that can be easily
adapted for di�erent ciphers is non-trivial [Zhang et al. 2018].
In recent years, a more promising approach based on MILP has been developed. [Mouha et al.

2011] proposed to determine the lower bound of the minimum number of active S-boxes via MILP
solving. As an early attempt, it only considered the word-wise modeling for the XOR operation,
S-box, and linear transformation. To partially lift this limitation, [Sun et al. 2013] introduced the bit-
wise modeling. To precisely characterize S-boxes in MILP, [Sun et al. 2014a] proposed to construct
IL constraints from the H-representation of the S-box DDT and reduced the number of constraints
via a greedy algorithm. Later, Sun et al. [Sun et al. 2014b] proposed a bit-wise modeling method for
the AND operation and extended the method of [Sun et al. 2014a] to directly bound the MaxEDCP

by encoding the probabilities between input and output di�erences of S-boxes in IL constraints.
Since then, plenty of modeling methods for speci�c operations have been proposed, aimed at

improving e�ciency and applicability. [Sasaki and Todo 2017] proposed an MILP-based algorithm
to reduce the number of constraints obtained from the H-representation of the S-box DDT. [Ab-
delkhalek et al. 2017] proposed to construct IL constraints from the minimized product-of-sum
representation of S-box DDT instead of the H-representation. Along this line, [Boura and Coggia
2020; Li and Sun 2022; Sun 2021; Udovenko 2021] generate more diverse constraints from the S-box
DDT, allowing the number of the resulting constraints to be further reduced by applying greedy
or MILP-based algorithms; [Cui et al. 2016; Li et al. 2019; Sasaki and Todo 2017; Yin et al. 2017]
proposed a new modeling for the XOR operation; [Boura and Coggia 2020; Ilter and Selçuk 2021;
Zhang and Zhang 2018] proposed another modeling for linear transformation; [Fu et al. 2016]
proposed a modeling method for the modular addition operation; and [Chen et al. 2015; Liu et al.
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2017; Wang et al. 2018] proposed a modeling method for the rotation-AND operation. Besides new
modeling methods for speci�c operations, optimization strategies have also been proposed. [Zhang
et al. 2018] incorporated the bounding condition of [Matsui 1994] into the MILP-based method;
[Zhou et al. 2019] proposed partitioning all possible di�erential characteristics into subsets, each of
which is analyzed by the MILP-based method.

Another direction is to resort to SAT/SMT solving. [Mouha and Preneel 2013] proposed the �rst
SAT/SMT modeling for the XOR, modular addition, and rotation operations. It has been extended
to handle a speci�c permutation [Aumasson et al. 2014], the AND operation and rotation with
constants [Kölbl et al. 2015], independent modular addition [Song et al. 2016], S-boxes [Liu et al.
2021; Sun et al. 2018], and modular addition with constants [Azimi et al. 2022]. In contrast to
the MILP-based method which determines the lower bound of the minimum number of active
S-boxes or the upper bound of MaxEDCP, SAT/SMT-based methods can only verify whether a
given number is a bound. Recently, both the bounding condition of [Matsui 1994] and MILP-based
method have been combined with the SAT/SMT-based method [Makarim and Rohit 2022; Sun et al.
2021] to improve the e�ciency. To facilitate the comparison of all the above MILP/SAT/SMT-based
approaches, a summary is given in [Sun et al. 2023, Section F].

Despite signi�cant progress in the �eld, existing works primarily concentrate on ad-hoc modeling
methods designed for speci�c operations, but do not o�er systematic methods for determining
word-wise or bit-wise branch numbers and encoding probabilities between input and output di�er-
ences. There is a lack of language support, uni�ed computational approaches and full automation.
This limitation forces cryptanalysts to individually model each cipher within the tool or create
a model generation script for every individual cipher, resulting in a complex, error-prone, and
time-consuming process. This work �lls this signi�cant gap and makes resistance evaluation against
di�erential cryptanalysis easily accessible to cryptographers.

There are other cryptography-speci�c languages such as SAW [Carter et al. 2013], Jasmin [Almeida
et al. 2017], Vale [Bond et al. 2017], Usuba [Mercadier and Dagand 2019], FaCT [Cauligi et al. 2019],
QMVerif [Gao et al. 2022], HOME [Gao et al. 2021], and FISCHER [Liu et al. 2023]. They are de-
signed to ensure functional correctness and/or side-channel security of cryptographic algorithms
or implementations, which are considerably di�erent from EasyBC.

10 CONCLUSION

We have designed a high-level cryptography-speci�c language EasyBC for describing block ciphers
and presented a rigorous MILP generation procedure from EasyBC programs in the form of
di�erential denotational semantics, leading to a generic and extensible approach for automatically
evaluating the resistance of block ciphers written in EasyBC against di�erential cryptanalysis.
We have implemented our approach in an open-source tool and extensively evaluate it on a set
of realistic cryptographic primitives, demonstrating its expressivity and capability. In particular,
experimental results show that realistic cryptographic primitives can be easily described in EasyBC

and their resistance against di�erential cryptanalysis can be e�ciently and e�ectively proved using
our tool. Our tool enables cryptanalysts to easily assess the resistance of block ciphers against
di�erential cryptanalysis in a fully automatic way.

For future research, it would be interesting to improve e�ciency by combining recent optimiza-
tion strategies and to develop analysis approaches for other powerful cryptanalysis (e.g., linear
cryptanalysis [Biryukov and De Cannière 2011], impossible di�erential cryptanalysis [Kim et al.
2003]) based on EasyBC.
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