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In the rapidly evolving landscape of neural network security, the resilience of neural networks against bit-flip

attacks (i.e., an attacker maliciously flips an extremely small amount of bits within its parameter storage

memory system to induce harmful behavior), has emerged as a relevant area of research. Existing studies

suggest that quantization may serve as a viable defense against such attacks. Recognizing the documented

susceptibility of real-valued neural networks to such attacks and the comparative robustness of quantized

neural networks (QNNs), in this work, we introduce BFAVerifier, the first verification framework designed to

formally verify the absence of bit-flip attacks or to identify all vulnerable parameters in a sound and rigorous

manner. BFAVerifier comprises two integral components: an abstraction-based method and an MILP-based

method. Specifically, we first conduct a reachability analysis with respect to symbolic parameters that represent

the potential bit-flip attacks, based on a novel abstract domain with a sound guarantee. If the reachability

analysis fails to prove the resilience of such attacks, then we encode this verification problem into an equivalent

MILP problem which can be solved by off-the-shelf solvers. Therefore, BFAVerifier is sound, complete, and

reasonably efficient. We conduct extensive experiments, which demonstrate its effectiveness and efficiency

across various network architectures, quantization bit-widths, and adversary capabilities.
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memory before (8-bit): 85

memory after (8-bit): -43
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bit-flip attacks
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Misclassified as “Digit 3”.
Attacked !!!

Assume that this “Digit 8”
can be correctly classified by

the clean network.

Fig. 1. An illustration example of bit-flip attacks on an 8-bit quantized neural network. The attacker flips a
single bit in the final/output layer, altering the value of parameter Ŵ𝑖

𝑗,𝑘
from 85 to -43 (represented in two’s

complement) and misleading the network behavior.

1 Introduction
Neural networks have demonstrated their potential to achieve human-level performance in multiple

domains [17, 53]. However, they are fragile in many ways and can be easily manipulated through

various attacks [8, 10–12, 30, 38, 50, 67, 82, 89]. Recently, bit-flip attacks (BFAs) [16, 46, 59, 61] have

become a critical class of hardware-based adversarial threats that exploit the physical vulnerability

of neural networks. These attacks involve maliciously flipping the bits in the memory cells that store

the parameters of a neural network during the deployment stage or changing the real-time activation

values during the inference stage. Such attacks have been demonstrated to be feasible in practice for

altering the behavior of networks in multiple cases [7, 70, 73]. For instance, RowHammer [54, 69]

is one of the most widely used BFA methods which exploits a vulnerability in DRAM by repeatedly

accessing memory rows to induce unintended bit flips in adjacent rows, compromising data integrity

and security for network parameters. Unlike traditional software-level adversarial attacks, which

typically require modifications to input data, BFAs directly target the underlying hardware (e.g.,

memory), making them particularly effective and difficult to defend against.

Modern DNNs, characterized by their large sizes and 32-bit floating-point parameters, face high

computational and storage demands, hindering their deployment on resource-limited embedded

devices. Quantization [24, 27, 33], reducing the precision of parameters and/or activation values,

offers a promising solution to compress the network, and enables the deployment of quantized

neural networks (QNNs) on such devices. For example, the Tesla-FSD chip [78] employs an 8-bit

integer format to store all network weights. On the other hand, QNNs have been demonstrated to

exhibit greater resilience to BFAs compared to their real-valued counterparts. Specifically, DNNs

are highly susceptible to BFAs, with successful attack rates reaching nearly 99% [30], particularly

through the manipulation of the exponential bit of compromised parameters. In response, numerous

defense strategies have been proposed [39, 48, 68], leveraging parameter quantization to fortify

network security against bit-flip attacks. Despite these measures, QNNs remain vulnerable to BFAs,

as existing defense techniques fall short of providing formal security assurances against such attacks.

This vulnerability underscores the critical need for developing a rigorous verification method to

ascertain the absence of BFAs, ensuring the integrity and reliability of QNNs in security-sensitive

applications. An illustration example of bit-flip attacks on an 8-bit QNN can be found in Figure 1.

Main contributions. In this work, we propose the first Bit-Flip Attacks Verification method

(BFAVerifier) to efficiently and effectively verify if the bit-flip attacks are absent given a QNN,

concerning a given input region, that is also sound and complete. It guarantees the safety of the

QNN (such as robustness with respect to a specified input region) when facing potential bit-flip

attacks. Given a QNN and an input region, BFAVerifier first conducts a novel reachability analysis
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to compute an overapproximation of the output range of the network under the potential attacks.

Such an analysis generates two outcomes: i) Proved, meaning the absence of the potential BFAs,

or ii) Unknown, meaning that it fails to prove the absence of successful attacks possibly due to a

conservative approximation of the abstraction throughout the reachability analysis process. If the

result is Unknown, we further encode this bit-flip attacks verification problem into an equivalent

mixed-integer linear programming (MILP) problem, which can be solved by off-the-shelf solvers.

A key technical challenge is how to conduct the reachability analysis for QNNs, given the inter-

ested input region and the threat of potential bit-flip attacks (i.e., some network parameters become

symbolic with unknown values). To tackle the challenge, we propose SymPoly, an advanced ab-

stract domain that is built on DeepPoly and is equipped with new abstract transformers specifically

designed for handling symbolic parameters. Initially, symbolic parameters are determined with

specific parameter intervals for the QNN concerning the potential bit-flip attacks. Subsequent

reachability analysis can then be conducted on the modified QNN, which is equipped with symbolic

parameters, using SymPoly. To enhance the precision of our reachability analysis results, we

also propose two optimization strategies, namely, sub-interval division and binary search strategy,
to reduce the precision loss that arises from the abstract transformation concerning large value

discrepancies with a single interval.

Experimental results. We implement our method as an end-to-end tool that uses Gurobi [26]

as the back-end MILP solver. We extensively evaluate it on a large set of verification tasks using

multiple QNNs for the MNIST [41] and ACAS Xu [34] datasets, where the number of hidden

neurons varies from 30 to 5120, the quantization bit-width of QNNs ranges from 4 to 8, and the

number of bits for bit-flip attacks ranges from 1 to 4 bits. For the reachability analysis, we compare

BFAVerifier with a naive method that iteratively generates a new QNN N ′
for each possible bit-flip

attack and verifies whether the N ′
still preserves the robustness property within the given input

region via DeepPoly. The experimental results show that our method is much more efficient than

the naive method (up to 30x faster), successfully proving a similar number of verification tasks and

even proving some tasks that return unknown by the naive method. Moreover, with the binary

search strategy, we can prove even more tasks. The results also confirm the effectiveness of the

MILP-based method, which can help verify many tasks that cannot be solved by SymPoly solely.

The experimental results also show that BFAVerifier can verify the absence of BFAs for most of the

benign neural networks in our benchmark.

Our contributions are summarized as follows.

• We propose a novel abstract domain SymPoly to conduct reachability analysis for neural

networks with symbolic parameters soundly and efficiently;

• We introduced the first sound, complete, and reasonably efficient bit-flip attacks verification

method BFAVerifier for QNNs by combining SymPoly and an MILP-based method;

• We implement BFAVerifier as an end-to-end tool and conduct an extensive evaluation of

various verification tasks, demonstrating its effectiveness and efficiency.

Outline. Section 2 presents the preliminary. Section 3 defines our problem and a naive method for

solving the problem based on DeepPoly is given. We present our method in Section 4. Section 5

reports experimental results. Section 6 discusses related work and finally, Section 7 concludes this

work. Missing proofs can be found in the appendix.

2 Preliminary
We denote by R (resp. N) the set of real (resp. integer) numbers. Given a positive integer 𝑛, we

denote by [𝑛] the set of positive integers {1, 2, . . . , 𝑛}. We use 𝑥, 𝑥 ′, . . . to denote scalars, x, x′, . . . to
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(b) QNN.

Fig. 2. A 3-layer DNN with ReLU activations and its quantized version.

denote vectors, andW,W′, . . . to denote matrices. We denote byW𝑖,: andW:, 𝑗 to denote the 𝑖-th

row and 𝑗-th column of the matrix W, and use x𝑖 to denote the 𝑖-th entry of the vector x.

2.1 Neural Network andQuantization
In this section, we provide the minimal necessary background on neural networks and the quanti-

zation scheme considered in this work. Specifically, we focus on feedforward deep neural networks

(DNNs) used for classification problems.

Neural networks. A DNN consists of an input layer, multiple hidden layers, and an output layer.

Each layer contains neurons connected via weighted edges to the neurons in the subsequent layer.

Specifically, each neuron in a non-input layer is additionally linked with a bias term. Given an

input, a DNN computes an output by propagating it through the network layer by layer and gets

the classification result by identifying the dimension with the highest value in the output vector.

A DNN with 𝑑 layers can be represented by a non-linear multivariate function N : R𝑛 → R𝑠 .
For any input x ∈ R𝑛 , let x = x1, the outputN(x) = W𝑑x𝑑−1 + b𝑑 can be obtained via the recursive

definition x𝑖 = ReLU(W𝑖x𝑖−1 + b𝑖 ) for 𝑖 ∈ {2, 3, . . . , 𝑑 − 1}, where W𝑖
and b𝑖 (for 2 ≤ 𝑖 ≤ 𝑑) are the

weight matrix and bias vector of the 𝑖-th layer. We refer to x𝑖𝑗 as 𝑗-th neuron in the 𝑖-th layer and

use 𝑛𝑖 to denote the dimension of the 𝑖-th layer. 𝑛 = 𝑛1 and 𝑠 = 𝑛𝑑 .

Quantization. Quantization is the process of converting high-precision floating-point values into

a finite range of lower-precision ones, i.e., fixed-point numbers, without significant accuracy loss. A

quantized neural network (QNN) is structurally similar to a DNN, except that the parameters and/or

activation values are quantized into fixed-pointed numbers, e.g., 4-bit or 8-bit integers. In this work,

we adopt the symmetric quantization scheme widely utilized in prior research concerning bit-blip

attack (BFA) strategies on QNNs [16], where only parameters are quantized to reduce the memory

requirements [27, 83, 91]. During inference, we assume that the parameters are de-quantized and

all operations within the quantized networks are executed using floating-point arithmetic.

Given the weight matrix W𝑖
and the bias vector b𝑖 , their signed integer counterparts Ŵ𝑖

and
ˆb𝑖

with respect to quantization bit-width 𝑄 are respectively defined as follows. For each 𝑗, 𝑘 ,

Ŵ𝑖
𝑗,𝑘

= ⌊W𝑖
𝑗,𝑘
/Δ𝑤 𝑖⌉, ˆb𝑖𝑗 = ⌊b𝑖𝑗/Δ𝑤 𝑖⌉

where Δ𝑤 𝑖 = maxAbs(W𝑖 , b𝑖 )/(2𝑄−1 − 1) is the quantization step size of the 𝑖-th layer and the max

function returns the maximal value of W𝑖
and b𝑖 . ⌊·⌉ is the rounding operator, maxAbs(W𝑖 , b𝑖 )

means finding the maximum absolute value among all the entries from W𝑖
and b𝑖 .

Once quantized into an integer, the parameter will be stored as the two’s complement format in the

memory. In the forward pass, the parameters will be de-quantized by multiplying the step size Δ𝑤 𝑖 .

Taking a quantized parameter Ŵ𝑖
𝑗,𝑘

as an example and let ®𝑣 (·) denote the operation that converts

an integer into its two’s complement expressions. Assume that ®𝑣 (Ŵ𝑖
𝑗,𝑘
) = [𝑣𝑄 ; 𝑣𝑄−1; · · · ; 𝑣1], then
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the de-quantized version W̃𝑖
𝑗,𝑘

can be calculated as follows with W̃𝑖
𝑗,𝑘

≈ W𝑖
𝑗,𝑘
:

W̃𝑖
𝑗,𝑘

= Ŵ𝑖
𝑗,𝑘

· Δ𝑤 𝑖 =
(
− 2

𝑄−1 · 𝑣𝑄 +
𝑄−2∑︁
𝑞=1

2
𝑞−1 · 𝑣𝑞

)
· Δ𝑤 𝑖

Example 2.1. Consider the DNN shown in Figure 2(a). It contains three layers: one input layer,

one hidden layer, and one output layer. The weights are associated with the edges and all the biases

are 0 and the quantization bit-width 𝑄 = 4. Then, the step size of the parameter quantizer for each

non-input layer is Δ𝑤2 = 0.7/(23 − 1) = 0.1, Δ𝑤3 = 1/(23 − 1) = 1/7. The integer counterparts of
weight parameters are associated with the edges in Figure 2(b).

Take the hidden layer for instance, we obtain their quantized weights, two’s complement coun-

terparts, and de-quantized versions as follows:

• Ŵ2

1,1 = ⌊−0.7/Δ𝑤2⌉ = ⌊−0.7 ∗ 10⌉ = −7, ®𝑣 (Ŵ2

1,1) = [1001], and W̃2

1,1 = −0.7;
• Ŵ2

1,2 = ⌊−0.3/Δ𝑤2⌉ = ⌊−0.3 ∗ 10⌉ = −3, ®𝑣 (Ŵ2

1,2) = [1101], and W̃2

1,2 = −0.3;
• Ŵ2

2,1 = ⌊0.3/Δ𝑤2⌉ = ⌊0.3 ∗ 10⌉ = 3, ®𝑣 (Ŵ2

2,1) = [0011], and W̃2

2,1 = 0.3;

• Ŵ2

2,2 = ⌊0.5/Δ𝑤2⌉ = ⌊0.7 ∗ 10⌉ = 7, ®𝑣 (Ŵ2

2,2) = [0111], and W̃2

2,2 = 0.7;

Similarly, for the output layer, we have

• Ŵ3

1,1
= ⌊−1/Δ𝑤3⌉ = ⌊−1 ∗ 7⌉ = −7, ®𝑣 (Ŵ3

1,1
) = [1001], and W̃3

1,1
= −1;

• Ŵ3

1,2
= ⌊0/Δ𝑤3⌉ = ⌊0 ∗ 7⌉ = 0, ®𝑣 (Ŵ3

1,2
) = [0000], and W̃3

1,2
= 0;

• Ŵ3

2,1
= ⌊0.8/Δ𝑤3⌉ = ⌊0.8 ∗ 7⌉ = 6, ®𝑣 (Ŵ3

2,1
) = [0110], and W̃2

1,1 = 0.8571;

• Ŵ3

2,2
= ⌊−0.2/Δ𝑤3⌉ = ⌊−0.2 ∗ 7⌉ = −1, ®𝑣 (Ŵ3

2,2
) = [1111], and W̃2

1,1 = −0.1429.

2.2 Bit-Flip Attacks
Bit-flip attacks (BFAs) are a class of fault-injection attacks that were originally proposed to breach

cryptographic primitives [3, 5, 6]. Recently, BFAs have been ported to neural networks.

Attack scenarios and threat model. Recent studies [40, 60, 82] have revealed vulnerabilities

in DRAM chips, which act as a crucial memory component in hardware systems. Specifically, an

adversary can induce bit-flips in memory by repeatedly accessing the adjacent memory rows in

DRAM, without direct access to the victim model’s memory, known as Rowhammer attack [40].

Such attacks exploit an unintended side effect in DRAM, where memory cells interact electrically by

leaking charges, potentially altering the contents of nearby memory rows that were not originally

targeted in the memory access. Although such attacks do not grant adversaries full control over the

number or precise location of bit-flips and the most prevalent BFA tools such as DeepHammer [82]

can typically induce only a single bit-flip, the recent study [16] has demonstrated that an adversary

can effectively attack a QNN by flipping, on average, just one critical bit during the deployment

stage. While indirectly flipping multiple bits is theoretically feasible, achieving this would require

highly sophisticated techniques that are both extremely time-intensive and have a low likelihood

of success in practice [60]. Therefore, in this study, we assume that the adversary can indirectly
manipulate only a minimal number of parameters in a QNN, by default 1. More powerful attacks

that can directly manipulate memory go beyond the scope of this work. On the other hand, though

most of the existing BFAs target weights only [16, 30, 46, 61], in this work, we consider a more

general setting where all parameters (weights and biases) of QNNs are vulnerable to BFAs [68].

Example 2.2. Consider the QNN given in Example 2.1. Suppose a bit-flip attacker can alter any

single bit in the memory cell storing parameters and we use two dots “··” to represent a parameter

that is targeted for such attacks. Take the parameter Ŵ3

2,2
with ®𝑣 (Ŵ3

2,2
) = [1111] for example. Its
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potential attacked representations are ®𝑣 ( ¥̂W
3

2,2) ∈ {[0111], [1011], [1101], [1110]}, thus we have
¥̂W
3

2,2 ∈ {7,−5,−3,−2} and ¥̃W
3

2,2 ∈ {1,−0.7143,−0.4286,−0.2857}. Given an input x1 = (1, 1), after
de-quantizing integer parameters during the inference, we can get the output of each non-input

layer as x2 = (0, 1) and x3 = (0,−0.1429).
Now, suppose that the attacker flips the fourth bit (i.e., sign bit) of the parameter Ŵ3

2,2
, then we

have
¥̂W
3

2,2 = 7 and
¥̃W
3

2,2 = 1. Finally, the network output after the attack is x3 = (0, 1), resulting in

an altered classification outcome.

Definition 2.3 (Attack Vector). Given a QNN N with quantization bit-width 𝑄 , and two integers

𝔪 and 𝔫 such that an adversary can attack any 𝔪 parameters by flipping 𝔫 bits at most within

each parameter (𝔫 ≤ 𝑄). An (𝔪, 𝔫)-attack vector 𝜌 is a set of pairs {(𝛼𝑖 , 𝑃𝑖 ) | 𝑖 ≤ 𝔪} where 𝛼𝑖 is a
parameter (weight or bias) of N and 𝑃𝑖 is a set of bit positions with |𝑃𝑖 | ≤ 𝔫. We use N𝜌

to denote

the resulting network by invoking the attack vector 𝜌 on N .

An (𝔪, 𝔫)-attack vector defines the vulnerable parameters and bits that are flipped by the

adversary during a specific BFA.

Example 2.4. Consider the QNN given in Example 2.1. Let 𝔪 = 𝔫 = 2 and an attack vector

𝜌 = {(Ŵ2

1,1, {2, 4}), (Ŵ2

1,2, {3})}. Intuitively, 𝜌 describes a specific bit-flip attack that the 2nd and

4th bits in ®𝑣 (Ŵ2

1,1) = [1001] and the 3rd bit in ®𝑣 (Ŵ2

1,2) = [1101] are flipped. Then, we have the two’s

complement representations of attacked parameters as ®𝑣 ( ¥̂W
2

1,1) = [0011] and ®𝑣 ( ¥̂W
2

1,2) = [1001].

Note that for clarity and convenience, given a QNN, the de-quantized parameters before (resp.

after) BFAs W̃𝑖
𝑗,𝑘

(resp.
¥̃W
𝑖

𝑗,𝑘 ) may be directly represented byW𝑖
𝑗,𝑘

(resp. ¥W𝑖
𝑗,𝑘
) when it is clear from

the context in the subsequent sections.

3 Bit-Flip Attack Verification Problem
In this section, we define the verification problem considered in this work and discuss a naive

baseline solution based on DeepPoly.

3.1 Problem Definition
Definition 3.1 (BFA-tolerance). Let N : R𝑛 → R𝑠 be a QNN. Given a pre-condition 𝜙 over the

input x ∈ R𝑛 and post-condition 𝜓 over the output N(x) ∈ R𝑠 . We use N |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ⟩ to denote

that for any (𝔪, 𝔫)-attack vector 𝜌 , 𝜙 (x) ⇒ 𝜓 (N𝜌 (x)) always holds, where N𝜌
is the network

obtained from N given the attack vector 𝜌 .

If N |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ⟩ holds, we say that N is BFA-tolerant to the property ⟨𝜓, 𝜙⟩. Note that, such
a formulation of the problem is expressive enough to cover a range of desired neural network

properties, including safety, robustness, (counterfactual) fairness, and backdoor-absence.

Theorem 3.2. Verifying whether N |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ⟩ holds is NP-complete. □

In the following, for the sake of readability, our discussion focuses on the following general

BFA-tolerant robustness property.

Definition 3.3 (BFA-tolerant Robustness). LetN : R𝑛 → R𝑚 be a QNN, I ⊂ R𝑛 be an input region,

and 𝑔 is a target class.N is BFA-tolerant for robustness with respect to the region I and the class 𝑔

if N |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ⟩ returns true, where 𝜙 (x) := x ∈ I,𝜓 (y) := argmax(y) = 𝑔.

, Vol. 1, No. 1, Article . Publication date: February 2025.
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Intuitively, the BFA-tolerant robustness verification problem with 𝔪 = 𝔫 = 0 is the vanilla

robustness verification problem N |= ⟨𝜙,𝜓 ⟩ of neural networks, following the prior works [35]. In

this work, we consider input regions that are expressible by polyhedra, following the literature,

e.g., [21, 23, 29, 43, 45, 65, 66, 71, 72, 74, 81, 84, 88] to cite a few.

3.2 A Naive Method by DeepPoly

Next, we present a baseline approach that reduces the BFA verification problem to a classic neural

network verification problem so that the existing verifier, such as DeepPoly [66], can be used to

verify the above BFA-tolerant properties.

ReviewofDeepPoly.The key idea ofDeepPoly is to approximate the behavior of the neural network

based on an abstract interpreter specifically tailored to the setting of neural networks. Specifically,

the abstract domain A is a combination of polyhedra, coupled with abstract transformers for

neural network functions, including affine functions and activation functions. To achieve this, each

neuron in the hidden layer x𝑖𝑗 (the 𝑗-th neuron in the 𝑖-th layer) with x𝑖𝑗 = ReLU(W𝑖x𝑖−1 + b𝑖 )
is seen into two nodes x𝑖𝑗,1 and x𝑖𝑗,2 such that x𝑖𝑗,1 = W𝑖

𝑗,:x
𝑖−1 + b𝑖𝑗 and x𝑖𝑗,2 = ReLU(x𝑖𝑗,1), where

x𝑖−1
𝑘

= x𝑖−1
𝑘,2

for 𝑘 ∈ [𝑛𝑖−1]. Formally, the abstract element a𝑖𝑗,𝑠 ∈ A for each neuron x𝑖𝑗,𝑠 (𝑠 ∈ {1, 2})
is a tuple ⟨𝑎𝑖,≤

𝑗,𝑠
, 𝑎
𝑖,≥
𝑗,𝑠
, 𝑙𝑖𝑗,𝑠 , 𝑢

𝑖
𝑗,𝑠⟩, where 𝑎

𝑖,≤
𝑗,𝑠

(resp. 𝑎
𝑖,≥
𝑗,𝑠
) is a symbolic lower (resp. upper) bound in

the form of a linear combination of variables which appear before it and 𝑙𝑖𝑗,𝑠 , 𝑢
𝑖
𝑗,𝑠 ∈ R. For an

affine function x𝑖𝑗,1 = W𝑖
𝑗,:x

𝑖−1 + b𝑖𝑗 , the abstract transformer sets 𝑎
𝑖,≤
𝑗,1

= 𝑎
𝑖,≥
𝑗,1

= W𝑖
𝑗,:x

𝑖−1 + b𝑖𝑗 . To
compute the concrete lower (resp. upper) bound 𝑙𝑖𝑗,1 (resp. 𝑢

𝑖
𝑗,1), we first repeatedly substitute the

variables in 𝑎
𝑖,≤
𝑗,1

(resp. 𝑎
𝑖,≥
𝑗,1
) with their symbolic bounds according to the coefficient until no further

substitution is possible. Then, we can obtain a sound lower (resp. upper) bound in the form of

the linear combination of input variables, and 𝑙𝑖𝑗,1 (resp. 𝑢
𝑖
𝑗,1) can be computed immediately from

the input domain. For an activation function x𝑖𝑗,2 = ReLU(x𝑖𝑗,1), the abstract transformers set the

abstract element a𝑖𝑗,2 = ⟨𝑎𝑖,≤
𝑗,2
, 𝑎
𝑖,≥
𝑗,2
, 𝑙𝑖𝑗,2, 𝑢

𝑖
𝑗,2⟩ as follows:

• If 𝑙𝑖𝑗,1 ≥ 0: 𝑎
𝑖,≤
𝑗,2

= 𝑎
𝑖,≤
𝑗,1
, 𝑎
𝑖,≥
𝑗,2

= 𝑎
𝑖,≥
𝑗,1
, 𝑙𝑖𝑗,2 = 𝑙

𝑖
𝑗,1, and 𝑢

𝑖
𝑗,2 = 𝑢

𝑖
𝑗,1;

• If 𝑢𝑖𝑗,1 ≤ 0: 𝑎
𝑖,≤
𝑗,2

= 𝑎
𝑖,≥
𝑗,2

= 𝑙𝑖𝑗,2 = 𝑢
𝑖
𝑗,2 = 0;

• If 𝑙𝑖𝑗,1 < 0 < 𝑢𝑖𝑗,1: 𝑎
𝑖,≥
𝑗,2

= 𝑢𝑖𝑗,1 (x𝑖𝑗,1 − 𝑙𝑖𝑗,1)/(𝑢𝑖𝑗,1 − 𝑙𝑖𝑗,1), 𝑎
𝑖,≤
𝑗,2

= 𝜆x𝑖𝑗,1 where 𝜆 ∈ {0, 1} such that the

area of resulting shape by 𝑎
𝑖,≤
𝑗,2

and 𝑎
𝑖,≥
𝑗,2

is minimal, 𝑙𝑖𝑗,2 = 𝜆𝑙
𝑖
𝑗,1 and 𝑢

𝑖
𝑗,2 = 𝑢

𝑖
𝑗,1.

A naive method. Given the problem of verifying whetherN |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ⟩ holds, a naive solution is

to iteratively create an attacked networkN𝜌
for each possible (𝔪, 𝔫)-attack vector 𝜌 and check the

vanilla robustness verification problem N𝜌 |= ⟨𝜙,𝜓 ⟩ by DeepPoly, which conducts a reachability

analysis and returns a sound and incomplete verification result. Following this method, the number

of possible attack vectors increases quickly with𝔪, 𝔫, and the number of parameters inN , causing

the infamous combinatorial explosion problem. For instance, suppose the number of parameters

of a QNN is 𝐾 and the quantization bit-width is 𝑄 , the number of possible attack vectors (or the

number of attacked networks N𝜌
) is

(
𝐾
𝔪

)
× (∑𝔫

𝑖=1

(
𝑄
𝑖

)
)𝔪 .

4 Methodology of BFAVerifier
In this work, we operate under the assumption that the adversary is limited to attacking a small

number of parameters in a QNN, specifically targeting only one parameter by default (𝔪 = 1).

Note that even if the adversary is limited to flipping only one parameter, the number of possible

(1, 𝔫)-attack vectors is still 𝐾 ·∑𝔫
𝑖=1

(
𝑄
𝑖

)
. Consider a QNNN which is quantized by𝑄 and comprises

𝐾 parameters. The naive method introduced in Section 3.1 can only verify each (1, 𝔫)-attack vector
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Algorithm 1: Overall Algorithm of BFAVerifier

1 Proc BFA_Verifier(N ,I, 𝑔, 𝔫)
2 𝜉 = ∅;
3 foreach parameter𝑤 in N do
4 if BFA_RA(N ,I, 𝑔,𝑤, 𝔫) = Unknown then
5 𝜉 .append(𝑤 );

6 if 𝜉 == ∅ then
7 return True;

8 else
9 return BFA_MILP(N ,I, 𝑔, 𝜉, 𝔫);

separately and invokes 𝐾 ·∑𝔫
𝑖=1

(
𝑄
𝑖

)
times DeepPoly in total, which is highly inefficient. Our idea is

to verify multiple attack vectors at one time.

4.1 Overview of BFAVerifier
The overall verification procedure is given in Algorithm 1. Given a QNN N , an input region I, a
target class 𝑔, and the maximum number of bits to flip 𝔫, we firstly traverse each parameter 𝑤 ,

performing a reachability analysis via function BFA_RA(·) independently (lines 3-4) to compute a

sound output range forN considering all potential

∑𝔫
𝑖=1

(
𝑄
𝑖

)
attack vectors with respect to parameter

𝑤 , and subsequently identify all parameters potentially susceptible to bit-flip attacks (line 5). If

the set 𝜉 is empty, we return True which means all parameters are safe to BFA and the network

N is BFA-tolerant with respect to the region I and class 𝑔. Otherwise, it implies the existence

of at least one parameter for which the reachability analysis fails to confirm safety against such

attacks. In this case, we reformulate the verification problem into an equivalent MILP problem

based on the intermediate results (i.e., all susceptible parameters 𝜉) derived before, which can then

be solved using off-the-shelf solvers. Therefore, the whole verification process BFAVerifier is sound,
complete yet reasonably efficient. We remark that the MILP-based verification method is often

more time-consuming and thus the first step allows us to quickly verify many tasks first or identify

all vulnerable parameters soundly and formally.

Below, we present the details of functions BFA_RA and BFA_MILP. We first introduce an abstract

domain designed for networks with symbolic parameters, which will be utilized throughout our

reachability analysis procedure.

4.2 SymPoly: An Abstract Domain for Networks with Symbolic Parameters
In this section, we introduce a new abstract domain SymPoly designed for networks with symbolic

parameters, equipped with abstract transformers tailored to our bit-flip attack setting to conduct a

sound reachability analysis.

Let us consider the (𝑖 + 1)-th layer with neuron function x𝑖+1𝑗 = ReLU(W𝑖+1
𝑗,: x

𝑖 +b𝑖+1𝑗 ) in a QNNN
such that W𝑖+1

𝑗,𝑘
(for some 𝑘 ∈ [𝑛𝑖 ]) or/and b𝑖+1𝑗 may be replaced by symbolic parameters. Following

DeepPoly, we first split each neuron (e.g., x𝑖+1𝑗 ) into two nodes (e.g., x𝑖+1𝑗,1 and x𝑖+1𝑗,2 ) and reformulate

the neuron function as follows:

x𝑖+1𝑗,1 =
∑︁
𝑡 ∈[𝑛𝑖 ]

W𝑖+1
𝑗,𝑡 x

𝑖
𝑡,2 + b𝑖+1𝑗 , x𝑖+1𝑗,2 = ReLU(x𝑖+1𝑗,1 )

4.2.1 Abstract domain. We inherit the abstract domain A introduced in DeepPoly which consists

of a set of polyhedral constraints, each relating one variable to a linear combination of the variables
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from preceding layers. Formally, the abstract element of each neuron x𝑖+1𝑗,𝑠 (𝑠 ∈ {1, 2}) in our abstract

domain is represented as a𝑖+1𝑗,𝑠 = ⟨𝑎𝑖+1,≤
𝑗,𝑠

, 𝑎
𝑖+1,≥
𝑗,𝑠

, 𝑙𝑖+1𝑗 , 𝑢𝑖+1𝑗 ⟩ ∈ A, and it satisfy the following invariant:

𝛾 (a𝑖+1𝑗,𝑠 ) = {𝑥 ∈ R | 𝑎𝑖+1,≤
𝑗,𝑠

≤ 𝑥 ≤ 𝑎
𝑖+1,≥
𝑗,𝑠

} ⊆ [𝑙𝑖+1𝑗,𝑠 , 𝑢𝑖+1𝑗,𝑠 ]. By repeatedly substituting each variable

x𝑖
′
𝑗 ′ in 𝑎

𝑖+1,≤
𝑗,𝑠

(resp. 𝑎
𝑖+1,≥
𝑗,𝑠

) using 𝑎
𝑖′,≤
𝑗 ′ or 𝑎

𝑖′,≥
𝑗 ′ according to the coefficient of x𝑖

′
𝑗 ′ , until no further

substitution is possible, 𝑎
𝑖+1,≤
𝑗,𝑠

(resp. 𝑎
𝑖+1,≥
𝑗,𝑠

) will be a linear combination over the input variables of

the QNN. We next introduce our abstract transformation for functions in N .

4.2.2 Affine abstract transformer for symbolic weights. Without loss of generality, we consider the

transformer for the case where there is only one concrete parameter is replaced by a symbolic

one, e.g.,

−→
W𝑖+1

𝑗,𝑘
for some 𝑘 ∈ [𝑛𝑖 ]. For all nodes other than x𝑖+1𝑗,1 , we directly inherit the abstract

transformers from DeepPoly.
In this work, we need to abstract affine functions with symbolic parameters and the ReLU

function, both of which contribute to precision loss. To improve accuracy, we abstract them jointly

as a symbolic weighted ReLU function with ReLU applied internally, as shown in Figure 3b. For

the very first affine layer, we abstract the affine function solely, since there is no preceding ReLU,

as given later at the end of this section. We remark that our abstract transformations can be

compositionally applied to settings involving multiple symbolic parameters.

Symbolic weights on hidden neurons. Consider a symbolic weight parameter

−→
W𝑖+1

𝑗,𝑘
constrained

by an interval range [𝑤𝑙 ,𝑤𝑢]. Then, the updated neuron function for x𝑖+1𝑗,1 is as follows:

x𝑖+1𝑗,1 =
∑︁

𝑡 ∈[𝑛𝑖 ]\𝑘
W𝑖+1

𝑗,𝑡 x
𝑖
𝑡,2 +

−→
W𝑖+1

𝑗,𝑘
x𝑖
𝑘,2

+ b𝑖+1𝑗 (1)

To perform abstract transformations on

−→
W𝑖+1

𝑗,𝑘
x𝑖
𝑘,2
, an intuitive idea is to directly make an affine

transformation with respect to symbolic parameter

−→
W𝑖+1

𝑗,𝑘
on the abstract element of x𝑖

𝑘,2
. However,

it will lead to an over-approximate result compared to abstracting the symbolic-weighted ReLU

function. To illustrate it, let us consider the setting where (𝑙𝑖
𝑘,2

< 0 < 𝑢𝑖
𝑘,2
) ∧ (𝑙𝑖

𝑘,2
+ 𝑢𝑖

𝑘,2
> 0)

and 𝑤𝑙 ≥ 0. As shown in Figure 3(a), the areas within the yellow boundaries and the green

boundaries are captured by the weighted abstract elements𝑤𝑢 · a𝑖𝑘,2 and𝑤𝑙 · a
𝑖
𝑘,2

, respectively, with

𝛾 (𝑤𝑢 · a𝑖
𝑘,2
) = {𝑤𝑢 · 𝑥 ∈ R | 𝑎𝑖,≤

𝑘,2
≤ 𝑥 ≤ 𝑎

𝑖,≥
𝑘,2

} and 𝛾 (𝑤𝑙 · a𝑖𝑘,2) = {𝑤𝑙 · 𝑥 ∈ R | 𝑎𝑖,≤
𝑘,2

≤ 𝑥 ≤ 𝑎
𝑖,≥
𝑘,2

}. It is
obvious that the area captured by the dotted polyhedra in Figure 3(a) is larger than that in Figure 3(b),

whose area is captured by directly abstracting the weighted ReLU function

−→
W𝑖+1

𝑗,𝑘
· ReLU(x𝑖

𝑘,1
).

Therefore, our idea is to abstract the symbolic-weighted ReLU function directly. To achieve it,

we initially introduce an additional node x̃𝑖
𝑘,2

for the symbolic parameter

−→
W𝑖+1

𝑗,𝑘
such that x̃𝑖

𝑘,2
=

ReLU𝑤 (x𝑖𝑘,1) =
−→
W𝑖+1

𝑗,𝑘
· ReLU(x𝑖

𝑘,1
). After that, we set the weight as 1 between x̃𝑖

𝑘,2
and x𝑖+1𝑗,1 , and set

the weight between x𝑖
𝑘,2

and x𝑖+1𝑗,1 as 0. An illustration of the construction can be found in Figure 4.

Then, given the abstract element of x𝑖
𝑘,2

as a𝑖
𝑘,2

= ⟨𝑎𝑖,≤
𝑘,2
, 𝑎
𝑖,≥
𝑘,2
, 𝑙𝑖
𝑘,2
, 𝑢𝑖
𝑘,2
⟩, we define the abstract element

a𝑖,∗
𝑘,2

= ⟨𝑎𝑖,≤
𝑘,2
, 𝑎
𝑖,≥
𝑘,2
, ˜𝑙𝑖
𝑘,2
, 𝑢̃𝑖
𝑘,2
⟩ of neuron x̃𝑖

𝑘,2
as follows:

• If𝑤𝑙 ≥ 0: 𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙 · 𝑎𝑖,≤𝑘,2 , 𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 , ˜𝑙
𝑖
𝑘,2

= 𝑤𝑙 · 𝑙𝑖𝑘,2, and 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢 · 𝑢𝑖𝑘,2;
• If𝑤𝑢 ≤ 0: 𝑎

𝑖,≤
𝑘,2

= 𝑤𝑙 · 𝑎𝑖,≥𝑘,2 , 𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢 · 𝑎𝑖,≤𝑘,2 , ˜𝑙
𝑖
𝑘,2

= 𝑤𝑙 · 𝑢𝑖𝑘,2, and 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢 · 𝑙𝑖𝑘,2;
• If𝑤𝑙 < 0 < 𝑤𝑢 : 𝑎

𝑖,≤
𝑘,2

= 𝑤𝑙 · 𝑎𝑖,≥𝑘,2 , 𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 , ˜𝑙
𝑖
𝑘,2

= 𝑤𝑙 · 𝑢𝑖𝑘,2, and 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢 · 𝑢𝑖𝑘,2.
An illustration of the above abstract transformer for the weighted-ReLU function can be found

in Figure 5.
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W!,#$%& ⋅ ReLU((#,&$ )

(#,&$

W!,#$%& ⋅ ReLU((#,&$ )

(#,&$

(a) Areas obtained by abstracting

−→
W𝑖+1

𝑗,𝑘
· a𝑖

𝑘,2
.

W!,#$%& ⋅ ReLU((#,&$ )

(#,&$

W!,#$%& ⋅ ReLU((#,&$ )

(#,&$

(b) Areas obtained by abstracting

−→
W𝑖+1

𝑗,𝑘
· ReLU(x𝑖

𝑘,1
) .

Fig. 3. Convex approximations of
−→
W𝑖+1
𝑗,𝑘

x𝑖
𝑘,2

=
−→
W𝑖+1
𝑗,𝑘

· ReLU(x𝑖
𝑘,1

) via different abstract transformations:

(a) depicts the approximation derived by abstracting
−→
W𝑖+1
𝑗,𝑘

· a𝑖
𝑘,2

, where a𝑖
𝑘,2

is an over-approximation of

ReLU(x𝑖
𝑘,1

) obtained from DeepPoly, and the yellow and green lines gives the boundaries of𝑤𝑢 · a𝑖
𝑘,2

and

𝑤𝑢 · a𝑖
𝑘,2

. (b) directly give the approximation by linear boundaries with the minimal area in the input-output

plane of the function
−→
W𝑖+1
𝑗,𝑘

· ReLU(x𝑖
𝑘,1

).

𝐱!,#$

𝐱!%#,#$

𝐱!,&$

𝐱!%#,&$

x',#$%#

x'%#,#$%#

ReLU(⋅)

ReLU(⋅)

0

𝐱*!,&$
ReLU((⋅) 1

𝐱!,#$

𝐱!%#,#$

𝐱!,&$

𝐱!%#,&$

x',#$%#

x'%#,#$%#

ReLU(⋅)

ReLU(⋅)

W!,#$%&
𝐱*!,&$

ReLU((⋅) 1

Fig. 4. The construction of additional node x̃𝑖
𝑘,2

given a symbolic parameter
−→
W𝑖+1
𝑗,𝑘

.

Theorem 4.1. The weighted ReLU abstract transformer for neuron x̃𝑖
𝑘,2

in Figure 4 i) is sound and

preserves the invariant 𝛾 (a𝑖,∗
𝑘,2
) ⊆ [ ˜𝑙𝑖

𝑘,2
, 𝑢̃𝑖
𝑘,2
]. □

Finally, we can apply the affine abstract transformers introduced in DeepPoly (cf. Section 3.2)

to the remaining affine transformations within x𝑖+1𝑗,1 in equation (1), i.e.,

∑
𝑡 ∈[𝑛𝑖 ]\𝑘 W

𝑖+1
𝑗,𝑡 x

𝑖
𝑡,2 + b𝑖+1𝑗 .

Hence, both soundness and the domain invariant are preserved in our affine abstract transformers

on equation (1) considering symbolic weight parameters.

Symbolic weights on input neurons. Consider x2𝑗,1 =
∑
𝑡 ∈[𝑛2 ]\𝑘 W

2

𝑗,𝑡x
1

𝑡 +
−→
W2

𝑗,𝑘
x1
𝑘
+ b2𝑗 with a

symbolic weight

−→
W2

𝑗,𝑘
connected to the input neuron x1

𝑘
. Let [𝑥𝑙 , 𝑥𝑢] be the input range of the

neuron x1
𝑘
, then the abstract domain for x2𝑗,1 is a

2,∗
𝑗,1

= ⟨𝑎2,≤
𝑗,1
, 𝑎

2,≥
𝑗,1
, ˜𝑙2𝑗,1, 𝑢̃

2

𝑗,1⟩ for x2𝑗,1 =
∑
𝑡 ∈[𝑛2 ]\𝑘 W

2

𝑗,𝑡x
1

𝑡 +
−→
W2

𝑗,𝑘
x1
𝑘
+ b2𝑗 with 𝑎

2,≤
𝑗,1

and 𝑎
2,≥
𝑗,1

set as follows:

𝑎
2,≤
𝑗,1

=
∑︁

𝑡 ∈[𝑛2 ]\𝑘
W2

𝑗,𝑡x
1

𝑡 + b2𝑗 + 𝜅≤x1𝑘 − 𝜂, 𝑎
2,≥
𝑗,1

=
∑︁

𝑡 ∈[𝑛2 ]\𝑘
W2

𝑗,𝑡x
1

𝑡 + b2𝑗 + 𝜅≥x1𝑘 + 𝜂

where if 0 ≤ 𝑥𝑙 , then {𝜅≤ = 𝑤𝑙 , 𝜅
≥ = 𝑤𝑢 , 𝜂 = 0}; if 𝑥𝑢 ≤ 0, then {𝜅≤ = 𝑤𝑢 , 𝜅

≥ = 𝑤𝑙 , 𝜂 = 0};
Otherwise, {𝜅≤ =

𝑤𝑙𝑥𝑢−𝑤𝑢𝑥𝑙
𝑥𝑢−𝑥𝑙 , 𝜅≥ =

𝑤𝑢𝑥𝑢−𝑤𝑙𝑥𝑙
𝑥𝑢−𝑥𝑙 , 𝜂 =

𝑥𝑢𝑥𝑙
𝑥𝑢−𝑥𝑙 (𝑤𝑙 −𝑤𝑢)}.

˜𝑙2𝑗,1 and 𝑢̃
2

𝑗,1 can be determined with corresponding lower/upper bounds computation methods

(cf. Section 3.2). Intuitively, 𝜅≤x𝑖
𝑘
− 𝜂 (resp. 𝜅≥x𝑖

𝑘
+ 𝜂) expresses the lower (resp. upper) boundary

of the abstract domain of the weighted input neuron

−→
W2

𝑗,𝑘
x1
𝑘
.
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Fig. 5. An illustration of the abstract transformer for the symbolic-weighted ReLU function
−→
W𝑖+1
𝑗,𝑘

·ReLU(x𝑖
𝑘,1

),

where the first column defines the range (interval) of values [𝑤𝑙 ,𝑤𝑢 ] for
−→
W𝑖+1
𝑗,𝑘

. The second column gives the

abstraction when 𝑙𝑖
𝑘,1

> 0 for the abstract element a𝑖
𝑘,1

of x𝑖
𝑘,1

, and the third (resp. fourth) column shows the

abstraction of when (𝑙𝑖
𝑘,1

< 0 < 𝑢𝑖
𝑘,1

) ∧ (𝑙𝑖
𝑘,1

+ 𝑢𝑖
𝑘,1

≤ 0) (resp. (𝑙𝑖
𝑘,1

< 0 < 𝑢𝑖
𝑘,1

) ∧ (𝑙𝑖
𝑘,1

+ 𝑢𝑖
𝑘,1

> 0)).

Theorem 4.2. The abstract transformer for symbolic weighted input neuron x2𝑗,2 is sound and

preserves the invariant 𝛾 (a2,∗
𝑗,1
) ⊆ [ ˜𝑙2𝑗,1, 𝑢̃2𝑗,1]. □

4.2.3 Affine abstract transformer for symbolic biases. Similar to the affine transformer for symbolic

weights, for all nodes other than x𝑖+1𝑗,1 , we adopt the abstract transformers from DeepPoly. Our
abstract transformations can be compositionally applied to settings involving multiple symbolic

parameters.

Consider a symbolic bias parameter

−→
b 𝑖+1𝑗 constrained by an interval range [𝑤𝑙 ,𝑤𝑢]. Then, the

updated neuron function is x𝑖+1𝑗,1 =
∑
𝑡 ∈[𝑛𝑖 ] W

𝑖+1
𝑗,𝑡 x

𝑖
𝑡,2 +

−→
b 𝑖+1𝑗 . Then, we define the abstract element

a𝑖+1𝑗,1 = ⟨𝑎𝑖+1,≤
𝑗,1

, 𝑎
𝑖+1,≥
𝑗,1

, 𝑙𝑖+1𝑗,1 , 𝑢
𝑖+1
𝑗,1 ⟩ of neuron x𝑖+1𝑗,1 as follows:

𝑎
𝑖+1,≤
𝑗,1

=
∑︁
𝑡 ∈[𝑛𝑖 ]

W𝑖+1
𝑗,𝑡 x

𝑖
𝑡,2 +𝑤𝑙 , 𝑎

𝑖+1,≥
𝑗,1

=
∑︁
𝑡 ∈[𝑛𝑖 ]

W𝑖+1
𝑗,𝑡 x

𝑖
𝑡,2 +𝑤𝑢

where 𝑙𝑖+1𝑗,1 and 𝑢𝑖+1𝑗,1 can be determined with corresponding lower/upper bounds computation

methods (cf. Section 3.2).

Theorem 4.3. The affine abstract transformer for symbolic biases preserves both soundness and the
invariant. □

Other abstract transformers. In this work, for other network functions, such as the ReLU

function and the maxpool operator, we directly adopt the corresponding abstract transformers

from DeepPoly. Hence, SymPoly is sound.
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4.3 Details of Function BFA_RA

In this section, we give the implementation details of our reachability analysis procedure BFA_RA.
For any parameter 𝑤 , we can always determine its concrete interval [𝑤𝑙 ,𝑤𝑢] where any value

obtained by flipping up to 𝔫 bits will invariably be contained. Based on this interval, given a QNN

N , an input region I, and a target class 𝑔, we can use SymPoly to perform reachability analysis on

a modified network N∗
, where the concrete parameter𝑤 is substituted with a symbolic parameter

−→𝑤 constrained by the interval range [𝑤𝑙 ,𝑤𝑢]. Then, the analysis will yield two results: i) Proved,
indicating that the adversary cannot compromiseN (e.g., all inputs from the input region I will be

classified as the same class 𝑔) by altering at most 𝔫 bits in the two’s complement representation of

the parameter𝑤 ; or ii) Unknown, meaning that we cannot confirm the security of𝑤 against such

bit-flip attacks and there may exist some inputs within the region I that will be misclassified by

the attacked network into classes other than 𝑔.

We remark that not all bits of a parameter are equally important concerning BFAs. For example,

given a quantized parameter [𝑣𝑄 ; 𝑣𝑄−1; · · · ; 𝑣1], flipping the signal bit 𝑣𝑄 would always produce the

most deviation than flipping any other bit 𝑣𝑖 (for 𝑖 ∈ [𝑄 − 1]) since the former always results in the

largest parameter interval by adding or subtracting 2
𝑄−1

onto the original parameter value. Hence,

if we consider all the bits at one time, we need to verify the neural network with a large interval

for the parameter, and likely return Unknown. Moreover, according to the abstract transformers

defined for symbolic weight parameters in Section 4.2.2, when the weight interval [𝑤𝑙 ,𝑤𝑢] satisfies
𝑤𝑙 < 0 < 𝑤𝑢 , the abstract transformer for the ReLU𝑤 function would lead to a looser over-

approximation compared to the other two settings (𝑤𝑙 ≥ 0 or 𝑤𝑢 ≤ 0). Hence, given a symbolic

parameter with a constrained interval range [𝑤𝑙 ,𝑤𝑢], to enhance the precision of our reachability

analysis result, we first partition the parameter interval into two sub-intervals characterized by

uniformly signed parameter values, either entirely positive or entirely negative. Then, we perform

reachability analysis using SymPoly separately for each sub-interval. Note that, this division

addresses the significant over-approximation precision loss that occurs when a symbolic weight

parameter has a lower bound and upper bound with differing signs. An example illustrating how

such an interval partition enhances the abstraction precision is given in Appendix C. Moreover,

for parameter intervals that are too wide to be proved by SymPoly, we introduce a binary search

method, which splits the parameter interval at its midpoint and independently verifies each resulting

smaller interval iteratively.

The details of function BFA_RA can be found in Algorithm 2, where SymPoly(N ,I, 𝑔,𝑤,𝑤𝑙 ,𝑤𝑢)
represents that we conduct reachability analysis via SymPoly on the network N equipped with a

symbolic parameter𝑤 constrained by the interval [𝑤𝑙 ,𝑤𝑢] with respect to the input region I and

output class 𝑔. The algorithm works as follows. Given a neural network N , an input region I, a
target class 𝑔, an attacked parameter𝑤 , and the bit flipping maximum number 𝔫, we first compute

two intervals [𝑤+
𝑙
,𝑤+

𝑢 ] and [𝑤−
𝑙
,𝑤−

𝑢 ] for𝑤 such that i)𝑤+
𝑙
≥ 0 and𝑤−

𝑢 ≤ 0, and ii) these intervals

are designed to encompass any values obtained by flipping up to 𝔫 bits in the two’s complement

representation of𝑤 , which can be done as follows:

• If 𝑤 ≥ 0: 𝑤+
𝑙
(resp. 𝑤+

𝑢 ) is obtained by flipping the most significant 𝔫 bits via 1 → 0 (resp.

0 → 1), and𝑤−
𝑙
(resp.𝑤−

𝑢 ) is obtained by flipping the signal bit and the most significant 𝔫 − 1

bits via 1 → 0 (resp. 0 → 1);

• If 𝑤 < 0: 𝑤+
𝑙
(resp. 𝑤+

𝑢 ) is obtained by flipping the signal bits via 1 → 0 and the most

significant 𝔫 − 1 bits via 1 → 0 (resp. 0 → 1), and 𝑤−
𝑙
(resp. 𝑤−

𝑢 ) is obtained by the most

significant 𝔫 bits via 1 → 0 (resp. 0 → 1).

For parameter intervals that are too wide to be verified by SymPoly (cf. line 13), we introduce

a binary search method, which splits the parameter interval at its midpoint and independently
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Algorithm 2: BFA_RA function

1 Proc BFA_RA(N, I, 𝑔, 𝑤, 𝔫)
2 Compute two minimal sub-intervals [𝑤+

𝑙
, 𝑤+

𝑢 ], [𝑤−
𝑙
, 𝑤−

𝑢 ] for 𝑤 such that i) 𝑤+
𝑙
≥ 0 ∧ 𝑤−

𝑢 ≤ 0, and ii)

[𝑤+
𝑙
, 𝑤+

𝑢 ] ∪ [𝑤−
𝑙
, 𝑤−

𝑢 ] consists of all possible values of 𝑤 that can be derived by flipped at most 𝔫 bits;

3 if binary_RA(N, I, 𝑔, 𝑤, 𝑤+
𝑙
, 𝑤+

𝑢 ) = Unknown then
4 return Unknown;

5 if binary_RA(N, I, 𝑔, 𝑤, 𝑤−
𝑙
, 𝑤−

𝑢 ) = Unknown then
6 return Unknown;

7 return Proved;

8 Proc binary_RA(N, I, 𝑔, 𝑤, 𝑤𝑙 , 𝑤𝑢 )
9 if SymPoly(N, I, 𝑔, 𝑤, 𝑤𝑙 , 𝑤𝑢 ) = Proved then
10 return Proved;

11 if 𝑤𝑙 == 𝑤𝑢 then
12 return SymPoly(N, I, 𝑔, 𝑤, 𝑤𝑙 , 𝑤𝑢 ) ;
13 Split [𝑤𝑙 , 𝑤𝑢 ] at the midpoint and get two minimal sub-intervals [𝑤𝑙 , 𝑤

′
𝑢 ], [𝑤′

𝑙
, 𝑤𝑢 ] such that

[𝑤𝑙 , 𝑤
′
𝑢 ] ∪ [𝑤′

𝑙
, 𝑤𝑢 ] encompasses all potential flipped values of 𝑤 as that in [𝑤𝑙 , 𝑤𝑢 ];

14 if binary_RA(N, I, 𝑔, 𝑤, 𝑤𝑙 , 𝑤
′
𝑢 ) = Unknown then

15 return Unknown;

16 else if binary_RA(N, I, 𝑔, 𝑤, 𝑤′
𝑙
, 𝑤𝑢 ) = Unknown then

17 return Unknown;

18 else
19 return Proved;

verifies each resultant smaller interval iteratively. Smaller intervals are generally more likely to

yield Proved results, thus enhancing the overall effectiveness and precision of our reachability

analysis, which has been confirmed by our experiments (cf. Section 5.1).

4.4 Details of Function BFA_MILP

If BFA_RA fails to prove the BFA-tolerant robustness property, we then encode the verification

problem as an equivalent MILP problem w.r.t the set of unproved parameters as follows.

Encoding of input regions.We consider input regions that are expressible by polyhedra in this

work, and they can be directly encoded by linear constraints. For example, for an input region

defined by 𝐿∞-norm I𝑟𝑢 = {x ∈ R𝑛 | | |x − u| |∞ ≤ 𝑟 }, we can use the following constraint set ΘI
to

encode the input condition 𝜙 (x) := x ∈ I𝑟u :

ΘI = {max(u𝑖 − 𝑟, 0) ≤ x𝑖 ≤ min(u𝑖 + 𝑟, 1) | 𝑖 ∈ [𝑛]}

For input regions defined by the cartesian product of intervals Il×u = {x ∈ R𝑛 | x𝑖 ∈ [l𝑖 , u𝑗 ]},
we can use the following constraint set to encode the input condition 𝜙 (x) := x ∈ Il×u

:

ΘI = {l𝑖 ≤ x𝑖 ≤ u𝑖 | 𝑖 ∈ [𝑛]}

Encoding of output properties. Let y denote the output vector of N𝜌
given any attack vector

𝜌 . We encode the output condition, i.e., 𝜓 (y) := argmax(y) ≠ argmax(N (u)) = 𝑔 ∈ [𝑠] into the

following set of constraints based on a set of Boolean variables {𝜂𝑖 | 𝑖 ∈ [𝑠]\𝑔}:
• If 𝑖 < 𝑔: then y𝑖 ≥ y𝑔 ⇔ 𝜂𝑖 = 1 which can be encoded as Θ

𝑔

𝑖,0
= {y𝑔 +M · (𝜂𝑖 − 1) ≤ y𝑖 , y𝑖 <

y𝑔 +M · 𝜂𝑖 };
• If 𝑖 > 𝑔: then y𝑖 > y𝑔 ⇔ 𝜂𝑖 = 1 which can be encoded as Θ

𝑔

𝑖,1
= {y𝑔 +M · (𝜂𝑖 − 1) < y𝑖 , y𝑖 <

y𝑔 +M · 𝜂𝑖 }.
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Intuitively, Θ
𝑔

𝑖,0
(resp. Θ

𝑔

𝑖,1
) ensures that the 𝑖-th entry of the output vector y for 𝑖 < 𝑔 (resp. 𝑖 > 𝑔)

is no less than (resp. larger than) the 𝑔-th entry iff 𝜂𝑖 = 1. As a result, argmax(y) ≠ 𝑔 iff the set of

constraints Θ𝑔 =
⋃
𝑖<𝑔 Θ

𝑔

𝑖,0
∪⋃

𝑖>𝑔 Θ
𝑔

𝑖,1
∪ {∑𝑖∈[𝑠 ]\𝑔 𝜂 ≥ 1} holds.

Encoding of neural networks under BFAs. Next, we present the MILP encoding of the neural

network under BFAs based on the intermediate analysis results from function BFA_RA.
Let 𝜉 = {𝑤1,𝑤2, · · · ,𝑤𝑚} denote the vulnerable parameters set obtained from our reachability

analysis (cf. Algorithm 1). Each parameter is quantized by 𝑄 bits. The adversary can only attack

one parameter from the parameter set 𝜉 and flip 𝔫 bit at most on it. We first traverse all possible

(1, 𝔫)-attack vectors for each parameter 𝑤𝑖 ∈ 𝜉 (1 ≤ 𝑖 ≤ |𝜉 |), and get the flipped value set

𝐹𝑤𝑖
= {𝑤1

𝑖 ,𝑤
2

𝑖 , ·,𝑤𝔎
𝑖
} for each 𝑤𝑖 , where 𝔎 =

∑𝔫
𝑖=1

(
𝑄
𝑖

)
. Then, we use the following constraint set

Θ𝔫
𝜉
to encode the parameters in 𝜉 , where 𝛿

𝑗

𝑖
for 𝑖 ∈ |𝜉 | and 𝑗 ∈ 𝔎 are binary variables:

Θ𝔫
𝜉
=

{
𝑤̃𝑖 = 𝑤𝑖 + (𝑤1

𝑖 −𝑤𝑖 )𝛿1𝑖 + (𝑤2

𝑖 −𝑤𝑖 )𝛿2𝑖 + · · · + (𝑤𝔎
𝑖
−𝑤𝑖 )𝛿𝔎𝑖 ,

𝑖 ∈ |𝜉 |, ∑ |𝜉 |
𝑖=1

∑𝔎
𝑗=1 𝛿

𝑗

𝑖
= 1

}
Intuitively, for each parameter𝑤𝑖 , the binary variable 𝛿

𝑗

𝑖
= 1 indicates that the adversary attacks

the parameter𝑤𝑖 and alters it into a new value𝑤
𝑗

𝑖
. If

∑𝔎
𝑗=1 𝛿

𝑗

𝑖
= 0, then it means that the adversary

does not attack the parameter𝑤𝑖 . The constraint
∑ |𝜉 |
𝑖=1

∑𝔎
𝑗=1 𝛿

𝑗

𝑖
= 1 ensures that only one parameter

is altered, while no more than 𝔫 bits are subject to modification.

Then, we follow the existingMILP encoding method [51] to encodeN𝜌
into a set of mixed-integer

linear constraints ΘN𝜌 , where for each vulnerable parameter𝑤𝑖 ∈ 𝜉 , we use 𝑤̃𝑖 in Θ𝔫
𝜉
to replace𝑤𝑖

in the encoding of the affine function. Finally, the BFA-tolerant robustness verification problem is

equivalent to the solving of the constraint set: Θ𝑃 = ΘN𝜌 ∪ Θ𝔫
𝜉
∪ ΘI ∪ Θ𝑔.

Theorem 4.4. N |=𝜌𝔪,𝔫 holds iff Θ𝑃 is unsatisfiable. □

Overall, the complexity of BFA_RA is polynomial in the network size when 𝔪 = 1, whereas

BFA_MILP remains NP-complete even when 𝔪 = 1.

4.5 Extension to Other Networks
This work primarily focuses on feedforward neural networks with ReLU activations. In this section,

we demonstrate the extensibility of our framework to other networks, including those with sigmoid

or tanh activations and architectures incorporating convolutional layers.

4.5.1 Other activation functions. Following the idea of symbolic weights on hidden neurons in

Section 4.2.2 and the abstract transformers proposed in DeepPoly for sigmoid and tanh, for an

activation function 𝑔(𝑥) that is continuous and twice-differentiable such that the first derivative

𝑔′ (𝑥) > 0 and the second derivative 𝑔′′ ≥ 0 ⇔ 𝑥 ≤ 0, we also construct an additional node x̃𝑖
𝑘,2

(the same as in Figure 4) and study its abstract domain according to x̃𝑖
𝑘,2

=
−→
W𝑖+1

𝑗,𝑘
· 𝑔(x𝑖

𝑘,1
). The

corresponding abstract transformers for Sigmoid and Tanh considering the node x̃𝑖
𝑘,2

are given in

Table 1. For the other network functions with constant parameters, we can reuse the corresponding

abstract transformers from DeepPoly directly.

Theorem 4.5. Both the weighted Sigmoid and the weighted Tanh abstract transformers are sound
and preserve the invariant 𝛾 (a𝑖,∗

𝑘,2
) ⊆ [ ˜𝑙𝑖

𝑘,2
, 𝑢̃𝑖
𝑘,2
]. □

For the MILP encoding of other activation functions, the piecewise linear approximation can be

employed to encode the sigmoid and tanh functions using linear constraints. We argue that such an

approximation-based MILP encoding approach is sound, however, not incomplete, Therefore, for
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Table 1. The abstract domain a𝑖,∗
𝑘,2

= ⟨𝑎𝑖,≤
𝑘,2
, 𝑎
𝑖,≥
𝑘,2
, ˜𝑙𝑖
𝑘,2
, 𝑢̃𝑖
𝑘,2

⟩ of x̃𝑖
𝑘,2

=
−→
W𝑖+1
𝑗,𝑘

· 𝑔(x𝑖
𝑘,1

), where 𝑙𝑖
𝑘,1

and 𝑢𝑖
𝑘,1

are the

lower and upper bounds of x𝑖
𝑘,1

, 𝜅 =
𝑔 (𝑢𝑖

𝑘,1
)−𝑔 (𝑙𝑖

𝑘,1
)

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

, and 𝜅′ = min(𝑔′ (𝑙𝑖
𝑘,1

), 𝑔′ (𝑢𝑖
𝑘,1

))

𝑔(𝑥) Bounds of x𝑖
𝑘,1

𝑤𝑙 ≥ 0 𝑤𝑢 ≤ 0

𝑙𝑖
𝑘,1

≥ 0

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1) +𝑤𝑙𝜅 (x
𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1)

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1) +𝑤𝑢𝜅 (x
𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1)

Sigmoid(𝑥) 𝑢𝑖
𝑘,1

≤ 0

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1) +𝑤𝑢𝜅 (x
𝑖
𝑘,1

− 𝑢𝑖
𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1)

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1) +𝑤𝑙𝜅 (x
𝑖
𝑘,1

− 𝑢𝑖
𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1)

𝑙𝑖
𝑘,1

< 0 < 𝑢𝑖
𝑘,1

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1)

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1)

𝑙𝑖
𝑘,1

≥ 0

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1) +𝑤𝑙𝜅 (x
𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1)

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1) +𝑤𝑢𝜅 (x
𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1)

Tanh(𝑥) 𝑢𝑖
𝑘,1

≤ 0

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1) +𝑤𝑙𝜅 (x
𝑖
𝑘,1

− 𝑢𝑖
𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1)

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1) +𝑤𝑢𝜅 (x
𝑖
𝑘,1

− 𝑢𝑖
𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1)

𝑙𝑖
𝑘,1

< 0 < 𝑢𝑖
𝑘,1

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1) +𝑤𝑙𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑙𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑢𝑔(𝑢𝑖𝑘,1)

𝑎
𝑖,≤
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑢𝑖

𝑘,1
)

𝑎
𝑖,≥
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1) +𝑤𝑢𝜅
′ (x𝑖

𝑘,1
− 𝑙𝑖

𝑘,1
)

˜𝑙𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑢𝑖𝑘,1), 𝑢̃
𝑖
𝑘,2

= 𝑤𝑙𝑔(𝑙𝑖𝑘,1)

these logistic activation functions, we can only claim that our approach is sound but incomplete,

and limit our focus to the BFA_RA component.

4.5.2 Other network architectures. This work focuses on feed-forward network architectures,

however, our approach can be generalized to shared-parameter architectures—such as convolutional

networks—without additional technical challenges. Figure 6 illustrates how a convolutional layer

subjected to bit-flip attacks on the parameter𝑤 can be transformed into an equivalent affine layer,

to which BFAVerifier can be directly applied. Note that, in Figure 6(b), although multiple copies

are under bit-flip attack, they share the same parameter𝑤 in the original convolutional layer, and

consequently, the attack effect is identical. Therefore, no additional combinatorial explosion occurs

and the computational complexity remains equivalent to the case when 𝔪 = 1.

Although no additional technical challenges occurs, BFAVerifier may suffer from significant

abstraction precision loss on CNNs, compared to DNNs, due to multiple abstractions in weighted

activation function and input neurons even when 𝔪 = 1 (in contrast to only single abstraction in

feedforward networks), both contributing to higher loss than in cases without symbolic weighting.

4.5.3 Other quantization schemes and network precisions. BFAVerifier can be adapted to support

other quantization schemes. For instance, when addressing a mixed-precision quantization scheme,

only the weight interval associated with each symbolic parameter under bit-flip attacks needs to be

adjusted for the BFA_RA procedure, while no modifications are required for BFA_MILP.

For floating-point neural networks (FPNNs), parameters are typically stored as IEEE 754 32-bit

single-precision floating-point numbers, where flipping the exponent bit can cause drastic value

changes (e.g., altering 0.078125 to 1.25× 2
124

). BFAVerifier can be adapted to FPNNs by adjusting the

parameter interval derived from bit-flipping, but the performance remains uncertain and is left for
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(a) A convolutional layer example under BFAs.
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(b) The transformed affine layer under BFAs.

Fig. 6. An example of affine transformation from a convolutional computation under bit-flip attacks. Given a
3 × 3 feature layer x𝑖 and a 2 × 2 convolution filter with one parameter attacked (denoted as𝑤 ) and the other
three parameters to be 1 in Figure 6(a), we can always get an equivalent affine layer as shown in Figure 6(b).

future work. Indeed, studies [16, 46] have shown that FPNNs are highly vulnerable to BFAs. Given

this inherent vulnerability, we argue that verifying BFAs on QNNs is more reasonable, as FPNNs

can be almost always compromised. Instead of formal verification, demonstrating vulnerabilities

through attacks or testing is a more practical and insightful approach for FPNNs.

Clarification. Our method, BFAVerifier, is primarily designed to: i) effectively and efficiently prove

desirable property of a given neural network under BFA and ii) or identify a relatively tight superset

of vulnerable parameters that must be protected to avoid BFA. Note that the latter allows existing

model integrity protection methods to be applied in a more cost-effectively way, i.e., by protecting

only the identified vulnerable parameters (e.g., 0.01% of parameters in a network) rather than all

parameters. Additionally, we consider the robustness of input regions against BFA, which is more

interesting yet more challenging than the robustness of individual inputs. Note that it is virtually

impossible to enumerate and verify all attack vectors for an input region and attackers may use

BFAVerifier to identify critical bits/parameters to flip as well as an individual input.

5 Implementation and Evaluation
To validate the effectiveness of our method, we aim to answer the following research questions:

RQ1. How effective and efficient is BFA_RA for providing the sound verification result on potential

attack vectors, compared with the naive baseline method (cf. Section 3.2)?

RQ2. Can the absence of BFAs be verified with a conclusive result for a specific network using

BFAVerifier, and how effective is the MILP-based method for providing a sound and complete

verification result, as a complementary approach to BFA_RA?
RQ3. How efficient and effective isBFAVerifier for verifying the absence of BFAs on larger networks

with various activation functions?

Implementation.We implemented our verification method as an end-to-end tool BFAVerifier with
Gurobi [26] as the back-end MILP solver. The SymPoly component is built upon GPUPoly [64], an

open-source GPU implementation [52] ofDeepPoly. The quantization follows the schemementioned

in Section 2.1. During the network inference procedure and the verification process in BFAVerifier,
quantized (fixed-point) parameters are stored in the IEEE 754 [1] floating-point number format

for arithmetic operation. The floating-point number soundness flag in the implementation [52] of

GPUPoly [64] is turned on for both DeepPoly and SymPoly.

Datasets. We use MNIST [41] and ACAS Xu [34] as the datasets in our experiments. MNIST

contains 60,000 grayscale handwritten digits (from 0 to 9) of the size of 28 × 28. ACAS Xu is a

safety-critical system designed to provide collision avoidance advisories for unmanned aircraft.

Networks. For the MNIST dataset, we train 12×2 QNNs following the post-training quantization

scheme [22, 44] on the MNIST [41] dataset, which is a common practice in prior research to improve

the robustness against bit-flip attack [39, 68]. We evaluate 12 architectures with varying model
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Table 2. QNNs obtained via quantization-aware training on MNIST with small network architectures.

ArchSmall 3blk_10 3blk_30 3blk_50 5blk_10 5blk_30 5blk_50

# Param. 8.28k 26.62k 47.36k 8.5k 28.48k 52.46k

𝑄 = 4 81.09% 94.40% 95.96% 86.80% 95.63% 96.44%

Acc.

𝑄 = 8 92.83% 96.38% 96.38% 92.87% 96.95% 97.20%

Table 3. QNNs obtained via post-training quantization on MNIST with large network architectures.

ArchLarge 3blk_100 3blk_100
sigmoid

3blk_100
tan

3blk_512 3blk_1024 5blk_100 5blk_512 5blk_1024

# Param. 109.7k 109.7k 109.7k 1,195k 3,962k 129.9k 1,720k 6,061k

𝑄 = 4 97.03% 97.24% 97.43% 97.85% 97.72% 97.31% 97.62% 97.97%

Acc.

𝑄 = 8 97.53% 97.71% 97.56% 98.18% 97.84% 97.39% 97.74% 98.06%

sizes and 2 quantization bit-widths 𝑄 ∈ {4, 8}, using ReLU activations by default. The details of

the QNNs are listed in Tables 2 and 3. The first row shows the architecture of each QNN, where

𝑥blk_𝑦 means that the network has 𝑥 hidden layers with each hidden layer containing 𝑦 neurons.

Row 2 shows the number of parameters in these networks and Rows 3-4 give the accuracy of these

networks under different quantization bit-width, i.e., 𝑄 = 4 and 𝑄 = 8. Moreover, we consider two

additional networks of architecture 3blk_100 with Sigmoid and Tanh activation functions.

For the ACAS Xu dataset, although the authors in [36] provide 45 neural networks trained on

this dataset along with 10 safety properties. We find that few of these properties can be proved via

DeepPoly on these networks. Hence, in this work, we adopt retrained ones instead of the original

networks from [57] as our benchmark. These retrained 45 networks adopt the same architecture

as [36], i.e., 6blk_50, and maintain comparable accuracy to the original networks (86.6% on average).

These networks output a score for five different actions: clear-of-conflict (COC), weak left (WL),

weak right (WR), strong left (SL), and strong right (SR). Based on these, we built 45 QNNs following

a post-training quantization scheme, setting the quantization bit-width as 𝑄 = 8.

Experimental setup. For the BFA-tolerant robustness verification problem defined in Section 3.1,

we randomly selected 20 inputs from the MNIST dataset for each network. We considered 3 different

attack radii, 𝑟 ∈ {0, 2, 4}, for each input, resulting in 60 input regions for each network. Note that

all these input regions are robust to the corresponding QNNs until the bit-flip attacks. For the

ACAS Xu benchmark, we test all 45 QNNs on the 10 properties and select the successfully proved

55 network-property pairs as our benchmarks. The details are given in Table 10 in Appendix A. We

set the maximum number of bit flips as 𝔫 ∈ {1, 2, 4}. Unless otherwise noted, each BFA_RA task

is conducted on an NVIDIA Tesla V100 accelerator and each BFA_MILP task is conducted with

30 threads on a computer equipped with AMD EPYC 7742 64-core processors. The time limit for

each verification task is 1 hour by default, considering the large number of tasks (thousands) in the

subsequent experiments.

5.1 The Effectiveness and Efficiency of BFA_RA
To answerRQ1, for each network listed in Tables 2 and 3, we randomly select 100 weight parameters

and up to 100 bias parameters per layer for manipulation by the attacker, considering the huge

amount of parameters in these networks. For each verification task of network with architecture

𝑥blk_𝑦 and quantized by𝑄 bits, there are 𝐾 ·∑𝔫
𝑖=1

(
𝑄
𝑖

)
(1, 𝔫)-attack vectors, where 𝐾 = 100(𝑥 + 1) +
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Table 4. Verification results of BFA_RA, BFA_RA w.o binary search, and the naive method. Each entry shows
the proportion of parameters that are proved to be safe/unknown by two compared methods. For example,
the entry in the top left corner indicates that when 𝑟 = 0, 𝔫 = 1, there are 98.55% parameters across all
verification tasks on all QNNs that are both proved as safe by the naive method and the BFA_RA method.
The bottom left corner entry indicates 0.03% of parameters are proven as unknown by the naive method but
proved as safe by BFA_RA, considering 8-bit quantization and robustness radius 4.

BFA_RA BFA_RA w.o. Binary Search
𝑄 = 4 #Safe_Paras #Unknown_Paras #Safe_Paras #Unknown_Paras

𝔫 = 1 𝔫 = 2 𝔫 = 4 𝔫 = 1 𝔫 = 2 𝔫 = 4 𝔫 = 1 𝔫 = 2 𝔫 = 4 𝔫 = 1 𝔫 = 2 𝔫 = 4

Naive Method

#Safe_Paras

𝑟 = 0 98.55% 98.13% 98.07% 0.00% 0.00% 0.00% 98.51% 98.00% 97.89% 0.04% 0.14% 0.17%

𝑟 = 2 97.98% 97.48% 97.42% 0.00% 0.00% 0.00% 97.92% 97.33% 97.22% 0.06% 0.16% 0.20%

𝑟 = 4 95.94% 95.19% 95.06% 0.00% 0.00% 0.00% 95.70% 94.71% 94.51% 0.24% 0.48% 0.55%

Naive Method

#Unknown_Paras

𝑟 = 0 0.00% 0.00% 0.00% 1.45% 1.87% 1.93% 0.00% 0.00% 0.00% 1.45% 1.87% 1.93%

𝑟 = 2 0.00% 0.01% 0.01% 2.02% 2.51% 2.57% 0.00% 0.00% 0.00% 2.02% 2.52% 2.58%

𝑟 = 4 0.02% 0.06% 0.08% 4.05% 4.75% 4.85% 0.02% 0.04% 0.04% 4.05% 4.77% 4.89%

BFA_RA BFA_RA w.o. Binary Search
𝑄 = 8 #Safe_Paras #Unknown_Paras #Safe_Paras #Unknown_Paras

𝔫 = 1 𝔫 = 2 𝔫 = 4 𝔫 = 1 𝔫 = 2 𝔫 = 4 𝔫 = 1 𝔫 = 2 𝔫 = 4 𝔫 = 1 𝔫 = 2 𝔫 = 4

Naive Method

#Safe_Paras

𝑟 = 0 99.03% 98.59% 98.41% 0.00% 0.00% 0.00% 99.02% 98.54% 98.33% 0.01% 0.06% 0.08%

𝑟 = 2 98.41% 97.89% 97.66% 0.00% 0.00% 0.00% 98.39% 97.83% 97.57% 0.02% 0.06% 0.09%

𝑟 = 4 96.19% 95.43% 95.11% 0.00% 0.00% 0.00% 95.97% 94.95% 94.53% 0.21% 0.48% 0.59%

Naive Method

#Unknown_Paras

𝑟 = 0 0.00% 0.00% 0.00% 0.97% 1.41% 1.59% 0.00% 0.00% 0.00% 0.97% 1.41% 1.59%

𝑟 = 2 0.00% 0.00% 0.01% 1.59% 2.11% 2.33% 0.00% 0.00% 0.01% 1.59% 2.11% 2.34%

𝑟 = 4 0.03% 0.08% 0.11% 3.78% 4.49% 4.78% 0.02% 0.05% 0.06% 3.79% 4.52% 4.82%

Table 5. The computation time (in GPU hours) of the three methods.

Naive Method BFA_RA BFA_RA w.o. Binary Search

𝑄 = 4 ≈72.9h ≈14.2h ≈13.6h
𝑄 = 8 ≈488.2h ≈14.8h ≈14.0h

𝑥 min(𝑦, 100) + 10. In total, we have 28 × 60 × 3 = 5040 verification tasks (28 networks, 60 input

regions per network, and 3 different values of 𝔫) for MNIST.

We compare the performance of BFA_RA with the naive method mentioned in Section 3.2. Recall

that, given a parameter, the naive method performs one reachability analysis for each (1, 𝔫)-attack
vector to check robustness, whereas BFA_RA performs one reachability analysis for all the possible

(1, 𝔫)-attack vectors. Thus, BFA_RA is expected to reduce execution time significantly. To evaluate

the trade-off between efficiency and effectiveness in BFA_RA compared to the naive method, we

analyze the effectiveness loss/gain in Table 4 and the efficiency gain of BFA_RA in Table 5, where

• Parameters proved as safe by the naive method but unknown by BFA_RA indicate an effec-
tiveness loss of BFA_RA, i.e., row #Safe_Paras and column #Unknown_Paras.

• Parameters proved as safe by both methods demonstrate the effectiveness maintenance of
BFA_RA, i.e., row #Safe_Paras and column #Safe_Paras.

• Parameters proved as safe by BFA_RA but unknown by the naive method represent an

effectiveness gain of BFA_RA, i.e., row #Unknown_Paras and column #Safe_Paras.
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• Parameters proved as unknown by both methods reveals the limitations of reachability
analysis by both methods, i.e., row #Unknown_Paras and column #Unknown_Paras.

Furthermore, to assess the effectiveness of the binary search strategy proposed in Section 4.3 for

BFA_RA, we implement a variant that excludes binary search, referred to as BFA_RA w.o. Binary

Search, where binary_RA(N ,I, 𝑔,𝑤,𝑤+
𝑙
,𝑤+

𝑢 ) (resp. binary_RA(N ,I, 𝑔,𝑤,𝑤−
𝑙
,𝑤−

𝑢 )) at line 3 (resp.
line 5) in Algorithm 2 is replaced by SymPoly(N ,I, 𝑔,𝑤,𝑤+

𝑙
,𝑤+

𝑢 ) (resp. SymPoly(N ,I, 𝑔,𝑤,𝑤−
𝑙
,𝑤−

𝑢 )).
The corresponding experimental results are also given in Tables 4 and 5.

5.1.1 Effectiveness of BFA_RA. By analyzing the experimental results reported in Table 4, we

observe that BFA_RA consistently achieve an effectiveness gain over the naive method across

all settings, including various radii of input perturbation 𝑟 and maximal numbers of bit to flip 𝔫.

Specifically, in cases where the naive method reports parameters as unknown (#Unknown_Paras),

BFA_RA successfully verifies additional parameters as safe (#Safe_Paras), albeit with a relatively

modest gain (up to 0.11% on average). Indeed, it is reasonable that BFA_RA achieves a relatively

small effectiveness gain. In the worst case, BFA_RA performs a binary search over each potential

flipped weight value, similar to exhaustive traversal, making it at least as effective as the naive

method. However, unlike the naive method, BFA_RA initially treats each symbolic weight as a

range and then partitions it using a binary approach. This introduced weight range may affect

the reachability analysis of non-input neurons, leading to different abstract elements, i.e., distinct

value domains obtained for each neuron between the naive method and SymPoly. In this setting, if

a counterexample (a neuron value leading to a successful BFA) falls within the abstract element

domain obtained by DeepPoly in the naive method but not within that of SymPoly, then BFA_RA
may exhibit an effectiveness gain. However, we argue that such cases should be rare, leading to a

limited overall effectiveness gain of BFA_RA over the naive method.

Furthermore, we also find that the binary-search-free variant ofBFA_RA demonstrates a reduction

in effectiveness compared to BFA_RA, as certain parameters that are proved as safe by both the

naive method and BFA_RA are proved as unknown by the variant. For example, when 𝑄 = 8, 𝑟 = 4,

and 𝔫 = 4, a total of 0.59% of the parameters that are verified as safe by both the naive method and

BFA_RA are proved as unknown by the binary-search-free variant of BFA_RA.

Result 1: BFA_RA demonstrates an effectiveness gain over both the naive method and its

binary-search-free variant, albeit with a relatively modest improvement.

By comparing the experimental results between the naive method and binary-search-free variant

of BFA_RA, we find that only a small proportion of parameters (up to 0.55% for𝑄 = 4 and 0.59% for

𝑄 = 8) are verified as safe by the naive method but remain unknown by the binary-search-free

variant. Recall that the binary-search-free variant performs reachability analysis based on two

intervals [𝑤+
𝑙
,𝑤+

𝑢 ] and [𝑤−
𝑙
,𝑤−

𝑢 ] (cf. line 2 in Algorithm 2), to approximate the reachability analysis

result under bit-flip attack. The observed comparison results indicate that the abstract domain

proposed in SymPoly effectively captures the impact of bit-flip operations on the corresponding

parameters with high accuracy.

Result 2: The abstract domain proposed in SymPoly is relatively accurate in approximating the

bit-flip operations.

5.1.2 Efficiency of BFA_RA. By comparing the computation time of BFA_RA and the naive method,

as given in Table 5, we find that BFA_RA consumes significantly less time than the naive method

(up to 30x faster). It is noteworthy that the execution time for each query of DeepPoly and SymPoly
is nearly identical. Therefore, the number of queries serves as a critical determinant of the overall

efficiency of various methods. To illustrate it, we show the total number of queries invoked by
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(c) (𝑄, 𝔫) = (8, 4) .

Fig. 7. The total number of queries with respect to DeepPoly or SymPoly in the three methods when 𝑄 = 8.

Table 6. Verification results of BFAVerifier on ACAS Xu

BFA_RA BFA_MILP AvgTime(s)

Property

#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP
#TO

Prop_3_WL 99.8% 0 0 24 356.0 4.2 0

Prop_3_WR 99.9% 0 1 26 354.7 4.0 0

Prop_3_SL 99.9% 0 0 23 354.8 44.2 1

Prop_3_SR 99.7% 0 0 27 357.5 5.9 0

Prop_5_SR 98.0% 0 0 20 381.2 45.3 1

Prop_10_COC 99.5% 11 2 13 365.2 227.7 16

the two methods in Figure 7 (we take 𝑄 = 8 for example) and it can be observed that the naive

method invokes an enormous amount of queries of DeepPoly, attributable to the fact that there are

up to 𝐾 ·∑𝔫
𝑖=1

(
𝑄
𝑖

)
queries for each verification task. On the other hand, although the binary search

strategy slightly increases the number of SymPoly queries, as shown in Figure 7, the execution

time of BFA_RA remains comparable to that of its binary-search-free variant (cf. Table 5).

Result 3: BFA_RA is significantly more efficient than the naive method, achieving up to a 30x

speedup. Moreover, it demonstrates comparable efficiency to its binary-search-free variant.

5.2 Verifying BFAs with BFAVerifier

To answer RQ2, in this section, we use BFAVerifier to verify the BFA-tolerant robustness property

across all small networks outlined in Table 2 and all properties listed in Table 10. This results in

a total of 12 × 60 × 3 = 2160 (12 networks, 60 input regions per network, and 3 different values

of 𝔫) verification tasks for the MNIST dataset and 55 × 3 = 165 (55 network-property pairs and

3 different values of 𝔫) verification tasks for the ACAS Xu dataset. It is important to note that,

for each verification task, we assume that all model parameters, including weights and biases, are

vulnerable to bit-flip attacks. Furthermore, we consider each attack to affect only a single parameter

at a time, with the attacker potentially altering up to 𝔫 ∈ {1, 2, 4} bits per attack. In the following,

we define a task as successfully proved by BFA_RA when all parameters in the corresponding

network are proved as safe by BFA_RA. Additionally, we consider a task as successfully solved by

BFAVerifier when it is either proved by BFA_RA or proved/falsified by BFA_MILP.

5.2.1 ACAS Xu. The results for ACAS Xu are shown in Table 6 and Figure 8. In Table 6, Column 1

shows the property verified. Column 2 shows the average proportion of parameters that are proved

to be safe by BFA_RA across all corresponding networks and three different values of 𝔫. Column 3

gives the number of verification tasks that can be successfully verified by BFA_RA. Columns 4 and
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Fig. 8. The number of vulnerable parameters detected by BFA_RA in each layer on ACAS Xu.

Table 7. Verification results of BFAVerifier on MNIST for small networks when (𝑄, 𝑟, 𝔫) = (8, 0, 1).

BFA_RA BFA_MILP AvgTime(s)

Network

#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP
#TO

3blk_10 99.7% 0 0 20 30.4 0.2 0

3blk_30 99.9% 11 0 9 103.6 0.4 0

3blk_50 99.9% 19 1 0 203.6 0.7 0

5blk_10 99.2% 0 0 20 47.2 0.4 0

5blk_30 99.9% 17 3 0 171.9 0.4 0

5blk_50 99.9% 0 0 20 352.2 0.8 0

5 display the verification results by BFA_MILP. Columns 6 and 7 give the average computation time

for the two methods, and the last column gives the number of verification tasks that run out of time

within 1 hour. We can observe that for ACAS Xu, BFAVerifier successfully solved 147 tasks, with 18

tasks running out of time within 1 hour. Among all of these, BFA_RA proves 11 tasks independently.

Note that when BFA_RA w.o. binary search is used instead of BFA_RA, the total number of proved

tasks via pure reachability analysis decreases by 2, and the total number of timeout tasks (by

BFA_MILP) increases by 7. It is because that binary search strategy enables BFA_RA to consistently

obtain a tighter value range for each vulnerable parameter, leading to a more compact MILP model

(or a reduced solution space) for the BFA_MILP procedure and improving the overall efficiency.

Detailed experimental results are presented in Table 12 in Appendix D.

Figures 8(a) and 8(b) show the detailed distribution of vulnerable weights and biases across

all 7 non-input layers within the ACAS Xu networks, respectively. On average, we find that the

proportion of vulnerable parameters in the earlier layers of the ACAS Xu networks is higher than

that in the later layers. This observation suggests that enhanced protection measures should be

prioritized for the parameters in the preceding layers to effectively mitigate the impact of bit-flip

attacks. One possible reason behind this phenomenon is that the earlier layers of the ACAS Xu

networks play a crucial role in feature extraction, making their parameters more susceptible to

perturbations caused by BFAs. Since these layers directly influence the representations propagated

through the network, any disruption in their parameters can have a cascading effect on the overall

network performance, thereby increasing their vulnerability.

5.2.2 MNIST. For the MNIST benchmark, BFAVerifier successfully verifies the absence of BFAs

for all 2160 tasks across all 12 QNNs. Due to space limitations, rather than presenting the average

results across all possible values of𝑄 , 𝑟 , and 𝔫, this section provides detailed verification results for

a specific configuration of (𝑄, 𝑟, 𝔫) = (8, 0, 1) as an illustrative example.
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Fig. 9. The distribution of vulnerable parameters in each layer on MNIST when (𝑄, 𝑟, 𝔫) = (8, 0, 1).

The results are presented in Table 13 and Figure 9. In Table 13, the first column lists the network

architecture, while the remaining columns display the same types of results as those shown in

Table 6. From Table 13, we can observe that for small networks, BFA_RA achieves relatively high

precision, as the majority of tasks (69 out of 73) that fail to be proved by BFA_RA are indeed not

robust to bit-flip attacks and subsequently falsified by BFA_MILP.
Figures 9(a) and 9(b) give the average number of vulnerable weights and biases in each layer

within the 8 networks, respectively. We observe a distinct phenomenon compared to ACAS Xu: in

these small networks, the parameters in the middle layers exhibit greater vulnerability to bit-flip

attacks. This suggests that greater attention should be given to protecting the middle layer to

mitigate the impact of BFAs effectively. One possible explanation is that given the high input

dimensions in these small networks, middle layers play a crucial role in transforming extracted

features into high-level representations with fewer redundancy mechanisms to compensate for

errors, making them more susceptible to BFAs. Furthermore, we find that the bias parameters of

these small QNNs for MNIST exhibit significantly greater robustness against BFAs compared to

those of QNNs for ACAS Xu.

Result 4: BFAVerifier can verify the absence of the bit-flip attacks, either prove the BFA-freeness

or return a counter-example, and BFA_MILP is effective as a complementary method to BFA_RA.

5.3 BFAVerifier on Larger Networks with Various Activation Functions
To answer RQ3, in this subsection, we evaluate the performance of BFAVerifier on the larger

networks listed in Table 3 resulting in a total of 16×60×3 = 2880 (16 networks, 60 input regions per

network, and 3 different values of 𝔫) verification tasks. Note that, although BFA_RA is more efficient

(in polynomial time to the network size) compared to the MILP-based method (which is NP-hard),

it is still possible for the MILP-based method to effectively and efficiently verify BFA-tolerant

robustness properties when the size of the input region and the vulnerable parameter set, i.e., |𝜉 | in
Algorithm 1, are limited.

We observe that, with the exceptions of networks under the 3blk_100 and 5blk_100 architectures,

all other large networks listed in Table 3 cannot be successfully verified by BFAVerifier within
1 hour. For instance, a verification task for the network of architecture 3blk_512_512_512 with

(𝑄, 𝑟, 𝔫) = (8, 2, 1) requires approximately 14 hours to complete. Such failure is largely attributable

to the challenges posed by i) the vast number of potential attack vectors and ii) the substantial model

sizes when utilizing the MILP-based method, mirroring the issues found in existing MILP-based

verification techniques in the context of vanilla network verification problems [32, 35].
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Table 8. Verification results of BFAVerifier on the MNIST dataset for large networks, where each network
undergoes 360 verification tasks in total.

BFA_RA BFA_MILP
#TO #Solved

#Proved #Proved #Falsified

3blk_100 302 14 10 34 360

3blk_100
sigmoid

347 N/A N/A N/A 347

3blk_100
tanh

311 N/A N/A N/A 311

5blk_100 290 6 10 54 306

Table 9. Detailed verification results of BFAVerifier on 3blk_100 and 5blk_100 with 𝑄 ∈ {4, 8}.

BFA_RA BFA_MILP AvgTime(s)

r 𝔫
#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP

#TO

1 100.0% 40 0 0 731.9 0 0

0 2 100.0% 40 0 0 749.8 0 0

4 100.0% 40 0 0 761.9 0 0

1 100.0% 40 0 0 2031.5 0 0

𝑄 = 4 2 2 99.9% 38 1 1 2035.3 6.5 0

4 99.9% 38 1 1 2035.7 6.8 0

1 99.8% 29 3 0 2035.4 685.4 8

4 2 99.8% 19 3 3 2064.1 449.6 15

4 99.8% 19 3 2 2038.3 783.0 16

BFA_RA BFA_MILP AvgTime(s)

r 𝔫
#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP

#TO

1 100.0% 40 0 0 722.2 0 0

0 2 100.0% 40 0 0 745.0 0 0

4 99.9% 39 0 1 754.2 1.6 0

1 99.9% 38 1 1 2032.5 2.8 0

𝑄 = 8 2 2 99.9% 37 1 2 2038.6 6.9 0

4 99.9% 37 0 3 2046.4 2.6 0

1 99.6% 22 3 1 2048.4 854.0 14

4 2 99.5% 18 3 2 2091.6 1482.3 17

4 99.4% 18 1 3 2173.7 297.7 18

We report the experimental results in Tables 8 and 9. We find that BFAVerifier successfully solves

the majority of verification tasks for the four networks in Table 8. For networks with logistic-based

activations (3blk_100
sig

and 3blk_100
tanh

), although BFAVerifier can only provide sound verification

results by exclusively utilizing BFA_RA, BFAVerifier is still able to solve most tasks within the given

time limit. We also find that, compared to small networks, larger networks appear to exhibit greater

robustness against BFAs. Specifically, when 𝑟 = 0 (cf. Table 9), almost all BFA-tolerant properties

can be successfully verified by BFA_RA solely (except for one property when (𝑄, 𝑟, 𝔫) = (8, 0, 4)),
indicating enhanced resistance to bit-flip attacks within larger network architectures. Moreover, we

observe that networks quantized with a lower bit-width tend to exhibit greater robustness against

BFAs. This suggests that reduced bit-width quantization may inherently increase the difficulty of

executing bit-flip attacks, a finding that aligns with the existing work [28].

Result 5: BFAVerifier demonstrates generalizability across various activation functions and

scales to 8-bit QNNs with a 5blk_100 architecture, completing verification of BFAs involving up

to four bit flips within 1 hour.
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Fig. 10. The impact of time limit on the number of solved tasks by BFA_MILP for experiments in Table 9.

For the unsolved tasks in Table 9, we further investigate how the number of verified tasks evolves

with extended time limits (up to 4 hours). The results are illustrated in Figure 10. We observe that as

the time limit increases, both the number of proved and the number of falsified tasks by BFA_MILP
increase, with the number of proved tasks exhibiting a more significant growth.

6 Related Work
In this section, we discuss the existing works closely related to the contributions of this paper.

Verification of QNNs. In the literature, quantization is broadly categorized into two types [22]:

parameter-only quantization and quantization applied to both parameters and activations, leading

to significant differences in verification methodologies. For parameter-only quantization, existing

white-box DNN verification methods [25, 36, 45, 56, 75] can be applied directly, while primarily

leverage constraint-solving or abstraction. A constraint-solving-based method reduces the verifi-

cation problem into SMT/MILP solving [13, 20, 36, 37, 58]. While sound and complete, they often

suffer from scalability limitations. To improve efficiency, various abstraction-based methods are

proposed, such as computing a conservative bound of the output range based on different abstract

domains [21, 45, 65, 66] or obtaining abstract neural networks, rendering them more suitable for

verification [2, 19, 47, 55, 90]. A key distinction between SymPoly and other symbolic or polyhedral

abstraction-based approaches in neural network verification is that existing methods abstract

only neuron value ranges with fixed parameters, focusing solely on input interval propagation.

In contrast, SymPoly extends abstraction to both neuron and parameter value ranges, enabling

simultaneous propagation of both input and weight intervals. For QNNs where both parameters and

activations are quantized, existing techniques primarily rely on constraint solving [23, 29, 31, 85]

or BDD [86, 87], mainly for robustness properties.

Bit-flip attacks and defense of neural networks. DNNs are notably vulnerable to BFAs, where

a single bit alternation can cause severe performance degradation [30, 46, 59]. To mitigate this,

QNNs have been explored as a more resilient alternative. Building on the foundational work by

Rakin et al. [61], a variety of attack technologies specifically designed for QNNs have then been

investigated [7, 42, 49, 69]. These attacks primarily manipulate bits in non-volatile memory, affecting

mainly theweights and occasionally the biases (e.g., DRAM), as well as introducing faults into certain

neuron activation functions. Common BFA methodologies on networks include the Rowhammer

attack [54, 61, 69], clock glitching attack [7], Voltage Frequency Scaling (VFS) attack [62], and lase
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injection attack [18]. Notably, the Rowhammer, VFS, and laser inject attacks primarily manipulate

the binary representations of weights and biases stored in memory [16, 42, 61, 62, 69], while the

clock glitching attack specifically disrupts the functionality of the activation functions [7, 49].

The primary objective of defensive techniques is to enhance accuracy and/or robustness in the

presence of BFAs. A natural approach to achieving this is to implement countermeasures against the

underlying mechanisms that cause attacks, specifically by addressing the attacks from a hardware

or system architecture perspective. For example, [80] selectively throttles memory accesses that

could otherwise potentially cause Rowhammer bit-flips. Error correction Code [14, 15] is also

an effective defense mechanism, typically implemented by the memory controller. However, no

existing defense method can provide a definitive guarantee of eliminating all potential risks posed

by bit-flip attacks.

Other related works. [76] proposes a method that formulates certified weight perturbations as an

optimization problem, employing a uniform 𝐿∞ norm perturbationwithin each layer. Their approach

focuses on precision at the level of individual inputs, in contrast to ours BFAVerifier, which examines

robustness against the BFAs over an input region. Another closely related study [77] investigates

probabilistic safety verification of Bayesian networks utilizing weight interval propagation to

identify disjoint safe weight spaces based on weight distributions. Although a direct comparison

between their work and ours is not feasible due to the differences in network types and verification

tasks, their methodology aligns with our naive abstraction approach depicted in Figure 3(a), which,

as analyzed, exhibits lower abstract precision compared to the abstraction technique proposed in

this work (cf. Figure 3(b)).

7 Conclusion and Future Work
We proposed a novel bit-flip attack verification method, BFAVerifier, for QNNs, which is sound,

complete, and arguably efficient. To achieve this, we introduced SymPoly, the first abstract domain

tailored for networks with symbolic parameters. We implemented BFAVerifier as an end-to-end tool

and conducted thorough experiments on various benchmarks with networks of different model

sizes and quantization bit-widths, demonstrating its effectiveness and efficiency.

While SymPoly may not represent the theoretically optimal abstract transformer for convex

relaxations of weighted activation functions, it achieves optimal when restricting static abstractions

to using only two linear constraints per neuron. Moreover, in terms of convex relaxation, the optimal

abstraction transformer may not significantly enhance SymPoly, supported by the observation

in [63] that there is an inherent barrier to tight relaxation-based verification methods. However,

BFAVerifier could be integrated with complementary verification techniques, such as Branch-

and-Bound for ReLU splitting [9] and optimizable lower bounds [79], to improve the verification

precision and scalability. We consider these promising extensions for future work.

Our verification approach targets bit-flip attacks on a single parameter. Extending such threat

models to attack multiple parameters simultaneously, e.g., two out of 𝑛 parameters (i.e., 𝔪 = 2),

would involve a straightforward modification of Algorithm 1 by traversing all

(
𝑛
2

)
=
𝑛 · (𝑛−1)

2
two-

parameter combinations in the for-loop at line 3, leading to exponential computation growth.

Hence, although the abstract domain SymPoly can handle multiple symbolic parameters simultane-

ously, how to efficiently and effectively partition all

(
𝔫

2

)
combinations into groups for abstraction-

refinement poses a significant and non-trivial challenge, which is also a key focus in future work.

8 Data-Availability Statement
The source code of our tool and benchmarks are available at [4].
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A Overview of the ACAS Xu Benchmark
Table 10 gives the details of the ACAS Xu Benchmark we used throughout Section 5. We evaluate

all 45 QNNs, denoted as 𝑁𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 9, on the 10 properties, then select the

successfully proved ones, resulting in a total of 8 + 9 + 8 + 9 + 7 + 14 = 55 network-property pairs as

our benchmarks.

Table 10. Benchmarks of properties and QNNs obtained via post-quantization training for ACAS Xu.

Property Description Network

Prop_3_WL

If the intruder is directly ahead and is moving towards the

ownership, a “Weak Left” maneuver is advised.

(8): 𝑁2,6, 𝑁2,7, 𝑁2,8, 𝑁2,9,

𝑁4,6, 𝑁4,7, 𝑁4,8, 𝑁4,9

Prop_3_WR

If the intruder is directly ahead and is moving towards the

ownership, a “Weak Right” maneuver is advised.

(9): 𝑁1,6, 𝑁3,6, 𝑁3,7, 𝑁3,8,

𝑁3,9, 𝑁5,6, 𝑁5,7, 𝑁5,8, 𝑁5,9

Prop_3_SL

If the intruder is directly ahead and is moving towards the

ownership, a “Strong Left” maneuver is advised.

(8): 𝑁2,2, 𝑁2,3, 𝑁2,4, 𝑁2,5,

𝑁4,2, 𝑁4,3, 𝑁4,4, 𝑁4,5

Prop_3_SR

If the intruder is directly ahead and is moving towards the

ownership, a “Strong Right” maneuver is advised.

(9): 𝑁3,1, 𝑁3,3, 𝑁3,4, 𝑁3,5,

𝑁5,1, 𝑁5,2, 𝑁5,3, 𝑁5,4, 𝑁5,5

Prop_5_SR

If the intruder is near and approaching from the left, a

“Strong Right” maneuver is advised.

(7): 𝑁3,1, 𝑁3,2, 𝑁3,3, 𝑁5,2,

𝑁5,3, 𝑁5,4, 𝑁5,5

Prop_10_COC

For a far away intruder, a “Clear of Conflict” maneuver is

advised.

(14): 𝑁1,3, 𝑁1,4, 𝑁1,5, 𝑁1,6

𝑁3,2, 𝑁3,6, 𝑁3,7, 𝑁4,1, 𝑁4,2,

𝑁4,4, 𝑁4,5, 𝑁5,1, 𝑁5,4, 𝑁5,6

B Missing Proofs in Sections 3 and 4
B.1 Proof of Theorem 3.2

Proof. To show that the problem of checking whether N |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ⟩ holds is in NP, we can

(1) Step 1: non-deterministically guess an input x ∈ R𝑛 and an (𝑘, 𝔫)-attack vector 𝜌 =

{(𝛼1, 𝑃1), · · · , (𝛼𝑘 , 𝑃𝑘 )} for 𝑘 ≤ 𝔪;

(2) Step 2: build a new neural network N𝜌
according to the (𝑘, 𝔫)-fault attack vector 𝜌 ;

(3) Step 3: compute N𝜌 (x) by feeding the values of the input x forward through the network;

(4) Step 4: check if both 𝜙 (x) and 𝜓 (N𝜌 (x)) hold, and return satisfiable if both 𝜙 (x) and
𝜓 (N𝜌 (x)) hold.

, Vol. 1, No. 1, Article . Publication date: February 2025.

https://doi.org/10.1007/978-3-030-81685-8_8
https://doi.org/10.1145/3563212
https://doi.org/10.1145/3551349.3556916
https://doi.org/10.1145/3631977
https://doi.org/10.1007/978-3-031-22308-2_20


Verification of Bit-Flip Attacks against Quantized Neural Networks 31

Since Steps 2–4 can be done in polynomial time, we conclude the proof.

The NP-hardness is proved by reducing from the satisfiability problem of the vanilla neural

network verification problem N |= ⟨𝜙,𝜓 ⟩ which is NP-complete [35]. Consider a vanilla neural

network verification problem of checking whether N |= ⟨𝜙,𝜓 ⟩ holds. Suppose the inputs and

outputs of the neural network are x and y = N(x), respectively. We construct a neural networkN ′

as follows:

• N ′
comprises 𝔫 + 1 copies of the network verification N in parallel,

• all the copies share the same inputs x,
• the outputs of the 𝑖-th copy are renamed by y𝑖 ,
• the weights of the edges between two neurons in two different copies are 0, ensuring that

the neurons in the 𝑖-th copy are not affected by the neurons in other copies.

Let 𝜓 ′ =
∨𝔫+1
𝑖=1 𝜓𝑖 , where 𝜓𝑖 is obtained from the property 𝜓 by renaming the outputs y with the

outputs y𝑖 .
Claim. For any fixed constants 𝔪 and 𝔫, N ′ |=𝜌𝔪,𝔫 ⟨𝜙 ′,𝜓 ′⟩ holds iff N |= ⟨𝜙,𝜓 ⟩ holds.
(⇐) Suppose the vanilla neural network verification N |= ⟨𝜙,𝜓 ⟩ holds, then for any inputs

x ∈ R𝑛 that satisfies the pre-condition 𝜙 , y = 𝑁 (x) also satisfies the post-condition 𝜙 . According to

the construction of 𝑁 ′
, for any (𝑘, 𝔫)-fault attack vector 𝜌 with 𝑘 ≤ 𝔪, there exists a copy of 𝑁 ,

say the 𝑖-th copy of 𝑁 , such that the outputs y𝑖 are the same as the outputs y. It implies that 𝑁 ′ (x)
satisfies𝜓𝑖 , hence𝜓

′
. Thus, N ′ |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ′⟩ holds.

(⇒) Suppose the vanilla neural network verification problem N |= ⟨𝜙,𝜓 ⟩ does not hold, then
there exists a counterexample x ∈ R𝑛 such that x satisfies the pre-condition 𝜙 but y = N(x)
does not satisfy the post-condition 𝜙 . According to the construction of N ′

, the outputs N ′ (x) of
N ′

under an (𝔪, 0)-fault attack vector 𝜌 (i.e., no parameters can be changed) are 𝔫 + 1 copies of

y = N(x). Thus, N ′ (x) does not satisfy𝜓 ′ =
∨𝔫+1
𝑖=1 𝜓𝑖 , i.e., N ′ |=𝜌𝔪,𝔫 ⟨𝜙,𝜓 ′⟩ does not hold. □

B.2 Proof of Theorem 4.1
Proof. We first prove the soundness of the weighted-ReLU abstract transformer. Let a𝑖

𝑘,1
=

⟨𝑎𝑖,≤
𝑘,1
, 𝑎
𝑖,≥
𝑘,1
, 𝑙𝑖
𝑘,1
, 𝑢𝑖
𝑘,1
⟩ be the abstract element of x𝑖

𝑘,1
and a𝑖

𝑘,2
= ⟨𝑎𝑖,≤

𝑘,2
, 𝑎
𝑖,≥
𝑘,2
, 𝑙𝑖
𝑘,2
, 𝑢𝑖
𝑘,2
⟩ be the abstract

element of x𝑖
𝑘,2

= ReLU(x𝑖
𝑘,1
). 𝛾 (a𝑖

𝑘,1
) = {𝑥 ∈ R | 𝑎𝑖,≤

𝑘,1
≤ 𝑥 ≤ 𝑎𝑖,≥

𝑘,1
}. Given −→

W𝑖+1
𝑗,𝑘

∈ [𝑤𝑙 ,𝑤𝑢], we prove
the soundness by considering the following 5 cases:

• If 𝑙𝑖
𝑘,1

≥ 0: ReLU(x𝑖
𝑘,1
) = x𝑖

𝑘,1
for x𝑖

𝑘,1
∈ 𝛾 (a𝑖

𝑘,1
) and 𝑎𝑖,≤

𝑘,2
= 𝑎

𝑖,≥
𝑘,2

= x𝑖
𝑘,1
. Then, we have

𝑤𝑙 · x𝑖𝑘,1 ≤
−→
W𝑖+1

𝑗,𝑘
· ReLU(x𝑖

𝑘,1
) ≤ 𝑤𝑢 · x𝑖𝑘,1 and therefore

−→
W𝑖+1

𝑗,𝑘
· ReLU(𝛾 (a𝑖

𝑘,1
)) ⊆ {𝑥 ∈ R | 𝑤𝑙 · 𝑥 ′ ≤ 𝑥 ≤ 𝑤𝑢 · 𝑥 ′ ∧ 𝑎𝑖,≤𝑘,1 ≤ 𝑥 ′ ≤ 𝑎𝑖,≥

𝑘,1
}

= {𝑥 ∈ R | 𝑤𝑙 · 𝑎𝑖,≤𝑘,2 ≤ 𝑥 ≤ 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 } = 𝛾 (a
𝑖,∗
𝑘,2
)

• If 𝑢𝑖
𝑘,1

≤ 0: ReLU(x𝑖
𝑘,1
) = 0 for x𝑖

𝑘,1
∈ 𝛾 (a𝑖

𝑘,1
) and 𝑎𝑖,≤

𝑘,2
= 𝑎

𝑖,≥
𝑘,2

= 0. Then, we have 0 ≤
−→
W𝑖+1

𝑗,𝑘
· ReLU(x𝑖

𝑘,1
) ≤ 0 and therefore

−→
W𝑖+1

𝑗,𝑘
· ReLU(𝛾 (a𝑖

𝑘,1
)) ⊆ {𝑥 ∈ R | 0 ≤ 𝑥 ≤ 0 ∧ 𝑎𝑖,≤

𝑘,1
≤ 𝑥 ′ ≤ 𝑎𝑖,≥

𝑘,1
}

= {𝑥 ∈ R | 𝑤𝑙 · 𝑎𝑖,≤𝑘,2 ≤ 𝑥 ≤ 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 } = 𝛾 (a
𝑖,∗
𝑘,2
)

• If 𝑙𝑖
𝑘,1
𝑢𝑖
𝑘,1

< 0: we have 𝜆 · x𝑖
𝑘,1

≤ ReLU(x𝑖
𝑘,1
) ≤ 𝑢𝑖

𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
) for x𝑖

𝑘,1
∈ 𝛾 (a𝑖

𝑘,1
).

𝑎
𝑖,≤
𝑘,2

= 𝜆 · x𝑖
𝑘,1

and 𝑎
𝑖,≥
𝑘,2

=
𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
).
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– When 𝑤𝑙 ≥ 0: we have 𝑤𝑙 · 𝜆 · x𝑖
𝑘,1

≤ −→
W𝑖+1

𝑗,𝑘
· ReLU(x𝑖

𝑘,1
) ≤ 𝑤𝑢 · 𝑢𝑖

𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
) and

therefore

−→
W𝑖+1

𝑗,𝑘
· ReLU(𝛾 (a𝑖

𝑘,1
)) ⊆ {𝑥 ∈ R | 𝑤𝑙 · 𝜆 · 𝑥 ′ ≤ 𝑥 ≤ 𝑤𝑢 ·

𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

− 𝑙𝑖
𝑘,1

(𝑥 ′ − 𝑙𝑖
𝑘,1
) ∧ 𝑎𝑖,≤

𝑘,1
≤ 𝑥 ′ ≤ 𝑎𝑖,≥

𝑘,1
}

= {𝑥 ∈ R | 𝑤𝑙 · 𝑎𝑖,≤𝑘,2 ≤ 𝑥 ≤ 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 }

= {𝑥 ∈ R | 𝑎𝑖,≤
𝑘,2

≤ 𝑥 ≤ 𝑎𝑖,≥
𝑘,2

} = 𝛾 (a𝑖,∗
𝑘,2
)

– When 𝑤𝑢 ≤ 0: we have 𝑤𝑙 ·
𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
) ≤ −→

W𝑖+1
𝑗,𝑘

· ReLU(x𝑖
𝑘,1
) ≤ 𝑤𝑢 · 𝜆 · x𝑖

𝑘,1
and

therefore

−→
W𝑖+1

𝑗,𝑘
· ReLU(𝛾 (a𝑖

𝑘,1
)) ⊆ {𝑥 ∈ R | 𝑤𝑙 ·

𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

− 𝑙𝑖
𝑘,1

(𝑥 ′ − 𝑙𝑖
𝑘,1
) ≤ 𝑥 ≤ 𝑤𝑢 · 𝜆 · 𝑥 ′ ∧ 𝑎𝑖,≤𝑘,1 ≤ 𝑥 ′ ≤ 𝑎𝑖,≥

𝑘,1
}

= {𝑥 ∈ R | 𝑤𝑙 · 𝑎𝑖,≥𝑘,2 ≤ 𝑥 ≤ 𝑤𝑢 · 𝑎𝑖,≤𝑘,2 } = {𝑥 ∈ R | 𝑎𝑖,≤
𝑘,2

≤ 𝑥 ≤ 𝑎𝑖,≥
𝑘,2

} = 𝛾 (a𝑖,∗
𝑘,2
)

– When𝑤𝑙 < 0 < 𝑤𝑢 : if 𝜆 = 0, we have 0 ≤ ReLU(x𝑖
𝑘,1
) ≤ 𝑢𝑖

𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

−𝑙𝑖
𝑘,1
). Hence, we have

𝑤𝑙 ·
𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

−𝑙𝑖
𝑘,1
) ≤ −→

W𝑖+1
𝑗,𝑘

·ReLU(x𝑖
𝑘,1
) ≤ 𝑤𝑢 ·

𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

−𝑙𝑖
𝑘,1
). If 𝜆 = 1, we have x𝑖

𝑘,1
≤

ReLU(x𝑖
𝑘,1
) ≤ 𝑢𝑖

𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
). Since𝑤𝑙 < 0, we have𝑤𝑙 · x𝑖𝑘,1 ≥ 𝑤𝑙 ·

𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
).

Finally, we have𝑤𝑙 ·
𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
) ≤ −→

W𝑖+1
𝑗,𝑘

· ReLU(x𝑖
𝑘,1
) ≤ 𝑤𝑢 ·

𝑢𝑖
𝑘,1

𝑢𝑖
𝑘,1

−𝑙𝑖
𝑘,1

(x𝑖
𝑘,1

− 𝑙𝑖
𝑘,1
) for

𝜆 ∈ {0, 1} and therefore

−→
W𝑖+1

𝑗,𝑘
· ReLU(𝛾 (a𝑖

𝑘,1
)) ⊆ {𝑥 ∈ R | 𝑤𝑙 ·

𝑢𝑖
𝑘,1

(𝑥 ′ − 𝑙𝑖
𝑘,1
)

𝑢𝑖
𝑘,1

− 𝑙𝑖
𝑘,1

≤ 𝑥 ≤ 𝑤𝑢 ·
𝑢𝑖
𝑘,1

(𝑥 ′ − 𝑙𝑖
𝑘,1
)

𝑢𝑖
𝑘,1

− 𝑙𝑖
𝑘,1

∧ 𝑎𝑖,≤
𝑘,1

≤ 𝑥 ′ ≤ 𝑎𝑖,≥
𝑘,1

}

= {𝑥 ∈ R | 𝑤𝑙 · 𝑎𝑖,≥𝑘,2 ≤ 𝑥 ≤ 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 } = {𝑥 ∈ R | 𝑎𝑖,≤
𝑘,2

≤ 𝑥 ≤ 𝑎𝑖,≥
𝑘,2

} = 𝛾 (a𝑖,∗
𝑘,2
)

Therefore, our weighted-ReLU abstract transformer is sound in all cases. We then prove that

the invariant preserving. Let𝛾 (a𝑖,∗
𝑘,2
) = {𝑥 ∈ R | 𝑎𝑖,≤

𝑘,2
≤ 𝑥 ≤ 𝑎𝑖,≥

𝑘,2
} and 𝑙𝑖

𝑘,2
≤ 𝑎𝑖,≤

𝑘,2
≤ x𝑖

𝑘,2
≤ 𝑎𝑖,≥

𝑘,2
≤ 𝑢𝑖

𝑘,2
:

• If𝑤𝑙 ≥ 0, we have𝑤𝑙 · 𝑙𝑖𝑘,2 ≤ 𝑤𝑙 · 𝑎
𝑖,≤
𝑘,2

and𝑤𝑢 · 𝑎𝑖,≥𝑘,2 ≤ 𝑤𝑢 ·𝑢𝑖𝑘,2. Then, we have ˜𝑙𝑖
𝑘,2

= 𝑤𝑙 · 𝑙𝑖𝑘,2 ≤
𝑤𝑙 · 𝑎𝑖,≤𝑘,2 = 𝑎

𝑖,≤
𝑘,2

≤ x̃𝑖
𝑘,2

≤ 𝑎𝑖,≥
𝑘,2

= 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 ≤ 𝑤𝑢 · 𝑢𝑖𝑘,2 = 𝑢̃
𝑖
𝑘,2
;

• If𝑤𝑢 ≤ 0, we have𝑤𝑙 ·𝑢𝑖𝑘,2 ≤ 𝑤𝑙 ·𝑎
𝑖,≥
𝑘,2

and𝑤𝑢 ·𝑎𝑖,≤𝑘,2 ≤ 𝑤𝑢 · 𝑙𝑖𝑘,2. Then, we have ˜𝑙
𝑖
𝑘,2

= 𝑤𝑙 ·𝑢𝑖𝑘,2 ≤
𝑤𝑙 · 𝑎𝑖,≥𝑘,2 = 𝑎

𝑖,≤
𝑘,2

≤ x̃𝑖
𝑘,2

≤ 𝑎𝑖,≥
𝑘,2

= 𝑤𝑢 · 𝑎𝑖,≤𝑘,2 ≤ 𝑤𝑢 · 𝑙𝑖𝑘,2 = 𝑢̃
𝑖
𝑘,2
;

• If 𝑤𝑙 < 0 < 𝑤𝑢 , we have 𝑤𝑙 · 𝑢𝑖𝑘,2 ≤ 𝑤𝑙 · 𝑎𝑖,≥𝑘,2 and 𝑤𝑢 · 𝑎𝑖,≥
𝑘,2

≤ 𝑤𝑢 · 𝑢𝑖
𝑘,2
. Then, we have

˜𝑙𝑖
𝑘,2

= 𝑤𝑙 · 𝑢𝑖𝑘,2 ≤ 𝑤𝑙 · 𝑎
𝑖,≥
𝑘,2

= 𝑎
𝑖,≤
𝑘,2

≤ x̃𝑖
𝑘,2

≤ 𝑎𝑖,≥
𝑘,2

= 𝑤𝑢 · 𝑎𝑖,≥𝑘,2 ≤ 𝑤𝑢 · 𝑢𝑖𝑘,2 = 𝑢̃
𝑖
𝑘,2
;

Therefore, our weight-ReLU abstract transformer preserves the invariant in all cases, and

we finish the proving. □

B.3 Proof of Theorem 4.2
Proof. Consider x2𝑗,1 =

∑
𝑡 ∈[𝑛2 ]\𝑘 W

2

𝑗,𝑡x
1

𝑡 +
−→
W2

𝑗,𝑘
x1
𝑘
+b2𝑗 , we can inherit the proof of affine abstract

transformer in [66] directly on all input neurons x𝑖𝑡 for 𝑡 ∈ [𝑛2]\𝑘 . To prove the theorem, it remains

to demonstrate that the abstract transformer for the weighted input neuron

−→
W2

𝑗,𝑘
x1
𝑘
is sound,

i.e., to prove that the abstraction ⟨𝑎≤, 𝑎≥, 𝑙, 𝑢⟩ preserves all possible concrete values of

−→
W2

𝑗,𝑘
x1
𝑘
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with the input range of x1
𝑘
as [𝑥𝑙 , 𝑥𝑢] and value range of

−→
W2

𝑗,𝑘
as [𝑤𝑙 ,𝑤𝑢], where 𝑎≤ = 𝜅≤x1

𝑘
− 𝜂,

𝑎≥ = 𝜅≤x1
𝑘
+ 𝜂, and:

• If 𝑥𝑙 ≥ 0, then {𝜅≤ = 𝑤𝑙 , 𝜅
≥ = 𝑤𝑢, 𝜂 = 0};

• If 𝑥𝑢 ≤ 0, then {𝜅≤ = 𝑤𝑢, 𝜅
≥ = 𝑤𝑙 , 𝜂 = 0};

• Otherwise, {𝜅≤ =
𝑤𝑢𝑥𝑢−𝑤𝑙𝑥𝑙
𝑥𝑢−𝑥𝑙 , 𝜅≥ =

𝑤𝑙𝑥𝑢−𝑤𝑢𝑥𝑙
𝑥𝑢−𝑥𝑙 , 𝜂 =

𝑥𝑢𝑥𝑙
𝑥𝑢−𝑥𝑙 (𝑤𝑙 −𝑤𝑢)}.

Intuitively, an intuitive sound abstract transformer for the function 𝑦 =
−→
W2

𝑗,𝑘
x1
𝑘
considering

x1
𝑘
∈ [𝑥𝑙 , 𝑥𝑢] and

−→
W2

𝑗,𝑘
∈ [𝑤𝑙 ,𝑤𝑢] is the convex quadrilateral constructed by the four vertices:

𝐴 = (𝑥𝑙 ,𝑤𝑙𝑥𝑙 ), 𝐵 = (𝑥𝑢,𝑤𝑙𝑥𝑢),𝐶 = (𝑥𝑙 ,𝑤𝑢𝑥𝑙 ), and 𝐷 = (𝑥𝑢,𝑤𝑢𝑥𝑢). The upper and lower boundaries
of the quadrilateral are shown in Table 11.

Table 11. Boundaries of the quadrilateral constructed by the four vertices: 𝐴 = (𝑥𝑙 ,𝑤𝑙𝑥𝑙 ), 𝐵 = (𝑥𝑢 ,𝑤𝑙𝑥𝑢 ),
𝐶 = (𝑥𝑙 ,𝑤𝑢𝑥𝑙 ), and 𝐷 = (𝑥𝑢 ,𝑤𝑢𝑥𝑢 ), where 𝐴𝐵 denote the boundary is the line segment of AB.

𝑤𝑙 ≥ 0 𝑤𝑢 ≤ 0 𝑤𝑙 < 0 < 𝑤𝑢
𝑥𝑙 ≥ 0 𝑥𝑢 ≤ 0 𝑥𝑙 < 0 < 𝑥𝑢 𝑥𝑙 ≥ 0 𝑥𝑢 ≤ 0 𝑥𝑙 < 0 < 𝑥𝑢 𝑥𝑙 ≥ 0 𝑥𝑢 ≤ 0 𝑥𝑙 < 0 < 𝑥𝑢

Upper Boundary 𝐶𝐷 𝐴𝐵 𝐴𝐷 𝐶𝐷 𝐴𝐵 𝐴𝐷 𝐶𝐷 𝐴𝐵 𝐴𝐷

Lower Boundary 𝐴𝐵 𝐶𝐷 𝐵𝐶 𝐴𝐵 𝐶𝐷 𝐵𝐶 𝐴𝐵 𝐶𝐷 𝐵𝐶

For any 𝑥 ∈ [𝑥𝑙 , 𝑥𝑢], the segment 𝐴𝐵 is given by 𝑦 = 𝑤𝑙𝑥 , 𝐶𝐷 is given by 𝑦 = 𝑤𝑢𝑥 , 𝐴𝐷 is given

by 𝑦 = 𝑤𝑙𝑥𝑙 + 𝑤𝑢𝑥𝑢−𝑤𝑙𝑥𝑙
𝑥𝑢−𝑥𝑙 (𝑥 − 𝑥𝑙 ), and 𝐵𝐶 is given by 𝑦 = 𝑤𝑙𝑥𝑢 + 𝑤𝑙𝑥𝑢−𝑤𝑢𝑥𝑙

𝑥𝑢−𝑥𝑙 (𝑥 − 𝑥𝑢). Since these
expressions fully characterize the convex hull of the function over the given input interval, the

theorem is thereby proved. □

B.4 Proof of Theorem 4.3
Proof. Since the abstraction loses no precision, soundness and the invariant are preserved

directly. □

B.5 Proof of Theorem 4.5
Proof. We prove it by construction.

Assuming that the abstract element of 𝑔(𝑥) obtained in DeepPoly is ⟨𝑎≤, 𝑎≥, 𝑙, 𝑢⟩, let ⟨𝑎≤, 𝑎≥, ˜𝑙, 𝑢̃⟩
denote the abstract element of 𝑤 · 𝑔(𝑥). We use 𝑔′ (𝑥) and 𝑔′′ (𝑥) to denote the first and second

derivatives of 𝑔(𝑥). Next, we prove the soundness of the abstract transformer demonstrated in

Table 1 by construction based on the existing proof ideas on the abstract transformers of the Sigmoid

and Tanh activation functions in [66], which can be illustrated as follows:

• When 𝑙 ≥ 0, 𝑎≤ is given by the line segment defined by two points (𝑙, 𝑔(𝑙)) and (𝑢,𝑔(𝑢)), i.e.,
the slope is 𝜅 =

𝑔 (𝑢 )−𝑔 (𝑙 )
𝑢−𝑙 . This is because 𝑔 is concave on [𝑙, 𝑢]; Otherwise, 𝑎≤ is given by

the function defined by the point (𝑙, 𝑔(𝑙)) and a minimum slope 𝜅′ = min(𝑔′ (𝑙), 𝑔′ (𝑢)), i.e.,
𝑦 (𝑥) = 𝜅′ (𝑥 − 𝑙) +𝑔(𝑙). This is because 𝑔′ is non-decreasing on (𝑙, 0] and decreasing on [0, 𝑢),
then by setting the slope as 𝜅′, we can always guarantee that 𝜅′ is the minimum derivative for

any point on 𝑔(𝑥) with 𝑥 ∈ [𝑙, 𝑢], hence for any point 𝑥𝑐 ∈ [𝑙, 𝑢], 𝜅′ (𝑥 − 𝑥𝑐 ) + 𝑔(𝑥𝑐 ) always
lies below of 𝑔(𝑥) on [𝑥𝑐 , 𝑢]. Hence, when 𝑥𝑐 = 𝑙 , we have 𝜅′ (𝑥 − 𝑙) + 𝑔(𝑙) always lies below
of 𝑔(𝑥) on [𝑙, 𝑢].

• When 𝑢 ≤ 0, 𝑎≥ is given by the line segment defined by two points (𝑙, 𝑔(𝑙)) and (𝑢,𝑔(𝑢)), i.e.,
the slope is 𝜅 =

𝑔 (𝑢 )−𝑔 (𝑙 )
𝑢−𝑙 . This is because 𝑔 is convex on [𝑙, 𝑢]; Otherwise, 𝑎≥ is given by the

function defined by the point (𝑢,𝑔(𝑢)) and the minimum slope 𝜅′ = min(𝑔′ (𝑙), 𝑔′ (𝑢)), i.e.,
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𝑦 (𝑥) = 𝜅′ (𝑥 −𝑢) +𝑔(𝑢). This is because 𝑔′ is non-decreasing on (𝑙, 0] and decreasing on [0, 𝑢),
then by setting the slope as 𝜅′, we can always guarantee that 𝜅′ is the minimum derivative for

any point on 𝑔(𝑥) with 𝑥 ∈ [𝑙, 𝑢], hence for any point 𝑥𝑐 ∈ [𝑙, 𝑢], 𝜅′ (𝑥 − 𝑥𝑐 ) + 𝑔(𝑥𝑐 ) always
lies above of 𝑔(𝑥) on [𝑙, 𝑥𝑐 ]. Hence, when 𝑥𝑐 = 𝑢, we have 𝜅′ (𝑥 −𝑢) + 𝑔(𝑢) always lies above
of 𝑔(𝑥) on [𝑙, 𝑢].

We first prove the theorem when 𝑔(𝑥) = Sigmoid(𝑥) by construction.
Assuming that 𝑎≥𝑤𝑢

is the upper boundary of 𝑤𝑢 · Sigmoid(𝑥), then we have 𝑎≥𝑤𝑢
(𝑥) ≥ 𝑤𝑢 ·

Sigmoid(𝑥) ≥ 𝑤 · Sigmoid(𝑥) with𝑤 ∈ [𝑤𝑙 ,𝑤𝑢] ∧ 𝑥 ∈ [𝑙, 𝑢]. Similarly, assuming 𝑎≤𝑤𝑙
is the lower

boundary of 𝑤𝑙 · Sigmoid(𝑥), then we have 𝑎≤𝑤𝑙
(𝑥) ≤ 𝑤𝑙 · Sigmoid(𝑥) ≤ 𝑤 · Sigmoid(𝑥) with

𝑤 ∈ [𝑤𝑙 ,𝑤𝑢] ∧𝑥 ∈ [𝑙, 𝑢]. Hence, 𝑎≤𝑤𝑙
and 𝑎≥𝑤𝑢

are sound lower and upper boundaries, i.e., 𝑎≤ and 𝑎≥ ,
of abstract domain𝑤 · Sigmoid(𝑥) with𝑤 ∈ [𝑤𝑙 ,𝑤𝑢] on 𝑥 ∈ [𝑙, 𝑢], respectively. By following the

above abstract element construction idea from [66], we obtain 𝑎≤ = 𝑎≤𝑤𝑙
and 𝑎≥ = 𝑎≥𝑤𝑢

as follows:

(a) 0 ≤ 𝑤𝑙 ≤ 𝑤𝑢 . (b) 𝑤𝑙 ≤ 𝑤𝑢 ≤ 0.

Fig. 11. 𝑤 · Sigmoid(𝑥) with𝑤 ∈ {𝑤𝑙 ,𝑤𝑢 },𝑤𝑙 in red and𝑤𝑢 in blue.

• When𝑤𝑙 ≥ 0 (cf. Figure 11(a)), we have
˜𝑙 = 𝑤𝑙𝑔(𝑙), 𝑢̃ = 𝑤𝑢𝑔(𝑢), and

– If 𝑙 ≥ 0, 𝑎≤𝑤𝑙
is given by the line segment defined by two points (𝑙,𝑤𝑙𝑔(𝑙)) and (𝑢,𝑤𝑙𝑔(𝑢)),

i.e., 𝑎≤𝑤𝑙
= 𝑤𝑙𝑔(𝑙) + 𝑤𝑙𝑔 (𝑢 )−𝑤𝑙𝑔 (𝑙 )

𝑢−𝑙 (𝑥 − 𝑙) = 𝑤𝑙𝑔(𝑙) +𝑤𝑙𝜅 (𝑥 − 𝑙); Otherwise, 𝑎≤𝑤𝑙
is given by the

function defined by the point (𝑙,𝑤𝑙𝑔(𝑙)) and the minimum slope of 𝑤𝑙𝑔(𝑥) on [𝑙, 𝑢], i.e.,
𝑎≤𝑤𝑙

= 𝑤𝑙𝑔(𝑙)+min((𝑤𝑙𝑔(𝑥))′ |𝑥=𝑢, (𝑤𝑙𝑔(𝑥))′ |𝑥=𝑙 ) (𝑥−𝑙) = 𝑤𝑙𝑔(𝑙)+𝑤𝑙min(𝑔′ (𝑢), 𝑔′ (𝑙)) (𝑥−
𝑙) = 𝑤𝑙𝑔(𝑙) +𝑤𝑙𝜅′ (𝑥 − 𝑙);

– If 𝑢 ≤ 0, 𝑎≥𝑤𝑢
is given by the line segment defined by two points (𝑙,𝑤𝑢𝑔(𝑙)) and (𝑢,𝑤𝑢𝑔(𝑢)),

i.e., 𝑎≥𝑤𝑢
= 𝑤𝑢𝑔(𝑢) + 𝑤𝑢𝑔 (𝑢 )−𝑤𝑢𝑔 (𝑙 )

𝑢−𝑙 (𝑥 − 𝑢) = 𝑤𝑢𝑔(𝑢) + 𝑤𝑢𝜅 (𝑥 − 𝑢); Otherwise, 𝑎≥𝑤𝑢
is

given by the function defined by the point (𝑢,𝑤𝑢𝑔(𝑢)) and the minimum slope of𝑤𝑢𝑔(𝑥)
on [𝑙, 𝑢], i.e., 𝑎≥𝑤𝑢

= 𝑤𝑢𝑔(𝑢) + min((𝑤𝑢𝑔(𝑥))′ |𝑥=𝑢, (𝑤𝑢𝑔(𝑥))′ |𝑥=𝑙 ) (𝑥 − 𝑢) = 𝑤𝑢𝑔(𝑢) +
𝑤𝑢min(𝑔′ (𝑢), 𝑔′ (𝑙)) (𝑥 − 𝑢) = 𝑤𝑢𝑔(𝑢) +𝑤𝑢𝜅′ (𝑥 − 𝑢);

• When𝑤𝑢 ≤ 0 (cf. Figure 11(b)), we have
˜𝑙 = 𝑤𝑙𝑔(𝑢), 𝑢̃ = 𝑤𝑢𝑔(𝑙), and

– If 𝑢 ≤ 0, 𝑎≤𝑤𝑙
is given by the line segment defined by two points (𝑙,𝑤𝑙𝑔(𝑙)) and (𝑢,𝑤𝑙𝑔(𝑢)),

i.e., 𝑎≤𝑤𝑙
= 𝑤𝑙𝑔(𝑢) + 𝑤𝑙𝑔 (𝑙 )−𝑤𝑙𝑔 (𝑙 )

𝑢−𝑙 (𝑥 − 𝑢) = 𝑤𝑙𝑔(𝑢) +𝑤𝑙𝜅 (𝑥 − 𝑢); Otherwise, 𝑎≤𝑤𝑙
is given by

the function defined by the point (𝑢,𝑤𝑙𝑔(𝑢)) and the maximum slope of𝑤𝑙𝑔(𝑥) on [𝑙, 𝑢], i.e.,
𝑎≤𝑤𝑙

= 𝑤𝑙𝑔(𝑢)+max((𝑤𝑙𝑔(𝑥))′ |𝑥=𝑢, (𝑤𝑢𝑔(𝑥))′ |𝑥=𝑙 ) (𝑥−𝑢) = 𝑤𝑙𝑔(𝑢)+𝑤𝑙min(𝑔′ (𝑢), 𝑔′ (𝑙)) (𝑥−
𝑢) = 𝑤𝑙𝑔(𝑢) +𝑤𝑙𝜅′ (𝑥 − 𝑢);

– If 𝑙 ≥ 0, 𝑎≥𝑤𝑢
is given by the line segment defined by two points (𝑙,𝑤𝑢𝑔(𝑙)) and (𝑢,𝑤𝑢𝑔(𝑢)),

i.e., 𝑎≥𝑤𝑢
= 𝑤𝑢𝑔(𝑙) + 𝑤𝑢𝑔 (𝑢 )−𝑤𝑢𝑔 (𝑙 )

𝑢−𝑙 (𝑥 − 𝑙) = 𝑤𝑢𝑔(𝑙) +𝑤𝑢𝜅 (𝑥 − 𝑙); Otherwise, 𝑎≥𝑤𝑢
is given by

the function defined by the point (𝑙,𝑤𝑢𝑔(𝑙)) and the maximum slope of𝑤𝑢𝑔(𝑥) on [𝑙, 𝑢], i.e.,

, Vol. 1, No. 1, Article . Publication date: February 2025.



Verification of Bit-Flip Attacks against Quantized Neural Networks 35

𝑎≥𝑤𝑢
= 𝑤𝑢𝑔(𝑙)+max((𝑤𝑢𝑔(𝑥))′ |𝑥=𝑢, (𝑤𝑢𝑔(𝑥))′ |𝑥=𝑙 ) (𝑥−𝑙) = 𝑤𝑢𝑔(𝑙)+𝑤𝑢min(𝑔′ (𝑢), 𝑔′ (𝑙)) (𝑥−

𝑙) = 𝑤𝑢𝑔(𝑙) +𝑤𝑢𝜅′ (𝑥 − 𝑙);
Finally, given the weighted Sigmoid function

−→
W𝑖+1

𝑗,𝑘
· Sigmoid(x𝑖

𝑘,1
), we can construct and obtain

its sound abstract element presented in Table 1.

We next prove the theorem when 𝑔(𝑥) = Tanh(𝑥) by construction. Note that the sign of

the value changes when crossing 𝑥 = 0 in the Tanh function. To ensure soundness, we construct

the abstract element based on different values of 𝑥 and𝑤 directly as follows:

(a) 0 ≤ 𝑤𝑙 ≤ 𝑤𝑢 . (b) 𝑤𝑙 ≤ 𝑤𝑢 ≤ 0.

Fig. 12. 𝑤 · Tanh(𝑥) with𝑤 ∈ {𝑤𝑙 ,𝑤𝑢 },𝑤𝑙 in red and𝑤𝑢 in blue.

• When𝑤𝑙 ≥ 0 (cf. Figure 12(a)):

– If 𝑙 ≥ 0, then
˜𝑙 = 𝑤𝑙𝑔(𝑙), 𝑢̃ = 𝑤𝑢𝑔(𝑢), 𝑎≤ = 𝑎≤𝑤𝑙

, and 𝑎≥ = 𝑎≥𝑤𝑢
, where 𝑎≤𝑤𝑙

= 𝑤𝑙𝑔(𝑙) +
𝑤𝑙𝜅 (𝑥 − 𝑙) and 𝑎≥𝑤𝑢

= 𝑤𝑢𝑔(𝑢) +𝑤𝑢𝜅′ (𝑥 − 𝑢);
– If 𝑢 ≤ 0, then

˜𝑙 = 𝑤𝑢𝑔(𝑙), 𝑢̃ = 𝑤𝑙𝑔(𝑢), 𝑎≤ = 𝑎≤𝑤𝑢
, and 𝑎≥ = 𝑎≥𝑤𝑙

, where 𝑎≤𝑤𝑢
= 𝑤𝑢𝑔(𝑙) +

𝑤𝑢𝜅
′ (𝑥 − 𝑙) and 𝑎≥𝑤𝑙

= 𝑤𝑙𝑔(𝑢) +𝑤𝑙𝜅 (𝑥 − 𝑢);
– If 𝑙 < 0 < 𝑢, then ˜𝑙 = 𝑤𝑢𝑔(𝑙), 𝑢̃ = 𝑤𝑢𝑔(𝑢). 𝑎≤ is given by the point (𝑙,𝑤𝑢𝑔(𝑙)) and the mini-

mum slope of all slopes of𝑤𝑙𝑔(𝑥) and𝑤𝑢𝑔(𝑥) on [𝑙, 𝑢], i.e., 𝑎≤ = 𝑤𝑢𝑔(𝑙)+min(𝑤𝑢𝑔′ (𝑥) |𝑥=𝑢
,𝑤𝑢𝑔

′ (𝑥) |𝑥=𝑙 ,𝑤𝑙𝑔′ (𝑥) |𝑥=𝑙 ,𝑤𝑙𝑔′ (𝑥) |𝑥=𝑢) (𝑥 − 𝑙) = 𝑤𝑢𝑔(𝑙) +min(𝑤𝑙𝑔′ (𝑥) |𝑥=𝑢,𝑤𝑙𝑔′ (𝑥) |𝑥=𝑙
) (𝑥 − 𝑙) = 𝑤𝑢𝑔(𝑙) +𝑤𝑙𝜅′ (𝑥 − 𝑙); Similarly, 𝑎≥ is given by the point (𝑢,𝑤𝑢𝑔(𝑢)) and the same

minimum slope, i.e., 𝑎≥ = 𝑤𝑢𝑔(𝑢) +𝑤𝑙𝜅′ (𝑥 − 𝑢).
• When𝑤𝑢 ≤ 0 (cf. Figure 12(b)):

– If 𝑙 ≥ 0, then
˜𝑙 = 𝑤𝑙𝑔(𝑢), 𝑢̃ = 𝑤𝑢𝑔(𝑙), 𝑎≤ = 𝑎≤𝑤𝑙

, and 𝑎≥ = 𝑎≥𝑤𝑢
. 𝑎≤𝑤𝑙

is given by function

defined by the point (𝑢,𝑤𝑙𝑔(𝑢)) and the maximum slope max(𝑤𝑙𝑔′ (𝑙),𝑤𝑙𝑔′ (𝑢)) = 𝑤𝑙𝜅′, i.e.,
𝑎≤ = 𝑤𝑙𝑔(𝑢) +𝑤𝑙𝜅′ (𝑥 − 𝑢). 𝑎≥𝑤𝑢

is given by line segment defined by two points (𝑙,𝑤𝑢𝑔(𝑙))
and (𝑢,𝑤𝑢𝑔(𝑢)), i.e., 𝑎≥ = 𝑤𝑢𝑔(𝑙) +𝑤𝑢𝜅 (𝑥 − 𝑙);

– If 𝑢 ≤ 0, then
˜𝑙 = 𝑤𝑢𝑔(𝑢), 𝑢̃ = 𝑤𝑙𝑔(𝑙), 𝑎≤ = 𝑎≤𝑤𝑢

, and 𝑎≥ = 𝑎≥𝑤𝑙
. 𝑎≤𝑤𝑢

is given by line segment

by two points (𝑙,𝑤𝑢𝑔(𝑙)) and (𝑢,𝑤𝑢𝑔(𝑢)), i.e., 𝑎≤ = 𝑤𝑢𝑔(𝑢) +𝑤𝑢𝜅 (𝑥 − 𝑢). 𝑎≥𝑤𝑙
is given by

function defined by the point (𝑙,𝑤𝑙𝑔(𝑙)) and the maximum slope of 𝑤𝑙𝑔(𝑥) on [𝑙, 𝑢], i.e.,
𝑎≥ = 𝑤𝑙𝑔(𝑙) +𝑤𝑙𝜅′ (𝑥 − 𝑙);

– If 𝑙 < 0 < 𝑢, then ˜𝑙 = 𝑤𝑙𝑔(𝑢), 𝑢̃ = 𝑤𝑙𝑔(𝑙). 𝑎≤ is given by the point 𝑢,𝑤𝑙𝑔(𝑢) and the maxi-

mum slope of all slopes of𝑤𝑙𝑔(𝑥) and𝑤𝑢𝑔(𝑥) on [𝑙, 𝑢], i.e., 𝑎≤ = 𝑤𝑙𝑔(𝑢)+max(𝑤𝑙𝑔′ (𝑥) |𝑥=𝑢
,𝑤𝑙𝑔

′ (𝑥) |𝑥=𝑙 ,𝑤𝑢𝑔′ (𝑥) |𝑥=𝑢,𝑤𝑢𝑔′ (𝑥) |𝑥=𝑙 ) (𝑥−𝑢) = 𝑤𝑙𝑔(𝑢)+max(𝑤𝑢𝑔′ (𝑥) |𝑥=𝑢,𝑤𝑢𝑔′ (𝑥) |𝑥=𝑙
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) (𝑥 −𝑢) = 𝑤𝑙𝑔(𝑢) +𝑤𝑢𝜅′ (𝑥 −𝑢); Similarly, 𝑎≥ is given by the point (𝑙,𝑤𝑙𝑔(𝑙)) and the same

maximum slope, i.e., 𝑎≥ = 𝑤𝑙𝑔(𝑙) +𝑤𝑢𝜅′ (𝑥 − 𝑙).
Finally, given the weighted Tanh function

−→
W𝑖+1

𝑗,𝑘
· Tanh(x𝑖

𝑘,1
), we can construct and obtain its

sound abstract element presented in Table 1. □

C Illustration of Interval Partition Effectiveness
This section presents an illustrative example (see Figure 13) to explain how the interval partition,

as part of the binary search strategy, can enhance abstraction precision, albeit to a limited extent.

Specifically, the blue-shaded region in Figure 13(a) represents the value domain of the abstract

element when abstraction is directly applied considering 𝑤𝑙 ≤ 𝑤 ≤ 𝑤𝑢 with 𝑤𝑙 < 0 < 𝑤𝑢 . In

contrast, the green and red regions, shown in Figures 13(b) and 13(c), respectively, illustrate the

value domains of the abstract elements obtained by separately applying abstraction concerning

𝑤𝑙 ≤ 𝑤 ≤ 0 and 0 ≤ 𝑤 ≤ 𝑤𝑢 . By combining the attraction results after interval partition, we can

find that the final union of value domains, as depicted in Figure 13(d), is more precise (i.e., smaller)

compared to that in Figure 13(a). This demonstrates an improvement in abstraction precision

achieved through the interval partition strategy. The ground truth of the abstraction in Figure 13(e).

(a) Abstraction con-

cerning [𝑤𝑙 , 𝑤𝑢 ].
(b) Abstraction con-

cerning [𝑤𝑙 , 0].
(c) Abstraction con-

cerning [0, 𝑤𝑢 ].
(d) The union of

13(b) and 13(c).

(e) The abstraction

ground truth.

Fig. 13. An illustration example explaining why interval partitions can enhance the abstraction precision

when𝑤𝑙 < 0 < 𝑤𝑢 for the weighted input neuron
−→
W2

𝑗,𝑘
x𝑖
𝑘
with

−→
W2

𝑗,𝑘
∈ [𝑤𝑙 ,𝑤𝑢 ].

D Additional Experimental Results
This section presents the details of the experimental results by BFAVerifier without Binary Search

in BFA_RA, which are omitted in Section 5.2 and Section 5.3.

Table 12. Verification results of BFAVerifier without Binary Search in BFA_RA on ACAS Xu.

BFA_RA BFA_MILP AvgTime(s)

Property

#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP
#TO

Prop_3_WL 99.7% 0 0 24 353.4 34.6 0

Prop_3_WR 99.8% 0 1 26 355.7 8.4 0

Prop_3_SL 99.8% 0 0 24 356.5 15.3 0

Prop_3_SR 99.5% 0 0 27 357.3 176.3 0

Prop_5_SR 97.4% 0 0 18 379.0 376.3 3

Prop_10_COC 99.3% 9 1 10 361.7 84.7 22
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Table 13. Verification results of BFAVerifier without Binary Search in BFA_RA on MNIST for small networks
when (𝑄, 𝑟, 𝔫) = (8, 0, 1).

BFA_RA BFA_MILP AvgTime(s)

Network

#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP
#TO

3blk_10 99.7% 0 0 20 30.8 0.2 0

3blk_30 99.9% 11 0 9 103.4 0.4 0

3blk_50 99.9% 19 1 0 204.7 0.6 0

5blk_10 99.2% 0 0 20 47.1 0.4 0

5blk_30 99.9% 17 3 0 171.4 0.4 0

5blk_50 99.9% 0 0 20 349.5 0.8 0

Table 14. Detailed verification results of BFAVerifier without Binary Search in BFA_RA on 3blk_100 and
5blk_100 with 𝑄 ∈ {4, 8}.

BFA_RA BFA_MILP AvgTime(s)

r 𝔫
#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP

#TO

1 100.0% 40 0 0 727.1 0 0

0 2 100.0% 40 0 0 747.7 0 0

4 100.0% 40 0 0 760.8 0 0

1 100.0% 40 0 0 2025.1 0 0

𝑄 = 4 2 2 99.9% 38 1 1 2058.7 6.5 0

4 99.9% 38 1 1 2034.2 6.8 0

1 99.8% 29 3 0 2037.0 1038.9 8

4 2 99.7% 19 3 3 2044.2 694.5 15

4 99.8% 19 2 2 2032.4 103.0 17

BFA_RA BFA_MILP AvgTime(s)

r 𝔫
#Safe_Paras #Proved #Proved #Falsified BFA_RA BFA_MILP

#TO

1 100.0% 40 0 0 717.6 0 0

0 2 100.0% 40 0 0 738.6 0 0

4 99.9% 39 0 1 755.5 1.7 0

1 99.9% 38 1 1 2036.7 2.7 0

𝑄 = 8 2 2 99.9% 37 1 2 2029.5 8.1 0

4 99.9% 36 0 3 2027.9 4.6 1

1 99.5% 22 3 1 2046.6 1419.0 14

4 2 99.3% 18 3 1 2036.1 858.4 18

4 99.4% 18 1 3 2067.3 295.6 18
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