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1 INTRODUCTION

Power side-channel attacks, capable of inferring secrets by exploiting power consumption during
the execution of cryptographic implementations, have raised severe security concerns [Kocher et al.
1999]. Implementations of almost all major cryptographic algorithms, such as DES [Kocher et al.
1999], AES [Prouff et al. 2009; Wang et al. 2018], RSA [Goubin and Patarin 1999], Elliptic curve
cryptography [Coron 1999; Itoh et al. 2002; Luo et al. 2018] and post-quantum cryptography [Kan-
nwischer et al. 2018; Ravi et al. 2019; Schamberger et al. 2020], have been the victims.
A widely used effective countermeasure against power side-channel attacks is masking [Ishai

et al. 2003]. In a nutshell, given a masking order C , an order-C secret masking scheme splits the
secret into C + 1 shares such that any proper subset of these shares is statistically independent of the
secret. For a given cryptographic algorithm 5 with : as its secret key, a masked version 5 ′ should
be implemented such that it takes C + 1 shares of : as inputs and produces C + 1 shares of 5 (:) from
which the desired output 5 (:) could be recovered. The security of the masked version 5 ′ is usually
established using the concept of 3-probing security [Ishai et al. 2003] for a given security order 3 ,
requiring that the joint distribution of each set with at most 3 observable values is statistically
independent of the secret : . The usefulness of increasing the security order 3 has been justified
by [Duc et al. 2015], namely, under reasonable assumptions, the number of physical measurements
needed for a successful attack increases exponentially in 3 , so a higher 3 would imply considerably
more difficulties in mounting an attack.
Unsurprisingly, it is error-prone to implement secure and efficient masked versions for non-

linear functions such as finite-field multiplication and Sbox [Ishai et al. 2003], and the program
size and number of random bits blow up polynomially in the masking order C . However, it is
not uncommon that published implementations that have been proved secure via paper-and-
pencil [Carlet et al. 2012; Kim et al. 2011; Rivain and Prouff 2010] were later shown to be vulnerable
to power side-channels [Coron et al. 2013]. We also note that efficiency is constantly a major concern
for implementations of cryptographic algorithms in, e.g., resource-limited devices [Biryukov et al.
2017]. Overall, the crux of masking countermeasures for cryptographic algorithms is to devise
efficient and secure implementations over the shares.
To address the efficiency, several masked implementations for finite-field multiplication were

proposed [Barthe et al. 2020, 2017; Belaïd et al. 2016, 2017; Bordes and Karpman 2021; Groß
and Mangard 2018; Karpman and Roche 2018; Wang et al. 2020], which is a key building block
to implement most cryptographic algorithms. The need of randomness and/or the number of
operations in these implementations have been reduced over the original one proposed by [Ishai
et al. 2003]. On the security side, various techniques have been proposed to formally verify probing
security. Existing efforts rely upon heuristic rules (e.g., [Barthe et al. 2015; Bayrak et al. 2013]),
SAT/SMT solving (e.g., [Bloem et al. 2018; Eldib et al. 2014]) or their combination (e.g., [Gao et al.
2022, 2019a,b; Zhang et al. 2018]). All those approaches are intra-procedural, meaning that they only
deal with procedures without calling any procedures (called simple gadgets in this work and in
related works). Henceforth they are referred to as non-compositional approaches. Non-compositional
approaches become intractable for (large) composite gadgets (i.e., procedures with calls to some
procedures) when procedure inline is applied.

In contrast, compositional reasoning, which verifies simple gadgets in isolation and then checks
tailored compositional rules, turns out to be a promising direction for verifying composite gadgets
without applying inline. This direction dates back to the seminal work of [Barthe et al. 2016] in
which two new stronger security notions, called 3-Non-Interference (d−NI) and 3-Strong Non-
Interference (d−SNI), are proposed to soundly characterize the 3-probing security model as a
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property in programming languages, based on which masked implementations can be verified com-
positionally. Along with this direction more verification approaches have been proposed [Barthe
et al. 2020, 2021; Belaïd et al. 2020, 2018, 2022; Bordes and Karpman 2021; Coron 2018; Knichel et al.
2020], most of which are designated to precisely and efficiently verify simple gadgets. Recently, an
alternative stronger security notion and compositional approach have been proposed [Cassiers
et al. 2021; Knichel et al. 2020]. These language-level security notions and tools have been widely
adopted for designing and rigorously verifying implementations of cryptographic algorithms, re-
sulting in many verified cryptographic programs. However, though promising, these compositional
approaches are achieved by sacrificing the efficiency of masked implementations.

Up to now, it is fair to say no efficient method exists to check the probing security of composition
of gadgets, in particular, efficient gadgets. For instance, all existing compositional approaches would
fail to prove 3-probing security of the efficient implementation of the AES Sbox [Goudarzi and
Rivain 2017] when more efficient finite-field multiplications, e.g., those proposed by [Barthe et al.
2017; Belaïd et al. 2016; Groß and Mangard 2018], are used. This is mainly because efficient gadgets
use fewer random variables. As a result, they do not satisfy the stronger security notions of [Barthe
et al. 2016; Cassiers et al. 2021] which are required to make the previous compositional reasoning
approaches work. We remark that efficient gadgets play an increasingly vital role especially in
resource constrained devices while compositional verification of efficient gadgets is very challenging
and requires novel techniques, e.g., a new technique is proposed to verify efficient gadgets [Belaïd
et al. 2020, 2018] on which [Barthe et al. 2016] fails, but [Belaïd et al. 2020, 2018] do not support
more efficient gadgets.

Our contributions.We propose a novel compositional verification approach for efficient masking
countermeasures. On the theoretical side, we propose two new security notions to characterize
the 3-probing security model in programming languages and study their compositionality based
on which we present composition strategies for verifying composite gadgets without the inlining
of gadgets. Our security notions are proper generalizations of the ones proposed in [Barthe et al.
2016], thus, can be used to prove the security of composite gadgets that cannot be achieved using
existing compositional approaches. On the practical side, we derive verification algorithms from
the new security notions. We propose algorithms for verifying our security notions for both simple
and composite gadgets, and algorithms for verifying 3-probing security and the security notions
of [Barthe et al. 2016].
We have implemented our approach in a tool CONVINCE (CompositiONal VerifIcatioN of

masking CountermEasures) and conduct extensive evaluations. The benchmarks are derived from
existing benchmarks by replacing the implementation for finite-field multiplication with more
efficient ones. None of these benchmarks can be proved using the existing compositional approaches,
and many of them are actually proved probing secure and/or 3-NI for the first time. To demonstrate
the usage of our tool, we apply it to explore the design space of the AES Sbox with the least
refreshing [Belaïd et al. 2018]. We show that replacing some of them with functional-equivalent but
more efficient implementations for finite-field multiplication (e.g., those proposed by [Barthe et al.
2017; Belaïd et al. 2016; Groß and Mangard 2018]) does not compromise security. As a result, we
find more efficient implementations of the AES Sbox whose probing security can be automatically
proved by our tool, but could not be proved using existing compositional approaches. For instance,
our AES Sbox implementations reduced randomness from 92 to 68 for 2nd-order probing security
and from 192 to 172 for 3rd-order probing security. We also devise provable secure full AES which
effectively reduced 1,600 randomness and 3,200 XOR-operations of the state-of-the-art 3rd-order
AES implementation [Belaïd et al. 2018].
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Operation: Op ∋ ◦ ::= ∧ | ∨ | ⊕ | − | + | × | ⊙
Expression: 4 ::= 2 | G | ¬4 | 4 ◦ 4
Statement: stmt ::= G = 4 | A = $ | stmt; stmt
Simple gadget: � ::= 5 (a1, · · · , a<){stmt; return b1, · · · , b: ; }
Gadget call: gstmt ::= y1, · · · , y: =ℓ 5 (x1, · · · , x<) | gstmt; gstmt
Composite gadget: � ::= 5 (a1, · · · , a<){gstmt; return b1, · · · , b: ; }

Fig. 1. Syntax of the language.

The contributions can be summarized as follows: (1) We propose two novel language-level secu-
rity notions and study their compositionality properties, which serve as the basis of compositional
reasoning of masked implementations of cryptographic algorithms. (2) We provide efficient algo-
rithms for verifying our security notions and existing security notions, all of which are implemented
into a tool CONVINCE. (3) We conduct extensive experiments on efficient implementations of
cryptographic algorithms and find several more efficient implementations of AES Sbox that are
proved leakage-free via CONVINCE.

Outline. Section 2 introduces the basic notions and an illustrating example. Section 3 proposes the
new language-level security notions and studies their properties. Section 4 presents algorithms for
verifying both simple and composite gadgets. Section 5 reports experimental results. We discuss
the related work in Section 6 and conclude this work in Section 7.

2 PRELIMINARIES

We fix the finite-field F = {0, · · · , 2= − 1}, the masking order C ≥ 1 and the security order 3 ≤ C . We
use lowercase letters (e.g., G,~, 0, 01, · · · ) to range over scalars on F, and bold lowercase letters (e.g.,
x, y, a, a1, · · · ) to range over vectors of size (C + 1), also known as sharings. We normally assume
that x is the sharing of the scalar G . The 8-th entry of x, denoted by x[8], is referred to as a share
of x. By slight abuse of notation, a vector x is deemed to be identical to the set of all its entries
{x[1], · · · , x[C + 1]}, and

⊕
x denotes x[1] ⊕ · · · ⊕ x[C + 1].

2.1 Language

The syntax of the language is given in Figure 1 which can be used to describe both hardware circuits
and software programs. The language is designed for implementing cryptographic algorithms
(in particular, symmetric ciphers). It does not support tests (e.g., if-then-else), the same as prior
work [Barthe et al. 2020, 2016, 2021; Belaïd et al. 2020, 2018; Bloem et al. 2018; Bordes and Karpman
2021; Cassiers et al. 2021; Cassiers and Standaert 2020; Coron 2018; Eldib et al. 2014; Knichel
et al. 2020; Zhang et al. 2018], but it supports bounded loops which can be fully unrolled before
verification (though we only present the core language without loops).

An expression 4 is built up from variables and constants using bitwise logical operations: and
(∧), or (∨), exclusive-or (⊕), negation (¬); modulo 2= arithmetic operations: subtraction (−), addition
(+), multiplication (×) for which F is considered to be Z2= ; and finite-field multiplication (⊙).

An assignment of the form G = 4 is defined as usual and of the form A = $ assigns a uniformly
sampled value to the variable A . As a result, A should be read as a random variable.

Definition 1 (Simple gadgets). A simple gadget

5 (a1, · · · , a<){stmt; return b1, · · · , b: ; }

is given by the gadget name 5 , and formal arguments (a1, · · · , a<). Its body consists of a sequence of

assignments followed by a return statement, where a1, · · · , a< and b1, · · · , b: are called input sharings
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and output sharings respectively, and members of a8 (resp. b8 ) are called input shares (resp. output
shares).

For simple gadgets, we assume that each variable is assigned at most once (i.e., in the static
single assignment form). Thus, a simple gadget can be seen as a (randomized) hardware circuit or
software procedure where assigned variables have unique names.
A probe on a simple gadget refers to a variable G in the gadget whose value can be observed

by the adversary via power side-channels, where E(G) denotes its (symbolic) computation over
input shares and random variables, and Var(E(G)) denotes those shares and random variables. We
may further distinguish between external probes on the output sharings and the remaining internal
probes including those on the input shares and other internal variables. Furthermore, variables
appearing on the right-hand side of assignments are called local variables. An evaluation of the simple
gadget 5 (a1, · · · , a<) on the inputs x1, · · · , x< under a probe set $ , denoted by 5 (x1, · · · , x<)$ ,
refers to the joint distribution of the variables in $ when the simple gadget 5 (x1, · · · , x<) is
evaluated. Formally, given the joint distribution ` of the inputs x1, · · · , x< , 5 (x1, · · · , x<)$ is
the joint distribution of the probes in $ , where random variables are sampled from the uniform
distribution and the inputs x1, · · · , x< sampled from the joint distribution `.

Definition 2 (Composite gadgets). A composite gadget

5 (a1, · · · , a<){gstmt; return b1, · · · , b: ; }

is defined similar to the simple gadget, except that its body consists of a sequence of gadget calls

followed by a return statement, where a gadget call y1, · · · , y: =ℓ 6(x1, · · · , x<) associated with a

unique label ℓ passes the inputs x1, · · · , x< to the formal arguments a1, · · · , a< of 6 and assigns the

output sharings of 6 to y1, · · · , y: .

In Definition 2, the same gadgets can be called multiple times, which can ease the implementation
of cryptographic algorithms, we require a unique label ℓ for each gadget call. A composite gadget
can be transformed into an equivalent simple gadget by gadget inline. Inlining a gadget call
y1, · · · , y: =ℓ 6(x1, · · · , x<) amounts to replacing it by the body of the gadget 6 where the formal
arguments are replaced by the corresponding inputs, the local variables are appended with@ℓ (e.g.,
G becomes G@ℓ) to avoid name conflict, and the return statement is replaced by the assignments
that mimic the return of the gadget call. We will denote by 5in (x1, · · · , x<) the simple gadget
counterpart of 5 (x1, · · · , x<), obtained by iteratively inlining all the gadget calls.
A probe on a composite gadget 5 (x1, · · · , x<) refers to a probe on its simple gadget counter-

part 5in (x1, · · · , x<). Similarly, an evaluation of a composite gadget 5 (x1, · · · , x<) on the inputs
x1, · · · , x< under a probe set $ , denoted by 5 (x1, · · · , x<)$ , refers to the joint distribution of the
probes $ when 5in (x1, · · · , x<) is evaluated.
We remark that the sharing x of a variable G comprises C random numbers x[1], · · · , x[C] and

the remaining one x[C + 1] is a computation of G and the other shares x[1], · · · , x[C]. There are two
main secret sharing schemes, i.e., Boolean secret masking scheme where x[C + 1] = x[1] ⊕ x[2] ⊕
· · · ⊕x[C] ⊕G and arithmetic secret masking scheme where x[C +1] = x[1] +x[2] + · · ·+x[C] +G . The
former is often used to implement cryptographic algorithms that use only logical operations (e.g., ∧
and ∨) and Sbox operations (e.g., AES and DES [Coron et al. 2014]), while the latter could be used to
implement cryptographic algorithms that use arithmetic operations such as + and − (e.g., IDEA [Lai
and Massey 1990]). For algorithms that use both arithmetic and logical operations, conversion
algorithms between two secret masking schemes (e.g., [Coron et al. 2015, 2014; Goubin 2001]) are
used. Our language supports both logical and arithmetic operations, hence can describe hardware
circuits and software programs using both Boolean and arithmetic secret masking schemes.
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XORMULTI(a, b){

e =1 Refresh(b) ;

c =2 XOR(a, e) ; d =3 CM(a, c) ;

return d; }

XOR(a, b){

for(8 = 1; 8 ≤ 3; 8 + +)

c[8 ] = a[8 ] ⊕ b[8 ];

return c; }

Refresh(a){

A1 = $; A2 = $; <1 = a[1] ⊕ A1; <2 = a[2] ⊕ A1; <3 = a[3] ⊕ A2;

A3 = $; c[1] =<1 ⊕ A2; c[2] =<2 ⊕ A3; c[3] =<3 ⊕ A3;

return c; }

CM(a, b){ //CompressedMulti

C1 = a[1] ⊙ b[1]; C2 = a[1] ⊙ b[3]; C3 = a[3] ⊙ b[1]; C4 = a[2] ⊙ b[2];

C5 = a[1] ⊙ b[2]; C6 = a[2] ⊙ b[1]; C7 = a[3] ⊙ b[3]; C8 = a[2] ⊙ b[3]; C9 = a[3] ⊙ b[2];

A1 = $; C10 = C1 ⊕ A1; C11 = C10 ⊕ C2; C12 = C11 ⊕ C3; C13 = C4 ⊕ A2; C14 = C13 ⊕ C5;

A2 = $; C15 = C14 ⊕ C6; C16 = C7 ⊕ A1; C17 = C16 ⊕ A2; C18 = C17 ⊕ C8; C19 = C18 ⊕ C9;

return (C12, C15, C19); } // C12 ⊕ C15 ⊕ C19 = (
⊕

a) ⊙ (
⊕

b)

Fig. 2. Details of XORMULTI, where //... denote comments.

2.2 Probing Security

We use the probing security [Ishai et al. 2003] to establish the security of masked implementations.

Definition 3 (Probing security). A gadget 5 (a1, · · · , a<) is 3-probing secure on the inputs

x1, · · · , x< iff for any set $ of at most 3 probes, the evaluation 5 (x1, · · · , x<)$ is (statistically)

independent of the secret.

Intuitively, 3-probing security ensures that the adversary cannot infer any information of the
secret when observing the values of any 3 probes. Note that the inputs x1, · · · , x< depend on the
secret, otherwise we can directly deduce that 5 (x1, · · · , x<)$ is independent of the secret. When
3 ≥ 2, it is often called higher-order otherwise first-order.

SupposeF = {0, 1}. Consider E(G1) = :⊕A , where A is a random variable and : is the secret. Then,
for any value of : , the probability of G1 = 1 is 50%, thus, the distribution of G1 is independent of :
and observing G1 cannot infer any information of : . However, when E(G2) = : ∧ A , the probability
of G2 = 1 is 50% if : = 1 while the probability of G2 = 1 is 0% if : = 0, thus, the distribution of G2
depends upon : and observing the value of G2 can infer the value of : .

2.3 Illustrating Example

Consider the 2nd-order masked composite gadget XORMULTI (cf. Figure 2) for computing the sharing
d from two sharings a and b such that

⊕
d =

⊕
a ⊙ (

⊕
a ⊕

⊕
b), where a and b are the sharing

of two secrets 0 and 1 using Boolean secret sharing scheme. XORMULTI computes the sharing d

by invoking the simple gadgets Refresh, XOR and CM. The gadget Refresh is used to re-mask the
sharing b using new random values [Ishai et al. 2003] otherwise XORMULTI has leakage, leading
to

⊕
e =

⊕
b. The gadget XOR is a standard sharewise addition [Ishai et al. 2003], which takes

the sharings a and b as inputs and computes the sharing c such that
⊕

c =
⊕

a ⊕
⊕

b. The
gadget CM is a compressed, 2nd-order masked gadget for finite-field multiplication [Belaïd et al.
2016] which takes two sharings a and b as inputs and computes the sharing (C12, C15, C19) such that
C12 ⊕ C15 ⊕ C19 = (

⊕
a) ⊙ (

⊕
b).

While the simple gadgets CM, XOR and Refresh can be proved of 2-probing secure by existing
tools (e.g., maskVerif [Barthe et al. 2019]), no existing compositional approaches [Barthe et al. 2016;
Belaïd et al. 2016, 2020, 2018; Blot et al. 2017; Cassiers et al. 2021; Gao et al. 2022] can prove that
the composite gadget XORMULTI is 2-probing secure.

We point out why the 3-NI/3-SNI based compositional approach [Barthe et al. 2016; Belaïd et al.
2016] fails. In general, when reasoning about a composite gadget, their compositional approach first
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iteratively collects constraints in the first-order theory of finite sets with cardinality constraints
from the bottom gadget call up to the top one using 3-NI/3-SNI properties of the invoked gadgets.
The cardinalities of shares will be cumulated when they are reused by each non-3-SNI gadget in
order to guarantee soundness. Finally, the collected cardinality constraints are used to check if all
the probes can be simulated with input shares whose cardinality is bounded by the cardinality of
probes. However, such information may not be sufficient for proving some gadgets.
Consider the gadget XORMULTI. To prove 2-NI of XORMULTI, the total number of probes used to

attack is limited to 2, that is |$1 | + |$2 | + |$3 | ≤ 2, where$1,$2 and$3 are probe sets within three
gadgets, respectively. As in [Barthe et al. 2016; Belaïd et al. 2016],

(1) CM is 2-NI, thus |(1
3
| ≤ |$3 | and |(2

3
| ≤ |$3 |, where (13 and (

2
3
respectively denote the set of

input shares of c and a used to simulate the probe set $3;
(2) XOR is 2-NI, thus |(1

2
| ≤ |$2 | + |$3 | and |(2

2
| ≤ |$2 | + |$3 |, where (12 and (

2
2
respectively denote

the set of input shares of e and a used to simulate the probe set $2 ∪$3;
(3) Refresh is 2-SNI, thus |(1

1
| ≤ |$1 |, where (11 denotes the set of input shares of b used to

simulate the probe set $1.

Finally, the probe set$1 ∪$2 ∪$3 should be simulated by (1
1
∪ (2

2
∪ (2

3
, namely, |(1

1
∪ (2

2
∪ (2

3
| ≤

|$1 | + |$2 | + |$3 | should hold. However, one can only deduce |(1
1
∪ (2

2
∪ (2

3
| ≤ |$1 | + |$2 | + 2|$3 |,

thus fails to prove that XORMULTI is 2-NI. We will show later that our approach is able to prove that
XORMULTI indeed is 2-NI.

3 NEW LANGUAGE-LEVEL SECURITY NOTIONS

Before formalizing our new security notions, we first introduce some notations, as well as the
concept of simulatability inspired by the one introduced by [Barthe et al. 2016; Belaïd et al. 2016]. It
will be used to define security notions as well as verification algorithms for proving security. More
specifically, by leveraging the concept of simulatability, we derive a variable set for each probe set in
a gadget so that the joint distribution of the probe set can be simulated by only knowing the values
of variables in the variable set. Furthermore, if such variable sets are independent of the secret
input, all the probe sets are also independent of the secret input. Note that the simulatability defined
by [Barthe et al. 2016; Belaïd et al. 2016] only uses input shares to simulate the joint distribution of a
probe set. In contrast, ours is more general, where not only input shares but also local variables can
be used to simulate the joint distribution of a probe set. This generalization allows our approach to
be applicable for verifying efficient masked implementations that cannot be handled before.
Hereafter, we use blackboard-bold UPPERCASE letters, e.g., I, O, Y, etc., to range over families

of variable sets. For two families Y1, Y2 of variable sets, we denote by Y2 ⊑ Y1 if for every .2 ∈ Y2,
there exists .1 ∈ Y1 such that .2 ⊆ .1.

Definition 4 (Simulatability). Fix a gadget 5 (a1, · · · , a<), a probe set$ on 5 (a1, · · · , a<) can be
simulated by a set � of variables, called � -simulatable, iff there exists a randomized function c : F |� | →
F

|$ | such that for any fixed tuple of values (E1, · · · , E |� |) ∈ F
|� | and any inputs x1, · · · , x< , the joint

distributions c (E1, · · · , E |� |) and 5 (x1, · · · , x<)$ are the same when the values of � in 5 (x1, · · · , x<)
are limited to (E1, · · · , E |� |).

Intuitively, a probe set $ on 5 (a1, · · · , a<) is � -simulatable if there exists a randomized function
that simulates the joint distribution 5 (x1, · · · , x<)$ while requiring only the values of the variables
in � . Given a set I of variable sets, a probe set $ on 5 (a1, · · · , a<) is I-simulatable if it is

⋃
I-

simulatable.
Consider the probe sets $1 = {C1, C2} and $2 = {C1, C10} in the CM gadget in Figure 2. Since

C1 = a[1] ⊙ b[1] and C2 = a[1] ⊙ b[3], we get that $1 is {a[1], b[1], b[3]}-simulatable. Since
C10 = C1 ⊕ A1 and A1 is a random variable, we get that $2 is {a[1], b[1]}-simulatable.
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3.1 (Y, 3)-Non-Interference

We first recall the notion of non-interference [Barthe et al. 2016] which is a sound language-level
characterization of the 3-probing security for compositional reasoning. Next, we present our new
security notion by generalizing non-interference with a family of variable sets.

Definition 5 (Non-Interference). A gadget 5 (a1, · · · , a<) is 3-Non-Interfering, 3-NI for short,
if for any set $ of at most 3 probes, there exists a set of variables � such that � only contains at most

|$ | shares of each input sharing a8 and $ is � -simulatable on 5 (a1, · · · , a<).

Intuitively, knowing the values of the variables in � suffices to simulate the joint distribution of
the probe set $ to the adversary and � contains at most |$ | shares of a8 for every 1 ≤ 8 ≤ <.

It was shown [Barthe et al. 2016] that a 3-NI gadget is 3-probing secure if any two input sharings
are mutually independent. However, a 3-probing secure gadget (provided that any two input
sharings are mutually independent) is not necessarily 3-NI (cf. [Gao et al. 2023] for a concrete
example). To overcome this limitation, we propose the notion of variable non-interference by
generalizing 3-NI with a family of variable sets Y.

Definition 6 (Variable Non-Interference). Given a family Y of variable sets, a gadget

5 (a1, · · · , a<) is (Y, 3)-Non-Interfering, (Y, 3)-NI for short, if for any set $ of at most 3 probes,

there exists a subset of variable sets I ⊆ Y such that |I| ≤ |$ | and$ is I-simulatable on 5 (a1, · · · , a<).

Intuitively, knowing the values of the variables in
⋃
I suffices to simulate the joint distribution

of the probe set $ to the adversary and I contains at most |$ | variable sets of Y, i.e., |I| ≤ |$ |.
Note that in contrast to 3-NI, Y in (Y, 3)-NI can contain local variables. Indeed, there exist gadgets
where Y should contain local variables instead of input shares only. In general, a local variable
whose computation relies upon some random variables but is not perfectly masked by any random
variables will be added to the set . . Hence, they are (Y, 3)-NI for proper sets Y but not 3-NI. A
concrete example is given in [Gao et al. 2023].

We can observe that if 5 (a1, · · · , a<) is (Y, 3)-NI, each share a8 [ 9] must occur in some set � ∈ Y,
i.e., a8 [ 9] ∈

⋃
Y. Indeed, if some share a8 [ 9] does not occur in any set � ∈ Y, i.e., a8 [ 9] ∉

⋃
Y, we

can conclude that 5 (a1, · · · , a<) is not (Y, 3)-NI, as the probe a8 [ 9] cannot be simulated by any
subset I ⊆ Y. Due to this, hereafter, we assume that

⋃<
8=1 a8 ⊆

⋃
Y, when we consider (Y, 3)-NI.

We exemplify the security notions on various simple gadgets. Consider the simple gadgets CM,
XOR and Refresh in Figure 2, for which we define the following three families of variable sets:
YCM = {{a[8], b[ 9]} | 1 ≤ 8, 9 ≤ 3}, YXOR = {{a[8], b[8]} | 1 ≤ 8 ≤ 3}, and YRF = {{a[8]} | 1 ≤
8 ≤ 3}. Then, CM is (YCM, 2)-NI, XOR is (YXOR, 2)-NI and Refresh is (YRF, 2)-NI. For instance, the
probe set {C6, C7} on the gadget CM can be simulated by the set {{a[2], b[1]}, {a[3], b[3]}}. However,
the composite gadget CM is not (YXOR, 2)-NI, as the probe set {C6, C7} on the gadget CM cannot be
simulated by any variable set of YXOR with size 2. By examining YCM, YXOR and YRF, we can see that
the simple gadgets CM, XOR and Refresh are all 2-NI.
Consider the ISW C-order masked implementation SecMult for finite-field multiplication in

Figure 3. For any security order 3 ≤ C , define YSecMult = {{a[8], b[ 9]} | 1 ≤ 8, 9 ≤ C + 1}. We
can verify that the gadget SecMult is both (YSecMult, 3)-NI and 3-NI. For instance, the probe set
{C12, C

′
12} can be simulated by the set {{a[1], b[2]}, {a[2], b[1]}} ⊂ YSecMult. However, it is not

(Y, 3)-NI for any Y ⊂ YSecMult.
The main challenge is how to compute a family of variable setsY for a given gadget 5 (a1, · · · , a<).

Obviously, a gadget is (Y, 3)-NI if Y contains all of the probes sets. However, such a set Y does not
make any sense. For instance, to verify 3-probing security of the (Y, 3)-NI gadget 5 (a1, · · · , a<)
where each set of Y contains one variable of 5 (a1, · · · , a<), we have to check if any set of 3 probes
is independent of the secret. It would be the same as directly verifying 3-probing security of the
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SecMult(a, b){

for(8 = 1; 8 ≤ C + 1; 8 + +) c[8 ] = a[8 ] ⊙ b[8 ];

for(8 = 1; 8 ≤ C + 1; 8 + +){

for(9 = 8 + 1; 9 ≤ C + 1; 9 + +){

A8 9 = $; c[8 ] = c[8 ] ⊕ A8 9; C8 9 = a[8 ] ⊙ b[ 9 ]; A ′8 9 = A8 9 ⊕ C8 9 ;

C ′8 9 = a[ 9 ] ⊙ b[8 ]; A ′′8 9 = A ′8 9 ⊕ C ′8 9 ; c[ 9 ] = c[ 9 ] ⊕ A ′′8 9; }

}

return c;} // (
⊕

c) = (
⊕

a) ⊙ (
⊕

b)

Fig. 3. C-order masked implementation SecMult for finite-field multiplication [Coron 2014].

gadget 5 (a1, · · · , a<). To address this challenge, we will propose an algorithm for computing a
family Y of variable sets for each simple gadget so that Y contains the variable sets as less as
possible (cf. Section 4.2).

3.2 (Y, 3)-Strong Non-Interference

[Barthe et al. 2016] provided a stronger version of 3-NI, called 3-Strong Non-Interference, in order
to simplify the gadget composition by enforcing that external probes (i.e., output shares) give no
information of the input shares. We first recall 3-Strong Non-Interference and then generalize it
to a stronger version of (Y, 3)-NI, called (Y, 3)-Strong Non-Interference, in order to simplify the
gadget composition by enforcing that external probes give no information about any set in Y.

Definition 7 (Strongnon-interference). A gadget 5 (a1, · · · , a<) with output sharings b1, · · · ,
b: is 3-Strong Non-Interfering (3-SNI for short) if for any set$ of internal probes and any sets$8 ⊆ b8
of external probes for 1 ≤ 8 ≤ : such that |$ | +max:8=1 |$8 | ≤ 3 , there exists a set � of input shares with

at most |$ | shares for each input sharing a8 such that $ ∪
⋃:

8=1$8 on 5 (a1, · · · , a<) is � -simulatable.

Intuitively, knowing the values of the variables in the set � that contains at most |$ | input shares
of a8 for every 1 ≤ 8 ≤ < suffices to simulate the joint distribution of the probe set $ ∪

⋃:
8=1$8 to

the adversary. Thus, 3-SNI is a stronger security notion than 3-NI. A 3-NI gadget is 3-SNI if the
input or output sharings are refreshed by 3-SNI refresh gadgets and are not used anywhere else in
the gadget.
A composite gadget composed of any 3-SNI gadgets is 3-SNI as well, which is called “trivial

compositionality” by [Cassiers et al. 2021], while a composite gadget composed of any 3-NI but
not 3-SNI gadgets at best can be 3-NI or 3-probing secure, i.e., cannot be 3-SNI and may not be
3-NI or 3-probing secure. However, to be 3-SNI, 3-SNI refresh gadgets may be introduced, which
makes gadgets less efficient. Thus, we propose the notion of strong variable non-interference by
generalizing 3-SNI with a family of variable sets Y.

Definition 8 (Strong variable non-interference). For a family Y of variable sets of a gadget

5 (a1, · · · , a<) with the output sharings b1, · · · , b: , the gadget 5 (a1, · · · , a<) is (Y, 3)-Strong Non-
Interfering, (Y, 3)-SNI for short, iff for any set $ of internal probes and any sets $8 ⊆ b8 of external

probes for 1 ≤ 8 ≤ : such that |$ | +max:8=1 |$8 | ≤ 3 , there exists a set I ⊆ Y such that |I| ≤ |$ | and

$ ∪
⋃:

8=1$8 on 5 (a1, · · · , a<) is I-simulatable.

Intuitively, any set comprising at most 31 internal probes $ and at most 32 output shares $8 per
output sharing b8 with 31 + 32 ≤ 3 can be simulated to the adversary when knowing the values of
variables in

⋃
I for some set I ⊆ Y such that |I| ≤ 31.

Consider the gadgets CM, XOR and Refresh in Figure 2. The gadget Refresh is (YRF, 2)-SNI
and 2-SNI. For instance, the set {<1, c[1]} consisting of one internal probe<1 and one external
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probe c[1] in Refresh can be simulated without using any variables, as E(<1) = a[1] ⊕ A1 and
E(c[1]) = (a[1]⊕A1)⊕A2 are respectively masked by two independent random variables A1 and A2. In
contrast, CM and XOR are not (YCM, 2)-SNI and (YXOR, 2)-SNI, respectively. For instance, {c[1], c[2]}
consisting of two external probes in XOR can only be simulated by {{a[1], b[1]}, {a[2], b[2]}} using
input shares. Indeed, there does not exist any set Y such that XOR or CM is (Y, 2)-SNI.
Consider the gadget SecMult in Figure 3 which is (YSecMult, 3)-NI. We can show that SecMult

is (YSecMult, 3)-SNI and 3-SNI. Assume 3 = 3. Any probe set {c[8], c[ 9], c[:]} in SecMult such
that 1 ≤ 8 < 9 < : ≤ 4 can be simulated without using any variables, as the computations
E(c[8]), E(c[ 9]) and E(c[:]) are respectively masked by three distinct random variables. The
probe set {c[1], C12, C ′12} can be simulated by the set {{a[1], b[2]}, {a[2], b[1]}} ⊆ YSecMult, as the
computation E(c[1]) is masked by random variables A19 for 1 ≤ 9 ≤ 3.
It is straightforward to observe the following propositions.

Proposition 1. (Y, 3)-SNI entails (Y, 3)-NI, but the converse does not hold. □

Proposition 2. Consider two families of variable sets Y1 and Y2. If Y2 ⊑ Y1, then (Y2, 3)-NI
entails (Y1, 3)-NI, and (Y2, 3)-SNI entails (Y1, 3)-SNI. □

By Proposition 2, 5 (a1, · · · , a<) is (Y, 3)-NI (resp. (Y, 3)-SNI) iff it is (Y′, 3)-NI (resp.(Y′, 3)-SNI)
for Y′

= {. ∈ Y | �. ′ ∈ Y. . ⊂ . ′}. Thus Proposition 2 allows to reduce the size |Y|. Consider
Y1 = {{01, 11}, {02, 12}} and Y2 = {{01}, {02}, {11}, {12}, {01, 11}, {02, 12}}, we prefer to use Y1, as
any probes that are simulated by {01} and/or {11} (resp. {02} and/or {12}) can also be simulated
by the set {01, 11} (resp. {02, 12}).

The following proposition allows us to consider less number of probe sets for proving (Y, 3)-NI
and (Y, 3)-SNI.

Proposition 3. For a family Y of variable sets of a gadget 5 (a1, · · · , a<) with output sharings

b1, · · · , b: ,

(1) 5 (a1, · · · , a<) is (Y, 3)-NI iff for any set $ of 3 probes, there exists a subset I ⊆ Y such that

|I| ≤ 3 and $ on 5 (a1, · · · , a<) is I-simulatable.

(2) 5 (a1, · · · , a<) is (Y, 3)-SNI iff for any set$ of at most 3 internal probes and any sets$8 ⊆ b8 of

3 − |$ | external probes for 1 ≤ 8 ≤ : , there exists a set I ⊆ Y such that |I| ≤ |$ | and$ ∪
⋃:

8=1$8

on 5 (a1, · · · , a<) is I-simulatable.

Proof sketch. The direction (⇒) is straightforward. We can prove the direction (⇐) by induc-
tion on the size B , where B = |$ | for Item (1) and B = |$ | +max:8=1 |$8 | for Item (2). The base case
B = 3 is trivial. For the inductive step 0 < B < 3 , we can prove the results by contradiction.

Suppose $ on 5 (a1, · · · , a<) is not I-simulatable for any subset I ⊆ Y with |I| ≤ B . Then, we
can add a new input share into $ , resulting in a new set $ ′ such that |$ ′ | = |$ | + 1 = B + 1. It can
be proved that $ ′ on 5 (a1, · · · , a<) is not I′-simulatable for any subset I′ ⊆ Y with |I′ | ≤ B + 1,
otherwise $ on 5 (a1, · · · , a<) is I-simulatable for some subset I ⊆ Y with |I| ≤ B . It contradicts the
induction hypothesis on$ ′. Thus, Item (1) holds. Item (2) can be proved in a similar way. Full proof
is rather involved and thus is given [Gao et al. 2023]. □

We remark that (Y, 3)-NI and (Y, 3)-SNI are not directly defined like in Proposition 3, in order
to follow the same style (i.e., the size of probe sets) with the definitions of 3-probing security, 3-NI
and 3-SNI. For instance, Proposition 3(1) states that it suffices to consider the sets $ comprising
exactly 3 probes, instead of all the sets of at most 3 probes in Definition 6.
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3.3 Relating to 3-Probing Security and 3-NI/3-SNI

We relate (Y, 3)-NI/(Y, 3)-SNI to 3-probing security and 3-NI/3-SNI. These relations reveal that
our new security notions could be used as an intermediate step for proving 3-probing security,
3-NI and 3-SNI.

According to the definitions of (Y, 3)-NI/(Y, 3)-SNI, it is straightforward to see the following
proposition which relates (Y, 3)-NI/(Y, 3)-SNI to3-probing security and provides a sound approach
to prove 3-probing security.

Proposition 4. For any family Y of variable sets of a gadget 5 (a1, · · · , a<), if 5 (a1, · · · , a<) is
(Y, 3)-NI and the evaluation 5 (x1, · · · , x<)

⋃
I is independent of the secret for every set I ⊆ Y such

that |I| = 3 , then 5 (x1, · · · , x<) is 3-probing secure. □

(Y, 3)-NI and (Y, 3)-SNI are very flexible security notions as the parameter Y can vary. The
relation between (Y, 3)-NI/(Y, 3)-SNI and3-NI/3-SNI is characterized by the following proposition,
which provides a new way to prove 3-NI/3-SNI via our new security notions.

Proposition 5. Fix a gadget 5 (a1, · · · , a<) with output sharings b1, · · · , b: . Let Y be a family of

variable sets. If 5 (a1, · · · , a<) is (Y, 3)-NI (resp. (Y, 3)-SNI) and for any set I of 3 variable sets of Y,

there exists a set � with at most |I| input shares of each input sharing a8 such that
⋃
I on 5 (a1, · · · , a<)

is � -simulatable, then 5 (a1, · · · , a<) is 3-NI (resp. 3-SNI).

Proof. Suppose 5 (a1, ..., a<) is (Y, 3)-NI (resp. (Y, 3)-SNI) and for any set I ⊆ Y such that
|I| = 3 , there exists a set � containing at most |I| shares for each input sharing a8 such that

⋃
I on

5 (a1, ..., a<) is � -simulatable. Then, for any set I ⊆ Y such that |I| ≤ 3 , there exists a set � containing
at most |I| shares for each input sharing a8 such that

⋃
I on 5 (a1, ..., a<) is � -simulatable (this can

be proved following the proof of Proposition 3).
Let us consider a set consisting of at most 3 internal probes $ ′ and external probes $8 of the

output sharing b8 for 1 ≤ 8 ≤ : such that |$ ′ | +
∑:

8=1 |$ |8 ≤ 3 (resp. |$ ′ | + max:8=1 |$ |8 ≤ 3).

5 (a1, ..., a<) is (Y, 3)-NI (resp. (Y, 3)-SNI), thus, there exists a set I ⊆ Y such that $ ′ ∪
⋃:

8=1$8 on
5 (a1, ..., a<) is I-simulatable and |I| ≤ |$ ′ | +

∑:
8=1 |$ |8 (resp. |I| ≤ |$ ′ |).

Since I ⊆ Y and |I| ≤ 3 , there exists a set � containing at most |I| shares for each input sharing
a8 such that

⋃
I on 5 (a1, ..., a<) is � -simulatable. Recall that $ ′ ∪

⋃:
8=1$8 on 5 (a1, ..., a<) is I-

simulatable. Thus, $ ′ ∪
⋃:

8=1$8 on 5 (a1, ..., a<) is � -simulatable. The result follows from the fact
that |� | ≤ |I| and |I| ≤ |$ ′ | +

∑:
8=1 |$ |8 (resp. |I| ≤ |$ ′ |). □

Consider the simple gadgets CM, XOR and Refresh in Figure 2 are (YCM, 2)-NI, (YXOR, 2)-NI and
(YRF, 2)-SNI, respectively. By applying Proposition 5 and checking the sets YCM, YXOR and YRF, we
can deduce that the gadgets CM and XOR are 2-NI and the gadget Refresh is 2-SNI. Furthermore,
when the input sharings are mutually independent, we can deduce that the gadgets CM, XOR and
Refresh are 2-probing secure.

3.4 Compositionality of (Y, 3)-NI and (Y, 3)-SNI Gadgets

In this subsection, we study the compositionality of (Y, 3)-NI and (Y, 3)-SNI gadgets which will
be leveraged to compute a set Y for each composite gadget.
We start by defining some notations. Given a gadget call y =ℓ 5 (x1, · · · , x<) to the gadget

5 (a1, · · · , a<), for every set Y, let Y[x1/a1, · · · , x</a<]@ℓ be the set Y where

• a8 [ 9] for each 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ C + 1 is replaced by x8 [ 9],
• and each local variable G is replaced by G@ℓ .
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Intuitively, Y[x1/a1, · · · , x</a<]@ℓ lifts the set Y from the gadget 5 (a1, · · · , a<) to the gadget call
y = 5 (x1, · · · , x<), where formal arguments a1, · · · , a< are replaced by their corresponding inputs
x1, · · · , x< and local variables G are appended with the label ℓ to avoid name conflict.

We present the composition rules using the gadget,

6 ◦ 5 (x1, · · · , x<){ x<+1, · · · , x<+: = ℓ5 5 (x1, · · · , x<);
z1, · · · , zℎ = ℓ66(x1, · · · , x<+: );
return z1, · · · , zℎ ; }

which invokes the gadgets 5 (a1, · · · , a<) and 6(b1, · · · , b<+: ). For any set Y5 (resp. Y6) of variable
sets of 5 (a1, · · · , a<) (resp. 6(b1, · · · , b<+: )), let q6◦5 (Y5 ,Y6) be the set

Y′
5 ∪ (Y′

6 \ {{x9 [8]} | 1 ≤ 8 ≤ C + 1,< + 1 ≤ 9 ≤ < + :},

where Y′
5
denotes Y5 [x1/a1, · · · , x</a<]@ℓ5 and Y′

6 denotes Y6 [x1/b1, · · · , x<+:/b<+: ]@ℓ6 . In-

tuitively, q6◦5 (Y5 ,Y6) is the union of Y5 and Y6 where formal arguments of 5 (a1, · · · , a<) and
6(b1, · · · , b<+: ) are substituted by their corresponding inputs and local variables are appended
with the corresponding labels ℓ5 and ℓ6 to avoid name conflict. The substitution ensures that
q6◦5 (Y5 ,Y6) only contains variables of (6 ◦ 5 )in (x1, · · · , x<). Furthermore, the sets {x9 [8]} for
1 ≤ 8 ≤ C + 1,< + 1 ≤ 9 ≤ < + : are removed from Y′

6, as they are the same as the external probes
of 5 (a1, · · · , a<).

Composition rule R1. We present the first rule for composing a (Y, 3)-NI gadget with another
(Y, 3)-NI/(Y, 3)-SNI gadget.

Lemma 1. If 5 (a1, · · · , a<) is (Y5 , 3)-NI and for any nonempty probe set $ on 5 (a1, · · · , a<)
and nonempty set O ⊆ Y6 such that |$ | + |O| = 3 , the probe set $ [x1/a1, · · · , x</a<]@ℓ5 ∪⋃
O[x1/b1, · · · , x<+:/b<+: ]@ℓ6 on 6 ◦ 5 (x1, · · · , x<) is I-simulatable for some set I ⊆ q6◦5 (Y5 ,Y6)

with |I| ≤ 3 , then the following statements hold:

(1) If 6(b1, · · · , b<+: ) is (Y6, 3)-NI, then 6 ◦ 5 (x1, · · · , x<) is (q6◦5 (Y5 ,Y6), 3)-NI.
(2) If 6(b1, · · · , b<+: ) is (Y6, 3)-SNI, then 6 ◦ 5 (x1, · · · , x<) is (q6◦5 (Y5 ,Y6), 3)-SNI.

Proof sketch. For any set consisting of at most 3 internal probes$ and 3 − |$ | external probes
$8 for each output sharing z8 on 6 ◦ 5 (x1, · · · , x<):

• If$∪
⋃ℎ

8=1$8 contains only probes from 5 (a1, · · · , a<), then since 5 (a1, · · · , a<) is (Y5 , 3)-NI, we

get that$∪
⋃ℎ

8=1$8 can be simulated with at most3 variable sets fromY5 [x1/a1, · · · , x</a<]@ℓ5 ,
hence can be simulated with at most 3 variable sets from q6◦5 (Y5 ,Y6).

• If$∪
⋃ℎ

8=1$8 contains only probes from6(b1, · · · , b<+: ), then since6(b1, · · · , b<+: ) is (Y6, 3)-NI

(resp. (Y6, 3)-SNI), we get that$ ∪
⋃ℎ

8=1$8 can be simulated by at most 3 (resp. |$ |) variable sets
from Y6 [x1/b1, · · · , x<+:/b<+: ]@ℓ6, hence can be simulated by at most 3 (resp. |$ |) variable
sets from q6◦5 (Y5 ,Y6).

• If $ ∪
⋃ℎ

8=1$8 contains probes from both 5 (a1, · · · , a<) and 6(b1, · · · , b<+: ), we can conclude
the proof following from Proposition 3 and the fact that for any nonempty probe set $ ′′ on
5 (a1, · · · , a<) and any nonempty set O ⊆ Y6 with |$ ′′ | + |O| = 3 , $ ′′[x1/a1, · · · , x</a<]@ℓ5 ∪⋃
O[x1/b1, · · · , x<+:/b<+: ]@ℓ6 on the gadget 6 ◦ 5 (x1, · · · , x<) is I-simulatable for some set

I ⊆ q6◦5 (Y5 ,Y6) such that |I| ≤ 3 . Indeed, since 6(b1, · · · , b<+: ) is (Y6, 3)-NI (resp. (Y6, 3)-SNI),

the variable subset $ ′ of $ ∪
⋃ℎ

8=1$8 that come from 6(b1, · · · , b<+: ) can be first simulated by
some set O[x1/b1, · · · , x<+:/b<+: ]@ℓ6 ⊆ Y6 [x1/b1, · · · , x<+:/b<+: ]@ℓ6 with the desired size,

together with the remaining variables of $ ∪
⋃ℎ

8=1$8 (i.e., $ ′′[x1/a1, · · · , x</a<]@ℓ5 ), can be
simulated by at most 3 (resp. |$ |) variable sets from I ⊆ q6◦5 (Y5 ,Y6).

This concludes the proof. □
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Lemma 1 provides a sound approach for computing a setY from the setsY5 andY6 and checking
if the composite gadget6◦ 5 (x1, · · · , x<) is (Y, 3)-NI/(Y, 3)-SNIwithout inlining the called gadgets.
This reduces the number of probe sets to be checked when computing the set Y and verifying
(Y, 3)-NI/(Y, 3)-SNI for the composite gadget 6 ◦ 5 (x1, · · · , x<).

Composition rule R2. One may notice that in the first composition rule R1, probe sets across the
gadget 5 (a1, · · · , a<) and the set Y6 should be checked. We present the second composition rule
to further reduce the number of probe sets to be checked, and hence improve the efficiency. This
composition rule requires the preceding gadget 5 (a1, · · · , a<) to be (Y5 , 3)-SNI instead of its weak
counterpart (Y5 , 3)-NI.

Lemma 2. If 5 (a1, · · · , a<) is (Y5 , 3)-SNI and for any nonemptyset setO ⊆ Y6 \ {{b9 [8]} | <+1 ≤
9 ≤ <+:, 1 ≤ 8 ≤ C +1} such that |O| ≤ 3 , the set

⋃
O on the gadget 6(b1, · · · , b<+: ) is I-simulatable

for some I that only contains at most |O| input shares of each input sharing b9 for< + 1 ≤ 9 ≤ < + : ,
then the following statements hold:

(1) If 6(b1, · · · , b<+: ) is (Y6, 3)-NI, then 6 ◦ 5 (x1, · · · , x<) is (q6◦5 (Y5 ,Y6), 3)-NI.
(2) If 6(b1, · · · , b<+: ) is (Y6, 3)-SNI, then 6 ◦ 5 (x1, · · · , x<) is (q6◦5 (Y5 ,Y6), 3)-SNI.

Proof. The proof of Lemma 2 follows that of Lemma 1 except that we leverage (Y5 , 3)-SNI
of 5 (a1, · · · , a<), where the external shares of 5 (a1, · · · , a<) when passed to 6(b1, · · · , b<+: ) as
inputs, could be used in the gadget 6(b1, · · · , b<+: ) without requiring any sets of q6◦5 (Y5 ,Y6) for
simulation. □

Lemma 2 provides an efficient approach for computing a set Y and checking if the composite
gadget 6 ◦ 5 (x1, · · · , x<) is (Y, 3)-NI/(Y, 3)-SNI, without inlining the called gadgets. Recall that the
rule R1 (cf. Lemma 1) requires to check$ [x1/a1, · · · , x</a<]@ℓ5 ∪

⋃
O[x1/b1, · · · , x<+:/b<+: ]@ℓ6

for any nonempty set probe $ on 5 (a1, · · · , a<) and nonempty set O ⊆ Y6 such that |$ | + |O| = 3 .
By Lemma 2, we only need to check the sets fromO ⊆ Y6\{{b9 [8]} | <+1 ≤ 9 ≤ <+:, 1 ≤ 8 ≤ C+1}.
Therefore, this further reduces the number of sets to be checked when computing the set Y and
checking the composite gadget 6 ◦ 5 (x1, · · · , x<).
In general, a composite gadget may contain more than two gadget calls. For such composite

gadgets, we will present a bottom-up algorithm in Section 4 which iteratively composes the head
and tail of the sequence of gadget calls by leveraging Lemma 1 and Lemma 2, where the head is the
first gadget call, and the tail is the remaining sequence of gadget calls.
As a warm-up, we exemplify our overall approach using the illustrating example shown in

Figure 2.

Example 1. Recall that the simple gadgets CM, XOR and Refresh are (YCM, 3)-NI, (YXOR, 3)-NI and
(YRF, 3)-SNI, respectively, where YCM = {{a[8], b[ 9]} | 1 ≤ 8, 9 ≤ 3}, YXOR = {{a[8], b[8]} | 1 ≤ 8 ≤
3}, and YRF = {{a[8]} | 1 ≤ 8 ≤ 3}. We build the proof from the bottom gadget call to the top one.

(1) For the gadget call d = CM(a, c): we compute the set

Y′
CM = YCM [a/a, c/b]@3 = {{a[8], c[ 9]} | 1 ≤ 8, 9 ≤ 3},

i.e., passing the actual parameters a and c to the formal arguments a and b and appending @3

to the local variables of CM.

(2) For the gadget calls c = XOR(a, e); d = CM(a, c): similar to the first step, we first compute

Y′
XOR = YXOR [a/a, e/b]@2 = {{a[8], e[8]} | 1 ≤ 8 ≤ 3}.

By Lemma 1, we compute the set

YXORM2 = .~ ′
XOR ∪ (Y′

CM \ {{c[8]} | 1 ≤ 8 ≤ 3})

= {{a[8], e[8]}, {a[8], c[ 9]} | 1 ≤ 8, 9 ≤ 3}
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and check if for any nonempty probe set $ on XOR and nonempty set O ⊆ YCM such that

|$ | + |O| = 3 , the probe set $ [a/a, e/b]@2 ∪ O[a/a, c/b]@3 can be simulated by two variable

sets of YXORM2. It is indeed the case.

(3) For the gadget calls e = Refresh(b); c = XOR(a, e); d = CM(a, c): we first compute the set

.~ ′
RF = YRF [b/a]@1 = {{b[8]} | 1 ≤ 8 ≤ 3}.

Next, by Lemma 2, we compute

YXORMULTI = Y′
RF ∪ (YXORM2 \ {{e[8]} | 1 ≤ 8 ≤ 3})

= {{b[8]}, {a[8], e[8]}, {a[8], c[ 9]} | 1 ≤ 8, 9 ≤ 3}

and check if for any O ⊆ YXORM2 \ {{e[8]} | 8 = 1, 2, 3} such that |O| ≤ 3 ,
⋃
O can be simulated

by a set � comprising shares of a and at most |O| shares of e. It is indeed the case.

Finally, we get that XORMULTI is (YXORMULTI, 2)-NI.
By checking that any two variable sets of YXORMULTI can be simulated by a set � that only con-

tains at most two shares of each input sharing, we can prove that XORMULTI is 2-NI. For instance,

{{b[8]}, {a[3], e[3]}} for 1 ≤ 8 ≤ 3 can be simulated by the set {b[8], a[3]} as E(e[3]) = b[3] ⊕
A2@1 ⊕ A3@1 is masked by the random variables A2@1 and A3@1.

4 ALGORITHMIC VERIFICATION

Wefirst present a proof system for proving simulatability.We then propose algorithms for computing
Y for each gadget so that the gadget is (Y, 3)-NI/(Y, 3)-SNI. Finally, we present algorithms for
verifying 3-NI/3-SNI and 3-probing security through the new notions (Y, 3)-NI/(Y, 3)-SNI.

4.1 A Proof System for Simulatability

Inspired by the notion of dominant random variable [Gao et al. 2019a], we introduce the no-
tion of perfect masking for computations based on which we devise a proof system for proving
simulatability.

A computation 4 is perfectly masked by a random variable A if A (syntactically) occurs in 4 exactly
once, and each operator ◦ along the path from A to the root in the abstract syntax tree of 4 must
satisfy one of the following conditions:

• ◦ ∈ {⊕, +,−,¬};
• ◦ is ⊙ and one of its children is a non-zero constant.

For instance, : ⊕ A is perfectly masked by A while (: ⊕ A ) ∧ A is not perfectly masked by A .
Fix a gadget 5 (a1, · · · , a<) and consider a probe G on 5 (a1, · · · , a<). If E(G) is perfectly masked

by a random variable A , then the evaluation 5 (x1, · · · , x<)G is uniform for any inputs x1, · · · , x< . Re-
mark that the above two conditions are designated to obtain the uniform evaluation 5 (x1, · · · , x<)G .
In general, ◦ can be any univariate bijective function.
For a given computation 4 , let sub(4) denote the set of all the non-trivial sub-computations

in 4 (i.e., including 4 but excluding variables). We lift sub(·) to a set � of computations, namely,
sub(�) =

⋃
4∈� sub(4). For each computation 4 ∈ sub(�) and random variable A , we denote by

� [A/4] the set � of computations where all occurrences of 4 are substituted by A . This substitution
is called (4, A )-simplification of �.
Given a variable set $ , we denote by E($) the set of computations {E(G) | G ∈ $}. For

two variable sets $1 and $2, we write $2

(4,A )
−→ $1, if the following three conditions hold: (i) 4 ∈

sub(E($2)) is perfectly masked by the random variable A ; (ii) A only occurs in 4 and does not occur

anywhere else in E($2); and (iii) E($2) [A/4] = E($1). Intuitively, $2

(4,A )
−→ $1 if the computations

E($2) are equivalent to the computations E($1) after applying an (4, A )-simplification on E($2).
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Since the random variable A only occurs in 4 and does not occur anywhere else in E($2), 4 can be
seen as a random variable in the computations E($2). This implies that for any inputs x1, · · · , x< ,
the evaluation 5 (x1, · · · , x<)$2

remains the same when 4 is replaced by A .

Proposition 6. If$2

(4,A )
−→ $1, then for any variable set � ,$1 is � -simulatable iff$2 is � -simulatable.

Proof. Suppose$2

(4,A )
−→ $1. Then, the computation 4 is perfectly masked by the random variable

A . Since A only occurs in 4 and does not occur anywhere else in E($2). Thus, we can deduce that
for any fixed inputs x1, · · · , x< , the evaluation of E($2) will not change after replacing all the
occurrences of 4 in E($2) by A , which implies that$2 is � -simulatable on 5 (a1, · · · , a<) iff � suffices
to simulate $2 after replacing all the occurrences of 4 in E($2) by A . □

The judgement of our proof system is of the form ⊢ � { $ , where � and $ are two sets of
variables in 5 (a1, · · · , a<) such that � does not contain any random variable. A judgement ⊢ � { $

is valid iff the probe set $ is � -simulatable.

$ = $1 ⊎$2 $2 ⊆ �⋃
G ∈$1

Var(E(G)) \ {random variables} ⊆ �

⊢ � { $
(Comp)

$2

(4,A )
−→ $1 ⊢ � { $1

⊢ � { $2

(Dom)

Fig. 4. Proof rules.

The proof rules for deriving valid judgments are given in Figure 4. Rule Comp states that the
probe set $ can be partitioned into two subsets $1 and $2 such that $2 is a subset of � and each
variable ~ ∈ Var(E(G)) involved in the computation E(G) for G ∈ $1 is either a random variable or
a member of � . Rule Dom leverages Proposition 6 via (4, A )-simplification. Intuitively, rule Comp
uses only the syntactic information of computations, while rule Dom is semantic where random
variables and operations are exploited. It is easy to see that the proof system is sound.

Theorem 1. If ⊢ � { $ is valid, then the probe set $ on 5 (a1, · · · , a<) is � -simulatable.

Proof. Suppose the judgement ⊢ � { $ is valid, we prove that the probe set$ on 5 (a1, · · · , a<)
is � -simulatable by induction on the number< of derivation steps of the judgement ⊢ � { $ .

• Base case< = 1. The judgement ⊢ � { $ must be derived by applying the proof rule Comp.
Suppose $ = $1 ⊎$2 such that

⋃
G ∈$1

Var(E(G)) \ {random variables} ⊆ � and $2 ⊆ � . From⋃
G ∈$1

Var(E(G)) \ {random variables} ⊆ � , we get that$1 is � -simulatable. From$2 ⊆ � , we get
that $2 is � -simulatable. Thus, $1 ⊎$2 is � -simulatable.

• Inductive step< > 1. The last derivation step of the judgement ⊢ � { $ must be the proof

rule Dom. Suppose the premises of this step are $
(4,A )
−→ $1 and ⊢ � { $1. Then the judgement

⊢ � { $1 can be derived in< − 1 steps. By the induction hypothesis on the judgement ⊢ � { $1,
we get that $1 is � -simulatable. By Proposition 6, we get that $ is � -simulatable.

This concludes the proof. □

4.2 Computing the Sets Y for Simple Gadgets

Given a security order3 , a security type g ∈ {NI, SNI} and a simple gadget 5 (a1, · · · , a<), procedure
SGadget in Algorithm 1 computes a set Y ensuring (Y, 3)-g of 5 (a1, · · · , a<). SGadget first
computes a candidate Y at Line 3 each of which is required to simulate a probe G on 5 (a1, · · · , a<)
whose computation E(G) only depends on input shares. The set Y is reduced at Line 4 according to
Proposition 2. We then verify if the gadget 5 (a1, · · · , a<) is (Y, 3)-NI/(Y, 3)-SNI.
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Algorithm 1 Computing Y for a simple gadget

1: Proc SGadget(5 (a1, · · · , a<), 3, g)
2: Let (b1, · · · , b: ), P and Pint be output sharings, set of all the probes and set of all internal probes of

5 (a1, · · · , a<), respectively
3: Y = {Var(E(G)) ⊆

⋃<
8=1 a8 | G is a probe on 5 (a1, · · · , a<)}

4: Y = {. ∈ Y | �. ′ ∈ Y.. ⊂ . ′}
5: if g == NI then ⊲ Check (Y, 3)-NI
6: return (Explore3 ({(3,P)},Y, g), g)

7: for (8 = 0; 8 ≤ 3 ; 8 + +) do
8: Y=Explore8 ({(8,Pint), (3 − 8, b1), · · · , (3 − 8, b: )},Y, g)

9: return (Y, g)

10: Proc Explore3 ({(3 9 , - 9 )} 9 ,Y, g)
11: if ∃ 9, 3 9 > |- 9 | then return Y

12: {$ 9 } 9 =Choose({(3 9 , - 9 )} 9 )

13: (A4B,Y′) = Check3 (
⋃

9 $ 9 ,Y)
14: if res == ⊤ then ⊲

⋃
9 $ 9 is Y′-simulatable if res is ⊤

15: {$ 9 } 9 = Extend3 ({($ 9 , - 9\$ 9 )} 9 ,Y
′) ⊲ Extend the sets ($ 9 ) 9

16: Y′ = Y ⊲ Assign the assumption Y to Y′

17: else if g == SNI then ⊲ Fail to prove that
⋃

9 $ 9 is Y′-simulatable
18: Abort and emit the set

⋃
9 $ 9 ⊲

⋃
9 $ 9 is a potential leak

19: for 9 ; 0 ≤ 8 9 ≤ 3 9 s.t.
∑

9 8 9 ≠ 0 do ⊲ Explore other possible probe sets

20: Y =Explore3 ({(3 9 − 8 9 ,$ 9 ), (8 9 , - 9\$ 9 )} 9 ,Y
′, g)

21: return Y

22: Proc Check3 ($,Y) ⊲ Check if $ is I simulatable for I ⊆ Y with |I| = 3

23: if ∃I ⊆ Y such that |I| = 3 and ⊢
⋃
I { $ is valid then

24: return (⊤, I) ⊲ $ is I-simulatable

25: Y = Y ∪ {{G} | G ∈ $ ∧ G ∉
⋃
Y} ⊲ Fail to prove and extend Y

26: return (⊥,Y) ⊲ $ is I′-simulatable for I′ ⊆ Y with |I′ | = 3

27: Proc Extend3 ({($ 9 , - 9 )} 9 ,Y) ⊲ Extend ($ 9 ) 9 using the witness Y
28: for all 9, G ∈ - 9 do

29: $ =
⋃

9 $ 9 ∪ {G}

30: (A4B,Y′) =Check3 ($,Y)
31: if A4B == ⊤ then

32: $ 9 = $ 9 ∪ {G} ⊲

⋃
9 $ 9 is still Y-simulatable after adding G

33: return {$ 9 } 9

If g is NI, by Proposition 3, it checks if any set of 3 probes can be simulated by at most 3 variable
sets of Y. This is achieved via invoking the procedure Explore3 (Line 6), which returns Y such
that 5 (a1, · · · , a<) is (Y, 3)-NI. Remark that Y initialized at Lines 3–4 may not suffice to ensure
(Y, 3)-NI, thus Y should be extended by Explore3 (Line 25).
If g is SNI, it checks for each 0 ≤ 8 ≤ 3 , if any set comprising 8 internal and 3 − 8 external

probes per output sharing b9 can be simulated by at most 8 variable sets of Y. This is done by
invoking Explore8 ({(8,Pint), (3 − 8, b1), · · · , (3 − 8, b: )},Y, g) (Line 8), where Pint is the set of all
internal probes on 5 (a1, · · · , a<). We note if g is SNI, the set Y initialized at Lines 3–4 will not be
extended by Explore8 , because it is useless for proving 3-SNI/3-probing security, nor improving
the verification efficiency. If no abort occurs, Y is returned such that 5 (a1, · · · , a<) is (Y, 3)-SNI,
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otherwise a probe set $ is emitted (Line 18) which is a potential leak. The emitted probe sets are
recorded for further analysis, e.g., manual inspection or other computational-expensive techniques
to remove false positives when the extended Explore (i.e., Algorithm 2) is utilized for checking
3-probing security (cf. Section 4.4).

Explore3 checks if each probe set $ in the list of pairs {(3 9 , - 9 )} 9 can be simulated by at most
3 variable sets of Y, where (3 9 , - 9 ) denotes taking 3 9 probes from the set - 9 . (Note that

∑
9 3 9

is the desired security order 3 .) Explore3 first chooses 3 9 probes from - 9 for each pair (3 9 , - 9 )

(Line 12), resulting in subsets {$ 9 } 9 . Then it invokes Check3 (Line 13) to check if the set
⋃

9 $ 9

can be simulated by a set I of 3 variable sets of Y. The procedure Check3 returns a pair (A4B,Y′)
comprising a flag A4B and a family Y′ of variable sets. If there exists I ⊆ Y such that |I| = 3

and ⊢
⋃
I {

⋃
9 $ 9 is valid, Check3 returns (⊤, I), where I is the witness of the proof (Line 24).

Otherwise, Check3 returns (⊥,Y) where Y is extended with
⋃

9 $ 9 so that
⋃

9 $ 9 can be simulated
by 3 variable sets after updating Y (Lines 25 and 26).

• If A4B = ⊤, Explore3 invokes the procedure Extend3 (Line 15) which for each pair ($ 9 , - 9 \
$ 9 ), extends $ 9 with probes G ∈ - 9 \ $ 9 if the proof witness Y′ is still able to prove the
extended probe set (Lines 30–32).

• If A4B = ⊥ and g = SNI, Explore3 aborts and emits the probe set
⋃

9 $ 9 on which we failed
to prove (Line 18).

After that, to cover all the desired probe sets, the pairs {(3 9 , - 9 )} 9 are partitioned into the pairs
{(3 9 − 8 9 ,$ 9 ), (8 9 , - 9 \ $ 9 )} 9 for all the combinations {8 9 } 9 such that 0 ≤ 8 9 ≤ 3 9 and

∑
9 8 9 ≠ 0,

where
∑

9 8 9 ≠ 0 ensures that the exploring probe sets always contain probes from some - 9 \$ 9 ,

because otherwise they would have been proved. For each combination {8 9 } 9 , Explore3 recursively
invokes Explore3 to check the worklist {(3 9 − 8 9 ,$ 9 ), (8 9 , - 9 \$ 9 )} 9 with the up-to-date set Y′

in the loop at Lines 7–8. Note that Y′ is an extension of Y if A4B = ⊥. We remark that the loop at
Lines 7–8 exits early only when a probe set $ cannot be proved (i.e., an abort occurs at Line 18)
for computing Y of a simple gadget to be (Y, 3)-SNI. Otherwise, the for-loop will not exit early,
because we have to make sure that none of possible probe sets result in an abort for the initial Y.

Theorem 2. The procedure SGadget(5 (a1, · · · , a<), 3, g) always terminates and if it returns (Y, g)
for g ∈ {NI, SNI}, then the simple gadget 5 (a1, · · · , a<) is (Y, 3)-g .

The termination of SGadget(5 (a1, · · · , a<), 3, g) follows from Lemmas 3 and 4. We first prove
two invariant properties of all the invocations of the procedure Explore3 by induction on the
number of invocations of the procedure Explore3 .

Lemma 3. In Algorithm 1, each invocation Explore3 ({(3 9 , - 9 )} 9 ,Y, g) has the following two

properties:

(1)
∑

9 3 9 = 3 if g = NI and
∑

9 3 9 ≤ :3 if g = SNI, where : ≥ 1 is the number of output sharings;

(2) and
⋃

9 - 9 = P, where P denotes the set of all the probes on 5 (a1, · · · , a<).

Now, we can show that Explore3 in Algorithm 1, hence Algorithm 1, always terminates.

Lemma 4. Each invocation of the procedure Explore3 in Algorithm 1 always terminates

Proof. Observe that at each step of the recursive invocation of the procedure Explore3 , all the
sets {- 9 } are partitioned into two subsets {$ 9 , - 9 \$ 9 } 9 such that

⋃
9 $ 9 is non-empty and at least

one index 8 9 is non-zero. By Lemma 3, we have:
∑

9 3 9 = 3 if g = NI and
∑

9 3 9 ≤ :3 if g = SNI, and⋃
9 - 9 = P. Therefore, along with the recursion, the number of 3 9 ’s decreases and the cardinality of

each - 9 decreases, until there exists 9 such that 3 9 > |- 9 |, Hence, the recursive invocation always
terminates. □
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Algorithm 2 Extended Explore

1: Proc ExtExplore3 ({(3 9 ,X9 )} 9 ,Y, g)
2: if ∃ 9, 3 9 > |X9 | then return Y

3: {O9 } 9 =ExtChoose({(3 9 ,X9 )} 9 )

4: (A4B,Y′) = ExtCheck3 (
⋃

9 O9 ,Y)
5: if res == ⊤ then

6: {O9 } 9 = ExtExtend3 ({(O9 ,X9\O9 )} 9 ,Y
′)

7: Y′ = Y

8: else if g == SNI then Abort and emit the set
⋃

9 O9

9: for 9 ; 0 ≤ 8 9 ≤ 3 9 s.t.
∑

9 8 9 ≠ 0 do Y =ExtExplore3 ({(3 9 − 8 9 ,O9 ), (8 9 ,X9\O9 )} 9 ,Y
′, g)

10: return Y

11: Proc ExtCheck3 (O,Y)
12: if ∃I ⊆ Y. |I| = 3∧ ⊢

⋃
I {

⋃
O then return (⊤, I)

13: Y = Y ∪ {. ∈ O | �. ′ ∈ Y.. ⊆ . ′}
14: return (⊥,Y)

15: Proc ExtExtend3 ({(O9 ,X9 )} 9 ,Y)
16: for all 9, - ∈ X9 do

17: O =
⋃

9 O9 ∪ {- }

18: (A4B,Y′) =ExtCheck3 (O,Y)
19: if A4B == ⊤ then O9 = O9 ∪ {- }

20: return {O9 } 9

The following lemma ensures the correctness of Theorem 2.
Given a list of pairs {(3 9 , - 9 )} 9 , let C({(3 9 , - 9 )} 9 ) denote the set of all the possible subsets$ ⊆ P

such that $ contains 3 9 elements of - 9 for each pair (3 9 , - 9 ), where P denotes the set of all the
probes.

Lemma 5. Suppose no abort occurs during all the invocations of Explore3 and (Y, g) is the return
of Algorithm 1. For every invocation of Explore3 with a list of pairs {(3 9 , - 9 )} 9 and every probe set

$ ∈ C({(3 9 , - 9 )} 9 ), $ is covered, i.e., there exist a probe set $ ′ and a set of variable sets I ⊆ Y such

that $ ⊆ $ ′, |I| = 3 and the judgement ⊢
⋃
I { $ ′ is valid.

Proof. By induction on the number ℎ of invocations of the procedure Explore3 , where the base
case is the largest ℎ. Note that the largest ℎ exists by Lemma 4.

• Base case. Since no abort occurs during all the invocations of Explore3 , then the ℎ-th invocation
of the procedure Explore3 must return at Algorithm 1 Line 11. Hence, there exists a pair (3 9 , - 9 )
such that 3 9 > |- 9 |. This implies that C({(3 9 , - 9 )} 9 ) = ∅, thus, the result follows.

• Inductive step. Let {$ 9 } 9 be the sets before calling Explore3 at Algorithm 1 Line 20. For every
set $ ∈ C({(3ℎ9 , -

ℎ
9 )} 9 ), either $ ⊆

⋃
9 $ 9 or $ ⊈

⋃
9 $ 9 . If $ ⊆

⋃
9 $ 9 , the result follows from

the fact that Check3 (
⋃

9 $ 9 ) succeeds. If $ ⊈
⋃

9 $ 9 , then there must exist a combination of
values 8 9 : 0 ≤ 8 9 ≤ 3 9 such that

∑
9 8 9 ≠ 0 and $ ∈ C({(3 9 − 8 9 ,$ 9 ), (8 9 , - 9\$ 9 )} 9 ). By the

induction hypothesis, $ is covered.

This concludes the proof. □
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Algorithm 3 Computing Y for a composite gadget

1: Proc CGadget(6(a′
1
, · · · , a′

:
), 3)

2: Let gstmt be the sequence of gadget calls of 6(a′
1
, · · · , a′

:
)

3: return GadgetCalls(gstmt, 3) ⊲ Check gstmt

4: Proc Gadget(5 (a1, · · · , a<), 3)
5: if 5 is a simple gadget then
6: (Y, g) =SGadget(5 (a1, · · · , a<), 3, SNI) ⊲ To prove (Y, 3)-SNI
7: if Aborted then ⊲ Fail to prove (Y, 3)-SNI
8: (Y, g) =SGadget(5 (a1, · · · , a<), 3,NI) ⊲ To prove (Y, 3)-NI

9: else (Y, g) =CGadget(5 (a1, · · · , a<), 3)

10: return (Y, g)

11: Proc GadgetCalls(gstmt, 3) ⊲ Recursively check gstmt

12: x1, · · · , xℎ =ℓ 5 (y1, · · · , y<) is Head(gstmt) ⊲ Get the head of gstmt
13: (Y, g) =Gadget(5 (a1, · · · , a<), 3)
14: Y = Y[y1/a1, · · · , y</a<]@ℓ ⊲ Rename the variables of Y
15: if Tail(gstmt)==empty then return (Y, g)

16: (Y1, g1) =GadgetCalls(Tail(gstmt), 3)
17: Y′

1
= Y1 \ {{x9 [8]} | 1 ≤ 8 ≤ C + 1, 1 ≤ 9 ≤ ℎ}

18: Y = Y ∪ Y′
1

19: if g == SNI then ⊲ Check the condition of Lemma 2
20: for (8 = 1; 8 ≤ 3 ; 8 + +) do
21: Y2 = {� | � comprises 8 shares of x9 for each 9 and all the input shares of Tail(gstmt)}

22: ExtExplore8 ({(8,Y′
1
)},Y2, SNI)

23: if Aborted or g == NI then ⊲ Check the condition of Lemma 1
24: Let P be the set of all the probes of 5 (a1, · · · , a<)
25: - = P[y1/a1, · · · , y</a<]@ℓ

26: for (8 = 1; 8 < 3 ; 8 + +) do
27: Y =ExtExplore3 ({(8, {{G}}G ∈- ), (3 − 8,Y1)},Y,NI)

28: return (Y, g ′)

4.3 Computing the Sets Y for Composite Gadgets

To compute the setsY for composite gadgets, as shown in Algorithm 2, we first extend the procedure
Explore3 such that variable sets - 9 in the pairs {(3 9 , - 9 )} 9 are sets X9 of variable sets for which
3 9 variable sets of X9 are added to $ 9 while other operations are generalized accordingly.

Following Lemmas 3 and 4, we can get that

Lemma 6. ExtExplore3 ({(3 9 ,X9 )} 9 ,Y, g) has following properties:

(1)
∑

9 3 9 = 3 if g = NI and
∑

9 3 9 ≤ :3 if g = SNI, where : ≥ 1 is the number of output sharings;

(2) each invocation of ExtExplore3 in Algorithm 2 always terminates;

(3) each set O ∈ C({(3 9 ,X9 )} 9 ) is covered if no abort occurs, where C({(3 9 , - 9 )} 9 ) now denotes

the set of all the sets O comprising of 3 9 sets from X9 for each pair (3 9 ,X9 ).

According to Lemmas 1 and 2, we present the procedure CGadget in Algorithm 3. Given a
composite gadget 6(a′1, · · · , a

′
:
) and a security order 3 , it computes a set Y such that the gadget

6(a′1, · · · , a
′
:
) is (Y, 3)-NI/(Y, 3)-SNI by invoking the procedure GadgetCalls (Line 3) with the

sequence gstmt of gadget calls in the body of 6(a′1, · · · , a
′
:
).
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Algorithm 4 Checking 3-probing security

1: Proc Probing(5 (a1, · · · , a<), 3)
2: (Y, g) =Gadget(5 (a1, · · · , a<), 3)

3: ExtExplore3 ({(3,Y)}, ∅, SNI)
4: for all probe sets $ emitted by Algorithm 2 at Line 8 do
5: A =CheckByGPUEnum($)
6: if A == No then return $ ⊲ $ is a potential flaw

7: return Yes ⊲ 5 (a1, · · · , a<) is 3-probing secure

GadgetCalls(gstmt, 3) first computes a setY for the first gadget call x1, · · · , xℎ =ℓ 5 (y1, · · · , y<)
of gstmt by invokingGadget (Line 13), which returns a pair (Y, g) such that 5 (a1, · · · , a<) is (Y, 3)-
g with g ∈ {NI, SNI}, where (Y, 3)-NI is used only if an abort occurs when proving (Y, 3)-SNI. The
set Y is revised accordingly using the actual parameters {y9 }1≤ 9≤< and the label ℓ (Line 14). The
pair (Y, g) is returned (Line 15) if the tail Tail(gstmt) is empty. Otherwise, it invokes GadgetCalls
to recursively compute a pair (Y1, g1) for the tail Tail(gstmt) such that Tail(gstmt) is (Y1, 3)-g1,
where Tail(gstmt) is regarded as a gadget.

After proving that first gadget call is (Y, 3)-g and the remaining gadget calls is (Y1, 3)-g1, we
compute the set Y of gstmt from Y and Y1 (Line 18), analogous to q6◦5 (Y5 ,Y6) in Lemmas 1 and 2.
We check the composition condition according to the security type g of the gadget 5 (a1, · · · , a<).

• If g = SNI, the condition of the composition rule R2 (i.e., Lemma 2) is checked by invoking
ExtExplore, i.e., the extension of the procedure Explore.

• If abort occurs during the loop at Lines 20–22 or g is NI, the condition of the composition
rule R1 (i.e., Lemma 1) is checked by invoking ExtExplore.

Theorem 3. The procedure Gadget(5 (a1, · · · , a<), 3) always terminates and if it returns (Y, g)
for g ∈ {NI, SNI}, then the gadget 5 (a1, · · · , a<) is (Y, 3)-g .

Termination of Gadget(5 (a1, · · · , a<), 3) follows from Lemma 6 and the correctness of Theo-
rem 3 follows from Lemma 1, Lemma 2 and Theorem 2.

4.4 Verifying 3-Probing Security

We present the procedure Probing shown in Algorithm 4, to verify if a gadget is 3-probing se-
cure by first proving (Y, 3)-NI or (Y, 3)-SNI. Probing(5 (a1, · · · , a<), 3) checks if 5 (a1, · · · , a<) is
3-probing secure when the computations of input sharings a9 [C + 1] =<B (0 9 , a9 [1], · · · , a9 [C]) for
1 ≤ 9 ≤ < and<B ∈ {+, ⊕} are given. It first invokes Gadget(5 (a1, · · · , a<), 3) to compute a pair
(Y, g) so that 5 (a1, · · · , a<) is (Y, 3)-g . Next, by Proposition 4, it checks if any 3 variable sets of Y
can be simulated without using any secrets 01, · · · , 0< by invoking ExtExplore3 ({(3,Y)}, ∅, SNI).
The parameter g is set to SNI when invoking ExtExplore3 , to disallow the update of Y during
checking. All the emitted probe sets $ by Algorithm 2 at Line 8 are recorded during ExtEx-

plore3 ({(3,Y)}, ∅, SNI). These sets are potential leaks. To remove as many false positives as
possible, for each potential leak$ emitted by Algorithm 2 at Line 8 on which the proof system fails,
we invoke the procedure CheckByGPUEnum($) which computes the evaluation (i.e., distribution)
5 (a1, · · · , a<)$ by iteratively enumerating all the possible valuations of the secrets and random
variables fromF, similar tomaskVerif andHOME [Gao et al. 2021]. In our implementation, we adopt
the GPU-based brute-force algorithm in HOME. The gadget 5 (a1, · · · , a<) is 3-probing secure, if
either no probe set $ is emitted at Line 8 of Algorithm 2 or all of them are proved by invoking
CheckByGPUEnum. Otherwise, $ is a potential flaw.

Theorem 4. 5 (a1, · · · , a<) is 3-probing secure if Probing(5 (a1, · · · , a<), 3) returns Yes.
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Algorithm 5 Checking 3-NI and 3-SNI

1: Proc CheckNI(5 (a1, · · · , a<), 3) ⊲ Check if 5 (a1, · · · , a<) is 3-NI
2: (Y, g) =Gadget(5 (a1, · · · , a<), 3) ⊲ g is SNI or NI
3: X = {{a9 [8 9 ]}1≤ 9≤< | 1 ≤ 8 9 ≤ C + 1}

4: ExtExplore3 ({(3,Y)},X, SNI) ⊲ Check the condition of Proposition 5
5: return Yes

6: Proc CheckSNI(5 (a1, · · · , a<), 3) ⊲ Check if 5 (a1, · · · , a<) is 3-SNI
7: (Y, g) =Gadget(5 (a1, · · · , a<), 3) ⊲ g is SNI or NI
8: if g ≠ SNI then return No ⊲ Fail to prove that 5 (a1, · · · , a<) is Y-SNI

9: X = {{a9 [8 9 ]}1≤ 9≤< | 1 ≤ 8 9 ≤ C + 1}

10: ExtExplore3 ({(3,Y)},X, SNI) ⊲ Check the condition of Proposition 5
11: return Yes ⊲ 5 (a1, · · · , a<) is Y-SNI

The correctness of Theorem 4 follows from Proposition 4 and Theorem 3.

4.5 Verifying 3-NI and 3-SNI

We present the procedures CheckNI and CheckSNI shown in Algorithm 5, to verify if a gadget
5 (a1, · · · , a<) is 3-NI or 3-SNI by first proving (Y, 3)-NI or (Y, 3)-SNI.
Procedure CheckNI(5 (a1, · · · , a<), 3) checks whether 5 (a1, · · · , a<) is 3-NI. It computes a set Y

so that 5 (a1, · · · , a<) is either (Y, 3)-NI or (Y, 3)-SNI. It then computes the setX = {{a9 [8 9 ]}1≤ 9≤< |
1 ≤ 8 9 ≤ C + 1}, where each set {a9 [8 9 ]}1≤ 9≤< contains one input share of each input sharing a9 .
Next, following Proposition 5, it invokes ExtExplore3 ({(3,Y)},X, SNI) which checks if any 3

variable sets of Y can be simulated by a set comprising at most 3 input shares of each input sharing
a9 . Recall that g is set to SNI when invoking ExtExplore3 , to disallow the update of X during
checking. If CheckNI(5 (a1, · · · , a<), 3) returns Yes, 5 (a1, · · · , a<) is 3-NI.

ProcedureCheckSNI(5 (a1, · · · , a<), 3) checkswhether the gadget 5 (a1, · · · , a<) is3-SNI, similar
to CheckNI(5 (a1, · · · , a<), 3), except that g should be SNI.

Theorem 5. If the procedure CheckNI(5 (a1, · · · , a<), 3) (resp. CheckSNI(5 (a1, · · · , a<), 3)) re-
turns Yes, then the gadget 5 (a1, · · · , a<) is 3-NI (resp. 3-SNI).

The correctness of Theorem 5 follows from Proposition 5 and Theorem 3.
We remark that in theory, the (worse case) time-complexity of the verification (as well as

verifying the conditions in Lemmas 1 and 2) is exponential in the number of variables after inlining
no matter whether Lemmas 1 and 2 are applied. The composition of gadgets (i.e., Lemmas 1 and 2)
is polynomial in the number of variables when the conditions hold. In our experiments, Lemmas 1
and 2 are very effective in improving efficiency, cf. Table 3 for comparison between our tool and
the state-of-the-art tool maskVerif [Barthe et al. 2019].

5 EVALUATION

We implement our algorithms as a verification tool CONVINCE. We first evaluate the scalability of
CONVINCE on various higher-order composite gadgets based on efficient masked implementations
of finite-field multiplication, the key non-linear building block of symmetric ciphers. We then
show how to utilize CONVINCE to explore the design space of efficient higher-order masked
implementations based on the AES Sbox, and report more efficient variants. All those efficient
higher-order composite gadgets cannot be verified by all the existing compositional verification
approaches.
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Table 1. Statistics of four masked finite-field multiplication

3
SecMult Para Comp UMA

#r #⊕ #∧ Type #r #⊕ #∧ Type #r #⊕ #∧ Type #r #⊕ #∧ Type
2 3 12 9 2-SNI 3 12 9 2-SNI 2 10 9 2-NI 2 10 9 2-NI
3 6 24 16 3-SNI 4 20 16 3-NI 4 20 16 3-NI 4 20 16 3-NI
4 10 40 25 4-SNI 5 30 25 4-NI 5 30 25 4-NI 5 30 25 4-NI
5 15 60 36 5-SNI 12 48 36 5-NI 11 45 36 5-NI 9 48 36 5-NI

All experiments were conducted on a server with CentOS 7.6, Intel(R) Xeon(R) CPU E5-2690
v4@2.60GHz and 256GB RAM (only one core is used in our experiments).

In summary, the experimental results confirm that CONVINCE is more effective than the state-of-
the-art compositional approaches for proving efficient masked implementations of cryptographic
algorithms, and can be utilized by cryptographers to devise efficient and provable secure crypto-
graphic software and hardware.

5.1 Scalability of CONVINCE

To evaluate the effectiveness and efficiency of our approach for checking 3-probing security, 3-NI
and 3-SNI of composite gadgets, we built benchmarks from four base composite gadgets, called B1,
B2, B3 and B4, where B1 is XORMULTI, the last three are taken from [Belaïd et al. 2018] (cf. Figure 1,
10 and 15 of [Belaïd et al. 2018]), all of which rely on finite-field multiplication. When SecMult is
used for finite-field multiplication in [Belaïd et al. 2018], B2with order-C secret masking is 3-probing
secure for any orders C and 3 ≤ C , B3 with order-C secret masking is not C-probing secure for some
(unknown) order C , and B4 with order-C secret masking is a fixed version of B3 by refreshing one
of the input sharings of SecMult using a C-SNI Refresh gadget, and is 3-probing secure for any
orders C and 3 ≤ C .

We use three efficient masked implementations for finite-field multiplication, i.e., Para [Barthe
et al. 2017], Comp [Belaïd et al. 2016] and UMA [Groß and Mangard 2018], whose numbers of
randomness bits (#r), XOR operations (#⊕), AND operations (#∧), and security types are shown
Table 1, compared over the finite-field multiplication gadget SecMult [Ishai et al. 2003] originally
used in all four base composite gadgets. The corresponding security properties of those simple
gadgets are the best ones and can be proved by many existing tools such as maskVerif [Barthe
et al. 2019] and our tool CONVINCE. We did not compare CONVINCE with others on these simple
gadgets, because it is not the focus of this work. Note that Comp and UMA (resp. Para and UMA) are
the same implementations when the masking order C = 2 (resp. C = 3, 4) and all those gadgets for
finite-field multiplications with the same masking order are functionally equivalent.
Our benchmarks are obtained by equivalently replacing the gadget SecMult in a base gadget

“Base” with one efficient finite-field multiplication gadget “Multi”, yielding the benchmark “Base”
+ “Multi”. For instance, B1 + Para is the benchmark where the gadget Para is used for finite-field
multiplication in the base gadget B1. These give rise to a total of 12 combinations, none of which
with order-3 secret masking can be proved of3-probing secure or3-NI by the existing compositional
approaches. We remark that none of B1, B2, B3 and B4 with the finite-field multiplication gadget
SecMult can be proved by the compositional approach [Barthe et al. 2016] as claimed in [Belaïd et al.
2018]. When SecMult in B1, B2, B3 and B4 are replaced with more efficient ones, the compositional
approach [Barthe et al. 2016] still fails while the resulting gadgets further go beyond the verification
capability of [Belaïd et al. 2018].

When verifying 3-probing security, to ensure that any two input sharings are mutually indepen-
dent, presharing operations are added for each benchmark using Boolean secret masking, which
first computes sharings of input secrets and then invokes the benchmark with those sharings. As
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Table 2. Verification results, where PS=Probing Security

Name
2nd-order 3rd-order 4th-order 5th-order

Result Time(s) Result Time(s) Result Time(s) Result Time(s)
B1+Para 2-NI 0.01 3-NI 0.19 4-NI 5 5-NI 255
B1+Comp 2-NI 0.01 3-NI 0.27 4-NI 6 5-NI 244
B1+UMA 2-NI 0.01 3-NI 0.19 4-NI 5 5-NI 288
B2+Para 2-PS 0.01 3-PS 0.17 4-PS 5 5-PS 374
B2+Comp 2-PS 0.01 3-PS 0.25 4-PS 6 5-PS 240
B2+UMA 2-PS 0.01 3-PS 0.17 4-PS 5 5-PS 279
B3+Para 2-PS 0.01 3-PS 0.42 ✗ (30) 21 ✗ (287) 738
B3+Comp 2-PS 0.01 3-PS 0.63 ✗ (30) 22 ✗ (287) 730
B3+UMA 2-PS 0.01 3-PS 0.42 ✗ (30) 21 ✗ (287) 770
B4+Para 2-PS 0.02 3-PS 0.72 4-PS 41 5-PS 2,849
B4+Comp 2-PS 0.02 3-PS 0.79 4-PS 41 5-PS 2,809
B4+UMA 2-PS 0.02 3-PS 0.72 4-PS 41 5-PS 2,854

mentioned in [Belaïd et al. 2016], from a practical point of view, cases 3 ≤ 4 are actually used in
current real-life implementations. Thus, we consider secret masking orders 3 such that 2 ≤ 3 ≤ 5.
We do not consider the case 3 = 1 because it is too trivial.

The verification results are reported in Table 2, where the security order 3 is set to the masking
order C . Column (Name) shows the benchmark name. Column (Result) shows the strongest security
type proved via CONVINCE, where ✗ denotes that there are some subsets of Y (the number of
such subsets is provided in the parentheses) that cannot be proved secure while all the other cases
are proved without invoking CheckByGPUEnum. Column (Time) shows the execution time in
seconds. We can observe that the security of all the benchmarks can be quickly proved in a few
seconds when the security order is no more than 3. At the 4th-order and 5th-order, CONVINCE
can still prove the security of 9 out of 12 benchmarks. To better understand the effectiveness of
our approach on these benchmarks, we manually check them to identify the strongest security
properties they may have. We find that (1) gadgets that are proved 3-probing secure (PS) are indeed
not 3-NI, (2) gadgets that are proved 3-NI are not 3-SNI, and (3) gadgets that cannot be proved
3-probing secure remain unknown (6 cases) because they are too complicated to be determined
manually or proved automatically using existing tools including ours.

In detail, XORMULTI with the gadgets Para, Comp and UMA are proved of 3-NI for all 3 ∈ {2, 3, 4, 5}.
Example1, Example2 and Example2Corr with the gadgets Para, Comp and UMA are proved of 3-
probing secure for 3 ∈ {2, 3, 4, 5}, except for Example2 at 4th-order and 5th-order. Interestingly,
we prove that Example2 is actually 3-probing secure for any 3 ∈ {2, 3} when SecMult is replaced
by any of the Para, Comp and UMA. We found that Example2 has 30 subsets at 4th-order and 287
subsets at 5th-order that cannot be proved secure. We analyzed them manually and confirmed
that Example2 is indeed not 3-probing security for any 3 ∈ {4, 5} and any of the gadgets Para,
Comp and UMA. (Note that Example2 with masking order 3 was not 3-probing secure for some order
3 [Belaïd et al. 2018]; it remains an open question to identify such an order explicitly.)

Recall that our composition rules, as well as Algorithm 3, may not produce the smallest set Y to
ensure (Y, 3)-NI/(Y, 3)-SNI. Nevertheless, our results show that Algorithm 3 is able to compute a
sufficiently satisfactory set Y for each gadget by which 3-probing security or 3-NI can be proved.

5.2 Application to the AES Sbox

We show how to utilizeCONVINCE to explore the design space of efficient masked implementations
based on the AES Sbox.
[Goudarzi and Rivain 2017] proposed a secure and efficient bitsliced masked implementation

of the AES Sbox (GR-Sbox) using order-3 Boolean secret masking, which contains 32 gadget calls
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Table 3. Statistics of Sboxes and verification time, where Timeout (T.O.) is set to be 10 hours

Benchmark #r
Number of operators

CONVINCE
maskVerif SILVER

XOR AND NOT Total [Barthe et al. 2015] [Knichel et al. 2020]
2nd-Order

GR-Sbox 192 825 288 4 1,117 19s 270s T.O.
BGR-Sbox 96 633 288 4 925 39s 252s T.O.
P-Sbox-v1 96 633 288 4 925 38s 563s T.O.
C-Sbox-v1 68 577 288 4 869 52s 466s T.O.
P-Sbox-v2 96 633 288 4 925 39s 449s T.O.
C-Sbox-v2 86 613 288 4 905 34s 665s T.O.

3rd-Order
GR-Sbox 384 1,484 512 4 2,000 1,837s T.O. T.O.
BGR-Sbox 192 1,100 512 4 1,616 22,463s T.O. T.O.
P-Sbox-v1 172 1,060 512 4 1,576 26,295s T.O. T.O.
C-Sbox-v1 172 1,060 512 4 1,576 25,912s T.O. T.O.
P-Sbox-v2 182 1,080 512 4 1,596 17,557s T.O. T.O.
C-Sbox-v2 182 1,080 512 4 1,596 17,186s T.O. T.O.

to the 3-SNI finite-field multiplication SecMult. In this implementation, for each SecMult, one of
two operands is refreshed via a 3-SNI refresh gadget, resulting in 32 3-SNI refresh gadget calls. To
obtain verified efficient implementations of the AES Sbox which is the key building block of AES,
[Belaïd et al. 2018] developed tightPROVE and proved that GR-Sbox remains 3-probing secure at
any masking order 3 with no 3-SNI refresh gadget call prior to each SecMult, named BGR-Sbox.
This yields the AES Sbox with less refreshing. However, prior to this work it was an open problem
whether BGR-Sbox could be improved further. We show that CONVINCE can be used to explore the
design space of efficient gadgets using BGR-Sbox and report more efficient variants of BGR-Sbox.
To explore the design space of efficient gadgets using BGR-Sbox, we use two efficient masked

implementations for finite-field multiplication, i.e., Para [Barthe et al. 2017] and Comp [Belaïd et al.
2016] whose numbers of randomness bits (#r), XOR operations (#⊕), AND operations (#∧), and
security types are shown Table 1, compared over the finite-fieldmultiplication gadget SecMult [Ishai
et al. 2003]. All those gadgets for finite-field multiplications with the same masking order are
functionally equivalent.

We iteratively substitute one of 32 gadget calls to SecMult in BGR-Sboxwith themore efficient one
Para and verify if the implementation remains probing secure using CONVINCE. The substitution
is kept if it is secure, and this process is repeated until no more SecMult can be substituted, yielding
a new implementation, called P-Sbox-v1. Based on P-Sbox-v1, we apply similar substitutions to
SecMult and Para using Comp, yielding a new gadget, called C-Sbox-v1, as Comp is more efficient
than Para at the 2nd-order. Table 3 reports the amount of randomness and numbers of operations
of P-Sbox-v1 and C-Sbox-v1, compared to GR-Sbox and BGR-Sbox. We can observe that in general
P-Sbox-v1 and C-Sbox-v1 are more efficient than the state-of-the-art Sbox BGR-Sbox. To satisfy the
composition rules proposed by [Belaïd et al. 2018] so that one can build provable secure masked
implementations of full AES using more efficient implementations of Sbox, some gadget calls to
Para/Comp gadgets in P-Sbox-v1 and C-Sbox-v1 are replaced by SecMult, resulting in P-Sbox-v2 and
C-Sbox-v2. While they may use more randomness and operations than P-Sbox-v1 and C-Sbox-v1,
they are still more efficient than the state-of-the-art Sbox BGR-Sbox except for 2nd-order P-Sbox-v2.
As no existing compositional verifier can be used to verify BGR-Sbox after some substitutions,

we compare CONVINCE with two state-of-the-art open-sourced 3-probing security verifiers
maskVerif [Barthe et al. 2019] and SILVER [Knichel et al. 2020] for which all the gadget calls
have to be inlined manually. We do not compare with HOME [Gao et al. 2021], QMVerif [Gao
et al. 2022], SCInfer [Zhang et al. 2018] and SC Sniffer [Eldib et al. 2014], REBECCA [Bloem et al.
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Table 4. The number of randomness and operations in provable secure masking of full AES

Benchmark #r #XOR #AND #NOT #Operation
2nd-Order

GR-AES 30,720 151,344 46,080 640 198,064
BGR-AES 15,360 120,624 46,080 640 167,344
Para-AES 15,360 120,624 46,080 640 167,344
Comp-AES 13,760 117,424 46,080 640 164,144

3rd-Order
GR-AES 61,440 263,232 81,920 640 345,792
BGR-AES 30,720 201,792 81,920 640 284,352
Para-AES 29,120 198,592 81,920 640 281,152
Comp-AES 29,120 198,592 81,920 640 281,152

2018] (and its variant CocoAlma [Gigerl et al. 2021; Hadzic and Bloem 2021]), because HOME

and REBECCA are significantly less efficient than maskVerif for verifying 3-probing security of
the masked implementations of AES Sbox (cf. [Barthe et al. 2019; Gao et al. 2021]), and QMVerif,
SCInfer and SC Sniffer are limited to first-order security only. The verification results for 3-probing
security are shown in the last three columns of Table 3, where the security order 3 is set to be
the masking order C . maskVerif fails on the 3rd-order Sbox implementations, and for the 2rd-order
Sbox implementations, its verification time is at least 6.4 times more than that of CONVINCE.
SILVER does not terminate in 10 hours. CONVINCE can prove 3-probing security of them without
invoking CheckByGPUEnum and SILVER is included here as it has never been compared with
other verifiers. However, we do not know if they are 3-NI or 3-SNI because they are too complicated
to be determined manually or proved automatically using existing tools including ours.

To demonstrate the efficiency gains in provable secure full AES using more efficient Sbox imple-
mentations P-Sbox-v2 and C-Sbox-v2, Table 4 shows the randomness and number of operations
of full AES Para-AES and Comp-AES using P-Sbox-v2 and C-Sbox-v2. We can observe that for the
3rd-order full AES, 1,600 random variables and 3,200 XOR operations are reduced over the state-
of-the-art BGR-AES that uses BGR-Sbox. Although we can deduce that the 3-order benchmarks for
3 = 2, 3 in Table 4 are 3-probing secure according to the proved 3-order probing security properties
of C-Sbox-v2 and P-Sbox-v2 and the composition rules of [Belaïd et al. 2018, Proposition 14] (indeed,
they are only 3-probing secure, ) no existing tool is able to directly prove them right now.

6 RELATED WORK

In this section, we discuss the related work on automated formal verification of masked implemen-
tations and synthesis of leakage resilient programs against power side-channel attacks.
Non-compositional verifications. The pioneering work is done by [Moss et al. 2012], which
proposed a type system for checking masked implementations, limited to certain operations (i.e.,
⊕). [Bayrak et al. 2013] proposed heuristic rules based on don’t care random variables, however it is
neither sound nor complete. [Eldib et al. 2014] proposed a model-counting based approach which
reduces to a series of satisfiability problems which are checked by existing SMT solvers. While this
approach is sound and complete in theory, the reduction is exponential in the number of random
variables and thus limited to Boolean programs only. To mitigate the scalability issue of [Eldib et al.
2014], inference and symbolic approaches have been proposed [Meunier et al. 2020; Ouahma et al.
2017]. In general, the inference and symbolic approaches are efficient and sound but incomplete
while the model-counting based approaches are complete but not scalable, which motivated hybrid
approaches [Gao et al. 2019a,b; Zhang et al. 2018], bringing the best of two worlds. All the above
works focus on first-order probing security only and are non-compositional. In contrast to those
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works, this work addresses higher-order probing security and our compositional approach is sound
for verifying higher-order probing security.
To verify higher-order probing security, [Barthe et al. 2015] proposed a language-level charac-

terization of 3-probing security, called 3-NI, based on which a sound verification approach was
presented. Following this line, [Bloem et al. 2018] proposed a Fourier analysis based approach to
verify higher-order probing security with glitch. Both of them are limited to Boolean programs
while arithmetic programs cannot be tackled. [Coron 2018] proposed an approach to support
arithmetic programs by leveraging elementary transformations. The Fourier analysis based ap-
proach [Bloem et al. 2018] has been extended to verify RISC-V assembly implementations [Gigerl
et al. 2021] and further improved for verifying hardware circuits [Hadzic and Bloem 2021]. However,
this approach usually requires execution traces which have to be obtained from highly tedious
simulations and suffers from limited scalability (e.g., [Gigerl et al. 2021] took 18 minutes to verify
a first-order masked RISC-V implementation of AES Sbox, and [Hadzic and Bloem 2021] could
only verify a first-order masked hardware circuit of the first round of ten AES rounds). The hybrid
approach [Gao et al. 2019a] has been extended to verify higher-order probing security in [Gao et al.
2021], aided with a GPU based model-counting approach. SILVER [Knichel et al. 2020] proposed to
encode masked gadgets as a binary decision diagram on which the security is verified. All those
approaches are non-compositional and thus become intractable for large composite gadgets via
gadget inline. Compared with them, our approach can verify both Boolean and arithmetic programs
in a compositional way, thus is more efficient (cf. Section 5).
Compositional verification. Compositional approaches have been proposed to verify compos-
ite gadgets without gadget inline. [Barthe et al. 2016] extended the non-compositional 3-NI no-
tion [Barthe et al. 2015] to compositional ones 3-SNI and 3-NI and proposed the first compositional
reasoning approach for verifying 3-SNI and 3-NI. This idea has been extended to verify 3-probing
security, 3-SNI and 3-NI with glitches and transitions of simple gadgets [Barthe et al. 2019] while
does not support compositional reasoning. Though promising, this compositional approach fails
to verify efficient gadgets, hence may incur more random variables and operations. To overcome
this limitation, [Belaïd et al. 2018] proposed a new compositional verification approach, named
tightPROVE, for verifying 3-probing security via matrix analysis. However, their approach can
only verify composite gadgets built up from specific gadgets, thus, tightPROVE+ [Belaïd et al. 2020]
is proposed to support more fixed implementations of operations. This line of work in general only
works for gadgets satisfying 3-NI/3-SNI which are stronger than 3-probing security and rule out
many efficient masked implementations widely used in practice.
[Blot et al. 2017] lifted the SMT based approach of [Eldib et al. 2014] to higher-order probing

security with a new compositionality property that requires inserting unnecessary input encoders
for sequential composition, similar to inserting 3-SNI Refresh gadgets. [Cassiers and Standaert
2020] proposed another security notion PINI achieving the same “trivial compositionality" of 3-SNI,
and algorithms for verifying 3-PINI notion have been proposed [Cassiers et al. 2021; Knichel et al.
2020]. Finally, [Gao et al. 2022] extended the non-compositional type system of [Gao et al. 2019a]
to a compositional type system. However, it requires user-defined annotations and is limited to
first-order security only.

Compared with existing compositional approaches, the current work targets 3-probing security
of any given composition of gadgets, in particular, efficient masked implementations. To the best
of our best knowledge, it is a first-of-its-kind compositional approach for verifying higher-order
probing security of composite gadgets. We finally remark that this work is not intended to compete
with the existing compositional approaches on composite gadgets that can already be proved, but
is aimed to prove efficient composite gadgets that cannot be proved by the existing compositional
approaches, which is vital for resource limited devices, e.g., Internet of things devices.
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Synthesis. Automatic synthesis of leakage resilient programs has been studied. Early work [Agosta
et al. 2012; Bayrak et al. 2011] relied on compiler-like pattern matching, and they do not use formal
verification to provide guarantees. With their model-counting based verification approaches, [Eldib
and Wang 2014] introduced a constraint-based synthesis approach which can generate verified
first-order leakage resilient programs, and [Blot et al. 2017] proposed a compositional synthesis
approach which is able to generate higher-order leakage resilient programs. [Barthe et al. 2016]
uses a proof system to check if a program is 3-NI or 3-SNI. In case it fails, some refresh gadgets
can be inserted to pass the check. This idea has been adopted in [Belaïd et al. 2020] by leveraging
the verifier tightPROVE+. [Wang et al. 2019] proposed an approach to eliminate compiler-induced
leakages by leveraging the type inference of [Zhang et al. 2018] to detect potential leakages.

Our focus is on verification, but could also be extended to synthesize leakage resilient programs
by inserting refresh gadgets, similar to [Barthe et al. 2016; Belaïd et al. 2020].

7 CONCLUSION AND FUTURE WORK

We have introduced new language-level security notions and novel compositional approaches, as
well as their implementation, for rigorously proving efficient masked implementations of crypto-
graphic algorithms. This work paves a new way for this task by explicitly tracking variables for
simulating probes.
This work fills the gap between compositional verification and efficient implementations of

gadgets. However, similar to prior work [Barthe et al. 2015, 2016; Belaïd et al. 2020, 2018; Blot
et al. 2017; Cassiers and Standaert 2020; Eldib et al. 2014; Gao et al. 2021; Meunier et al. 2020;
Ouahma et al. 2017; Zhang et al. 2018], we did not consider physical defaults (such as glitches and
transitions) [Barthe et al. 2019] which essentially allows the adversary to observe one or more
internal variables by one probe. Our approach could readily be adapted to verify security with
glitches or transitions (similar to [Barthe et al. 2019]), as our approach proves security by finding a
variable set to simulate each observable set while the size of the observable set does not matter. We
leave the extensions of transitions and glitches as future work.
Our approach only guarantees soundness, thus may introduce false positives. There exist non-

compositional and compositional verification approaches that are both sound and complete in
theory, but the former requires model-counting (e.g. [Barthe et al. 2019; Eldib et al. 2014; Gao et al.
2019a,b; Zhang et al. 2018]) that has limited scalability; the latter (e.g., [Belaïd et al. 2020, 2018])
only supports composite gadgets built up from some fixed implementations. Developing sound and
complete—and scalable—compositional verification approaches with full support of higher-order
efficient masked implementations would be challenging future work as well.
Our verification approach could potentially be applied for verifying Shamir’s secret sharing

scheme [Shamir 1979] which has beenwidely used in securemultiparty computation (MPC) [Cramer
et al. 2015]. Given a computation % (B), Shamir’s (3, C)-threshold secret sharing scheme for 1 ≤ 3 < C

splits the secret B into C shares (5 (G1), · · · , 5 (GC )) for a random polynomial 5 (G) = B + 01G + 02G
2 +

· · · + 03−1G
3−1 mod ? , a random prime ? > C and C random values G1, · · · , GC . Note that G8 ’s, 3 , C ,

and @ are public. Moreover, the secret B = 5 (0) and the coefficients 01, · · · , 03−1 can be recovered
by any 3 shares of (5 (G1), · · · , 5 (GC )) via Lagrange’s Interpolation Theorem, but cannot for any
3 ′

< 3 shares of (5 (G1), · · · , 5 (GC )). The computation % should be implemented by C programs
%1, · · · , %C in such a way that % (B) can be recovered by any 3 shares of (%1 (5 (G1)), · · · , %C (5 (GC )))
whereas any 3 ′

< 3 parties of the programs %1, · · · , %C cannot infer any information of the secret
B . The latter can be reduced to checking whether the (intermediate) computation results of any
3 ′

< 3 parties of the programs %1, · · · , %C are statistically independent of the secret B where our
verification approach could be adapted. We leave this as interesting future work.
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8 DATA-AVAILABILITY STATEMENT

The tool and verification benchmarks (excluding full AES implementations) are available at [Gao
et al. 2023].
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