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Abstract Neural networks, as an important computing model, have a wide application in artificial intelligence (AI)

domain. From the perspective of computer science, such a computing model requires a formal description of its behaviors,

particularly the relation between input and output. In addition, such specifications ought to be verified automatically.

ReLU (rectified linear unit) neural networks are intensively used in practice. In this paper, we present ReLU Temporal Logic

(ReTL), whose semantics is defined with respect to ReLU neural networks, which could specify value-related properties about

the network. We show that the model checking algorithm for the Σ2 ∪ Π2 fragment of ReTL, which can express properties

such as output reachability, is decidable in EXPSPACE. We have also implemented our algorithm with a prototype tool,

and experimental results demonstrate the feasibility of the presented model checking approach.

Keywords model checking, rectified linear unit neural (ReLU) network, temporal logic

1 Introduction

Neural network (NN, for short) [1], is considered to

be an extremely important computing model in arti-

ficial intelligence domain. It has attracted more and

more attention in recent years. It acts as a classifier,

which takes an input from the feature space, and tells

the corresponding class to which the input belongs.

Though such kind of computing models has been

developed for decades, and numerous variants have

been presented (e.g., recurrent neural networks [2] and

convolutional neural networks [3]), for the most cases,

neural networks are working as black-boxes. This

makes the behavior of an NN extremely difficult to

predict, and therefore one can barely give a rigorous

description of such a network.

A neural network mimics what the human’s brain

works in reality, and its structure is designed in a bionic

way— it consists of a series of perceptrons (or neurons),

and each perceptron has several inputs (dendrites) and

one output (axon). The approach to modeling a per-

ceptron is to consider it as a function from inputs to

the output, and such a function is composed of a lin-

ear part and a nonlinear part. The linear part is a

weighted summation of the inputs, whereas the non-

linear part is in general an activation function. Then,

the perceptrons form a network via interconnection. In

general, to simplify the computing model, we organize

these perceptrons into layers, and usually a connection

only happens between two adjacent layers.

One can employ various activation functions when

designing NNs, for example, the sigmoid function, the

tanh function. Among these, networks using ReLU ac-

tivation function [4] are so attractive to mathematicians

and computer scientists. The reason might be that this

kind of functions is most likely to be linear — we call it

semi-linear, or piecewise linear [5]. Therefore, one can

obtain a linear map if we restrict the domain to a re-
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gion which is small enough, and this embodies the idea

that any continuous mapping can be approximated via

some piecewise linear ones.

The piecewise linear mechanism also provides a

chance to perform exact verification against this kind

of neural networks. Actually, as a mature technique,

model checking [6, 7] has been widely accepted. Inputs of

a model checker consist of a model and a specification.

The model is the description (might be abstracted) of

the system to be verified, whereas the specification is a

property we need to verify upon the model. For most

cases, model checking is a completely automatic ap-

proach, because the model is merely a semantic struc-

ture of the specification, and model checking is to judge

if the specification is satisfied by the model, which is

required to be decidable. Another attractive feature of

model checking is: when the specification is violated,

the algorithm also yields a counterexample which ex-

plains the reason of violation, and this co-product is

always considered to be important and valuable in lo-

cating bugs of design.

Actually, for an NN centered machine learning algo-

rithm, the task of model checking can be classified into

the following two levels.

Object Level. We take a (trained) neural network as

the model, and the specification describes properties of

the given NN.

Algorithm Level. We can take the learning algo-

rithm itself as the model — after all, such an algorithm

can be described as a transition system. Therefore, in

this case, a specification is used to designate some pro-

perty of the algorithm.

There is no wonder that giving an algorithm-level

model checking framework is much more difficult than

giving an object-level one. Even, for the object level,

this task is never a trivial one. To the best of our know-

ledge, only a few of this kind of frameworks have been

proposed for model checking simple non-temporal prop-

erties (e.g., the recent work on verifying neural networks

with SMT (satisfiability modulo theory) solver [8]).

For classical model checking, one typically uses tem-

poral logics as specification languages. Most temporal

logics are merely built up from boolean variables to-

gether with temporal connectives. However, a boolean

variable is too coarse for describing the data processing

in the neural networks. On the other hand, involving

too powerful mechanism in algebra tends to lead to the

risk of undecidability or a prohibitively high complexity

in decision.

As an attempt, by embedding terms about data pro-

cessing into LTL (linear-time temporal logic) [9], we in

this paper present a temporal logic which can describe

value-related properties in ReLU networks. We call it

ReLU temporal logic (ReTL, for short), whose seman-

tics is defined with respect to ReLU-NNs.

Why do we say that specification languages are im-

portant? First of all, as an interface to persons conduct-

ing verification, a logic is much more intuitive and suc-

cinct, whereas using equality/inequality is much more

complex and error-prone. In addition, as a standard

mathematical description mechanism in computer sci-

ence, logical formulas yield a connection to many prob-

lems, such as model checking, synthesis [10], and game-

solving.

As a common sense in computer science, log-

ics richer than Tarski arithmetic are considered

to be complex in doing decision which is doubly

exponential [11, 12]. Therefore, a special fragment of

ReTL is tailored being the specification language for

doing ModelChecking. Indeed, since we use quan-

tifiers (i.e.,

A

and

E

) in ReTL, a hierarchy of formu-

las exists according to the nesting and alternation of

quantifiers. We follow the convention using Σi and Πi

to denote the set of formulas having i-alternations of
E

-

A

and

A

-

E

quantifiers in their normal form, respec-

tively. Among these, Σ2 ∪Π2 is an important fragment

of ReTL formulas. Existing work on the formal ver-

ification of neural networks concerns on four types of

properties/problems:

1) local robustness, which expresses that all inputs

in a given region are classified as the same class [13];

2) reachability property, which aims to compute the

set of outputs for a given set of inputs [14];

3) interval property, which aims to compute a tight

bound of outputs for a given set of inputs [15, 16];

4) Lipschitzian property, which monitors the

changes of the output with respect to small changes

of the inputs [17].

The first three properties can be directly described

by some Σ2 ∪ Π2 formulas, whereas Lipschitzian pro-

perty is describable only when we choose L1-norm or

L∞-norm (cf. Section 5 for further explanation). In this

paper, we show that the ModelChecking problem of

Σ2 ∪Π2 fragment of ReTL is decidable in EXPSPACE

— in this paper, complexity is measured w.r.t. the

number of hidden neurons.

The main approach to achieving this result is to

boil it down to the parameter emptiness (PE) decision

problem for linear inequality/equality systems. An-
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other technique we use to do model checking is ReLU-

elimination, which converts a ReLU-system to a set of

standard linear inequality systems. In this paper, we

mainly use the Moore-Penrose inverse to solve linear

equality/inequality systems.

The rest of this paper is organized as follows. In

Section 2, we briefly revisit some basic notions and no-

tations on linear algebra and ReLU networks. Since

the general theory of linear equality/inequality systems

is important to our work, we provide some concep-

tions and theorems that are used in Section 3. In Sec-

tion 4, we introduce the ReLU-elimination technique,

and show that we can deal with the so-called PE prob-

lem. ReTL is introduced in Section 5. In Section 6, we

show how to performModelChecking against Σ2∪Π2

formulas, and this section also provides an analysis of

complexity. We implement a prototype toolkit, and ex-

perimental results are given in Section 7. Related work

about this paper is exhibited in Section 8, and we con-

clude this paper in Section 9.

2 Preliminaries

2.1 Vectors and Matrices

In this paper, we use R and C to denote the set of

real numbers and the set of complex numbers, respec-

tively. We use M , N (possibly with subscript), etc.

to range over matrices, and use u, v, etc. to denote

vectors.

For an m-by-n matrix M = (ai,j)m×n, we denote

by row(M) (resp. col(M)) the number of rows (resp.

columns) of M . We thus have row(M) = m and

col(M) = n in this case. We use MT to denote the

transposition of M , and we denote by MH the trans-

posed conjugate of M .

If both a = (ai)n and b = (bi)n are real vectors, we

denote by a ∼ b if ai ∼ bi for every i 6 n, here ∼ may

be one of >,<,>,6 or =.

Given two vector sets V1,V2 ⊆ Cn, we denote by

V1 + V2 the set {v1 + v2 | v1 ∈ V1,v2 ∈ V2}. Particu-

larly, we directly write {v}+ V as v + V .

We follow the convention using In to denote the

identity matrix with shape n by n, and use 0n and 1n

to denote the vectors with length n, whose elements are

all 0 and 1, respectively. We usually drop off n from

the subscript in the case that the shape of the matrix

(or, vector) is clear from context.

There is no wonder that each matrix determines a

linear mapping over vector space, namely, for matrix

M = (ai,j)m×n ∈ Cm×n and vector v = (bi)n ∈ Cn, we

definitely obtain vector M ·v ∈ C
m. Then, M is injec-

tive (resp. surjective) if and only if rank(M) = col(M)

(resp. rank(M) = row(M)).

Matrix M ∈ Cn×n is said to be normal if MHM =

MMH. Thus, if M is a Hermitian matrix (i.e., M =

MH), then M is automatically normal. In addition,

every symmetric real matrix is normal. Here is an im-

portant property of normal matrices.

Theorem 1 (Spectral Decomposition). Let M ∈

C
n×n be a normal matrix, and then we have

M =

n
∑

i=1

λiviv
H
i , (1)

where each vi is an eigenvector of M w.r.t. the eigen-

value λi, and the set {vi} forms an orthonormal base

of Cn, i.e., vH
i · vj = δi,j.

Recall that the value of Kronecker delta δi,j equals

1 if i = j, and 0 whenever i 6= j. Righthand of (1) is

said to be the spectral decomposition of M . For this

reason, we sightly take an abuse of notations and let

M−1 =
∑

λi 6=0

1

λi
viv

H
i , (2)

even if the normal matrix M is singular.

For a normal matrix M , let supp(M) be the lin-

ear space spanned by all its eigenvectors that do not

correspond to eigenvalue 0. Namely,

supp(M) = span{
∑

i

civi | ci ∈ C, λi 6= 0},

if the spectral decomposition of M is
∑

i λiviv
H
i .

A U-matrix is a normal matrix such that each of its

eigenvalue λ fulfills |λ|2 = 1. Hence, for a U-matrix M ,

we have MHM = MMH = I. In addition, the set of

all the row (or column) vectors of a U-matrix must be

orthonormal.

Theorem 2 (Singularity Value Decomposition,

SVD). Every matrix M can be decomposed into UDV ,

where both U and V are U-matrices, and D is a diag-

onal matrix (may be not a square one).

For a real symmetric matrix, all its eigenvalues are

real numbers, and it can always have a spectral decom-

position that involves only real eigenvectors.

For this reason, in the following we mainly concern

real matrices and vectors; thus the number field is con-

fined to R, rather than C. In this setting, MH and MT

coincide.
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2.2 Non-Linear Mappings

In contrast, a non-linear mapping f = (fi)n
never changes the shape of a vector, i.e., f ((xi)n) =

(fi(xi))n, and each fi is a function from R to R. Some

typical non-linear mappings are listed as follows:

• sigmoid: where fi(x) = exp(x)/(1 + exp(x)),

• tanh: if we let fi(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
,

• relu: in which fi(x) = max{0, x}.

More generally, we also allow multiple non-linear

mappings from Rn to Rn being of F = (Fi)n, where

each Fi is an n-ary function from Rn to R. Hence,

F (v) =
(

Fi(v1, . . . , vn)
)

n
if v = (vi)n. For the particu-

lar case,

Fi(v1, . . . , vn) =
exp(vi)

∑n
j=1 exp(vj)

.

F is called softmax.

For two matrices M and N such that row(M) =

row(N), we denote (M
... N) as the juxtaposition of

M and N .

For a linear or nonlinear mapping f : Rn → R
n, we

define:

• Ran(f) = {f(v) | v ∈ Rn}, and

• Ker(f) = {v ∈ Rn | f(v) = 0},

which are called the range and the kernel of f , respec-

tively.

Theorem 3. For any (real) matrix M , as a linear

mapping, we have

Ran(M)⊥ = Ker(MT),

where Ran(M)⊥ is the orthogonal space of Ran(M).

2.3 ReLU Neural Network

For a neural network consisting of ℓ-layers of per-

ceptrons (neuron cells), it could be described via a set

of matrices {Mi}
ℓ−1
i=0 and vectors {bi}

ℓ−1
i=0 , where:

•Mi depicts the weights of connections between the

i-th and the (i+ 1)-th layers of perceptrons,

• bi refers to the biases associated with the percep-

trons of the i-th layer (i > 0).

Since we are concerned about fully-connected per-

ceptrons in this paper, we require that row (Mi) =

row(bi) = col (Mi+1) for every i > 0. Indeed, row(Mi)

designates the number of perceptrons of the i-th layer.

For a given input vector v0 ∈ Rcol(M0), a ReLU

network performs in the following way.

• It produces a series of intermediate vectors

v1,v2, . . . ,vℓ, where

vt+1 =

{

relu(Mtvt + bt), if t < ℓ− 1,
Mtvt + bt, if t = ℓ− 1.

• Let softmax(vℓ) = [cj ]N , and then it takes

argmax
j

({cj | j 6 N}) as the final output, i.e., the

index of the maximum element in softmax(vℓ).

In the case that the last step is not well-defined,

namely, there is more than one maximum element in

softmax(vℓ), we call that v0 admits an adversarial ex-

ample.

3 Theory of Generic Linear Inequality

Although the theory of linear equality/inequality

system is well-founded already, in this paper, in order to

establish the decision procedure for the ModelCheck-

ing problem of our proposed logic, we need a special

technique to give an explicit representation of the solu-

tion space. To make the paper self-contained, we need

to revisit the related issues in this section.

Let M ∈ Rm×n be a real matrix, and let

M+ = (MTM)−1MT, (3)

be the Moore-Penrose inverse (M-P inverse, for short)

of M . Remind again that here M−1 is the general

inverse operation (cf. (2)).

Theorem 4 (Penrose [18]). X = M+ is the unique

solution of the following equation system:

MXM = M , XMX = X,
(MX)T = MX, (XM)T = XM .

(4)

Proof. The fact that M+ fulfills the system can

be examined immediately. Supposing we have another

solution M ′ that fulfills (4) as well, then:

M ′

= M ′MM ′ = M ′MM+MM ′

= (M ′M)T(M+M)TM ′ = (M+MM ′M)TM ′

= (M+M)TM ′ = M+MM ′ = M+(MM ′)T

= M+(MM+MM ′)T = M+(MM ′)T(MM+)T

= M+MM ′MM+ = M+MM+ = M+. �

Theorem 5. Both MM+ and M+M are pro-

jectors, i.e., an eigenvalue of MM+ (resp. M+M)

can only be 0 or 1; hence the spectral decomposition of

MM+ (resp. M+M) must be of the form
∑

i viv
H
i .

Proof. Supposing that M ∈ Rm×n and rank(M) =

r, let UDV be the SVD decomposition of M , where
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D =

(

C 0

0 0

)

in which C is a non-singular diagonal

matrix. Then, let

M ′ = V H

(

C−1 0

0 0

)

UH,

and one can check thatX = M ′ fulfills all requirements

in (4). Then, we immediately have that M+ = M ′ ac-

cording to Theorem 4, and the conclusion can be thus

ensured. �

The proof of Theorem 5 provides an alternative way

to calculate M+. Therefore, if M is a non-singular

square matrix, we immediately have M+ = M−1. In

this sense, M-P inverse generalizes standard inverse ma-

trix.

Theorem 6. For any real matrix M , we have

Ran(I −M+M) = Ker(M+M) = Ran(MT)⊥, (5)

and hence Ran(M) = Ran(MM+).

Theorem 7 [19]. For each b, we have that MM+b

is the asymptotical vector of b within Ran(M). In other

words, we have

‖Mx− b‖ > ‖MM+b− b‖,

for every x.

Proof. We first observe that b = b1 + b2 where

b1 = MM+b and b2 = (I −MM+)b. Therefore, for

every x, we have

Mx− b

= Mx− b1 − b2

= M(x−M+b)− (I −MM+)b.

Remind that M(x − M+b) ∈ Ran(M) and (I −

MM+)b ∈ Ran(M)⊥ according to Theorem 6; hence

‖Mx− b‖2

= ‖M(x−M+b)− (I −MM+)b‖2

= ‖M(x−M+b)‖2 + ‖(I −MM+)b‖2

> ‖(I −MM+)b‖2

= ‖MM+b− b‖2. �

According to the proof of the above theorem, we can

see that x = M+b is a special solution of the asymptot-

ical equation 1○ Mx ⊜ b, and hence its general solution

turns out to be

M+b+Ker(M) = M+b+ supp(I −M+M),

because Ker(M) is precisely supp(I −M+M).

Therefore, the exact solution of Mx = v turns out

to be x = M+b+ Ker(M) if b ∈ Ran(M).

Subsequently, we try to find the pre-image of a set

V (not necessarily a linear space) of M , denoted as

M−1[V ], which is the set {x | Mx ∈ V}.

According to the previous analysis, if Mx = y ∈ V ,

then we must have y ∈ Ran(M) ∩ V . We thus have

M−1[V ] = {M+b | b ∈ V ∩ Ran(M)} +Ker(M). (6)

Let us now deal with the inequality Mx > b, and

for this we have the following theorem.

Theorem 8. Mx > b if and only if x ∈ {M+v |

v > b,v ∈ Ran(M)} +Ker(M).

Proof. Because Mx > b if and only if Mx = v for

some v ∈ Ran(M) having v > b, the conclusion can

be obtained from the aforementioned conclusion about

linear equation. �

Note that the conclusion of Theorem 8 can be fur-

ther generalized into any other comparison operators,

even if it mixes 2○ >, >, or =. For example, in the

system







2x1 + 3x2 > 2,
3x1 + x3 = 1,
x2 − 2x3 > 5,

by denoting

M =





2 3 0
3 0 1
0 1− 2



 , x =





x1
x2
x3



 ,

b =





2
1
5



 , and ∼ =





>
=
>



 ,

the above system can be written as Mx ∼ b.

Theorem 9. Mx ∼ b if and only if x ∈ {M+v |

v ∼ b,v ∈ Ran(M)} +Ker(M).

A closely related notion to inequality system is

finitely representable set (FRS, for short). Given a fi-

nite vector set {vi}ni=1, then FRS consists of vectors

being of
∑

i=1 civi, possibly with additional constraints

on the coefficients cis. Here {vi}
n
i=1 is called the gen-

erating vector set. We now list some typical finitely

representable sets:

1○The goal of an asymptotical equation Mx ⊜ b is to find some x making ‖Mx− b‖ minimal.
2○For other two relations < and 6, we can negate elements in the corresponding row in both M and b, and then change them

into > and >, respectively.
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1) Linear Space: if no additional constraint is im-

posed to the coefficients;

2) Cone (Hull): if we require that each ci > 0;

3) Convex Hull: if we require that each 0 6 ci 6 1,

and
∑n

i=1 ci = 1.

4) Polyhedral Cone: if the coefficients fulfill a linear

inequality system.

Let V =

(

v1

... · · ·
... vn

)

and c = (c1, . . . , cn)
T,

and then a finitely representable set can be character-

ized by a linear inequality system about V and c.

Note that FRSs are closed under intersection, be-

cause the simultaneous system of given FRSs just

captures their intersection. According to Farkas’

lemma [20], we immediately have the following theorem.

Theorem 10. The problem if the intersection of

several given FRSs is empty can be decided in polyno-

mial time.

Also note that linear transformation (plus some

shifting) preserves finite representability. The reason

is: for an FRS V with generating vector set {vi}
n
i=1,

the set {Mv+ b | v ∈ V} is also an FRS with generat-

ing vector set {Mvi}ni=1 ∪ {b}, where Mbi is imposed

the same coefficient constraint as that to vi, and the

coefficient of b is set to 1.

4 PE-Decision and ReLU-Elimination

We, in this section, introduce two key techniques

about ReLU-network model checking, namely PE-

decision and ReLU-elimination.

4.1 Decision Procedure for Emptiness of

Parameterized Systems

In this subsection, we deal with the following prob-

lem, called parameterized emptiness (PE, for short): for

a given linear inequality system F (x;y), in which x is

taken as unknown variable, whereas y acts as parame-

ter, the goal is to find the condition of y making the

solution space of x empty.

For example, the PE problem for the trivial case

0x > y is just

y ∈ {v 6= 0 | v > 0},

because in this case the inequality has no solution of x

(remind that the above set is not equal to {y | y > 0}).

Since all operations are linear, it is clear that

F (x;y) can always be equivalently transformed into

the normal form

Mx ∼ Ny + b, (7)

where ∼ is a vector of relations, each element of which

is among {>, >,=}.

First of all, let z = Ny + b, then (7) boils down to

another PE problem Mx ∼ z.

According to Theorem 9, the solution space is empty

if and only if

Ran(M) ∩ {v | v ∼ z} = ∅.

Note that Ran(M) is a linear space and {v | v ∼ z} is

a finitely representable set (FRS, for short). Supposing

∼ = (∼i)n, let

V
∼

=

{

v = (vi)n |
row(v) = row(∼),

∼i∈ {>,>} =⇒ vi > 0

}

,

then from a geometric view 3○, we can conclude that the

solution of the PE problem Mx ∼ z is just

z ∈
⋃

v∈Ran(M)⊥∩V∼

α&0

(

αv + {v}⊥
)

, (8)

where

& is

{

>, if ∼ involves at least one “>” as element,
>, otherwise.

From (8), one can see that such z exists if and only

if Ran(M)⊥ ∩ V
∼

6= {0}. Indeed, Ran(M)⊥ ∩ V
∼

it-

self forms a cone hull, and hence one can give its finite

representation.

Let us denote by VZ the right side of (8), then the

solution of the PE problem of (7) is

N−1[VZ − b]

= {N+v | v ∈ Ran(N) ∩ (Vz − b) + Ker(N)}.

As a consequence, this set is also finitely representable.

Nevertheless, we here give an alternative character-

ization for the solution of PE-problem, which is used to

deal with the batch manner — namely, we are given a

series of PE-problems {Ti(x,y)}i, to determine if the

intersection of all solution spaces is empty. For this, we

have the following theorem.

Theorem 11. For the PE-problem given by (7),

the complementary space 4○ of the solution is a polyhe-

dral cone.

Proof. For the PE-problem about x and y given as

Mx ∼ Ny + b ,

3○Alternatively, one can also get the same conclusion by using Farkas’ lemma.
4○Here, we take Rrow(y) as the universal set.
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according to Theorem 9, the complementary space of

the solution can be characterized as N+[V ], where

V = {v | v ∈ Ran(N), ∃v′ ∈ Ran(M)− b s.t. v ∼ v′},

and then it suffices to show V is a polyhedral cone.

Supposing that

Ran(N) = span{n1, . . . ,nk},

and

Ran(M) = span{m1, . . . ,mt},

we can introduce a set of coefficients c1, . . . , ck, c
′
1, . . . ,

c′t ∈ R fulfilling the constraints
∑

i

cini ∼

∑

j

c′jmj − b,

and V is just an FRS generated by the vector set {li}
k+t
i=1

with the coefficients {c1, . . . , ck, c
′
1, . . . , c

′
t}, where

li =

{

ni, if i 6 k,

0, otherwise,

and thus we claim that V is a polyhedral cone. �

4.2 ReLU System and ReLU-Elimination

A ReLU system is a set of equalities and/or inequal-

ities, and each of them may include not only standard

operators but also the ReLU operation. Here gives an

example of such a system about x:






M1x+ b1 = b2,
relu(M2x+ b2) > relu(M3x+ b3),
relu(M4x) 6 b4,

where Mi and bi for 1 6 i 6 4 are given matrices and

vectors.

We have discussed how to handle ReLU-free formu-

las in Subsection 4.1. Therefore, in what follows we

mainly deal with formulas involving ReLU operators.

In this paper, we call such technique ReLU-elimination.

The first step of ReLU-elimination is to replace each

ReLU-expression with a series of equalities and/or in-

equalities. The details are listed as follows.

• Supposing that we have a sub-expression relu(t)

with row(t) = n, let us denote by [n] the set

{1, 2, . . . , n}.

• For each subset U ⊆ [n], letEU = diag(d1, . . . , dn)

where

di =

{

1, if i ∈ U,

0, otherwise.

• Subsequently, we impose two additional inequali-

ties

EU t > 0 and (I −EU )t 6 0 , (9)

and replace relu(t) with EU t in the original expression.

Intuitively, for a pre-assumed subset U of [n], pro-

jectors EU and I − EU extract the non-negative part

and the non-positive part of t, respectively. In the

situation that (9) holds, relu(t) is precisely EU t.

With such a transformation, we can eliminate all

ReLU operators, and thus obtain a set of ReLU-free ex-

pressions again. That is, for each sub-expression relu(t)

and each such subset U , we need to initialize a specific

system. Therefore, as the cost, the number of systems

is exponential in
∑

i row (ti) wherein relu(ti) occurring

as a sub-expression.

Remark. In [21], the authors introduced an alter-

native way to do ReLU-elimination, which requires a

large constant matrix, and each element of this matrix

is approximate to ∞. Indeed, our approach is specially

tailored for PE-decision.

5 Temporal Logic: ReTL

Since all preparations on algebra are done, we here

introduce a logic which is able to specify temporal prop-

erties w.r.t. ReLU networks. In this paper, we call this

kind of temporal logic ReTL.

First of all, terms (or expressions) of ReTL are in-

ductively built up on vector constants (such as v, v1,

v2), and vector variables (ranging over x, y, x1, . . . ),

and they can be described with the following abstract

grammar:

t ::= v | x | ©kt | t[i] | Mt | t+ t,

where i, k ∈ N, andM is some constant matrix compat-

ible with t. Intuitively, t[i] refers to the i-th element of

t, which is a scalar. In addition, we may directly write

©0t and ©1t as t and ©t, respectively.

Formulas of ReTL are given as below.

• Both ⊥ and ⊤ are ReTL formulas.

• If t1 and t2 are two terms, then t1 ∼ t2 is a formula

if row(t)1 = row(t2), where ∼∈ {>,>,=, 6=, <,6}.

• If ϕ and ψ are ReTL formulas, then so do ϕ ∧ ψ,

ϕ ∨ ψ, ϕ→ ψ and ¬ϕ.

• Supposing that ϕ and ψ are ReTL formulas, then

both Xϕ and ϕUψ are ReTL formulas.

• If ϕ is a ReTL formula, x is a vector variable, then

both

E

x ∈ Rn.ϕ and

A

x ∈ Rn.ϕ are ReTL formulas.
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As in standard LTL, we introduce the following de-

rived operators for the sake of brevity:

Fϕ := ⊤Uϕ, and Gϕ := ¬F¬ϕ.

A formula ϕ is closed, if it involves no free variable,

i.e., all the occurrences of all variables in ϕ are quanti-

fied by either

A

or

E

.

Recall that a ReLU network (having ℓ layers)N can

be characterized via a series of matrix-vector alterna-

tions

M0, b0,M1, b1, . . . ,Mℓ−1, bℓ−1,

fulfilling the requirement that row(Mi) = row(bi) =

col(Mi+1). It works as we have described in Subsec-

tion 2.3.

Semantics of ReTL formulas is defined w.r.t. a

ReLU network N , a position i < ℓ, and an evalua-

tion V which assigns each vector variable to a vector of

proper shape. We inductively define the semantics of a

term t, denoted as [[t]]VN ,i, as follows.

• For a vector constant v, we have [[v]]VN ,i = v.

• [[x]]VN ,i = V(x), for any vector variable x.

• To compute [[©kt]]VN ,i, we need to distinguish sev-

eral cases:

1) if k = 0, then [[©kt]]VN ,i = [[t]]VN ,i,

2) if k > 0 and i + k < ℓ, then [[©kt]]VN ,i is

relu(Mi+k−1[[©k−1t]]VN ,i + bi+k−1),

3) if k > 0 and i + k = ℓ, then [[©kt]]VN ,i is

Mℓ−1[[©k−1t]]VN ,i + bℓ−1, and

4) if i+ k > ℓ, this term is undefined.

Note that we discard the softmax operation for the

second case, to preserve piecewise-linearity of all ope-

rations. This would not essentially affect any compa-

rison, e.g., softmax(t)[i] ∼ softmax(t)[j] iff t[i] ∼ t[j].

• [[t[k]]]VN ,i is just the k-th element of [[t]]VN ,i, and

the value becomes “undefined” if k is greater than the

length 5○ of the corresponding vector.

• [[Mt]]N ,i = M [[t]]N ,i.

• [[t1 + t2]]N ,i = [[t1]]N ,i + [[t2]]N ,i.

Subsequently, we can define the satisfaction relation |=

as follows.

• N , i |=V ⊤ and N , i 6|=V ⊥ always hold.

• N , i |=V t1 ∼ t2 iff [[t1]]
V

N ,i ∼ [[t2]]
V

N ,i.

• Semantics of boolean operators (¬, ∧, ∨) are de-

fined as usual, e.g., N , i |=V ¬ϕ iff N , i 6|=V ϕ.

• N , i |=V Xϕ iff i 6 ℓ and N , i+ 1 |=V ϕ.

• N , i |=V ϕUψ iff there is some j > i such that

N , j |=V ψ and N , k |=V ϕ for every i 6 k < j.

• N , i |=V

E

x ∈ Rn.ϕ iff there is some v ∈ Rn mak-

ing N , i |=V[v/x] ϕ.

• N , i |=V

A

x ∈ Rn.ϕ iff for every v ∈ Rn we have

N , i |=V[v/x] ϕ.

In the above, V[v/x] is also an evaluation, which is

almost identical to V, except for V[v/x](x) = v.

For the sake of brevity, we omit the index i from

the left-side of satisfaction notation when i = 0. In

addition, we drop off the evaluation from the subscript

when the formula is closed, because the satisfaction of

a closed formula is irrelative to the variable evaluation.

In Section 7, we provide some examples describing

properties we are concerned about using ReTL formu-

las.

Bewaring the use of until operator (U), one some-

times runs a risk of type mis-match. For example, for

the formula

E

x ∈ R
n.(x >©v)U(x > 1),

the length of ©v is sensitive to the location, and such

vector comparison might be nonsense whenever the

width of the network (in other words, the number of

perceptrons of current layer) changes.

Nevertheless, we have the operator U in the logic for

several reasons.

• First of all, we want this logic subsumes LTL in

syntax, and until is the soul operator of a majority of

various temporal logics.

• Second, as we will see later, when doing model

checking upon a simple neural network (i.e., the net-

work does not contain recurrent loops), U can be rewrit-

ten with X if there is no type conflict.

• Last but not least, as a more ambitious intention,

this operator may be needed when we generalize our

model into recurrent neural networks.

6 Model Checking Σ2 ∪ Π2 Fragment of ReTL

6.1 Framework

Given a ReLU network N , and a closed ReTL for-

mula ϕ, the ModelChecking problem is just to check

whether N |= ϕ holds.

Since we allow quantifiers, algebraic operations as

well as comparisons, this logic definitely subsumes

Tarski arithmetic [11]. As a result, the model checking

5○Note that a scalar is always considered as a vector of length 1 in such logic.
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problem of ReTL is at least as hard as the Satisfia-

bility problem of Tarski arithmetic.

Recall that the Satisfiability of Tarski arithmetic

is doubly exponential in the size of the formula, and

thus doing model checking upon the whole logic leads to

a prohibitively high computation cost. To circumvent

this, we need to confine ReTL to a particular sub-logic,

and we first need to give a classification of ReTL.

For a ReTL formula ϕ, we can equivalently write it

into the negative normal form:

Æ

1x1 ∈ R
d1 .

Æ

2x2 ∈ R
d2 . · · ·

Æ

nxn ∈ R
dn .ψ,

where each

Æ

i is either

A

or

E

, and ψ is a quantifier-

free formula. Depending on the nesting of quantifiers,

we define a hierarchy of ReTL formulas.

• ∆ = Σm
0 = Πm

0 for all m, and this set consists of

all quantifier free formulas.

• If φ ∈ Σm
k , then

E

x ∈ R
n.φ ∈ Σm+1

k and

A

x ∈ Rn.φ ∈ Π 1
k+1.

• If φ ∈ Πm
k , then

E

x ∈ Rn.φ ∈ Σ1
k+1 and

∀x ∈ Rn.φ ∈ Πm+1
k .

To simplify the notation, let

Σn =
⋃

m6n
k∈N

Σk
m ∪

⋃

m<n
k∈N

Π k
m ∪∆,

Πn =
⋃

m6n

k∈N

Π k
m ∪

⋃

m<n
k∈N

Σk
m ∪∆,

and in this paper, we are concerned about the set

Σ2 ∪ Π2. Indeed, quantifier-nesting is the essential

cause of difficulty in logic, and formulas become dif-

ficult to understand if the alternation depth of quanti-

fiers is greater than 2. In addition, this set is powerful

enough to express properties making sense w.r.t. ReLU

networks.

As an example, the following Π 1
1 formula:

∀x ∈ R
col(M0). x[2] > 5 →

row(bℓ−1)
∧

k=2

(©ℓx[1] >©ℓx[k]),

just declares that if the second element (feature) of a

sample is greater than 5, then this sample must belong

to the first class.

In [22], the authors summarized four types of cru-

cial properties considered when verifying (deep) ReLU

neural networks, namely, the local robustness, reacha-

bility property, interval property and Lipschizian pro-

perty. As we have described in Section 1, the first

three kinds of properties can be directly described with

some Σ2 ∪Π2 formulas. However, the definition of Lip-

schizian property requires p-norms, which is in general

non-linear except for the case of p = 1 or p = ∞ (in

Section 7, we will give some examples).

To perform model checking against Σ2 ∪ Π2 formu-

las, we first need a translator TN ,i, which converts the

quantifier-free part into a boolean combination of pure

algebraic formulas — that means, the translator elimi-

nates the © and/or index operator, and temporal ope-

rators in the terms and formulas.

For the sake of brevity, we directly write TN ,i as

Ti since N is given in the context. Inductively, for the

terms:

• Ti(t) = t if t is a vector constant or a vector

variable.

• For Ti(©kt), we require that k + i 6 ℓ, and:

i) if k = 0, then Ti(©kt) = t;

ii) If k > 0 and k + i < ℓ, then Ti(©kt) is

relu(Mk+i−1Ti(©k−1t) + bk+i−1);

iii) when k > 0 and k + i = ℓ, then Ti(©kt) is just

Mℓ−1Ti(©k−1t) + bℓ−1.

• Ti(t[j]) = eTj Ti(t), where ej is the vector with

row (ej) = row (t), its j-th element is 1 and other ele-

ments are all 0.

• Ti(Mt) = MTi(t).

• Ti(t1 + t2) = Ti(t1) + Ti(t2).

For the quantifier-free formulas, we have:

• Ti(⊤) = ⊤, and Ti(⊥) = ⊥;

• Ti(t1 ∼ t2) = Ti(t1) ∼ Ti(t2);

• Ti(¬ϕ) = ¬Ti(ϕ) and Ti(ϕ1 ∨ ϕ2) = Ti(ϕ1) ∨

Ti(ϕ2);

• Ti(Xϕ) = Ti+1(ϕ);

• Ti(ϕ1Uϕ2) =
∨ℓ+1

k=i

(

Tk(ϕ2) ∧
∧k−1

j=i Tj(ϕ1)
)

.

Actually, the translator encodes the information of

the model (i.e., the ReLU network), and the ReTL for-

mula finally turns into the form:

Æ

1x1 ∈ R
d1 .

Æ

2x2 ∈ R
d2 . · · ·

Æ

nxn ∈ R
dn .T0(ψ).

Now, given a Π2 formula ϕ, w.l.o.g., we just suppose

its normal form is

A

y1 ∈ R
d1 . · · ·

A

yn ∈ R
dn .

E

x1 ∈ R
k1 . · · ·

E

xm ∈ R
km .ψ,

where ψ = ψ1 ∨ . . . ∨ ψt, and each quantifier free for-

mula ψi is in positive normal form and is ∨-free. Be-

waring that in this system we have vectorized relation

such as 6=, 6>, 6>. Thanks to the fact that we are
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Fig.1. Framework for Σ2 ∪ Π2 formula model checking.

aware of the width of each layer, we can decompose

it into scale version in the previous step. For exam-

ple, if the width of the second level is k, then when

interpreting the formula v 6= t, we can first write it

as
∨k

i=1 ((v[i] > t[i]) ∨ (v[i] < t[i])) before imposing T1

on it. Also, we can eliminate < and 6 in the formula

(e.g., x 6 v is transformed into −x > −v).

Once the formula is translated into the canonical

form, we can perform the verification via the following

steps (cf. Fig.1).

• First, we introduce two new vector variables y ∈

R
∑n

i=1 di and x ∈ R

∑
m
j=1 kj , and each xj and yi can be

represented by x and y, respectively. For example, we

have

yi = [[0](
∑

j<i dj)×di

... Idi

... [0](
∑

j>i dj)×di
] · y.

Intuitively, x and y are concatenations of all xjs and all

yis, respectively. By denoting ψ̃i obtained from ψi via

doing such replacement, ϕ can be equivalently written

as

∀y ∈ R

∑n
i=1 di .∃x ∈ R

∑
m
j=1 kj .(ψ̃i ∨ . . . ∨ ψ̃t).

• Then, each T0(ψ̃i) corresponds to a ReLU-system.

After doing ReLU-elimination with the technique we in-

troduced in Subsection 4.2, each T0(ψ̃i) derives finitely

many systems of equality/inequalities {Ti,j}j.

• Observe that N 6|= ϕ iff there exists some vector

y in R
∑n

i=1 di making no proper x ∈ R

∑
m
j=1 kj fulfill Ti,j

for every i and every j. Therefore, this is precisely the

question “whether the common part of PE problems of

all Ti,j(x,y) is non-empty”.

• Since the solution of each Ti,j(x,y) is an FRS,

as we discussed in Subsection 4.1, the emptiness judg-

ing of the intersection is definitely decidable. In addi-

tion, each element belonging to this intersection yields

a counterexample of this formula.

Also note that when ϕ is a Σ2 formula, then ¬ϕ is

Π2, and we have N |= ϕ iff N 6|= ¬ϕ by definition. Ac-

tually, in this situation, a counterexample of ¬ϕ is in

general called a witness for ϕ.

6.2 Analysis of Complexity

We now give an analysis on the complexity of Mod-

elChecking against Σ2 ∪Π2 formulas. Recalling that

in Subsection 6.1, the algorithm framework is given as

followings.

1) For the first step, the cost of combining N and

ϕ together is polynomial in the size of the both inputs.

Particularly, we can gain a linear translation if ϕ is U-

free.

2) Subsequently, we encounter an exponential blow-

up when doing ReLU-elimination. As we have discussed

in Subsection 4.2, each linear system corresponds to a

subset of the neural cells.

3) Then, we need to conduct the PE-decision to-

wards the resulting linear system set. This step results

in a polynomial space cost in the number of linear sys-

tems. We will give a further explanation below.

4) Performing emptiness judgment requires polyno-

mial times w.r.t. the input, as we have pointed in Sub-

section 4.2.

As a result, we can conclude that the Mod-

elChecking problem against Σ2 ∪ Π2 ReTL formulas

can be solved in EXPSPACE. For this, we need give a

detailed analysis of the third step.

Let Vi,j be the solution of Ti,j(x,y). Then, ac-

cording to Theorem 11, we see that the complementary

space of each Vi,j (namely, Rrow(y)−Vi,j, for the sake of

simplicity, we just denote it Vi,j) is a polyhedral cone.

Remind that we intend to test whether
⋂

i,j Vi,j = ∅.

Since Vi,j = Vi,j and each Vi,j is a polyhedral cone, it

must be an FRS associated with a set of linear inequal-
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ity constraints. For convenience, we assume that each

FRS is generated via a vector set containing a complete

base of Rrow(y)—this always can be achieved because

we can introduce extra 0 coefficients in the constraints.

Since a vector belongs to Vi,j iff its coefficients violet

some constraints for Vi,j , then, for each polyhedral cone

in the set {Vi,j}i,j , we can pick one constraint and then

dualize (or negate) it, and we obtain a linear (inequal-

ity) system consisting of all these (negated) constraints,

together with the intersection-condition (see the below

example).

Due to the arbitrariness of the condition selection,

we may obtain different systems. However, if
⋂

i,j Vi,j =

∅, then the solution of each such system must be ∅. In

other words, we may stop the verification procedure

once some non-empty solution space is detected, and

this provides us the chance for an early-stop.

Just consider the following illustrative example.

Supposing that we have three spaces Vi (i = 1, 2, 3)

—for the sake of brevity, we here do not use double-

index for a space. We suppose that each Vi is a poly-

hedral cone generated by the vector set {vi,j}3j=1 and

coefficients {ci,j}3j=1. In addition, we suppose that the

constraints for V i are given as (10)–(12), respectively.

{

3c1,1 + 2c1,2 > 1,
2c1,2 + c1,3 > 4,

(10)

c2,1 + 2c2,2 + 4c3,2 = 3, (11)






c3,1 + 2c3,2 6= 1,
c3,1 + c3,2 > 2,
2c3,2 + c3,3 = 0.

(12)

First, we establish the intersection-condition, expressed

as






















3
∑

j=1

c1,jv1,j =

3
∑

j=1

c2,jv2,j ,

3
∑

j=1

c1,jv1,j =

3
∑

j=3

c3,jv3,j ,

(13)

and one can easily transform it into the scalar form.

Subsequently, from each of (10)–(12), we need to choose

one constraint and negate it, and to form a new system.

Remind that (11) can be equivalently formulated as 6○

{

c2,1 + 2c2,2 + 4c3,2 > 3,
c2,1 + 2c2,2 + 4c3,2 6 3,

so does the last constraint in (12). Then, if we select

the first constraint in each system, we can establish the

following sub system via negating each of them:






3c1,1 + 2c1,2 < 1,
c2,1 + 2c2,2 + 4c3,2 < 3,
c3,1 + 2c3,2 = 1.

(14)

Then, we obtain a system of inequality (13)∪(14). Def-

initely, for the subsystem (14), we have 2 × (1 + 1) ×

(2 + 2) = 16 possible choices, and we can immediately

report a counterexample (or witness) if any of them has

a non-empty solution when jointing with (13).

This explains why we can perform model checking

within exponential space. At one moment, we just need

to storage and handle one inequality system, and enu-

merate the next one followed by the lexicographical or-

der if the solution is empty. For example, in the previ-

ous demo, the subsystem (14) just corresponds to the

index (1, 1, 1). It is clear that both the sizes of the

system and an index are exponential in the number of

constraints, which is polynomial in the size of the net-

work.

Note that the above analysis is for the whole Σ2∪Π2

fragment. Indeed, the complexity of ModelChecking

goes lower for formulas within smaller hierarchies. First

of all, for a ∆-formula ψ, the model checking problem

is trivial, and one just needs to do a simple computing

and judge if T0(ψ) holds. Hence, it can be done within

polynomial time. In addition, for the Σ1 ∪ Π1 frag-

ment, this problem is PSPACE-complete. The reason

is: w.l.o.g., for a Σ1 formula, one just needs to store and

deal with an instanced linear system each time (though

the number of such systems is exponential), and the

model checking procedure stops once one such system

is detected to have a feasible solution.

7 Experimental Demonstration

We have implemented a prototype toolkit on ReTL

ModelChecking. As an attempt on neural network

model checking, for the time being, we do not intend

to compete with other verification approaches, such as

SMT-based verification [8, 15]. Rather, we are mainly

concerned about the effectiveness of the proposed ap-

proach, because the Σ2 ∪ Π2 fragment is beyond the

expressiveness of other existing work.

In this section, we also exemplify how ReTL formu-

las are used to designate properties in ReLU network

verification. For the sake of convenience, we fix six

randomly-generated models (i.o.w., ReLU networks) for

the first four experiments. Each model is a two-layered

6○ As a matter of personal taste, one can equally write the second inequality into the normal form −c2,1 − 2c2,2 − 4c3,2 > −3.
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NN; hence it has four parameters M0, b0, M1, b1. The

first three models (INT 1 – INT 3) have integer para-

meters, whereas other three networks (FLT 1 – FLT 3)

are built up with float parameters. With these, one can

make sure about the correctness of the results. Detailed

parameters are given in Appendix.

The first experiment is to justify the feasibility of

the following linear system:







x1 + x2 + x3 = 25,

5x1 + 3x2 + 2x3 = 0,

x2 − x3 = 6,

which can be captured via the Σ1 ReTL formula:

E

x ∈ R
3.Mx = (25, 0, 6)T,

where M =





1 1 1

5 3 2

0 1 −1



. Table 1 lists some experi-

mental results of this specification upon six randomly

generated networks. In this table, the “Result” column

contains the information about if the specification is

satisfied (“T”) or not (“F”). It can be seen that this

system has a unique solution (−131/5, 143/5, 113/5)T.

Then, on any ReLU network, we ought to obtain an af-

firmative answer accompanied with a witness (i.e., the

solution). We are also concerned about the time and to-

tal memory used in doing verification, which are given

in the third and the fourth columns, respectively.

Table 1. ModelChecking Results on Feasibility of Some Given
Systems

Model (NN) Result Time (s) Memory (MB)

INT 1 T 0.716 100.9

INT 2 T 0.719 101.2

INT 3 T 0.720 99.2

FLT 1 T 0.823 99.6

FLT 2 T 0.818 101.6

FLT 3 T 0.813 101.6

The second experiment is related to adversarial ex-

amples. We take

E

x ∈ R
2. (x[1] < 5) ∧

(

©2x[1] = ©2x[2]
)

,

as the specification. Intuitively, it asserts that there

is some adversarial example whose first feature is less

than 5. Experimental results are given in Table 2. In

this table, the last column provides the corresponding

witness whenever the specification is satisfied. If no

such witness exists (or counterexample), we use a dash

sign (–) to denote it.

Next, we would perform some verification about the

interval property and the local robustness property.

When taking a ReLU NN as a non-linear mapping,

for a given interval I ⊆ [0, 1]col(M0), the obligation is

to detect the range of the output. Let us consider the

following Π1 formula:

A

x ∈ R
2.(x ∈ [0, 1]2 → ©2x[1] < 20),

where x ∈ [0, 1]2 is the abbreviation of

(0 6 x[1] 6 1) ∧ (0 6 x[2] 6 1).

Experimental results of interval property are given in

Table 3. Same as before, a counterexample is provided

whenever the corresponding property is not satisfied.

Table 2. ModelChecking Results on Adversarial Examples

Model (NN) Result Time (s) Memory (MB) Witness

INT 1 T 0.824 101.6 (−0.351 351 351 325 961,−1.729 729 735 531 42)T

INT 2 T 0.823 102.0 (0.097 826 087 133 160 7, 0.619 565 217 438 888)T

INT 2 F 1.126 103.3 –

FLT 1 T 1.124 103.1 (−2 476 534 218.440 25,−60 809 664.070 371 6)T

FLT 2 T 2.055 102.1 (0.683 433 694 692 267, 1.342 290 326 952 93)T

FLT 3 T 0.918 102.5 (−0.250 215 405 774 543, 0.366 012 022 437 047)T

Table 3. ModelChecking Results on Interval Property

Model (NN) Result Time (s) Memory (MB) Counterexample

INT 1 T 1.217 102.3 –

INT 2 T 1.234 102.5 –

INT 3 T 1.124 101.9 –

FLT 1 F 1.230 102.7 (1.745 688 9× 10−10, 9.461 576 43 × 10−14)T

FLT 2 T 1.332 103.2 –

FLT 3 F 0.924 101.4 (3.841 213 6× 10−10, 0.089 040 15)T
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Table 4. ModelChecking Results on Local Robustness

ǫ x Result Time (s) Memory (MB) Counterexample

1.000 x0 F 0.819 101.3 (−0.080 645 135 688 914 4,−0.999 999 985 356 191)T

(−0.515 151 450 346 327,−0.606 060 402 135 362)T

x1 T 1.230 102.5 –

x2 T 1.335 102.8 –

0.100 x0 F 0.921 101.7 (0.018 888 888 915 250 9,−0.099 999 999 503 212 4)T

(−0.099 999 999 227 925 3, 0.016 666 667 872 800 7)T

x1 T 1.324 102.9 –

x2 T 1.333 102.9 –

0.050 x0 F 1.019 101.4 (0.020 555 597 186 598 3,−0.049 999 999 996 716 5)T

(−0.049 999 999 970 305 2,−0.049 999 999 966 117 3)T

x1 T 1.225 102.5 –

x2 T 1.315 102.6 –

0.025 x0 F 0.922 101.6 (0.021 388 952 688 033 3,−0.049 999 999 996 716 5)T

(−0.049 999 999 970 305 2,−0.499 999 999 661 173)T

x1 T 1.223 102.6 –

x2 T 1.333 103.0 –

0.010 x0 T 1.224 102.7 –

x1 T 1.227 102.6 –

x2 T 1.231 102.7 –

0.001 x0 T 1.230 102.8 –

x1 T 1.231 102.8 –

x2 T 1.325 102.9 –

To verify local robustness, we fix the model to be

INT 1, and let

ϕi =

A

y ∈ R
2.(‖x− y‖∞ < ǫ→ ©2y[3 − i] 6 ©2y[i]),

for i = 1, 2, where x ∈ R2 and ǫ are two parameters,

and then let ϕ = ϕ1 ∨ ϕ2 as the specification. Remind

that ‖x− y‖∞ < ǫ is just abbreviation of

(ǫ > (x[1]− y[1]) > −ǫ) ∧ (ǫ > (x[2]− y[2]) > −ǫ).

In this experiment, we in turn let ǫ be 1, 0.1, 0.05,

0.025, 0.01 and 0.001, and we let x be (0, 0)T,

(410.731, 46.487)T and (−305.796, 189.393)T, respec-

tively — the last two values are randomly sampled. For

convenience, we denote by these three points x0, x1 and

x2, respectively. Experimental results are shown in Ta-

ble 4. Note that each counterexample consists of two

vectors — the first is for ϕ1 whereas the second is for

ϕ2.

To perform the verification againstΣ2∪Π2 formulas,

we choose the boundedness property to do the experi-

ment. We use the Π2 formula:

A

x ∈ R
2.

E

c ∈ R.x ∈ [0, 1]2 → ©2x[1] 6 c,

as the specification. Without loss of generality, we here

just concern about the first dimension of the output.

We randomly generate ReLU NNs with one hidden-

layer, and we make the number of neuron cells in the

hidden layer vary. Both the input-layer and the output-

layer are set to be 2-dimensional. Experimental results

are shown in Table 5, where all outputs are affirma-

tive. We can see that the model checker reports “time

out” when there are more than seven cells in the hidden

layer 7○. The cost of memory is not really exponential

in the size of the model. The reason might be that our

analysis just considers the worst case.

8 Related Work

We discuss existing work on formal verification of

neural networks (cf. [22] for survey). We exclude studies

on neural network testing (e.g., [23–26] to cite a few),

which are computationally less expensive and therefore

are able to work with large neural networks. However,

the cost of finding the provable guarantees in testing

is large, which is similar to traditional software testing

against software verification.

7○We set the time bound to be 1 hour.
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Table 5. ModelChecking Results for Boundedness Verification

Number of Neuron Time (s) Memory (MB)

Cells in Hidden Layer

3 1.02 101.80

4 6.02 103.25

5 45.89 105.10

6 353.00 117.37

7 1 547.35 154.60

8 Time out Time out

Various verification techniques have been proposed

to solve local robustness, reachability property, interval

property and/or Lipschizian property. Some of them

are exact while most of them are approximate. The

exact techniques are achieved by reducing the verifica-

tion problem into a set of constraints (with or without

optimization objectives), so that they can be solved

with constraint solvers [8, 15, 27], mixed integer linear

programming (MILP) solvers [16, 21, 28]. For instance,

in [15], Pulina and Tacchella proposed an abstraction-

refinement approach based on SMT solving for checking

interval properties. Katz et al. proposed efficient de-

cision procedures tailored to SMT constraints obtained

from the verification of neural networks [8]. Narodytska

et al. proposed SAT-based techniques to verify proper-

ties of binarized neural networks in which both weights

and activations are binary [27]. Lomuscio and Maganti

proposed to reduce the reachability problem of neural

networks MILP-solving [21]. Cheng et al. proposed a

parallelized algorithm to speed up MILP-solving [28].

Further optimization was proposed by Dutta et al.,

which integrates gradient descent based method to ef-

ficiently calculate the output range [16]. Bunel et al.

rephrased the verification problem of boolean formulas

of linear inequalities over piecewise-linear neural net-

works as a Branch-and-Bound optimization problem

and claimed that both SMT-based and MILP-based ap-

proaches can be regarded as its special cases [29]. Re-

cently, Tran et al. proposed an exact verification tech-

nique for solving reachability, by symbolically repre-

senting states via star sets and computing reachable

states layer-by-layer [30].

There also exist approximate verification techniques

which are either sound but incomplete, or complete but

unsound. One of such techniques is abstract interpre-

tation, a theory of sound over-approximation of the se-

mantics of computer programs [31]. Abstract interpreta-

tion has been explored in some work to verify interval

properties of neural networks [32]. Other approximate

techniques include optimisation [14] and search-based

methods [13, 18], interval/bound analysis [33]. Though

these approximate techniques are more scalable and

efficient than the exact techniques, they may lead to

false negative and/or false positive cases. Singh et al.

combined abstract interpretation and MILP-based ap-

proaches with a refinement step which aims to boost

verification by bringing the best of both worlds [34].

In [35], Wan et al. reduced the local robustness ver-

ification problem to a series of sub-problems to boost

verification, where each sub-problem considers only one

class.

9 Conclusions

In this paper, we presented the temporal logic ReTL

to specify classification-related properties upon ReLU

networks. We showed that theModelChecking prob-

lem of Σ2 ∪ Π2 ReTL formulas is decidable in EX-

PSPACE. To achieve this, we presented the so-called

ReLU-elimination technique and the PE-judging ap-

proach.

We employed arithmetic operators on terms and

temporal connectives on formulas to define the logic

ReTL. Since the structure of standard ReLU network

is flat, the U operator, as we have pointed out, can be

encoded with X w.r.t. a given model. However, things

will be different once looping structures are involved in

the network, e.g., recurrent NNs. For this reason, we

still used this temporal operator in the logic.

As the main result, we showed that the Σ2∪Π2 frag-

ment of ReTL is decidable for ModelChecking, and

this logic is powerful enough to express some important

properties for ReLU neural networks. In addition, this

fragment can be (relatively) effectively verified for most

cases.

We also have several future studies to do, such as al-

gorithm optimization, the synthesis problem of ReTL,

and a tighter analysis of the complexity.
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Fogelman-Soulié F, Steels L (eds.), Elsevier, 1989, pp.143-

155.



Wan-Wei Liu et al.: Verifying ReLU Neural Networks from a Model Checking Perspective 1379

[4] Nair V, Hinton G E. Rectified linear units improve re-

stricted Boltzmann machines. In Proc. the 27th Interna-

tional Conference on Machine Learning, June 2010, pp.807-

814.

[5] Lei N, Luo Z, Yau S, Gu X D. Geometric understand-

ing of deep learning. arXiv:1805.10451, 2018. https://ar-

xiv.org/abs/1805.10451, May 2020.

[6] Clarke E M, Emerson E A. Design and synthesis of synchro-

nization skeletons using branching-time temporal logic. In

Proc. the 3rd Workshop on Logics of Programs, May 1981,

pp.52-71.

[7] Queille J, Sifakis J. Specification and verification of con-

current systems in CESAR. In Proc. the 5th Int. Symp.

Programming, April 1982, pp.337-351.

[8] Katz G, Barrett C W, Dill D L, Julian K, Kochenderfer M

J. Reluplex: An efficient SMT solver for verifying deep neu-

ral networks. In Proc. the 29th Int. Conf. Computer Aided

Verification, July 2017, pp.97-117.

[9] Pnueli A. The temporal logic of programs. In Proc. the 18th

Annual Symp. Foundations of Computer Science, October

1977, pp.46-57.

[10] Pnueli A, Rosner R. On the synthesis of a reactive mod-

ule. In Proc. the 16th Annual ACM Symp. Principles of

Programming Languages, January 1989, pp.179-190.

[11] Manna Z, Zarba C G. Combining decision procedures. In

Proc. the 10th Anniversary Colloquium of the Int. Institute

for Software Technology of the United Nations University,

March 2002, pp.381-422.

[12] Davenport J H, Heintz J. Real quantifier elimination is dou-

bly exponential. J. Symbolic Computation, 1988, 5(1/2):

29-35.

[13] Huang X, Kwiatkowska M, Wang S, Wu M. Safety verifica-

tion of deep neural networks. In Proc. the 29th Int. Conf.

Computer Aided Verification, July 2017, pp.3-29.

[14] Ruan W, Huang X, Kwiatkowska M. Reachability analysis

of deep neural networks with provable guarantees. In Proc.

the 27th Int. Joint Conf. Artificial Intelligence, July 2018,

pp.2651-2659.

[15] Pulina L, Tacchella A. An abstraction-refinement approach

to verification of artificial neural networks. In Proc. the

22nd Int. Conf. Computer Aided Verification, July 2010,

pp.243-257.

[16] Dutta S, Jha S, Sankaranarayanan S, Tiwari A. Output

range analysis for deep feedforward neural networks. In

Proc. the 10th Int. Symposium NASA Formal Methods,

April 2018, pp.121-138.

[17] Weng T, Zhang H, Chen H, Song Z, Hsieh C, Daniel L, Du-

ane S B, Dhillon I S. Towards fast computation of certified

robustness for ReLU networks. In Proc. the 35th Int. Conf.

Machine Learning, July 2018, pp.5273-5282.

[18] Penrose R. A generalized inverse for matrices. Mathematical

Proc. the Cambridge, 1955, 51: 406-413.

[19] Penrose R. On the best approximate solution of linear ma-

trix equations. Mathematical Proceedings of the Cambridge

Philosophical Society, 1956, 52(1): 17-19.

[20] Farkas G. über die theorie der einfachen ungleichungen. J.

die Reine und Angewandte Mathematik, 1902, 124: 1-24.

(in German)

[21] Lomuscio A, Maganti L. An approach to reachabil-

ity analysis for feed-forward ReLU neural networks.

arXiv:1706.07351, 2017. https://arxiv.org/abs/1706.07351,

May 2020.

[22] Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo

E, Wu M, Yi X. Safety and trustworthiness of deep

neural networks: A survey. arXiv:1812.08342v4, 2019.

https://arxiv.org/abs/1812.08342, April 2020.

[23] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D,

Goodfellow I J, Fergus R. Intriguing properties of neural

networks. In Proc. the 2nd Int. Conf. Learning Represen-

tations, April 2014.

[24] Lei Y, Chen S, Fan L, Song F, Liu Y. Advanced evasion

attacks and mitigations on practical ML-based phishing

website classifiers. arXiv:2004.06954, 2020. https://arxiv.o-

rg/abs/2004.06954, May 2020.

[25] Chen G, Chen S, Fan L, Du X, Zhao Z, Song F, Liu Y.

Who is real Bob? Adversarial attacks on speaker recog-

nition systems. arXiv:1911.01840, 2019. https://arxiv.or-

g/abs/1911.01840, May 2020.

[26] Duan Y, Zhao Z, Bu L, Song F. Things you may not

know about adversarial example: A black-box adversar-

ial image attack. arXiv:1905.07672, 2019. https://arxiv.o-

rg/abs/1905.07672, May 2020.

[27] Narodytska N, Kasiviswanathan S P, Ryzhyk L, Sagiv M,

Walsh T. Verifying properties of binarized deep neural net-

works. In Proc. the 32nd AAAI Conf. Artificial Intelligence,

February 2018, pp.6615-6624.

[28] Cheng C, Nührenberg G, Ruess H. Maximum resilience of

artificial neural networks. In Proc. the 15th Int. Symp. Au-

tomated Technology for Verification and Analysis, October

2017, pp.251-268.

[29] Bunel R, Turkaslan I, Torr P H S, Kohli P, Mudigonda P

K. A unified view of piecewise linear neural network verifi-

cation. In Proc. the 32nd Annual Conf. Neural Information

Processing Systems, December 2018, pp.4795-4804.

[30] Tran H, Lopez D M, Musau P, Yang X, Nguyen L V, Xi-

ang W, Johnson T T. Star-based reachability analysis of

deep neural networks. In Proc. the 3rd World Congress on

Formal Methods, October 2019, pp.670-686.

[31] Cousot P, Cousot R. Abstract interpretation: A uni-

fied lattice model for static analysis of programs by con-

struction or approximation of fixpoints. In Proc. the 4th

ACM Symp. Principles of Programming Languages, Jan-

uary 1977, pp.238-252.

[32] Gehr T, MirmanM, Drachsler-Cohen D, Tsankov P, Chaud-

huri S, Vechev M T. AI2: Safety and robustness certification

of neural networks with abstract interpretation. In Proc. the

39th IEEE Symp. Security and Privacy, May 2018, pp.3-18.

[33] Wang S, Pei K, Whitehouse J, Yang J, Jana S. Formal se-

curity analysis of neural networks using symbolic intervals.

In Proc. the 27th USENIX Security Symp., August 2018,

pp.1599-1614.
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Appendix

A. Parameters of ReLU Networks for Experi-

ments

Parameters of INT 1:

M0 =



















6 −7

−7 1

7 5

−7 1

9 −6



















, b0 =



















−10

−3

4

6

1



















,

M1 =

(

5 4 −8 4 −8

−7 −3 −4 −1 −5

)

, b1 =

(

−10

−1

)

.

Parameters of INT 2:

M0 =



















1 −5

−8 −10

−9 −7

6 −7

9 −9



















, b0 =



















3

−9

−9

5

−10



















,

M1 =

(

−9 −3 −2 −3 −2

5 0 1 −7 −8

)

, b1 =

(

−4

1

)

.

Parameters of INT 3:

M0 =



















9 −4

4 −1

−8 7

6 6

−10 −8



















, b0 =



















−9

6

0

0

−10



















,

M1 =

(

−1 0 −9 −8 −10

0 7 −7 9 −5

)

, b1 =

(

−8

1

)

.

Parameters of FLT 1:

M0 =













212.674 974 −143.987 289
−375.440 552 358.204 367
−132.030 324 346.390 642

49.893 336 −82.973 165
27.624 272 −148.681 754













, b0 =













231.989 271
478.148 525

−222.163 261
142.263 284

−475.462 367













,
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M1 =

(

−61.013 296 153.505 166 −268.398 733 121.688 212 −167.487 403
262.937 216 −307.037 447 −444.485 577 76.950 528 −179.326 151

)

, b1 =

(

−106.124 953
−208.076 675

)

.

Parameters of FLT 2:

M0 =













−301.002 477 −17.324 118
−336.113 549 122.024 888
387.605 733 −197.237 036

−415.715 576 214.777 717
−188.914 101 216.084 912













, b0 =













228.969 255
−462.082 536
−405.481 405
−428.082 586
−160.569 163













,

M1 =

(

−207.466 666 216.298 495 415.214 993 462.352 108 347.718 942
94.946 650 478.985 677 238.399 533 369.547 509 −109.718 365

)

, b1 =

(

−84.330 958
84.719 959

)

.

Parameters of FLT 3:

M0 =













−94.728 193 434.461 100
492.371 372 −83.763 646

−461.663 281 12.307 470
−234.533 633 489.131 639
259.299 655 494.362 472













, b0 =













−182.720 451
7.458 327

284.614 443
−447.710 596
−62.244 129













,

M1 =

(

−371.113 250 40.034 826 196.479 054 −488.053 642 391.033 837
130.401 299 9.545 044 226.463 981 −122.851 226 154.483 804

)

, b1 =

(

−229.505 807
368.145 768

)

.
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