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Pushdown systems with transductions (TrPDSs) are an extension of pushdown systems 
(PDSs) by associating each transition rule with a transduction, which allows to inspect 
and modify the stack content at each step of a transition rule. In this work, we propose 
two novel saturation procedures to compute pre∗(C) and post∗(C) for finite TrPDSs. 
From these two saturation procedures, we present two algorithms to compute pre∗(C)

and post∗(C) that are suitable for implementation. We also show that the algorithms 
for computing pre∗(C) and post∗(C) also work for weak finite TrPDSs, where closure is 
defined with respect to the underlying PDSs. These results are extended to left contextual
TrPDSs, which is an extension of finite TrPDSs. Finally, we show how the presence of 
transductions enables the modeling of Boolean programs with call-by-reference parameter 
passing and low-level assembly programs that manipulate the program stack content via a 
stack pointer.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A pushdown system (PDS) consists of a finite set of states and a finite stack alphabet, where stack can store context. 
PDS is one of the most widely used formalisms for modeling sequential programs with recursion [1–3]. There are many 
works investigating the model-checking problem of PDSs. Bouajjani et al. proposed a saturation method for model-checking 
reachability, based on which LTL and alternating free μ-calculus also can be verified [4]. This saturation method is also 
discovered independently by Finkel et al. [5]. Based on these results, many efficient algorithms for model-checking PDSs 
were proposed [1,2,6,7], which lead to several software model-checking tools such as Moped [8], PDSolver [9], PuMoC [10]
for C/C++, Java and/or Boolean programs verification.

Various extensions of PDSs such as multi-stack PDSs [11], pushdown networks [12–15] and well-structured PDSs [16]
have been proposed for modeling concurrent (thread-creation) programs with recursion. In order to model timed (resp. 
probabilistic) behavior, models that combine timed (resp. probabilistic) automata and PDSs were investigated in the liter-
ature, e.g., discrete/dense-timed pushdown systems [17,18], nested timed automata [19] (resp. probabilistic PDSs [20,21]). 
For dataflow analysis purpose, weighted PDSs [22], extended weighted PDSs [23] and weighted PDSs with indexed weight 
domains [24] were proposed, where transitions are associated with values from semirings. For stack manipulation of PDSs, 
Esparza et al. introduced PDSs with checkpoint [25] that can check the full stack content against a regular language (recog-
nized by a finite state automaton) over the stack alphabet. This model is called conditional PDSs in [26] and transformable 
PDSs in [27]. Uezato and Minamide extended PDSs with transductions (TrPDSs) which associate each transition with a 
transduction. The associated transductions can check the stack content and modify the whole stack content. TrPDSs are a 
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generalization of PDSs with checkpoint and discrete-timed PDSs. In general, TrPDSs are Turing complete. To achieve a de-
cidability result, Uezato and Minamide considered finite TrPDSs which restrict the closure of transductions appearing in the 
transitions of a TrPDS to be finite. They showed that a finite TrPDS can be simulated by a PDS. Therefore, the reachability 
problem of finite TrPDSs is decidable. Moreover, the saturation procedure that calculates the set pre∗(C) of predecessor 
configurations for a given regular set of configurations C can be directly extended from PDSs to finite TrPDSs. Finite TrPDSs 
can be seen as a special case of weighted PDSs with indexed weight domains [24,28].

1.1. Contributions

In this work, we follow the direction of [27] and make a comprehensive study of the reachability problem of TrPDSs. The 
main contributions of this article are summarized as follows:

• A novel saturation procedure is proposed that computes the set pre∗(C) of predecessor configurations for a given 
regular set of configurations C of TrPDSs (cf. Section 3.1). This saturation procedure avoids pseudo formal power series 
semirings that was introduced in [27] to compute pre∗(C).

• A saturation procedure is introduced to compute the set post∗(C) of successor configurations for a given regular set 
of configurations C of TrPDSs (cf. Section 4.1). TrPDSs can be simulated by PDSs as shown in [27]. Therefore, post∗(C)

could be computed by applying the saturation procedure of PDSs [1]. Our saturation procedure directly computes a kind 
of finite state automaton that exactly recognizes post∗(C). We believe that our direct approach is more convenient for 
studying optimal algorithms or BDD-based symbolic techniques.

• Algorithms of the saturation procedures for computing pre∗(C) and post∗(C) are presented (cf. Section 3.2 and Sec-
tion 4.2), which are suitable for implementation. We show that the computations of both pre∗(C) and post∗(C) are 
fixed-parameter tractable with respect to the number of transductions. From these two algorithms, we observe that the 
definition of finiteness of finite TrPDSs can be refined. For this, we introduce weak finite TrPDSs, where the closure of 
transductions is defined with respect to the underlying TrPDSs rather than only the set of transductions. We show that 
these two algorithms still work for weak finite TrPDSs.

• We introduce an extension of finite TrPDSs, called left contextual TrPDSs, which can be viewed as an extension of 
prefix-recognizable systems with stack manipulation [29,6,30,7]. The approaches for computing pre∗(C) and post∗(C) of 
finite TrPDSs are not suitable for computing pre∗(C) and post∗(C) of left contextual TrPDSs. To overcome this problem, 
We present an reduction from the reachability problem of left contextual TrPDSs to the problem of finite TrPDSs (cf. 
Section 6).

• We show that TrPDSs are powerful enough to model Boolean programs with call-by-reference parameter passing and 
low-level assembly programs that manipulate the program stack content via a stack pointer. Boolean programs in the 
literature [31] only consider call-by-value parameter passing which can be modeled by PDSs, and low-level assembly 
program models cannot directly model the manipulation of program stack via a stack pointer. Using our approach, 
safety properties of Boolean programs with mixed call-by-reference and call-by-value parameter passing can be directly 
verified (cf. Section 7.1). Moreover, TrPDSs can model low-level assembly programs in a more precise manner than the 
approaches of [32,33]. This could be used to characterize assembly programs for which the reachability problem is 
decidable via decidable TrPDSs (cf. Section 7.2).

This article is an extended version of [34] which presented saturation procedures and their algorithms for computing 
pre∗(C) and post∗(C) of finite TrPDSs. In addition to the results presented there, we provide detailed examples and proofs, 
introduce weak finite TrPDSs, and left contextual TrPDSs and thereof pre∗(C) and post∗(C) computing approaches, and 
present new potential applications of TrPDSs to model low-level assembly programs and Boolean programs.

1.2. Organization

Section 2 introduces basic definitions. In Section 3 (resp. Section 4), we present the saturation procedure and its 
algorithm for computing pre∗(C) (resp. post∗(C)), which is suitable for implementation. Weak finite TrPDSs and their 
reachability problem are presented in Section 5. Section 6 introduces left contextual TrPDSs and shows how to reduce 
their reachability problem to the problem of finite TrPDSs. In Section 7, we present two potential applications of TrPDSs 
for modeling and verifying Boolean programs with call-by-reference parameter passing and low-level assembly programs 
that manipulate the program stack content via a stack pointer. Section 8 discusses related work. Section 9 concludes and 
discusses future work.

2. Preliminaries

2.1. Finite-state transducers and transductions

Definition 1. A finite-state transducer (FST) T is a tuple (Q , �, δ, I, F ), where Q is a finite set of states, � is a finite alphabet, 
δ ⊆ Q × �∗ × �∗ × Q is a finite set of transition rules, I ⊆ Q (resp. F ⊆ Q ) is a finite set of initial (resp. final) states. The 
transducer is letter-to-letter if δ ⊆ Q × � × � × Q .
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We will write q 
ω1/ω2−−−−→ q′ for every (q, ω1, ω2, q′) ∈ δ. Let −→∗ be the smallest relation such that q

ε/ε−−→∗ q for every 
q ∈ Q ; if q

ω1/ω2−−−−→∗ q′ and q′ ω3/ω4−−−−→ q′′ , then q
ω1ω3/ω2ω4−−−−−−−→∗ q′′ . A FST T transduces a string ω1 ∈ �∗ into a string ω2 ∈ �∗ if 

there exist states q0 ∈ I and q f ∈ F such that q0
ω1/ω2−−−−→∗ q f . The language L(T) of a FST T is the set of pairs (ω1, ω2) such 

that T can transduce ω1 into ω2.
A transduction τ ⊆ �∗ × �∗ is a relation over �∗ . A transduction τ is rational (regular) and length-preserving if there is 

a letter-to-letter transducer T such that τ = L(T). Let τid denote the identity transduction, i.e., τid = {(ω, ω) | ∀ω ∈ �∗}. In 
the rest of this article, we assume that transductions (resp. transducers) are length-preserving rational (resp. letter-to-letter) 
unless stated explicitly, and we do not differentiate the terms transduction and transducer. Given a transduction τ , let 
τ (ω) = {ω′ | (ω, ω′) ∈ τ } for ω ∈ �∗ .

The composition ◦ of two transductions τ1, τ2 is defined as

τ1 ◦ τ2 = {(ω1,ω3) ∈ �∗ × �∗ | ∃ω2 ∈ �∗, (ω1,ω2) ∈ τ1 and (ω2,ω3) ∈ τ2}.
It is easy to show the following proposition.

Proposition 1. For every transduction τ , τ ◦ τid = τ = τid ◦ τ .

The left quotient 
·, ·�−1 over a transduction is defined as follows: ∀ω1, ω2 ∈ �∗ with |ω1| = |ω2|, 
ω1, ω2�−1τ =
{(ω, ω′) ∈ �∗ × �∗ | (ω1ω, ω2ω

′) ∈ τ }.

Proposition 2. [27] For every ω1, ω2 ∈ �n, for every transduction τ1, τ2 ,


ω1,ω2�−1(τ1 ◦ τ2) =
⋃

ω3∈�|ω1 |

(
(
ω1,ω3�−1τ1) ◦ (
ω3,ω2�−1τ2)

)
.

Let T be a set of transductions, the closure 〈T 〉∪ of T over the composition ◦, left quotient 
·, ·�−1 and union ∪ is 
defined as follows:

• T ⊆ 〈T 〉∪ , ∅ ∈ 〈T 〉∪ and τid ∈ 〈T 〉∪;
• if τ1, τ2 ∈ 〈T 〉∪ , then τ1 ◦ τ2 ∈ 〈T 〉∪ and τ1 ∪ τ2 ∈ 〈T 〉∪;
• if τ ∈ 〈T 〉∪ , then 
γ , γ ′�−1τ ∈ 〈T 〉∪ for all γ , γ ′ ∈ �.

Similarly, let 〈T 〉 denote the closure of T over the composition ◦ and left quotient 
·, ·�−1 defined as follows:

• T ⊆ 〈T 〉, ∅ ∈ 〈T 〉 and τid ∈ 〈T 〉;
• if τ1, τ2 ∈ 〈T 〉, then τ1 ◦ τ2 ∈ 〈T 〉;
• if τ ∈ 〈T 〉, then 
γ , γ ′�−1τ ∈ 〈T 〉 for all γ , γ ′ ∈ �.

Proposition 3.
(a) The set 〈T 〉 is finite iff the set 〈T 〉∪ is finite.
(b) The set 〈T 〉∪ is the semigroup generated by (〈T 〉, ∪), that is, ∀τ ∈ 〈T 〉∪ , ∃τ1, ..., τm ∈ 〈T 〉 for m ≥ 1 such that τ = ⋃m

i=1 τi .

Proof. Proof of (a): If 〈T 〉∪ is finite, we can immediately get that 〈T 〉 is finite, as 〈T 〉 ⊆ 〈T 〉∪ . The other direction immedi-
ately follows from (b). We only need to prove (b).
Proof of (b): Let T ′ be the semigroup generated by (〈T 〉, ∪). If 〈T 〉 is finite, then T ′ is finite. We prove that T ′ = 〈T 〉∪ . It 
is sufficient to show that the following two conditions hold:

• for all τ ∈ T ′ , 
γ , γ ′�−1τ ∈ T ′ for all γ , γ ′ ∈ �,
• for all τ1, τ2 ∈ T ′ , τ1 ◦ τ2 ∈ T ′ .

Suppose τ = τ1 ∪· · ·∪τn ∈ T ′ with τ1, · · · , τn ∈ 〈T 〉, then 
γ , γ ′�−1(τ1 ∪· · ·∪τn) = ⋃n
i=1
γ , γ ′�−1τi . Since τ1, · · · , τn ∈ 〈T 〉, 

we obtain that 
γ , γ ′�−1τ1, · · · , 
γ , γ ′�−1τn ∈ 〈T 〉. Thus, we get that 
γ , γ ′�−1(τ1 ∪ · · · ∪ τn) ∈ T ′ .
Now, we show that for all τ1, τ2 ∈ T ′ , τ1 ◦ τ2 ∈ T ′ . Suppose τi = τ i

1 ∪ · · · ∪ τ i
mi

with τ i
1, · · · , τ i

mi
∈ 〈T 〉 for i ∈ {1, 2}, then 

τ1 ◦ τ2 = (τ 1
1 ∪ · · · ∪ τ 1

m1
) ◦ (τ 2

1 ∪ · · · ∪ τ 2
m2

) = ⋃
1≤i≤m1,1≤ j≤m2

τ 1
i ◦ τ 2

j . Since for every i : 1 ≤ i ≤ m1 and every j : 1 ≤ j ≤ m2, 
τ 1

i , τ 2
j ∈ 〈T 〉, then τ 1

i ◦ τ 2
j ∈ 〈T 〉. Thus, we get that τ1 ◦ τ2 ∈ T ′ . �

2.2. Pushdown systems with transductions

Pushdown systems with transductions (TrPDSs) [27] are an extension of pushdown systems by associating each transition 
with a transduction which checks and/or modifies the stack content by applying the transduction. This extension allows 
TrPDSs to model sequential programs that manipulate the stack content rather than only the top of the stack.
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Definition 2. A pushdown system with transductions (TrPDS) P is a tuple (P , �, T , �), where P is a finite set of control states, 
� is a finite alphabet, T is a finite set of transductions over �∗ , � ⊆ (P × �) × T × (P × �∗) is a finite set of transition 
rules. A TrPDS is a pushdown system (PDS) if T = {τid}.

We will write 〈p, γ 〉 τ
↪→ 〈p′, ω〉 for every (p, γ , τ , p′, ω) ∈ �. A configuration of a TrPDS P is a pair 〈p, ω〉 ∈ P ×�∗ where 

p is the control state and ω is the stack content. Let CP denote the set of all the configurations P × �∗ of the TrPDS P . 
The TrPDS P is called finite if the set 〈T 〉 (i.e., 〈T 〉∪) is finite. If 〈p, γ 〉 τ

↪→ 〈p′, ω〉, then for every ω′ ∈ �∗ , the configuration 
〈p, γω′〉 is an immediate predecessor of the configuration 〈p′, ωu〉 for every u ∈ τ (ω′), and the configuration 〈p′, ωu〉 for 
every u ∈ τ (ω′) is an immediate successor of the configuration 〈p, γω′〉. Let =⇒P⊆ CP × CP be the immediate successor 
relation, i.e., for every ω′, u ∈ �∗ , 〈p, γω′〉 =⇒P 〈p′, ωu〉 if 〈p, γ 〉 τ

↪→ 〈p′, ω〉 and u ∈ τ (ω′). A run of P is a sequence of 
configurations c1c2 · · · such that for every i ≥ 1, ci+1 is an immediate successor of ci .

Let =⇒n
P⊆ CP × CP be the successor relation over configurations of P defined as follows:

• c =⇒0
P c for every c ∈ CP ;

• c =⇒n
P c′′ if there exists c′ ∈ CP such that c =⇒P c′ and c′ =⇒n−1

P c′′ .

Let =⇒∗
P⊆ CP × CP denote the reflexive transitive closure of the immediate successor relation =⇒P , i.e., =⇒∗

P=⋃
i≥0 =⇒i

P . Let =⇒+
P⊆ CP × CP denote the transitive closure of the immediate successor relation =⇒P , i.e., =⇒+

P=⋃
i≥1 =⇒i

P .

The predecessor function preP : 2CP −→ 2CP of P is defined as follows: preP (C) = {c ∈ CP | ∃c′ ∈ C : c =⇒P c′}. The 
reflexive transitive closure of preP is denoted by pre∗

P . Formally, pre∗
P (C) = {c ∈ CP | ∃c′ ∈ C : c =⇒∗

P c′}. Similarly, the 
successor function postP : 2CP −→ 2CP of P is defined as follows: postP (C) = {c ∈ CP | ∃c′ ∈ C : c′ =⇒P c}. The reflexive 
transitive closure post∗

P of postP is defined as post∗
P (C) = {c ∈ CP | ∃c′ ∈ C : c′ =⇒∗

P c}. From now on, we will drop the 
subscript P if P is clear from the context.

We now define two kinds of reachability problems:

Definition 3. Given a TrPDS P = (P , �, T , �), let C ⊆ CP be a regular set of configurations (defined below): for c ∈ CP ,

• the forward reachability problem is to determine whether c ∈ post∗
P (C);

• the backward reachability problem is to determine whether c ∈ pre∗
P (C).

We will solve the forward (resp. backward) reachability problem by first computing post∗
P (C) (resp. pre∗

P (C)) and then 
check whether c ∈ post∗

P (C) (resp. c ∈ pre∗
P (C)).

Given two TrPDSs P and P ′ , P ′ encodes P iff CP ⊆ CP ′ and for every two configurations c, c′ ∈ CP , c =⇒P c′ iff 
c =⇒+

P ′ c′ such that the configurations used in the derivation of c =⇒+
P ′ c′ are in CP ′ \ CP .

Theorem 1. Given a TrPDS P = (P , �, T , �), we can construct a new TrPDS P ′ = (P , �′, T ∪ {τid}, �′) such that the following 
statements hold:

(a) |ω| ≤ 2 for every transition rule 〈p, γ 〉 τ
↪→ 〈q, ω〉 ∈ �′;

(b) P ′ encodes P ;
(c) |�′| = O(|�| + |�|) and |�′| = O(|�|).

Proof. Proof of (a).
Let �′ and �′ be the least sets such that

• � ⊆ �′;
• if 〈p, γ 〉 τ

↪→ 〈q, ω〉 ∈ � with |ω| ≤ 2, then 〈p, γ 〉 τ
↪→ 〈q, ω〉 ∈ �′;

• if r = 〈p, γ 〉 τ
↪→ 〈q, γ1γ2 · · ·γn〉 ∈ � with n > 2, then add the fresh stack symbols {γ r

1 , · · · , γ r
n−2} into �′ and �′ contains 

the following transition rules:

– 〈p, γ 〉 τ
↪→ 〈q, γ r

n−2γn〉;

– 〈q, γ r
i 〉 τid

↪→ 〈q, γ r
i−1γi+1〉, for every i : 2 ≤ i ≤ n − 2;

– 〈q, γ r
1 〉 τid

↪→ 〈q, γ1γ2〉.
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Proof of (b).
(=⇒) Given two configurations c, c′ ∈ CP , suppose c =⇒P c′ , we show that c =⇒+

P ′ c′ such that the configurations used 

in the derivation of c =⇒+
P ′ c′ are in CP ′ \ CP . Since c =⇒P c′ , then, there exists a transition rule r = 〈p, γ 〉 τ

↪→ 〈q, ω〉 in �
such that c = 〈p, γω′〉 and c′ = 〈q, ωu〉 for some u ∈ τ (ω′).

If |ω| ≤ 2, then 〈p, γ 〉 τ
↪→ 〈q, ω〉 ∈ �′ . Hence, we get that c =⇒P ′ c′ . The result immediately follows.

Otherwise if |ω| > 2, let ω = γ1γ2 · · ·γn with n > 2. Then, we get that for some u ∈ τ (ω′),

• c = 〈p, γω′〉 =⇒P ′ 〈q, γ r
n−2γnu〉;

• 〈q, γ r
i γi+2 · · ·γnu〉 =⇒P ′ 〈q, γ r

i−1γi+1 · · ·γnu〉 for every i : 2 ≤ i ≤ n − 2;
• 〈q, γ r

1 γ3 · · ·γnu〉 =⇒P ′ 〈q, γ1γ2γ3 · · ·γnu〉 = c′ .

The result immediate follows.

(⇐=) Given two configurations c, c′ ∈ CP , suppose c =⇒+
P ′ c′ such that the configurations used in the derivation of 

c =⇒+
P ′ c′ are in CP ′ \ CP , we show that c =⇒P c′ .

If c =⇒P ′ c′ , then the result immediately follows. Otherwise c =⇒P ′ cn−2 =⇒P ′ · · · =⇒P ′ c1 =⇒P ′ c′ with n > 2 and 
ci ∈ CP ′ \ CP for every i : 1 ≤ i ≤ n − 2. Hence, for every i : 1 ≤ i ≤ n − 2, the top of the stack of ci is in �′ \ �. According to 
the construction of P ′ , there exists t = 〈p, γ 〉 τ

↪→ 〈q, γ1γ2 · · ·γn〉 ∈ � such that

• there exists 〈p, γ 〉 τ
↪→ 〈q, γ t

n−2γn〉 ∈ �′ such that c = 〈p, γω′〉 and cn−2 = 〈q, γ t
n−2γnu〉 for some u ∈ τ (ω′);

• and for every i : 2 ≤ i ≤ n − 2, there exists 〈q, γ t
i 〉 τid

↪→ 〈q, γ t
i−1γi+1〉 ∈ �′ such that ci−1 = 〈q, γ t

i−1γi+1 · · ·γnu〉;

• and there exists 〈q, γ t
1〉 τid

↪→ 〈q, γ1γ2〉 ∈ �′ such that c′ = 〈q, γ1γ2 · · ·γnu〉;

Hence, we get that the result.

Proof of (c).

The result follows the fact that for every transition rule 〈p, γ 〉 τ
↪→ 〈q, γ1γ2 · · ·γn〉 ∈ � with n > 2, we add at most n − 2

new symbols into �′ and at most n − 1 new transition rules into �′ . �
2.3. Finite automata with transductions

To finitely represent regular sets of configurations of TrPDSs, we use finite automata with transductions.

Definition 4. Given a TrPDS P = (P , �, T , �), a finite automaton with transduction and ε-moves (ε-TrNFA) A is a tuple 
(S, �, 
, T , S0, S f ), where S is a finite set of states, 
 ⊆ S × (� ∪{ε}) ×〈T 〉∪ × S is a finite set of transition rules, S0, S f ⊆ S
are initial and final states. An ε-TrNFA A is TrNFA if 
 ⊆ S × � × 〈T 〉∪ × S .

We write s 
γ |τ�−→ s′ for every (s, γ , τ , s′) ∈ 
 (note that γ ∈ � ∪ {ε}). Let �−→n: S × �∗ × 〈T 〉∪ × S be the smallest relation 

over states of A defined as follows:

• s 
ε|τid�−−→ 0s, for every s ∈ S;

• s 
γ γ1···γn|(
γ1···γn,γ ′

1···γ ′
n�−1τ

)◦τ1�−−−−−−−−−−−−−−−−−−−−→ n+1 s2 for all γ1, ..., γn ∈ �, if ∃s1 ∈ S such that s 
γ |τ�−−→ s1 and s1

γ ′
1···γ ′

n|τ1�−−−−−→ ns2.

TrNFAs are the standard finite state automata if T = {τid}, a.k.a. P-automata [4]. For the sake of simplification, we 
sometimes use γ[m..n] to denote the word γmγm+1 · · ·γn , where n ≥ m and γm, γm+1, · · · , γn ∈ � ∪ {ε}.

Proposition 4. Suppose an ε-TrNFA A has s0
γ 1[1..n]|τ�−−−−→ nsn with n > 0, then, there exist transition rules si−1

γ i
i |τi�−−→ si in A for all i ∈

{1, · · · , n} such that

τ = (
γ 1[2..n], γ 2[2..n]�−1τ1) ◦ · · · ◦ (
γ n−1
n , γ n

n �−1τn−1) ◦ τn.

Proof. Let us apply induction on n.

• Basis: n = 1. The result immediately follows from the fact that s0
γ 1

1 |τ�−−−→ 1s1, i.e., A has a transition rule s0
γ 1

1 |τ�−−−→s1.

• Step: n > 1. Then, there necessarily exist s0
γ 1

1 |τ1�−−−→ s1 and s1
γ 2[2..n]|τ ′

�−−−−→ n−1sn such that τ = (
γ 1[2..n], γ 2[2..n]�−1τ1) ◦ τ ′ .

By applying the induction hypothesis: we get that there exist transition rules si−1
γ i

i |τi�−−−→ si in A for i ∈ {2, · · · , n} such 
that
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τ ′ = (
γ 2[3..n], γ 3[3..n]�−1τ2) ◦ · · · ◦ (
γ n−1
n , γ n

n �−1τn−1) ◦ τn.

Thus, we get that

τ = (
γ 1[2..n], γ 2[2..n]�−1τ1) ◦ (
γ 2[3..n], γ 3
[3..n]�−1τ2) ◦ · · · ◦ (
γ n−1

n , γ n
n �−1τn−1) ◦ τn. �

Proposition 5. A has s0
γ 1[1..n]|τ�−−−−→ nsn and sn

γ n+1
[n+1..m]|τ ′

�−−−−−−→ m−nsm with m ≥ n, where

• τ = (
γ 1[2..n], γ 2[2..n]�−1τ1) ◦ · · · ◦ (
γ n−1
n , γ n

n �−1τn−1) ◦ τn,

• τ ′ = (
γ n+1
[n+2..m], γ

n+2
[n+2..m]�−1τn+1) ◦ · · · ◦ (
γ m−1

m , γ m
m �−1τm−1) ◦ τm,

iff for every γ 1
n+1, · · · , γ 1

m, γ n
n+1 · · ·γ n

m ∈ � ∪ {ε},

s0
γ 1[1..m]|(
γ 1[2..m],γ 2[2..m]�−1τ1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ msm.

Proof. (=⇒) Let us apply induction on n.

• Basis: n = 0. Then, s0
ε|τid�−−→ 0s0. Hence, we get that

s0
γ 1[1..m]|(
γ 1[2..m],γ 2[2..m]�−1τ1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ msm.

• Step: n ≥ 1. Since s0
γ 1

1 ···γ 1
n |τ�−−−−−→ nsn , we get that s0

γ 1
1 |τ1�−−−→ s1 and s1

γ 2
2 ···γ 2

n |τ ′′
�−−−−−−→ n−1sn such that

τ ′′ = (
γ 2[3..n], γ 3
[3..n]�−1τ2) ◦ · · · ◦ (
γ n−1

n , γ n
n �−1τn−1) ◦ τn.

By applying the induction hypothesis: we get that

s1
γ 2[2..m]|(
γ 2[3..m],γ 3[3..m]�−1τ2)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m−1sm,

for every γ 2
n+1, · · · , γ 2

m, · · · , γ n
n+1, · · · , γ n

m ∈ � ∪ {ε}. Thus, the result immediately follows from the definition of �−→n .

(⇐=) Let us apply induction on n.

• Basis: n = 0. Then, s0
ε|τid�−−→ 0s0 and s0

γ 1[1..m]|(
γ 1[2..m],γ 2[2..m]�−1τ1)◦···◦(
γ m−1
m ,γ m

m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ msm .

• Step: n ≥ 1. Then, from s0
γ 1[1..m]|(
γ 1[2..m],γ 2[2..m]�−1τ1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ msm , we get that

s1
γ 2[2..m]|(
γ 2[3..m],γ 3[3..m]�−1τ2)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m−1sm and s0

γ 1
1 |τ1�−−−→ s1.

By applying the induction hypothesis:

sn

γ n+1
[n+1..m]|(
γ n+1

[n+2..m],γ
n+2
[n+2..m]�−1τn+1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m−nsm

with m ≥ n, and s1
γ 2[2..n]|(
γ 2[3..m],γ 3[3..m]�−1τ2)◦···◦(
γ n−1

n ,γ n
n �−1τn−1)◦τn�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ n−1sn .

Thus, we get that

s0
γ 1[1..m]|(
γ 1[2..m],γ 2[2..m]�−1τ1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ msm. �

Let �−→∗= ⋃
i≥0 �−→i . A configuration 〈p, ω〉 ∈ P × �∗ of a TrPDS P is recognized (accepted) by an (ε-)TrNFA A iff 

s
ω|τ�−→ ∗s′ such that s = p ∈ S0, s′ ∈ S f and (ε, ε) ∈ τ . Let L(A) denote the set of configurations recognized by A. A set C of 

configurations is rational (regular) if there exists an (ε-)TrNFA A such that L(A) = C . From now on, we omit the paths of the 
form s1

ω|τ�−→ ns2 such that τ = ∅, as these paths do not allow the ε-TrNFA to accept a configuration.
Given a TrNFA A and a configuration 〈p, ω〉 ∈ P × �∗ , the membership problem is to determine whether 〈p, ω〉 ∈ L(A). 

We will reduce the reachability problem of TrPDSs to the membership problem of TrNFAs. However, we cannot direct apply 
the decision procedure from finite-state automata to TrNFAs. Algorithm 1 presents a decision procedure for the member-
ship problem of TrNFAs. The correctness proof is easy and omitted here. Left quotient of each transducer can be done in 
polynomial time of the transducer, and |V | in Algorithm 1 is at most O(|S| · |�|n · |T |n). Therefore, the space complexity of 



F. Song / Information and Computation 259 (2018) 41–71 47
Input : A TrNFA A = (S, �, 
, T , S0, S f ) and a configuration 〈p, γ1...γn〉
Output: Yes if 〈p, γ1...γn〉 ∈ L(A), otherwise No

1 if p /∈ S0 then return No;
2 V := { (p, {(γ1...γn, γ1...γn)}) };
3 for (i := 1, i ≤ n, i + +) do

4 V := {(s′, (
γi , γ �−1τ ) ◦ τ ′) | ∃(s, τ ) ∈ V , ∃s γ |τ ′
�−→ s′ ∈ 
 s.t. (γi ...γn, γ u) ∈ τ };

5 if ∃(s, τ ) ∈ V s.t. s ∈ S f ∧ (ε, ε) ∈ τ then return Yes;
6 else return No;

Algorithm 1: Membership query of TrNFAs.

Algorithm 1 is O(|S| · |�|n · |T |n) and the time complexity is O(n · |S| · |
| · |�|n · |T |n), where n is the length of the stack 
content of the input configuration.

Remark 1. To check membership of a configuration, instead of recording pairs of states and transductions, we could record 
pairs of states and words from �∗ at Line 2 and Line 4. Then, the space complexity is O(|S| · |�|n) and the time complexity 
is O(n · |S| · |
| · |�|n). In the rest of this article, we will heavily compute �−→n which can be computed by leveraging 
Algorithm 1. Therefore, we present Algorithm 1 in the current style.

Algorithm 1 works for TrNFAs. In order to check membership problem of ε-TrNFAs and/or eliminate ε-transitions, we 
introduce a relation ∝ over two sets of transition rules, which can be used to eliminate ε-transition rules.

Definition 5. Given two sets of transition rules 
 and 
′ of ε-TrNFA, 
′ ∝ 
 iff the following conditions hold: where 
γ ∈ � ∪ {ε},

(a) for every q 
γ |τ

�−→∗ q′ in 
, there exists q 
γ |τ ′
�−→ q′ ∈ 
′ such that τ ⊆ τ ′;

(b) for every q 
γ |τ ′
�−→ q′ ∈ 
′ , there exist q 

γ |τ1�−→∗ q′, · · · , q 
γ |τn�−→∗ q′ in 
 such that τ ′ = ⋃n

i=1 τi .

Intuitively, Item (a) expresses that ε-transition rules can be attracted into non-ε-transition rules (i.e., ε-transition rules 
can be eliminated) and Item (b) expresses that transition rules with same starting state, target state and input symbol, 
but different transductions, can be merged into one transition rule by taking the union of transductions. According to 
the following proposition, these operations preserve the recognized language, which allows us to reduce the number of 
transition rules.

Proposition 6. Given two ε-TrNFAs A = (S, �, 
, T , S0, S f ) and A′ = (S ′, �′, 
′, T ′, S0, S f ), if 
′ ∝ 
, then L(A) = L(A′).

The proof is straightforward by induction on n for each q 
ω|τ�−→ nq′ .

Theorem 2. Given an ε-TrNFA A such that the closure of its transductions is finite, one can construct a finite state automaton A′ such 
that A′ exactly accepts the set of configurations L(A).

Proof. We first perform the ε-transition elimination which produces an equivalent TrNFA A1, then A1 can be transformed 
into an equivalent finite state automaton A′ by the construction in [27]. The TrNFA A1 is constructed by applying the 
following procedure:

1. For each pair of transition rules: q 
ε|τ1�−→ q1 and q1

γ |τ2�−→ q2 with γ ∈ � ∪ {ε}, adds a new rule q 
γ |τ1◦τ2�−→ q2 into A, until no 

new rule can be added;

2. For each rule q 
ε|τ�−→ q1, if (ε, ε) ∈ τ and q1 is a final state, then sets q as a final state;

3. Removing all the ε-transition rules from A leads to the TrNFA A1.

It is easy to verify that L(A) = L(A1). Since the closure of transductions is finite, Item 1 always terminates which implies 
that the above procedure always terminates. The result immediately follows from the construction of [27]. �

By Theorem 2, one can translate an ε-TrNFA into an equivalent finite state automaton, while finite state automata can be 
seen as a special form of TrNFAs. Thus, ε-TrNFAs are closed under boolean operations.

Corollary 1. ε-TrNFAs are closed under boolean operations.
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Fig. 1. Transition graph.

Remark 2. Note that it is possible to prove Corollary 1 without transforming ε-TrNFAs to finite state automata. Indeed, 
it is straightforward for the union. For intersection, one could compute a product of two ε-TrNFAs, in which the labeled 
transductions of each pair of transitions are also intersected.

Example 1. Let us consider the ε-TrNFA A = (S, �, 
, T , S0, S f ), where S = {si | i = 1..4}, S0 = {s1}, S f = {s4}, � = {γi, γ ′
i |

i = 1..3}, T = {τ1, τ2, τid} with τ1 = {(γ2ω, γ ′
2ω) | ω ∈ �∗}, τ2 = {(γiω, γ ′

i ω) | i = 1..3, ω ∈ �∗}, and


 =
⎧⎨
⎩

(s1, γ1, τ1, s2), (s2, γ
′

1, τ2, s2),

(s2, γ
′

2, τ2, s2), (s2, γ
′

3, τ2, s2),

(s2, γ
′

2, τ2, s3), (s3, γ
′

3, τid, s4)

⎫⎬
⎭ .

Fig. 1 shows the transition graph of A. The language L(A) of A is the set {〈s1, γ1γ2ωγ2γ3〉 | ω ∈ {γ1, γ2, γ3}∗}. Intuitively, 
consider a configuration 〈s1, γ1γ2ωγ2γ3〉 ∈ L(A), from the initial state s1, there is only one transition t1 = (s1, γ1, τ1, s2)

which requires that γ1 is the current input symbol. After t1 is applied, τ1 transforms the rest γ2ωγ2γ3 into τ1(γ2ωγ2γ3) =
γ ′

2ωγ2γ3, for which the first symbol of γ2ωγ2γ3 should be γ2 according to τ1. Next, A iteratively reads γ ′
2ωγ2γ3 at the 

state s2 until there are only two symbols in the rest of the input. To consume γ ′
2ω at state s2, ω should be a word from 

{γ1, γ2, γ3}∗ , as τ2 transforms the next input γi into γ ′
i for i ∈ {1, 2, 3} without changing the rest. Finally, the input is 

transformed into γ ′
3 by τ2 and A moves from the state s2 to the state s3. From s3, A reads γ ′

3, transforms ε into the word 
ε by τid and moves to the accepting state s4.

Theorem 3. [27] Given a finite TrPDS P = (P , �, T , �) and a rational set of configurations C of P , both post∗(C) and pre∗(C) are 
rational and effectively computable.

3. Computing pre∗

In this section, we present a saturation procedure to compute pre∗ which is different from the way presented in [27]
and a fixed-parameter tractable (FPT for short) algorithm of the saturation procedure that is suitable for implementation.

3.1. Saturation procedure for computing pre∗

Given a finite TrPDS P = (P , �, T , �) and a TrNFA A = (S, �, 
, T , S0, S f ) that recognizes a rational set of configurations 
of P , w.l.o.g., we assume P = S0 and there is no transition rule in A leading to an initial state and A uses only the 
identity transduction τid (cf. Section 6.4 of [27]), we construct a new TrNFA Apre∗ = (S, �, 
pre∗

, T , S0, S f ) such that Apre∗

recognizes pre∗(L(A)), i.e., L(Apre∗
) = pre∗(L(A)). The construction of Apre∗

is based on a kind of saturation procedure which 
extends the saturation procedure for computing pre∗ of PDSs [4]. Initially, Apre∗ = A, then we iteratively apply the following 
saturation procedure until no new transition rule can be added into Apre∗

.

If 〈p, γ 〉 τ1
↪→ 〈q, ω〉 ∈ � and q

ω|τ2�−−→ ∗q′ in the current automaton Apre∗
, then, 

add a transition rule p 
γ |τ1◦τ2�−−−−→ q′ into 
pre∗

.

Since the set of states of Apre∗
and the set 〈T 〉 of transductions are finite, the set of transition rules in Apre∗

is finite. Thus, 
the above saturation will eventually reach a fixpoint. Intuitively, if there is a transition rule 〈p, γ 〉 τ

↪→ 〈q, γ 1[1..n]〉 ∈ �, then 
〈p, γ γ[n+1..m]〉 =⇒ 〈q, γ 1[1..m]〉, for all γ 1[n+1..m] ∈ τ (γ[n+1..m]). If the automaton Apre∗

recognizes the configuration 〈q, γ 1[1..m]〉
by a path q

γ 1[1..m]|τ ′
�−−−−−→ m g for some final state g of Apre∗

and (ε, ε) ∈ τ ′ , then, we can decompose this path to q
γ 1[1..n]|τ ′′

�−−−−→ nq′

and q′ γ n+1
[n+1..m]|τ ′′′

�−−−−−−→ m−n g such that if τ ′ = (
γ 1[2..m], γ 2[2..m]�−1τ1) ◦ · · · ◦ (
γ m−1
m , γ m

m �−1τm−1) ◦ τm , then

• τ ′′ = (
γ 1[2..n], γ 2[2..n]�−1τ1) ◦ · · · ◦ (
γ n−1
n , γ n

n �−1τn−1) ◦ τn ,

• τ ′′′ = (
γ n+1 , γ n+2 �−1τn+1) ◦ · · · ◦ (
γ m−1
m , γ m

m �−1τm−1) ◦ τm .
[n+2..m] [n+2..m]
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Fig. 2. (a) The TrNFA A, (b) the TrNFA Apre∗
, (c) the set of transition rules �, and (d) consists of related transductions.

Moreover, since (ε, ε) ∈ τ ′ , we get that (γ 1[n+1..m], γ
n+1
[n+1..m]) ∈ τ ′′ and (ε, ε) ∈ τ ′′′ . Applying the saturation procedure, the 

transition rule p 
γ |τ◦τ ′′

�−−−−→ q′ is added into Apre∗
. Therefore, Apre∗

recognizes the configuration 〈p, γ γ[n+1..m]〉 by composing 

p 
γ |τ◦τ ′′

�−−−−→ q′ and q′ γ n+1
[n+1..m]|τ ′′′

�−−−−−−→ m−n g into

p
γ γ[n+1..m]|

(
γ[n+1..m],γ n+1
[n+1..m]�−1(τ◦τ ′′)

)◦τ ′′′
�−−−−−−−−−−−−−−−−−−−−−−−−−−→ m−n+1 g,

as (γ[n+1..m], γ n+1
[n+1..m]) ∈ τ ◦ τ ′′ implies that (ε, ε) ∈ (
γ[n+1..m], γ n+1

[n+1..m]�−1(τ ◦ τ ′′)
) ◦ τ ′′′ .

Example 2. Consider the TrPDS with control states {p1, p2, p3} and � as shown in Fig. 2(c). Let A be the TrNFA as shown in 
Fig. 2(a). The result automaton after applying the saturation procedure is shown in Fig. 2(b). The result is derived through 
the following steps:

1. First, since p1
ε|τid�−−→ ∗ p1 and the right-hand side of the transition r4 ∈ � is 〈p1, ε〉, the saturation procedure adds the 

transition rule p1
γ2|τ4�−−−→ p1 (note that τ4 ◦ τid = τ4).

2. Then, there is p1
γ2|τ4�−−→ ∗ p1 and the right-hand side of the transition r3 ∈ � is 〈p1, γ2〉, the saturation procedure adds 

the transition rule p3
γ3|τ5�−−−→ p1, where τ5 = τ3 ◦ τ4 = {(γ γ1γ3ω, γ γ2γ3ω) | ω ∈ �∗, γ ∈ �}.

3. Now, there is p3
γ3γ1|(
γ1,γ1�−1τ5)◦τid�−−−−−−−−−−−−−→ ∗ s1 and the right-hand side of the transition r2 ∈ � is 〈p3, γ3γ1〉, the saturation 

procedure adds the transition rule p2
γ2|τ8�−−−→ s1, where τ6 = τ2 ◦ (
γ1, γ1�−1τ5) ◦ τid = {(γ1γ1γ2ω, γ2γ3γ3ω) | ω ∈ �∗}.

4. This creates the path p2
γ2γ1|(
γ1,γ2�−1τ6)◦τid�−−−−−−−−−−−−−→ ∗ s0 which leads to the addition of the transition rule p1

γ1|τ7�−−−→ s0 due to 
r1, where τ7 = τ1 ◦ (
γ1, γ2�−1τ6) ◦ τid = {(γ2γ3ω, γ3γ3ω) | ω ∈ �∗}.

5. The previous addition creates the path p3
γ3γ1|(
γ1,γ1�−1τ5)◦τ7�−−−−−−−−−−−−−→ ∗ s0 which allows the saturation procedure to add the 

transition rule p2
γ2|τ8�−−−→ s0 because of r2, where τ8 = τ2 ◦ (
γ1, γ1�−1τ5) ◦ τ7 = {(γ1γ1γ2ω, γ3γ3γ3ω) | ω ∈ �∗}.

6. No more new transition rule can be added into Apre∗
, so the procedure terminates.

Theorem 4. Given a finite TrPDS P = (P , �, T , �) and a rational set of configurations C of P recognized a TrNFA A =
(S, �, 
, T , S0, S f ), we can construct a TrNFA A′ such that L(A′) = pre∗(C) in time O(|�|3 · |S|3 · |
| · f (|T |)) and in space 
O(|�| · |S| · |〈T 〉|), where f is some computable function.

The proof follows from the following two lemmas.
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Lemma 1. For every configuration 〈q, v〉 ∈ L(A), if 〈p, ω〉 =⇒∗ 〈q, v〉, then p
ω|τ�−−→ ∗ g for some final state g of Apre∗

and (ε, ε) ∈ τ .

Proof. Suppose 〈p, ω〉 =⇒n 〈q, v〉, let us apply induction on n.

• Basis: n = 0. Then, p = q and ω = v . Since 〈q, v〉 ∈ L(A), we get that q
v|τ�−→ ∗ g for some final state g of Apre∗

and 
(ε, ε) ∈ τ . The result immediately follows.

• Step: n > 0. Then, there exists a configuration 〈p′, ω′〉 such that

〈p,ω〉 =⇒1 〈p′,ω′〉 =⇒n−1 〈q, v〉.
By applying the induction hypothesis to 〈p′, ω′〉 =⇒n−1 〈q, v〉, we get that

p′ ω′|τ�−−→ ∗ g for some final state g of Apre∗
and (ε, ε) ∈ τ .

Since 〈p, ω〉 =⇒1 〈p′, ω′〉, there exist γ , γ1, · · · , γm, γ ′
k+1, · · · , γ ′

m ∈ � such that ω = γ γ ′
[k+1..m] , ω

′ = γ[1..m] , 〈p, γ 〉 τ ′
↪→

〈p′, γ[1..k]〉 ∈ � and γ[k+1..m] ∈ τ ′(γ ′
[k+1..m]).

Suppose τ = (
γ[2..m], γ 2[2..m]�−1τ1) ◦ · · · ◦ (
γ m−1
m , γ m

m �−1τm−1) ◦ τm , by applying Proposition 5 to p′ ω′|τ�−−→ ∗ g , we obtain 
that

p′ γ[1..k]|(
γ[2..k],γ 2
[2..k]�−1τ1)◦···◦(
γ k−1

k ,γ k
k �−1τk−1)◦τk�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ kq′

and

q′ γ k+1
[k+1..m]|(
γ k+1

[k+2..m],γ
k+2
[k+2..m]�−1τk+1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m−k g.

(ε, ε) ∈ τ , therefore

(γ[k+1..m], γ k+1
[k+1..m]) ∈ τ ′′ = (
γ[2..k], γ 2

[2..k]�−1τ1) ◦ · · · ◦ (
γ k−1
k , γ k

k �−1τk−1) ◦ τk

and

(ε, ε) ∈ τ ′′′ = (
γ k+1
[k+2..m], γ

k+2
[k+2..m]�−1τk+1) ◦ · · · ◦ (
γ m−1

m , γ m
m �−1τm−1) ◦ τm.

By applying the saturation rule, p 
γ |τ ′◦τ ′′

�−−−−→ q′ . Hence, we get that

p
γ γ ′

[k+1..m]|
(
γ ′

[k+1..m],γ
k+1
[k+1..m]�−1(τ ′◦τ ′′)

)◦τ ′′′
�−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∗ g.

The result follows from the fact that (ε, ε) ∈ (
γ ′
[k+1..m], γ

k+1
[k+1..m]�−1(τ ′ ◦ τ ′′)

) ◦ τ ′′′ . �

Lemma 2. If p
ω|τ�−→ ∗ q in Apre∗

, then the following two properties hold:

(a) there exists some p′ ω′|τid�−−→ ∗ q in A such that 〈p, ωu〉 =⇒∗ 〈p′, ω′u′〉 for all u′ ∈ τ (u);
(b) moreover, if q is an initial state, then ω′ = ε .

Proof. Let i be the number of transition rules added during the saturation procedure. Let p 
ω|τ�−−→ ∗

i q denote a path which 
exists after adding the ith transition rule into Apre∗

. Let us apply induction on i.

Basis: i = 0. Then, p
ω|τ�−−→ ∗ q is in A which implies that τ = τid . Let p = p′, ω = ω′ and u = u′ . Since 〈p, ωu〉 =⇒∗ 〈p, ωu〉

always holds, then we get that 〈p, ωu〉 =⇒∗ 〈p′, ω′u′〉 and p′ ω′|τid�−−−→ ∗
0 q (i.e., p′ ω′ |τid�−−−→ ∗ q in A). Hence, the property (a) 

holds. The property (b) immediately follows from the fact that there is no transition rule in A leading to an initial state.

Step: i ≥ 1. Let t = q1
γ |τ ′′

�−−−→ q′ be the ith transition rule added into Apre∗
. Let j be the number of times that t is used in the 

derivation of p 
ω|τ�−−→ ∗

i q. Let us apply a nested induction on j.

• Basis: j = 0. Then, p 
ω|τ�−−→ ∗

i−1 q. The result immediately follows from the induction hypothesis on i.
• Step: j ≥ 1. Then, there exist γ 1

1 , · · · , γ 1
m ∈ � such that ω = γ 1[1..m] . Suppose τ = (
γ 1[2..m], γ 2[2..m]�−1τ1) ◦ · · · ◦

(
γ m−1
m , γ m

m �−1τm−1) ◦ τm , then, γ = γ k and τ ′′ = τk for some k ∈ {1, · · · , m}. By applying Proposition 5, we get that
k
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– p 
γ 1

[1..k−1]|(
γ 1
[2..k−1],γ

2
[2..k−1]�−1τ1)◦···◦(
γ k−2

k−1 ,γ k−1
k−1 �−1τk−2)◦τk−1�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∗

i−1 q1,

– q1
γ k

k |τk�−−−→ q′ ,

– q′ γ k+1
[k+1..m]|(
γ k+1

[k+2..m],γ
k+2
[k+2..m]�−1τk+1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∗

i q.
We notice that q1 is an initial state, by applying the induction hypothesis (induction on i) to

p 
γ 1

[1..k−1]|(
γ 1
[2..k−1],γ

2
[2..k−1]�−1τ1)◦···◦(
γ k−2

k−1 ,γ k−1
k−1 �−1τk−2)◦τk−1�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∗

i−1 q1, we get that

〈p, γ 1[1..m]u〉 =⇒∗ 〈q1, u′〉,
for all u′ ∈ (
γ 1

[2..k−1], γ
2
[2..k−1]�−1τ1) ◦ · · · ◦ (
γ k−2

k−1 , γ k−1
k−1 �−1τk−2) ◦ τk−1

)
(γ 1

[k..m]u). Hence, we get that

〈p, γ 1[1..m]u〉 =⇒∗ 〈q1, γ
k
[k..m]u

′〉,
for all u′ ∈ (
γ 1[2..m], γ 2[2..m]�−1τ1) ◦ · · · ◦ (
γ k

[k−1..m], γ
k
[k..m]�−1τk−1

)
(u).

Since the transition rule q1
γ k

k |τk�−−−→ q′ is added by applying the saturation procedure, then there exists a transition rule 

〈q1, γ k
k 〉 τ ′

1
↪→ 〈p2, ω2〉 ∈ � such that p2

ω2|τ ′′
1�−−−→ ∗

i−1q′ and τk = τ ′
1 ◦ τ ′′

1 . Then, we get that 〈q1, γ k
[k..m]u〉 =⇒ 〈p2, ω2u′〉, for all 

u′ ∈ τ ′
1(γ

k
[k+1..m]u). Hence, we get that for every α1

n+1, · · · , α1
m−k+n ∈ � ∪ {ε},

〈q1, γ
k
[k..m]u〉 =⇒∗ 〈p2,ω2α

1
[n+1..m−k+n]u

′〉,
for all u′ ∈ 
γ k

[k+1..m], α
1
[n+1..m−k+n]�−1τ ′

1(u).

Thus, we obtain that for every α1
n+1, · · · , α1

m−k+n ∈ � ∪{ε} and u′ ∈ (
γ 1[2..m], γ 2[2..m]�−1τ1) ◦ · · ·◦(
γ k−1
[k..m], γ

k
[k..m]�−1τk−1

)◦

γ k

[k+1..m], α
1
[n+1..m−k+n]�−1τ ′

1(u),

〈p, γ 1[1..m]u〉 =⇒∗ 〈p2,ω2α
1
[n+1..m−k+n]u

′〉.

Putting p2
ω2|τ ′′

1�−−−→ ∗
i−1q′ and q′ γ k+1

[k+1..m]|(
γ k+1
[k+2..m],γ

k+2
[k+2..m]�−1τk+1)◦···◦(
γ m−1

m ,γ m
m �−1τm−1)◦τm�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∗

i q together, we get that for every 
α1

n+1, · · · , α1
m−k+n ∈ � ∪ {ε},

p2
ω2α

1
[1..m−k+n]|τ ′′′

�−−−−−−−−−−→ ∗
i q,

where τ ′′′ = (
α1
[n+1..m−k+n], γ

k+1
[k+1..m]�−1τ ′′

1 ) ◦ (
γ k+1
[k+2..m], γ

k+2
[k+2..m]�−1τk+1) ◦ · · · ◦ (
γ m−1

m , γ m
m �−1τm−1) ◦ τm . Since the 

transition rule t is used in p2
ω2α

1
[1..m−k+n]|τ ′′′

�−−−−−−−−−−→ ∗
i q less often than in p

ω|τ�−−→ ∗
i q, by applying the induction hypothesis 

(induction on j) to p2
ω2α

1
[1..m−k+n]|τ ′′′

�−−−−−−−−−−→ ∗
i q, we get that for every α1

n+1, · · · , α1
m−k+n ∈ � ∪ {ε},

〈p2,ω2α
1
[n+1..m−k+n]u〉 =⇒∗ 〈p′,ω′u′〉

such that p′ ω′|τid�−−−→ ∗
0 q, for all u′ ∈ τ ′′′(u).

Therefore, we get that for every α1
n+1, · · · , α1

m−k+n ∈ � ∪ {ε},

〈q1, γ
k
[k..m]u〉 =⇒∗ 〈p′,ω′u′〉

such that p′ ω′ |τid�−−−→ ∗
0 q, for all u′ ∈ (
γ 1[2..m], γ 2[2..m]�−1τ1) ◦ · · · ◦ (
γ k−1

[k..m], γ
k
[k..m]�−1τk−1

)◦ (
γ k
[k+1..m], α

1
[n+1..m−k+n]�−1τ ′

1

)◦
τ ′′′(u).
We notice that

⋃
α1

n+1,··· ,α1
m−k+n∈�

(
γ k
[k+1..m],α

1
[n+1..m−k+n]�−1τ ′

1

) ◦ τ ′′′ =

⎛
⎜⎜⎜⎜⎜⎝

(
γ k
[k+1..m], γ

k+1
[k+1..m]�−1τk

)◦(
γ k+1
[k+2..m], γ

k+2
[k+2..m]�−1τk+1

)◦
· · ·

(
γ m−1
m , γ m

m �−1τm−1)◦
τm

⎞
⎟⎟⎟⎟⎟⎠

Thus, we get the result. �



52 F. Song / Information and Computation 259 (2018) 41–71
Input : A finite TrPDS P = (P , �, T , �) and a TrNFA A = (S, �, 
, T , S0, S f ) such that A uses only τid and 
 has no transition rule leading to a 
state in P

Output: The set of transition rules of Apre∗

1 
′ := 
; trans := 
; �′ := ∅;

2 foreach 〈p, γ 〉 τ
↪→ 〈p′, ε〉 ∈ � do Update(p γ |τ�−→ p′)

3 while trans �= ∅ do

4 remove t = q γ |τ�−→ q′ from trans;

5 foreach 〈p, γ1〉 τ ′
↪→ 〈q, γ 〉 ∈ � ∪ �′ do Update(p γ1 |τ ′◦τ�−−−→ q′);

6 foreach 〈p, γ1〉 τ ′
↪→ 〈q, γ γ2〉 ∈ � and γ ′

2 ∈ � do
7 if 
γ2, γ ′

2�−1τ �= ∅ then

8 �′ := �′ ∪ {〈p, γ1〉 τ ′◦(
γ2,γ ′
2�−1τ )

↪−−−−−−−−−−→〈q′, γ ′
2〉};

9 foreach q′ γ ′
2 |τ2�−→ q′′ ∈ 
′ do

10 Update(p γ1 |τ ′◦(
γ2,γ ′
2�−1τ )◦τ2�−−−−−−−−−−−−→ q′′);

11 return 
′;

12 Procedure Update(q γ |τ�−→ q′)

13 if t = q γ |τ ′
�−→ q′ ∈ 
′ then

14 t′ := q γ |τ ′∪τ�−−−→ q′;
15 
′ := 
′ ∪ {t′} \ {t} ;
16 if τ ′ �= τ ′ ∪ τ then trans := trans ∪ {t′} \ {t};

17 else if τ �= ∅ then

18 
′ := 
′ ∪ {q γ |τ�−→ q′};

19 trans := trans ∪ {q γ |τ�−→ q′′};

Algorithm 2: A FPT algorithm for computing pre∗ .

We notice that the number |
pre∗ | of transition rules of Apre∗
is at most O(|
| + |�| · |S| · |〈T 〉|). For each transition rule 

〈p, γ 〉 τ1
↪→ 〈q, γ1γ2〉 ∈ �, paths q

γ1γ2|τ2�−−−−→ ∗ g can be computed in time O( f (|T |) · (|S| + |P |) · |
pre∗ |) for some computable 
function f . Thus, we get that the saturation procedure executes at most in time O(|�|3 · |S|3 · |
| · f (|T |)). Memory is 
needed for storing the new transition rules which is bounded by O(|�| · |S| · |〈T 〉|).

Remark 3. In [27], the authors introduced TrNFAs and present a saturation procedure to compute pre∗ without its complex-
ity. They defined the relation �−→∗ by introducing a pseudo formal power series semiring to solve the associativity problem 
of the composition of transitions of TrNFAs. Their saturation procedure proceeds based on this semiring. Using the pseudo 
formal power series semiring defined therein, one obtains only one transition by composing two transitions of TrNFAs. 
Otherwise, as defined in this article, the authors of [27] argued that finitely many transitions accrue by the composing 
of two transitions. Since the associativity of the composition of transitions does not hold, then the order of composition 
of transition rules is sensitive. For instance, consider two transition rules s 

γ1|τ1�−−−→ s1 and s1
γ2|τ2�−−−→ s2, these two rules will 

yield s 
γ1γ

′
2|(
γ ′

2,γ2�−1τ1
)◦τ2�−−−−−−−−−−−−−→ 2 s2 for all γ ′

2 ∈ �. However, by looking inside of the saturation procedure of PDSs [4] as well as 
ours, one neither needs to compose all the pairs of transition rules of TrNFAs nor consider all the possible stack symbol γ ′

2
as in the above example. Indeed, during the saturation procedure or membership query, the input word ω is given, then 
the composition is carried out according to ω, similar to Algorithm 1. Therefore, the associativity of the composition is 
not a problem. Based on this observation, our saturation procedure directly proceeds based on TrNFAs and we show that 
this problem is fixed-parameter tractable (FPT). We believe our direct approach is more convenient for studying optimal 
algorithms or BDD-based symbolic techniques.

3.2. A FPT algorithm for computing pre∗

In this section, we present a FPT algorithm of the saturation procedure given in Section 3.1, which is suitable for im-
plementation. Our algorithm is an extension of the efficient algorithm of the saturation procedure for standard pushdown 
systems [1]. W.l.o.g., we suppose in this section that for every TrPDS P = (P , �, T , �), |ω| ≤ 2 for every transition rule 
〈p, γ 〉 τ

↪→ 〈q, ω〉 ∈ �.
Algorithm 2 computes the transition rules of Apre∗

by implementing the saturation procedure from Section 3.1. The basic 
idea follows from the efficient algorithm for computing pre∗ of PDSs [1] which avoids unnecessary operations. Intuitively, 

for the transition rules of the form 〈p, γ 〉 τ
↪→ 〈p′, ε〉 or 〈p, γ1〉 τ ′

↪→ 〈q, γ 〉 in �, the algorithm proceeds exactly the same as 

the saturation procedure given in Section 3.1. Whenever P has a transition rule in the form of 〈p, γ1〉 τ ′
↪→ 〈q, γ γ2〉, we look 
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out for every q′, q′′ ∈ S and γ ′
2 ∈ �, the pairs of transition rules q 

γ |τ�−→ q′ and q′ γ ′
2|τ2�−→ q′′ such that 
γ2, γ ′

2�−1τ �= ∅, so that 

we can add the transition rule p 
γ1|τ ′◦(
γ2,γ ′

2�−1τ )◦τ2�−−−−−−−−−−−−→ q′′ . However, the order of such transitions added into the automaton 

Apre∗
can be arbitrary. Whenever a transition rule like q′ γ ′

2|τ2�−→ q′′ is found, we have to check whether q 
γ |τ�−→ q′ exists or not. 

Then, this checking may be negative, and wastes time to no avail. However, once a transition rule q 
γ |τ�−→ q′ is seen, we know 

that all subsequent transitions like q′ γ ′
2|τ2�−→ q′′ must lead to the addition of the transition rule p 

γ1|τ ′◦(
γ2,γ ′
2�−1τ )◦τ2�−−−−−−−−−−−−→ q′ . That’s 

why we introduce a new transition rule 〈p, γ1〉 τ ′◦(
γ2,γ ′
2�−1τ )

↪−−−−−−−−−−→〈q′, γ ′
2〉 into �′ which allows us to add the transition rule 

p 
γ1|τ ′◦(
γ2,γ ′

2�−1τ )◦τ2�−−−−−−−−−−−−→ q′′ once q′ γ ′
2|τ2�−→ q′′ occurs. Let us explain Algorithm 2 line by line as follows.

Line 1 initializes the algorithm by assigning 
 to 
′ , 
 to trans, and ∅ to �′ . Line 2 handles normal transition rules of 
the form 〈p, γ 〉 τ

↪→ 〈p′, ε〉, where new transitions p 
γ |τ�−→ p′ can be immediately added. Once a new transition rule is created, 

we call the procedure Update which will be explained later. Lines 3–10 iteratively removes a transition t = q 
γ |τ�−→ q′ from 

trans until it is empty. The loop at Line 5 handles the case when q and γ match the right-hand side of transition rules in 
� ∪ �′ .

The procedure Update listed at Lines 12–19 is called whenever a new transition rule q 
γ |τ�−→ q′ is created. If 
′ contains a 

transition rule of the form t = q 
γ |τ ′
�−→ q′ for any τ ′ , then, we remove t from 
′ and add a new transition rule q 

γ |τ ′∪τ�−−−→ q′ into 

′ at Line 15. In other words, we update the transduction τ ′ by τ ′ ∪ τ . Moreover, if τ ′ ∪ τ does not equal to τ ′ , we remove 

t from trans and add q 
γ |τ ′∪τ�−−−→ q′ into trans at Line 16 for later processing. Otherwise if 
′ has no transition rule like t , we 

add q 
γ |τ�−→ q′ into 
′ and trans.

Theorem 5. Given a finite TrPDS P = (P , �, T , �) and a TrNFA A = (S, �, 
, T , S0, S f ), we can compute a TrNFA Apre∗
in time 

O(|S|2 · f (|T |) · |�| · |�|) for some computable function f and in space O(|S| · |�| · |〈T 〉| · |�|) such that L(Apre∗
) = pre∗(L(A)).

The proof follows from the following three lemmas.

Lemma 3 (Termination). Algorithm 2 always terminates.

Proof. 
′ initially is 
 and can only grow afterwards. Since S and � are finite sets, and 〈T 〉∪ is finite, thus, the procedure
Update cannot infinitely add transition rules into 
′ . This implies that the loops at Lines 3–10 and Lines 9–10 execute 
only finitely many times. Moreover, because � is finite, the loops at Line 2 and Lines 6–10 execute only finitely many times. 
Therefore, �′ also is finite and the loop at Line 5 executes only finitely many times. Thus, Algorithm 2 always terminates. �
Lemma 4 (Correctness). Upon termination of Algorithm 2, 
′ ∝ 
pre∗

.

Proof. Since 
′ and 
pre∗
do not have any ε-transition, we only need to show that

(a) for every q 
γ |τ�−→ q′ in 
pre∗

, there exists q 
γ |τ ′
�−→ q′ ∈ 
′ such that τ ⊆ τ ′;

(b) for every q 
γ |τ ′
�−→ q′ ∈ 
′ , there exist q 

γ |τ1�−→ q′, · · · , q 
γ |τn�−→ q′ in 
pre∗

such that τ ′ = ⋃n
i=1 τi .

Proof of (a): We show that upon termination for every q 
γ |τ�−→ q′ ∈ 
pre∗

, there exists q 
γ |τ ′
�−→ q′ ∈ 
′ such that τ ⊆ τ ′ . Let us 

apply the induction on the number n of transition rules added into 
pre∗
by applying the saturation procedure.

Basis: n = 0. The result follows from the fact that initially 
pre∗ = 
 ⊆ 
′ .

Step: n ≥ 1. Suppose 〈p, γ 〉 τ
↪→ 〈p′, ω〉 ∈ �, there is p′ ω|τ ′

�−→∗ q′ in 
pre∗
, p 

γ |τ◦τ ′
�−→ q′ is the nth transition rule added into 


pre∗
. It is sufficient to show that Algorithm 1 calls the procedure Update(p 

γ |τ ′′
�−→ q′) such that τ ◦ τ ′ ⊆ τ ′′ .

• If ω = ε , then, p′ = q′ and τ ′ = τid . The procedure Update(p 
γ |τ�−→ p′) is called at Line 2.

• If ω = γ ′ , then, by applying the induction hypothesis to p′ ω|τ ′
�−→ q′ , we get that p′ ω|τ ′

1�−→ q′ ∈ 
′ such that τ ′ ⊆ τ ′
1. Thus, 

the procedure Update(p 
γ |τ◦τ ′

1�−→ p′) is called at Line 5. We notice that τ ◦ τ ′ ⊆ τ ◦ τ ′
1.

• If ω = γ1γ2, then 
pre∗
contains two transition rules t1 = p′ γ1|τ1�−→ p′′ and t2 = p′′ γ ′

2|τ2�−→ q′ such that (
γ2, γ ′
2�−1τ1) ◦

τ2 = τ ′ . By applying the induction hypothesis to t1 and t2, we get that 
′ contains two transition rules t′ = p′ γ1|τ ′
1�−→ p′′
1
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and t′
2 = p′′ γ ′

2|τ ′
2�−→ q′ such that τ1 ⊆ τ ′

1 and τ2 ⊆ τ ′
2. Hence, Algorithm 1 adds a transition rule 〈p, γ 〉 τ◦(
γ2,γ ′

2�−1τ ′
1)

↪−−−−−−−−−−→〈p′′, γ ′
2〉

into �′ at Line 8.

If the transition rule t′
2 is added before the addition of t′

1, then, the procedure Update(p 
γ |τ◦(
γ2,γ ′

2�−1τ ′
1)◦τ ′

2�−−−−−−−−−−−−→ p′)
is called at Line 10. Otherwise, if the transition rule t′

2 is added after the addition of t′
1, then, the procedure 

Update(p 
γ |τ◦(
γ2,γ ′

2�−1τ ′
1)◦τ ′

2�−−−−−−−−−−−−→ p′) is called at Line 5. We notice that τ ◦τ ′ = τ ◦ (
γ2, γ ′
2�−1τ1) ◦τ2 ⊆ τ ◦ (
γ2, γ ′

2�−1τ ′
1) ◦τ ′

2.

Proof of (b): We show that throughout Algorithm 2, for every q 
γ |τ ′
�−→ q′ ∈ 
′ , there exist q 

γ |τ1�−→ q′, · · · , q 
γ |τn�−→ q′ ∈ 
pre∗

such 

that τ = ⋃n
i=1 τi . It is sufficient to show that whenever the procedure Update(p 

γ |τ ′
�−→ q′) is called at Line 2 or Line 5 or 

Line 10, there exist p 
γ |τ1�−→ q′, · · · , p 

γ |τn�−→ q′ ∈ 
 such that τ = ⋃n
i=1 τi . Let us apply the induction on the number n of times 

that the procedure Update(q 
γ |τ ′
�−→ q′) is called.

Basis: n = 0. The result follows from the fact that we initially have 
′ = 
 ⊆ 
pre∗
.

Step: n ≥ 1.

• If the procedure Update(p 
γ |τ ′
�−→ q′) is called at Line 2, then, there is a transition rule 〈p, γ 〉 τ ′

↪→ 〈q′, ε〉 ∈ �. Hence, the 

saturation procedure adds a transition rule p 
γ |τ ′
�−→ q′ in 
pre∗

. The result follows.

• If the procedure Update(p 
γ |τ ′
�−→ q′) is called at Line 5, there is a transition rule 〈p, γ 〉 τ

↪→ 〈p′, γ ′〉 ∈ � ∪ �′ and p′ γ ′|τ ′′
�−→ q′

such that τ ′ = τ ◦ τ ′′ . By applying the induction hypothesis to p′ γ ′|τ ′′
�−→ q′: there are p′ γ ′ |τ1�−→ q′, · · · , p′ γ ′|τn�−→ q′ ∈ 
pre∗

such 
that τ ′′ = ⋃n

i=1 τi .

– If 〈p, γ 〉 τ
↪→ 〈p′, γ ′〉 ∈ �, then, the saturation procedure adds the transition rules p 

γ |τ◦τi�−→ q′ into 
pre∗
for i : 1 ≤ i ≤ n. 

We notice that τ ′ = τ ◦ τ ′′ = τ ◦ ⋃n
i=1 τi = ⋃n

i=1 τ ◦ τi .

– If 〈p, γ 〉 τ
↪→ 〈p′, γ ′〉 ∈ �′ , then, there is 〈p, γ 〉 τ ′

1
↪→ 〈p′′, γ1γ2〉 ∈ � and p′′ γ1|τ ′

2�−→ p′ such that τ = τ ′
1 ◦ (
γ2, γ ′�−1τ ′

2). By 

applying the induction hypothesis to p′′ γ1|τ ′
2�−→ p′ , there are p′′ γ1|τ 1

1�−→ p′, · · · , p′′ γ1|τ 1
n1�−→ p′ ∈ 
pre∗

such that τ ′
2 = ⋃n1

j=1 τ 1
j . 

Thus, for all i : 1 ≤ i ≤ n, j : 1 ≤ j ≤ n1, the saturation procedure adds the transition rules p 
γ |τ j

i�−→ q′ into 
pre∗
, where 

τ
j

i = τ ′
1 ◦ (
γ2, γ ′�−1τ 1

j ) ◦ τi . We notice that

τ ′ = τ ◦ τ ′′

= τ ′
1 ◦ (
γ2, γ

′�−1τ ′
2) ◦ τ ′′

= τ ′
1 ◦ (
γ2, γ

′�−1
n1⋃
j=1

τ 1
j ) ◦

n⋃
i=1

τi

=
⋃

1≤i≤n,1≤ j≤n1

τ ′
1 ◦ (
γ2, γ

′�−1τ 1
j ) ◦ τi

• If the procedure Update(p 
γ |τ ′
�−→ q′) is called at Line 10, then the result immediately follows in the same way as the 

procedure Update(p 
γ |τ ′
�−→ q′) is called at Line 5 and 〈p, γ 〉 τ

↪→ 〈p′, γ ′〉 ∈ �′ . �
Lemma 5 (Complexity). Algorithm 2 takes O(|S|2 · f (|T |) · |�| · |�|) time for some computable function f and O(|S| · |�| · |〈T 〉| · |�|)
space.

Proof. We suppose that � is organized in a hash table where the keys are the heads (q, γ ′) of transition rules 〈p, γ 〉 ↪→
〈q, γ ′ω〉. Similar, all the new transition rules in �′ are put into this hash table at run-time. Thus, the addition of a new 
transition rule takes constant time. Suppose the time of all operations (i.e., left quotient, composition, union) on transduc-
tions used in Algorithm 2 is f (|T |) for some computable function f . The transductions of transition rules in 
 and 
′ are 
implemented as a function l (implemented as a hash table), e.g., l(q 

γ�−→ q′) = τ iff q 
γ |τ�−→ q′ . Thus, 
 and 
′ are represented 

as sets 
1 and 
′
1 of transition rules of the form q 

γ�−→ q′ equipped with the function l. Moreover, 
1 and 
′
1 are organized 

in a hash table, then addition and membership test take constant time. trans is implemented as a stack so that addition 
and removal of transitions (from the stack) take constant time, too. To avoid adding any transition to trans more than once, 
we store all transitions which are ever added to trans in an additional hash table. New transitions are added to the table 
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only if they are not already in this table. According to the procedure Update, each transition rule of 
′ is added into trans
once.

Let �i denote {〈p, γ 〉 τ
↪→ 〈g, ω〉 ∈ � | |ω| = i}, for every i ∈ {0, 1, 2}.

Line 2 is executed at most O(|�0|) times. Hence, the number of transition rules added into trans by Line 2 is at most 
O(|�0|).

Line 8 is executed at most once for each combination of transition rules q 
γ |τ�−→ q′ , and 〈p, γ1〉 τ

↪→ 〈q, γ γ2〉 ∈ �, and stack 
symbol γ ′

2, i.e., O(|S| · |〈T 〉| · |�2| · |�|). Hence, the size of �′ is at most O(|S| · |〈T 〉| · |�2| · |�|). The loop at Lines 9–10 is 
executed at most O(|S|2 · |〈T 〉|2 · |�2| · |�|).

Line 5 is executed at most once for each combination of transition rules q 
γ |τ�−→ q′ , transition rules 〈p, γ1〉 τ

↪→ 〈q, γ 〉 ∈
� ∪ �′ . Since |�′| is at most O(|S| · |〈T 〉| · |�2| · |�|), Line 5 is executed at most O(|S| · |〈T 〉| · (|�1| + |S| · |〈T 〉| · |�2| · |�|)).

Now, let us examine the iterations of the loop at Lines 3–10. Initially, trans contains transition rules from 
 at Line 1 
and transition rules added at Line 2 which is at most |�0|. The number of other transition rules added into trans is no more 
than O(|S| · |〈T 〉| · (|�1| + |S| · |〈T 〉| · |�2| · |�|)). Thus, Algorithm 2 is in time O(|S|2 · f (|T |) · |�| · |�|) for some computable 
function f .

During the execution of Algorithm 2, memory is needed for storing trans, 
′ and �′ . Since the number of transition 
rules added into trans and 
′ is at most O(|S| · |�| · |〈T 〉|), and since |�′| is at most O(|S| · |〈T 〉| · |�2| · |�|), Algorithm 2
needs at most O(|S| · |�| · |〈T 〉| · |�|) space. �
4. Computing post∗

In this section, we present an approach to compute post∗ which is different from the way presented in [27]. In [27], 
post∗ is computed by transforming a finite TrPDS into an equivalent PDS and then computing post∗ of the resulting PDS. 
We will present a saturation procedure which directly computes post∗ similar to computing pre∗ given in Section 3. Finally, 
we give an FPT algorithm implementing this saturation procedure.

4.1. Saturation procedure for computing post∗

Given a finite TrPDS P = (P , �, T , �) and a TrNFA A = (S, �, 
, T , S0, S f ) that recognizes a rational set of configurations 
of P , we can construct an ε-TrNFA Apost∗ = (S post∗ , 
post∗ , S0, S f ) such that Apost∗ recognizes post∗(L(A)), i.e., L(Apost∗ ) =
post∗(L(A)). W.l.o.g., we assume that S0 = P and there is no transition rule in A leading to an initial state, A uses only the 
identity transduction τid , and |ω| ≤ 2 for every transition rule 〈p, γ 〉 τ

↪→ 〈q, ω〉 ∈ �. The construction of Apost∗ is similar to 
the construction of Apre∗

which is an extension of the saturation procedure for computing post∗ of PDSs [1].
Given a transduction τ , let τ denote the inversion {(ω1, ω2) | (ω2, ω1) ∈ τ } of τ , let T denote 

⋃
τ∈T τ for a given set T

of transductions.

Proposition 7. 〈T 〉 = 〈T 〉 and 〈T 〉∪ = 〈T 〉∪ .

Proof. The result immediately follows from the facts that:

• for every pair τ1, τ2 of transductions, τ1 ◦ τ2 = τ2 ◦ τ1 and τ1 ∪ τ2 = τ2 ∪ τ1;
• for every transduction τ , for all γ1, γ2 ∈ �, 
γ1, γ2�−1τ = 
γ2, γ1�−1τ . �

Initially, Apost∗ = A, then we iteratively apply the following saturation procedure until the automaton is saturated (i.e., no 
new transition rule can be added):

(i) If 〈p, γ 〉 τ
↪→ 〈p′, ε〉 ∈ � and p

γ |τ ′
�−→∗ s, then add p′ ε| τ◦τ ′

�−−−→ s into 
post∗ ;

(ii) If 〈p, γ 〉 τ
↪→ 〈p′, γ1〉 ∈ � and p

γ |τ ′
�−→∗ s, then add p′ γ1| τ◦τ ′

�−−−−→ s into 
post∗ ;

(iii) If 〈p, γ 〉 τ
↪→ 〈p′, γ1γ2〉 ∈ � and p

γ |τ ′
�−→∗ s, then add a new state qγ1

p′ into S post∗ ,

add p′ γ1| τid�−−−→ qγ1
p′ and qγ1

p′
γ2| τ◦τ ′
�−−−−→ s into 
post∗ .

Intuitively, if there is a transition rule 〈p, γ 〉 τ
↪→ 〈p′, ε〉 ∈ �, then 〈p, γω〉 is an immediate predecessor of the con-

figuration 〈p′, ω1〉 for every ω1 ∈ τ (ω). Thus, if the automaton already accepts the configuration 〈p, γω〉 by p 
γ |τ ′

�−→∗ s

and s 
ω2|τ2�−→∗ q f for some final state q f , where ω2 ∈ τ ′(ω) and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, ω1〉, for ev-

ery ω1 ∈ τ (ω). Adding the transition rule p′ ε| τ◦τ ′
�−−−→ s allows the automaton to accept 〈p′, ω1〉, for every ω1 ∈ τ (ω), as 
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Fig. 3. The resulting TrNFA Apost∗ .

ω2 ∈ (τ ◦ τ ′)(ω1). Moreover, to simplify the computing of p 
γ |τ ′

�−→∗ s which may involve some ε-transition rules, whenever a 
new transition rule is added, we could add a new transition which combines a ε-transition and a non-ε-transition due to 

Proposition 6. Then, we only need to check whether p 
γ |τ ′
�−→ s exists or not.

If there is a transition rule 〈p, γ 〉 τ
↪→ 〈p′, γ1〉 ∈ �, then 〈p, γω〉 is an immediate predecessor of the configuration 

〈p′, γ1ω1〉 for every ω1 ∈ τ (ω). Thus, if the automaton already accepts the configuration 〈p, γω〉 by p 
γ |τ ′

�−→∗ s and s 
ω2|τ2�−→∗ q f

for some final state q f , where ω2 ∈ τ ′(ω) and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, γ1ω1〉, for every ω1 ∈ τ (ω). 

Adding the transition rule p′ γ1| τ◦τ ′
�−−−−→ s allows the automaton to accept 〈p′, γ1ω1〉, for every ω1 ∈ τ (ω), as ω2 ∈ (τ ◦ τ ′)(ω1).

If there is a transition rule 〈p, γ 〉 τ
↪→ 〈p′, γ1γ2〉 ∈ �, then 〈p, γω〉 is an immediate predecessor of the configuration 

〈p′, γ1γ2ω1〉 for every ω1 ∈ τ (ω). Thus, if the automaton already accepts the configuration 〈p, γω〉 by p 
γ |τ ′

�−→∗ s and s 
ω2|τ2�−→∗

q f for some final state q f , where ω2 ∈ τ ′(ω) and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, γ1γ2ω1〉, for every ω1 ∈ τ (ω). 

Adding the transition rules p′ γ1| τid�−−−→ qγ1
p′ and qγ1

p′
γ2| τ◦τ ′
�−−−−→ s allows the automaton to accept 〈p′, γ1γ2ω1〉, for every ω1 ∈ τ (ω), 

as ω2 ∈ (τ ◦ τ ′)(ω1).

Example 3. Consider the TrPDS shown in Fig. 2(a) and the TrNFA A shown in Fig. 2(b). The result automaton after applying 
the saturation procedure is shown in Fig. 3. The automaton is constructed by the following steps:

1. First, p1
γ1|τid�−−−→ s1 matches the left-hand side of the transition rule r1 = 〈p1, γ1〉 τ1

↪→ 〈p2, γ2γ1〉, we add two transition 

rules p2
γ2|τid�−−−→ qγ2

p2 and qγ2
p2

γ1|τ5�−−−→ s1, and add a new state qγ2
p2 , where τ5 = τ1 ◦ τid = {(γ1γ2ω, γ2γ3ω) | ω ∈ �∗};

2. The added transition rule p2
γ2|τid�−−−→ qγ2

p2 matches the left-hand side of the transition rule r2 = 〈p2, γ2〉 τ2
↪→ 〈p3, γ3γ1〉, 

thus, we add two transition rules p3
γ3|τid�−−−→ qγ3

p3 and qγ3
p3

γ1|τ6�−−−→ qγ2
p2 , and add a new state qγ3

p3 , where τ6 = τ2 ◦ τid =
{(γ γ3γ3ω, γ γ1γ2ω) | γ ∈ �, ω ∈ �∗};

3. This in turn, together with r3 = 〈p3, γ3〉 τ3
↪→ 〈p1, γ2〉 leads to the addition of the rule p1

γ2|τ7�−−−→ qγ3
p3 , where τ7 = τ3 ◦ τid =

{(γ γ1γ2ω, γ γ1γ3ω) | γ ∈ �, ω ∈ �∗};

4. We now can apply p1
γ2|τ7�−−−→ qγ3

p3 to r4 = 〈p1, γ2〉 τ4
↪→ 〈p1, ε〉, we add p1

ε|τ8�−−→ qγ3
p3 , where τ8 = τ4 ◦ τ7 = {(γ γ2γ3ω,

γ γ1γ3ω) | γ ∈ �, ω ∈ �∗};

5. We now have p1
γ1|(
γ1,γ2�−1τ8)◦τ6�−−−−−−−−−−−→ ∗ qγ2

p2 , and can apply r1 once more. Because, p2
γ2|τid�−−−→ qγ2

p2 is already added previously, 

we just add qγ2
p2

γ1|τ9�−−−→ qγ2
p2 , where τ9 = τ1 ◦ (
γ1, γ2�−1τ8) ◦ τ6 = {(γ1γ2γ3ω, γ1γ1γ2ω) | ω ∈ �∗};

6. No more transition can be added, so the procedure terminates.

Theorem 6. Given a finite TrPDS P = (P , �, T , �) and a rational set of configurations C of P recognized a TrNFA A =
(S, �, 
, T , S0, S f ), we can construct a TrNFA A′ such that L(A′) = post∗(C).

The proof follows from the following two lemmas.

Lemma 6. For every configuration 〈q, v〉 ∈ L(A), if 〈q, v〉 =⇒∗ 〈p, ω〉, then p
ω|τ�−−→ ∗ g for some final state g of Apost∗ and (ε, ε) ∈ τ .

Proof. Suppose 〈q, v〉 =⇒n 〈p, ω〉, we proceed by induction on n.

Basis: n = 0. Then, p = q and ω = v . Since 〈q, v〉 ∈ L(A), we get that q
v|τ�−−→ ∗ g for some final state g of Apost∗ and (ε, ε) ∈ τ . 

The result immediately follows.
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Step: n > 0. Then, there exists a configuration 〈p′, ω′〉 such that

〈q, v〉 =⇒n−1 〈p′,ω′〉 =⇒1 〈p,ω〉.
By applying the induction hypothesis to 〈q, v〉 =⇒n−1 〈p′, ω′〉, we get that

p′ ω′|τ�−−→ ∗ g for some final state g of Apost∗ and (ε, ε) ∈ τ .

Since 〈p′, ω′〉 =⇒1 〈p, ω〉, there exist γ ∈ �, u1, u′
1, ω1 ∈ �∗ such that ω′ = γ u1, ω = ω1u′

1, 〈p′, γ 〉 τ ′
↪→ 〈p, ω1〉 ∈ � and 

u′
1 ∈ τ ′(u1). Hence, we can decompose p′ ω′ |τ�−−→ ∗ g into p′ γ |τ1�−−→ ∗ q1 and q1

u′′
1 |τ2�−−−→ ∗ g such that τ = (
u1, u′′

1�−1τ1) ◦ τ2. 
Since |ω1| ≤ 2, we proceed by considering whether |ω1| is 0, 1 or 2.

• If |ω1| = 0, then ω1 = ε . By applying the saturation procedure, we have p
ε|τ ′◦τ1�−−−−→ q1. Thus, we get that

p
u′

1|(
u′
1,u′′

1�−1(τ ′◦τ1))◦τ2�−−−−−−−−−−−−−−−→ ∗ g . We notice that (ε, ε) ∈ (
u′
1, u

′′
1�−1(τ ′ ◦ τ1)) ◦ τ2.

• If |ω1| = 1, then suppose ω1 = γ1. By applying the saturation procedure, we have p
γ1|τ ′◦τ1�−−−−−→ q1. Thus, we get that 

p
γ1u′

1|(
u′
1,u′′

1�−1(τ ′◦τ1))◦τ2�−−−−−−−−−−−−−−−−→ ∗ g . We notice that (ε, ε) ∈ (
u′
1, u

′′
1�−1(τ ′ ◦ τ1)) ◦ τ2.

• If |ω1| = 2, then suppose ω1 = γ1γ2. By applying the saturation procedure, we have p
γ1|τid�−−−→ qγ1

p and qγ1
p

γ2|τ ′◦τ1�−−−−−→ q1. 

Then, we have p
γ1γ2|τ ′◦τ1�−−−−−−→ q1. Thus, we get that p

γ1γ2u′
1|(
u′

1,u′′
1�−1(τ ′◦τ1))◦τ2�−−−−−−−−−−−−−−−−−−→ ∗ g . We notice that (ε, ε) ∈ (
u′

1, u
′′
1�−1(τ ′ ◦

τ1)) ◦ τ2. �
Lemma 7. If p

ω|τ�−→ ∗ q in Apost∗ , then the following two properties hold:

(a) if q is some state of A, then there exists a pair (p′, ω′) ∈ P × �∗ such that p′ ω′|τid�−−→ ∗ q in A and for all (u, u′) ∈ τ , 〈p′, ω′u′〉 =⇒∗
〈p, ωu〉;

(b) if q = qγ ′
p′ , then for all (u, u′) ∈ τ , 〈p′, γ ′u′〉 =⇒∗ 〈p, ωu〉.

Proof. Let i be the number of transition rules added during the saturation procedure. Let p 
ω|τ�−−→ ∗

i q denote a path which 
exists after adding the ith transition rule into Apost∗ . Let us apply induction on i.

Basis: i = 0. Then, p
ω|τ�−−→ ∗

0 q, which implies that τ = τid . Let p = p′ and ω = ω′ . Since 〈p, ωu〉 =⇒∗ 〈p, ωu〉 always holds 
for all u ∈ �∗ , then we get that

〈p′,ω′u′〉 =⇒∗ 〈p,ωu〉 for all (u′, u) ∈ τid and p′ ω′|τid�−−−→ ∗
0 q (i.e., p′ ω′|τid�−−−→ ∗ qinA).

Hence, the property (a) holds. The property (b) immediately follows from the fact that q �= qγ ′
p′ for any p′ ∈ P , γ ′ ∈ �.

Step: i ≥ 1. Let t = q1
γ |τ ′

�−−→ q′ be the ith transition rule added into Apost∗ . Let j be the number of times that t is used in the 
derivation of p 

ω|τ�−−→ ∗
i q. Since there is no transition rule in A leading to an initial state of A, and the saturation procedure 

does not add any such transitions too, then, if q1 ∈ S0, we get that t can be used at most once and only at the start of the 
path p

ω|τ�−−→ ∗ q. Let us apply a nested induction on j. The result immediately follows from the induction hypothesis on i
when j = 0. The rest is devoted to the case j ≥ 1. We proceed by distinguishing three possible cases.

• If t is added by Item (i) or Item (ii), then, p = q1. Suppose ω = γ u1, then

there exists q′ u′
1|τ1�−−→ ∗

i−1 q such that τ = (
u1, u′
1�−1τ ′) ◦ τ1.

Suppose t is added by applying the saturation procedure to 〈p2, γ2〉 τ2
↪→ 〈q1, γ 〉, then we have p2

γ2|τ3�−−−→ ∗
i−1 q′ such that 

τ ′ = τ2 ◦ τ3. Then,

τ = (
u1, u′
1�−1(τ2 ◦ τ3)) ◦ τ1 =

⋃
u′′∈�|u1 |

(
u1, u′′
1�−1τ2) ◦ (
u′′

1, u′
1�−1τ3) ◦ τ1.
1
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Hence, for all u′′
1 ∈ �|u1| , there exists

p2
γ2u′′

1|(
u′′
1,u′

1�−1τ3)◦τ1�−−−−−−−−−−−−−→ ∗
i−1 q.

Note that (
u′′
1, u′

1�−1τ3) ◦ τ1 may be ∅ for some u′′
1, but there always exists some u′′

1 ∈ �|u1| such that (
u′′
1, u′

1�−1τ3) ◦
τ1 �= ∅ unless τ = ∅.

By applying the induction hypothesis (on j) to p2
γ2u′′

1 |(
u′′
1,u′

1�−1τ3)◦τ1�−−−−−−−−−−−−−→ ∗
i−1 q for all u′′

1 ∈ �|u1| such that (
u′′
1, u′

1�−1τ3) ◦
τ1 �= ∅, we get that for all (u2, u′) ∈ (
u′′

1, u′
1�−1τ3) ◦ τ1, there exists (p′, ω′) ∈ P × �∗ such that

〈p′,ω′u′〉 =⇒∗ 〈p2, γ2u′′
1u2〉 and p′ ω′|τid�−−→ ∗

0 q.

Since 〈p2, γ2〉 τ2
↪→ 〈q1, γ 〉 ∈ �, then, there exists (p′, ω′) ∈ P × �∗ such that for all u ∈ 
u′′

1, u1�−1τ2(u2),

〈p′,ω′u′〉 =⇒∗ 〈p2, γ2u′′
1u2〉 =⇒∗ 〈q1, γ u1u〉 = 〈p,ωu〉.

Since τ = ⋃
u′′

1∈�|u1 | (
u1, u′′
1�−1τ2) ◦ (
u′′

1, u′
1�−1τ3) ◦ τ1, we get that for all (u, u′) ∈ τ , u ∈ 
u′′

1, u1�−1τ2(u2) for some u′′
1

and u2. The result immediately follows.

Now, we consider the property (b). Suppose q = qγ ′
p′ . By applying the induction hypothesis to p2

γ2u′′
1 |(
u′′

1,u′
1�−1τ3)◦τ1�−−−−−−−−−−−−−→ ∗

i−1 q

for all u′′
1 ∈ �|u1| such that (
u′′

1, u′
1�−1τ3) ◦ τ1 �= ∅, we get that for all (u, u′) ∈ (
u′′

1, u′
1�−1τ3) ◦ τ1, 〈p′, γ ′u′〉 =⇒∗

〈p2, γ2u′′
1u〉. Thus, we get that for all (u, u′) ∈ τ (note that u ∈ 
u′′

1, u1�−1τ2(u2)),

〈p′, γ ′u′〉 =⇒∗ 〈p2, γ2u′′
1u〉 =⇒∗ 〈q1, γ u1u〉 = 〈p,ωu〉.

• If t is the first transition rule added in Item (iii), where q′ = qγ1
p1 and τ ′ = τid , then we proceed by considering whether 

t is new or not. If t already exists in Apost∗ , then the result immediately follows from the induction hypothesis on i. 
Otherwise if t is a new transition rule, then there is no transition rule starting from or leading to qγ1

p1 at this moment. 

Thus, p
ω|τ�−→ ∗ q must be p1

γ |τid�−−−→ qγ1
p1 . This means that we only need to prove the property (b). The result follows from 

the fact that 〈p′, γ ′u′〉 =⇒∗ 〈p′, γ ′u〉, for all p′ ∈ P , γ ′ ∈ � and (u, u′) ∈ τid .

• If t is the second transition rule added in Item (iii), where q1 = qγ1
p1 , then we can decompose p

ω|τ�−→ ∗ q into

p
u1|τ1�−−→ ∗

i−1 qγ 1

p1 , qγ 1

p1

γ |τ ′
�−−→ q′, and q′ v1|τ2�−−→ ∗

i q

such that τ = (
γ2 v2, γ v ′
1�−1τ1) ◦ (
v ′

1, v1�−1τ ′) ◦ τ2 and ω = u1γ2 v2. By applying the induction hypothesis (on i) to 

p
u1|τ1�−−→ ∗

i−1 qγ 1

p1 , we get that

〈p1, γ1 v〉 =⇒∗ 〈p, u1u〉, for all (u, v) ∈ τ1.

Since t is added by applying the saturation procedure, then there are 〈p2, γ2〉 τ3
↪→ 〈p1, γ1γ 〉 ∈ � and p2

γ2|τ4�−−→ ∗
i−1 q′ such 

that τ ′ = τ3 ◦ τ4. Hence, we get that for all v3 ∈ �|v1| , p2
γ2 v3|(
v3,v1�−1τ4)◦τ2�−−−−−−−−−−−−−→ ∗

i−1 q (if it exists) uses t less often than in 

p
ω|τ�−→ ∗ q.

By applying the induction hypothesis (on j) to p2
γ2 v3|(
v3,v1�−1τ4)◦τ2�−−−−−−−−−−−−−→ ∗

i−1 q, we get that if q is a state of A, then there 
exists (p′, ω′) ∈ P × �∗ such that

〈p′,ω′u′〉 =⇒∗ 〈p2, γ2 v3u2〉 and p′ ω′|τid�−−→ ∗
0 q, for all (u2, u′) ∈ (
v3, v1�−1τ4) ◦ τ2.

Since

τ = (
γ2 v2, γ v ′
1�−1τ1) ◦ (
v ′

1, v1�−1τ ′) ◦ τ2

= (
γ2 v2, γ v ′
1�−1τ1) ◦ (
v ′

1, v1�−1(τ3 ◦ τ4)) ◦ τ2

= (
γ2 v2, γ v ′
1�−1τ1) ◦

⋃
v3∈�|v1 |

(
v ′
1, v3�−1τ3) ◦ (
v3, v1�−1τ4) ◦ τ2,

then for every (u, u′) ∈ τ , there exist ω1, u2, v3 such that:
– (u, ω1) ∈ 
γ2 v2, γ v ′

1�−1τ1 (i.e., (γ2 v2u, γ v ′
1ω1) ∈ τ1);

– (ω1, u2) ∈ 
v ′
1, v3�−1τ3 (i.e., (v ′

1ω1, v3u2) ∈ τ3);
– (u2, u′) ∈ (
v3, v1�−1τ4) ◦ τ2.
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Input : A finite TrPDS P = (P , �, T , �) and a TrNFA A = (S, �, 
, T , S0, S f ) such that A uses only τid , 
 has no transition leading to a state in P
and no ε-transition

Output: The TrNFA Apost∗ = (S post∗ , 
′, S0, S f )

1 
′ := 
; trans := 
 ∩ P × � × T × S;

2 S post∗ := S ∪ {qγ1
p1 | 〈p, γ 〉 τ

↪→ 〈p1, γ1γ2〉 ∈ �};
3 while trans �= ∅ do

4 remove t = p γ |τ�−→ q from trans;
5 if γ �= ε then

6 foreach 〈p, γ 〉 τ1
↪→ 〈p1, ε〉 ∈ � do Update(p1

ε | τ1◦τ�−−−−−→ q);

7 foreach 〈p, γ 〉 τ1
↪→ 〈p1, γ1〉 ∈ � do Update(p1

γ1 | τ1◦τ�−−−−−−→ q);

8 foreach 〈p, γ 〉 τ1
↪→ 〈p1, γ1γ2〉 ∈ � do

9 Update(p1
γ1 | τid�−−−−→ qγ1

p1 );

10 Update(qγ1
p1

γ2 | τ1◦τ�−−−−−−→ q);

11 foreach p2
ε | τ2�−−−→ qγ1

p1 ∈ 
′, γ ′
2 ∈ � do

12 Update(p2
γ ′

2 | (
γ ′
2,γ2�−1τ2)◦τ1◦τ�−−−−−−−−−−−−−−−→ q)

13 else foreach q γ1 | τ1�−−−→ q′ ∈ 
′, γ ′
1 ∈ � do

14 Update(p γ ′
1 | (
γ ′

1,γ1�−1τ )◦τ1�−−−−−−−−−−−−−→ q′)

15 return Apost∗ ;

Algorithm 3: A FPT algorithm for computing post∗ .

Therefore,

〈p′,ω′u′〉 =⇒∗ 〈p2, γ2 v3u2〉 =⇒∗ 〈p1, γ1γ v ′
1ω1〉 =⇒∗ 〈p, u1γ2 v2u〉 = 〈p,ωu〉.

We consider now the property (b) and assume that q = qγ ′
p′ . By applying the induction hypothesis (on j) to 

p2
γ2 v3|(
v3,v1�−1τ4)◦τ2�−−−−−−−−−−−−−→ ∗

i−1 q, for all (u2, u′) ∈ (
v3, v1�−1τ4) ◦ τ2,

〈p′, γ ′u′〉 =⇒∗ 〈p2, γ2 v3u2〉 and p′ ω′|τid�−−→ ∗
0 q.

Thus, the property (b) holds. �
4.2. A FPT algorithm for computing post∗

In this section, we present a FPT algorithm of the saturation procedure given in Section 4.1 which avoids unnecessary 
operations. Given a rational set of configurations of C represented by a TrNFA A.

Algorithm 3 computes the transition rules of Apost∗ by implementing the saturation procedure given in Section 4.1. 
The approach is similar to the solution for computing pre∗ . We use trans to store the transition rules that we still need 
to examine. Lines 1–2 initialize the algorithm. Initially, 
′ is equal to 
, while trans is equal to 
 ∩ P × � × T × S , as 
transition rules starting from states outside of P do not need to be examined. The set S post∗ of states is equal to S ∪ {qγ1

p1 |
〈p, γ 〉 τ

↪→ 〈p1, γ1γ2〉 ∈ �} as described in Section 4.1. The algorithm iteratively removes a transition t = p 
γ |τ�−→ q from trans

until it is empty. The loops at Line 6, Line 7 and Lines 8–10 handle the case when p and γ match the left-hand sides of 
transition rules in �. This is done similar to the saturation rules (i), (ii), and (iii), respectively. The loops at Lines 11–12 and 

Lines 13–14 handle ε-transition rules. In the saturation procedure given in Section 4.1, we have to compute paths p 
γ |τ ′

�−→∗ s
which may involve several ε-transitions. In Algorithm 3, we solve this problem by combining transition pairs of the form 

p 
ε|τ1�−→ q1 and q1

γ |τ2�−→ q into transition rules p 
γ ′ |(
γ ′,γ �−1τ1)◦τ2�−−−−−−−−−−→ q for γ ′ ∈ � whenever such a pair is found.

Theorem 7. Given a finite TrPDS P = (P , �, T , �) and a TrNFA A = (S, �, 
, T , S0, S f ), we can compute a TrNFA Apost∗ in O(|S| ·
f (|T |) · |�|3 · |�|) time and space for some computable function f such that L(Apost∗ ) = post∗(L(A)).

The proof immediate follows from the following results.

Claim. Let S1 = S \ P , S2 = S post∗ \ S , we have the following two properties:

1. 
′ ⊆ (
S × � × 〈T 〉∪ × (S1 ∪ S2)

) ∪ (
P × {ε} × 〈T 〉∪ × (S1 ∪ S2)

)
;

2. 
′ \ 
 ⊆ (
(P ∪ S2) × � × 〈T 〉∪ × (S1 ∪ S2)

) ∪ (
P × {ε} × 〈T 〉∪ × (S1 ∪ S2)

)
;
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Proof. Since there is no transition rule in A leading to a state in P and A has no ε-transition rule, we have 
 ⊆ (P ∪ S1) ×
� × T × S1. Hence, before the loop at Lines 3–15, 
′ ⊆ (P ∪ S1) × � × T × S1. The transition rules can be added into 
′
by Line 9 are elements of (P × � × T × S2). Therefore, the transition rules added by Line 6 (resp. Line 7) are elements of 
P × {ε} × 〈T 〉∪ × (S1 ∪ S2) (resp. P × � × 〈T 〉∪ × (S1 ∪ S2)). Similarly, the transition rules added by Line 10 are elements of 
S2 × � × 〈T 〉∪ × (S1 ∪ S2). �
Lemma 8 (Termination). Algorithm 3 always terminates.

Proof. 
′ initially is 
 and can only grow afterwards. Since S , 〈T 〉∪ , � and � are finite sets, Algorithm 3 introduces new 
states qγ1

p1 only if 〈p, γ 〉 τ1
↪→ 〈p1, γ1γ2〉 ∈ �, then, the number of transition rules in 
′ is finite. From the definition the 

procedure Update, each transition rule in 
′ is examined at most once. Thus, Algorithm 3 always terminate. �
We have shown that the saturation procedure given in Section 4.1 exactly computes post∗ . Hence, the correctness of 

Algorithm 3 follows from the following lemma.

Lemma 9 (Correctness). Upon termination of Algorithm 3, 
′ ∝ 
post∗ .

Proof. Since in the saturation procedure for post∗ and Algorithm 3, all the added ε-transition rules are starting from states 

in P and leading to states in S or states of the form qγ1
p1 , then p 

γ |τ
�−→∗ q′ iff either p 

γ |τ�−→ q′ , or p 
ε|τ ′

1�−→ q1 ∧ q1
γ ′ |τ ′′

1�−→ q′ ∈ ∧τ =

γ , γ ′�−1τ ′

1 ◦ τ ′′
1 . Note that if γ = ε , then p 

γ |τ
�−→∗ q′ iff p 

γ |τ�−→ q′ . Thus, due to the combination of transition pairs of the form 

p 
ε|τ1�−→ q1 and q1

γ |τ2�−→ q into transition rules p 
γ ′ |(
γ ′,γ �−1τ1)◦τ2�−−−−−−−−−−→ q, it is sufficient to show that for every γ ∈ � ∪ {ε}:

(a′) if p 
γ |τ�−→ q′ in 
post∗ , then there exists p 

γ |τ ′
�−→ q′ ∈ 
′ such that τ ⊆ τ ′;

(b′) if the addition of p 
γ |τ ′
�−→ q′ into 
′ is made by calling the procedure Update at Line 6 or Line 7 or Line 9 or Line 10, 

then there exist p 
γ |τ1�−→ q′, · · · , p 

γ |τn�−→ q′ in 
post∗ such that τ ′ = ⋃n
i=1 τi ;

(c′) the addition of p 
γ |τ ′
�−→ q′ into 
′ is made by calling the procedure Update at Line 12 or Line 15, then there exist 

p 
γ |τ1�−→∗ q′, · · · , p 

γ |τn�−→∗ q′ in 
post∗ such that τ ′ = ⋃n
i=1 τi .

Proof of (a′): Suppose p 
γ |τ�−→ q′ in 
post∗ , we show that there exists p 

γ |τ ′
�−→ q′ ∈ 
′ such that τ ⊆ τ ′ by induction on the 

number i of transition rules added by applying the saturation procedure. The result immediately follows from the fact that 

post∗ = 
 when i = 0. We only need to consider the case in which i ≥ 1. We proceed by distinguishing three possible 
cases.

• If t = p 
γ |τ�−→ q′ ∈ 
post∗ is added by Item (i) or Item (ii), then there exists a transition rule 〈p′, γ ′〉 τ ′

2
↪→ 〈p, γ 〉 ∈ � such 

that p′ γ ′|τ ′′
2�−−→ ∗

n−1q′ in 
post∗ and τ = τ ′
2 ◦ τ ′′

2 . By applying the induction hypothesis to p′ γ ′|τ ′′
2�−−→ ∗

n−1q′ in 
post∗ , there is 

p′ γ ′|τ ′′
3�−−→ q′ ∈ 
′ such that τ ′′

2 ⊆ τ ′′
3 . Hence, Algorithm 3 will call the procedure Update(p 

γ |τ ′
2◦τ ′′

3�−−−→ q′) at Line 6 or Line 7. 

Then, there exists p 
γ |τ ′
�−→ q′ ∈ 
′ such that τ ′ ⊇ τ ′

2 ◦ τ ′′
3 ⊇ τ ′

2 ◦ τ ′′
2 = τ .

• If t = p 
γ |τ�−→ q′ ∈ 
post∗ is the first transition rule added in Item (iii), where q′ = qγ

p , then τ = τid and there are 

〈p′, γ ′〉 τ1
↪→ 〈p, γ γ2〉 ∈ � such that p′ γ ′|τ ′

1�−−→ ∗
n−1s in 
post∗ . We proceed by distinguishing two possible cases.

– Assume p′ γ ′|τ ′
1�−−→ ∗

n−1s in 
post∗ is derived from p′ γ ′|τ ′
1�−→n−1 s ∈ 
post∗ , by applying the induction hypothesis, we get that 

there exists p′ γ ′|τ ′
2�−→ s in 
′ such that τ ′

1 ⊆ τ ′
2. Therefore, Line 9 of Algorithm 3 will call Update(p 

γ |τid�−→ q′). The result 
follows.

– Assume p′ γ ′|τ ′
1�−−→ ∗

n−1s in 
post∗ is derived from p′ ε|τ2�−→ n−1q1 ∈ 
post∗ and q1
γ1|τ ′

2�−→n−1 s ∈ 
post∗ such that τ ′
1 =

(
γ ′, γ1�−1τ2) ◦τ ′
2, then by applying the induction hypothesis, there exists p′ ε|τ3�−→ q1 ∈ 
′ and q1

γ1|τ ′
3�−→ s ∈ 
′ such that 

τ2 ⊆ τ3 and τ ′
2 ⊆ τ ′

3. Hence, p′ γ ′|(
γ ′,γ1�−1τ3)◦τ ′
3�−−−−−−−−−−−→ ∗s in 
′ . Therefore, Line 9 of Algorithm 3 will call Update(p 

γ |�−→ q′). 
The result follows.

• If t = p 
γ |τ�−→ q′ ∈ 
post∗ is the second transition rule added in Item (iii), where p = qγ1

p1 , then there are 〈p′, γ ′〉 τ1
↪→

〈p1, γ1γ 〉 ∈ � and p′ γ ′|τ ′
1�−−→ ∗ s in 
post∗ such that τ = τ1 ◦ τ ′ . We proceed by distinguishing two possible cases.
n−1 1
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– Assume p′ γ ′|τ ′
1�−−→ ∗

n−1s in 
post∗ is derived from p′ γ ′|τ ′
1�−−→ n−1s ∈ 
post∗ , by applying the induction hypothesis, we get that 

there exists p′ γ ′|τ ′
2�−→ s in 
′ such that τ ′

1 ⊆ τ ′
2. Therefore, Line 9 of Algorithm 3 will call Update(p 

γ |τ1◦τ ′
2�−−−→ q′). The result 

follows.

– Assume p′ γ ′|τ ′
1�−−→ ∗

n−1s in 
post∗ is derived from p′ ε|τ2�−→ n−1q1 ∈ 
post∗ and q1
γ1|τ ′

2�−−→ n−1s ∈ 
post∗ such that τ ′
1 =

(
γ ′, γ1�−1τ2) ◦ τ ′
2, then by applying the induction hypothesis, there exists p′ ε|τ3�−→ q1 ∈ 
′ and q1

γ1|τ ′
3�−→ s ∈ 
′

such that τ2 ⊆ τ3 and τ ′
2 ⊆ τ ′

3. Hence, p′ γ ′|(
γ ′,γ1�−1τ3)◦τ ′
3�−−−−−−−−−−−→ ∗s in 
′ . Therefore, Line 10 of Algorithm 3 will call 

Update(q 
γ |τ1◦(
γ ′,γ1�−1τ3)◦τ ′

3�−−−−−−−−−−−−→ q′). The result follows.

Proof of (b′) and (c′): We proceed by induction on the number i of transition rules added by Algorithm 3. The result 
immediately follows from the fact that 
′ = 
 ⊆ 
post∗ when i = 0. We only need to consider the case in which i ≥ 1.

Suppose the addition of p 
γ |τ ′
�−→ q′ into 
′ is made by calling the procedure Update at Line 6 or Line 7 or Line 9 or Line 10, 

we show that there exist p 
γ |τ1�−→ q′, · · · , p 

γ |τn�−→ q′ in 
post∗ such that τ ′ = ⋃n
i=1 τi by induction on the number i of transition 

rules added by Algorithm 3. The property (c′) immediately follows from the property (b′). We proceed by distinguishing 
three possible cases.

• If t = p 
γ |τ�−→ q′ is added by Line 6 or Line 7, then there exists a transition rule 〈p′, γ ′〉 τ ′

↪→ 〈p, γ 〉 ∈ � such that p′ γ ′ |τ ′′
�−−→

i−1q′ ∈ 
′ and τ = τ ′ ◦ τ ′′ . By applying the induction hypothesis, there are p′ γ ′|τ1�−−→ ∗q′ , · · · , p′ γ ′ |τn�−−→ ∗q′ in 
post∗ such 

that τ ′′ = ⋃n
j=1 τ j . Then, the saturation rule adds p 

γ |τ ′◦τ j�−→ q′ into 
post∗ for every j : 1 ≤ j ≤ n. Hence, the property (b′)
holds.

• If t = p 
γ |τ�−→ q′ is added by Line 9, then q′ = qγ

p and there exists a transition rule 〈p′, γ ′〉 τ ′
↪→ 〈p, γ γ1〉 ∈ � such that 

p′ γ ′ |τ ′′
�−−→ i−1s ∈ 
′ . By applying the induction hypothesis, there are p′ γ ′|τ1�−−→ ∗s, · · · , p′ γ ′|τn�−−→ ∗s in 
post∗ such that τ ′′ =⋃n
j=1 τ j . Then, there is p 

γ |τid�−→ qγ
p in 
post∗ . Hence, the property (b′) holds.

• If t = p 
γ |τ�−→ q′ is added by Line 10, then p = qγ1

p1 and there are 〈p′, γ ′〉 τ ′
↪→ 〈p1, γ1γ 〉 ∈ � and p′ γ ′|τ ′′

�−−→ i−1q′ ∈ 
′ such that 

τ = τ ′ ◦ τ ′′ . By applying the induction hypothesis, there are p′ γ ′ |τ1�−−→ ∗q′ , · · · , p′ γ ′ |τn�−−→ ∗q′ in 
post∗ such that τ ′′ = ⋃n
j=1 τ j . 

Then, there are qγ1
p1

γ ′ |τ ′◦τ1�−−−−→ ∗q′ , · · · , qγ1
p1

γ ′ |τ ′◦τn�−−−→ ∗q′ in 
post∗ . Hence, the property (b′) holds. �
Lemma 10 (Complexity). Algorithm 3 takes O(|S| · f (|T |) · |�|3 · |�|) time and space for some computable function f .

Proof. We suppose that � is organized in a hash table where the keys are the heads (p, γ ) of transition rules 〈p, γ 〉 ↪→
〈q, γ ′ω〉. 
′ and 
 are also implemented as hash tables where the keys are the source states of transition rules in 
′
and 
, so that all the needed addition, membership test and removal operations take constant time. The transductions of 
transition rules in 
 and 
′ are implemented as a function l (implemented as a hash table), e.g., l(q 

γ�−→ q′) = τ iff q 
γ |τ�−→ q′ . 

Thus, 
 and 
′ are represented as sets 
1 and 
′
1 of transition rules of the form q 

γ�−→ q′ equipped with the function l. To 
avoid adding any transition to trans more than once, we store all transitions which are ever added to trans in an additional 
hash table. New transitions are added to the table only if they are not already in this table. According to the procedure
Update, each transition rule of 
′ is added into trans once. Thus, for each transition rule in 
′ , the main loop between 
Lines 4–15 is executed only once.

Line 6 is executed once for every combination of 〈p, γ 〉 τ1
↪→ 〈p1, ε〉 ∈ � and p 

γ |τ�−→ q ∈ 
′ , thus at most O(|�0| · (|S \
P | + |S ′ \ S|)) times, i.e., O(|�0| · (|S \ P | + |�2|) · |〈T 〉|) times. Similarly, Line 7, Line 9 and Line 10 are executed at most 
O(|�1| · (|S \ P | + |�2|) · |〈T 〉|) times, O(|�2| · (|S \ P | + |�2|) · |〈T 〉|) and O(|�2| · (|S \ P | + |�2|) · |〈T 〉|) times, respectively.

Since the number of ε-transition rules is at most O(|�0| · (|S \ P | + |�2|) · |〈T 〉|), then, Line 12 is executed at most 
O(|�2| · |�0| · (|S \ P | + |�2|) · |〈T 〉| · |�|) times.

Now, let us consider the loop at Lines 14–15. Since all the ε-transition rules are starting from states in P and leading to 
states in S \ P or S ′ \ S . If q ∈ S \ P , then this loop executes at most O(|�0| · |〈T 〉| · |
| · |�|) times. If q ∈ S ′ \ S , then this 
loop executes at most O(|�0| · |�2| · |〈T 〉| · |
| · (|S \ P | + |�2|) · |�|) times.

Line 4 is executed at most once for every transition rule in trans, i.e., O((|S \ P | + |�2|) · |〈T 〉| · (|�| + |�0| · |�2| · |�|)).
Thus, Algorithm 3 needs at most O(|S| · f (|T |) · |�|3 · |�|) time and space for some computable function f . �

Remark 4. Solving the forward (resp. backward) reachability problem consists of two parts: first computing post∗
P (C) (resp. 

pre∗ (C)) and then checking whether c ∈ post∗ (C) (resp. c ∈ pre∗ (C)). The latter problem is solved by Algorithm 1 which 
P P P
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is in exponential time of the length of the stack content of the input configuration c. Consequently, it is efficient to decide 
whether c ∈ post∗

P (C) (resp. c ∈ pre∗
P (C)) if the length of the stack content of the input configuration c is small.

5. Computing pre∗ and post∗ for weak finite TrPDSs

In Section 3 and Section 4, for finite TrPDSs, we presented saturation procedures and their FPT algorithms to compute 
pre∗(C) and post∗(C) of a given rational set C of configurations. These results are consistent with the ones of [27]. By 
carefully examining the algorithms, we found that for each left quotient operation 
γ , γ ′�−1τ used in Algorithm 2 (resp. 

Algorithm 3), there must exist a transition rule 〈p, γ1〉 τ ′
↪→ 〈q, γ2γ3〉 ∈ � such that γ3 = γ (resp. γ3 = γ ′). In other words, 

there is no left quotient operation 
γ , γ ′�−1τ in Algorithm 2 (resp. Algorithm 3) if � does not contain a transition rule 

of the form 〈p, γ1〉 τ ′
↪→ 〈q, γ2γ 〉 (resp. 〈p, γ1〉 τ ′

↪→ 〈q, γ2γ
′〉). However, in the definition of finiteness of TrPDSs, the full stack 

alphabet is considered in the left quotient. This means that when the infinity of TrPDSs comes from computing left quotient 
irrespective of how the stack symbols are actually used, pre∗(C) and post∗(C) can still be computed via Algorithm 2 and 
Algorithm 3, respectively. In this section, we first define the closure 〈T 〉∪ of transductions T with respect to TrPDSs that 
precisely characterizes the “wanted” sets of transductions. Based on this new definition of closure, we introduce weak finite
TrPDSs which is more general than finite TrPDSs. Moreover, pre∗(C) and post∗(C) of a given rational set C of configurations 
for a weak finite TrPDS are also rational and effectively computable. Indeed, the computing of pre∗(C) and post∗(C) for a 
weak finite TrPDS can be done using Algorithm 2 and Algorithm 3 presented in Section 3 and Section 4, respectively.

Given a TrPDS P = (P , �, T , �), let �2 denote the set {γ2 | 〈p, γ 〉 τ
↪→ 〈p1, γ1γ2〉 ∈ �}, the closure 〈T 〉∪P of T over the 

composition ◦, left quotient 
·, ·�−1 and union ∪ with respect to P is defined as follows:

• T ⊆ 〈T 〉∪P , ∅ ∈ 〈T 〉∪P and τid ∈ 〈T 〉∪P ;

• if τ1, τ2 ∈ 〈T 〉∪P , then τ1 ◦ τ2 ∈ 〈T 〉∪P and τ1 ∪ τ2 ∈ 〈T 〉∪P ;

• if τ ∈ 〈T 〉∪P , then 
γ , γ ′�−1τ ∈ 〈T 〉∪P for all γ ∈ �2, γ ′ ∈ �.

The closure 〈T 〉P of T over the composition ◦ and left quotient 
·, ·�−1 with respect to P is defined as follows:

• T ⊆ 〈T 〉∪P , ∅ ∈ 〈T 〉∪P and τid ∈ 〈T 〉∪P ;

• if τ1, τ2 ∈ 〈T 〉∪P , then τ1 ◦ τ2 ∈ 〈T 〉∪P ;

• if τ ∈ 〈T 〉∪P , then 
γ , γ ′�−1τ ∈ 〈T 〉∪P for all γ ∈ �2, γ ′ ∈ �.

Proposition 8. The following three are equivalent:

1. 〈T 〉P is finite;

2. 〈T 〉∪P is finite;

3. 〈T 〉∪P is finite.

Proof. If 〈T 〉∪P is finite, we can immediately get that 〈T 〉P and 〈T 〉∪P are finite. On the other hand, if 〈T 〉∪P is finite, we 
get that 〈T 〉∪P is finite. We only need to show that if 〈T 〉P is finite, then 〈T 〉∪P is finite. To show this, we show that 〈T 〉∪P
is the semigroup generated by (〈T 〉P , ∪).

Let T ′ be the semigroup generated by (〈T 〉P , ∪). We show that the following conditions hold:

• for all τ ∈ T ′ , we have 
γ , γ ′�−1τ ∈ T ′ for all γ ∈ �2, γ ′ ∈ �,

• for all τ1, τ2 ∈ T ′ , we have τ1 ◦ τ2 ∈ T ′ .

Suppose τ = τ1 ∪· · ·∪τn ∈ T ′ with τ1, · · · , τn ∈ 〈T 〉P , then 
γ , γ ′�−1(τ1 ∪· · ·∪τn) = ⋃n
i=1
γ , γ ′�−1τi . Since τ1, · · · , τn ∈

〈T 〉P , we obtain that 
γ , γ ′�−1τ1, · · · , 
γ , γ ′�−1τn ∈ 〈T 〉P . Thus, we get that 
γ , γ ′�−1(τ1 ∪ · · · ∪ τn) ∈ T ′ .
Now, we show that for all τ1, τ2 ∈ T ′ , τ1 ◦ τ2 ∈ T ′ . Suppose τi = τ i

1 ∪ · · · ∪ τ i
mi

with τ i
1, · · · , τ i

mi
∈ 〈T 〉P for i ∈ {1, 2}, then 

τ1 ◦ τ2 = (τ 1
1 ∪ · · · ∪ τ 1

m1
) ◦ (τ 2

1 ∪ · · · ∪ τ 2
m2

) = ⋃
1≤i≤m1,1≤ j≤m2

τ 1
i ◦ τ 2

j . Since for every i : 1 ≤ i ≤ m1 and every j : 1 ≤ j ≤ m2, 
τ 1

i , τ 2
j ∈ 〈T 〉P , then τ 1

i ◦ τ 2
j ∈ 〈T 〉P . Thus, we get that τ1 ◦ τ2 ∈ T ′ . �

A TrPDS P = (P , �, T , �) is called weak finite if 〈T 〉∪P is finite. Obviously, a finite TrPDS must be weak finite, while a 
weak finite TrPDS is not necessarily finite.

We observe that Algorithm 2 and Algorithm 3 can be used to compute pre∗(C) and post∗(C) for a rational set of 
configurations of weak finite TrPDSs. Indeed, the “finite” condition of TrPDSs is only used to guarantee the termination 
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of Algorithm 2 and Algorithm 3. Algorithm 2 and Algorithm 3 also always terminate for weak finite TrPDSs based on the 
following facts: the set of transductions can be labeled to transition rules of TrNFA is 〈T 〉∪P (resp. 〈T 〉∪P ) in Algorithm 2
(resp. Algorithm 3).

Theorem 8. Let TrPDS P = (P , �, T , �) be a weak finite and A = (S, �, 
, T , S0, S f ) a TrNFA.

• We can compute a TrNFA Apre∗
in time O(|S|2 · f (|T |) · |�| · |�|) for some computable function f and in space O(|S| · |�| · |〈T 〉| ·

|�|) such that L(Apre∗
) = pre∗(L(A)).

• We can compute a TrNFA Apost∗ in O(|S| · f (|T |) · |�|3 · |�|) time and space for some computable function f such that L(Apost∗ ) =
post∗(L(A)).

Example 4. Let us consider the TrPDS P = ({p}, {0, 1}, {τ0, ∅, τid}, �}), where τ0 = {(0ω10ω2, 1ω11ω2) | ω1 ∈ {1}∗, ω2 ∈
{0, 1}∗} which replaces the first two occurrences of 0 in the stack by 1, � = {〈p, 0〉 τ0

↪→ 〈p, 01〉}. Let τ 1
1 denote 
0, 1�−1τ0 =

{(ω10ω2, ω11ω2) | ω1 ∈ {1}∗, ω2 ∈ {0, 1}∗}, let τ i
1 = τ 1

1 ◦ τ i−1
1 for every i ≥ 2, and τ i

2 = τ0 ◦ τ i
1 for every i ≥ 1. Then, 〈T 〉 =

{∅, τid, τ0, τ i
1, τ

i
2 | ∀i ≥ 1}. Since τ0 �= τ i

1 and τ0 �= τ i
2 for every i ≥ 1, τ i

1 �= τ
j

1 and τ i
2 �= τ

j
2 for every i > j ≥ 1, τ i

1 �= τ
j

2 for 
every i, j ≥ 1, 〈T 〉 is an infinite set. Thus, the TrPDS P is not finite. However, 〈T 〉P = {τ0, ∅, τid}. Thus, the TrPDS P is weak 
finite.

6. Pushdown systems with left contextual transductions

In Section 5, we showed that pre∗(C) and post∗(C) are still computable for a given rational set of configurations C
of weak finite TrPDSs. However, this extension do not break the length-preserving restriction. In this section, we present 
automata-theoretic approaches to compute pre∗(C) and post∗(C) for a given rational set of configurations C of TrPDSs 
whose transductions are not a-prior limited length-preserving. Precisely speaking, we consider left contextual transductions
that are in the form of τ = {(ω1ω

′
1, ω2ω

′
2) | ω1 ∈ L(A1), ω2 ∈ L(A2), (ω′

1, ω
′
2) ∈ τ ′}, where A1 and A2 are two finite state 

automata called left input context and left output context respectively, τ ′ is a rational length-preserving transduction. Left 
contextual transductions are an extension of prefix-recognizable systems with stack manipulation [29,6,30,7]. Left contextual 
transductions are also useful for modeling programs that rewrite the topmost subword of the stack content. For instance, 
to model a stack-based assembly program, the control points of the program are usually stored at the top of the TrPDS’s 
stack, the content of program’s stack is stored after the top of the TrPDS’s stack. Contextual transductions allow us easily 
and succinctly model the statements such as pushad that pushes the values of several registers onto the program’s stack, 
and popad that pops the values of several registers from the program’s stack.

We give a reduction from the reachability problem of a TrPDS with left contextual transductions to the one of a TrPDS 
with rational length-preserving transductions by performing a kind of “product” of the TrPDS with finite state automata, that 
is all the left input/output context. Then, computing pre∗(C) and post∗(C) of the TrPDS with left contextual transductions is 
reduced to computing pre∗(C) and post∗(C) of another TrPDS with length-preserving transductions. pre∗(C) and post∗(C)

of the TrPDS with left contextual transductions will be computable if the closure of the set of underlying length-preserving 
transductions is finite.

6.1. Left contextual TrPDSs

A transduction τ ⊆ �∗ ×�∗ is a left contextual transduction if there exists a rational length-preserving transduction τ ′ and 
left contexts A1 and A2 such that τ = {(ω1ω

′
1, ω2ω

′
2) | ω1 ∈ L(A1), ω2 ∈ L(A2), (ω′

1, ω
′
2) ∈ τ ′}, where A1 and A2 are called left 

input context and left output context, respectively. For every left contextual transduction τ , let τlp denote the rational length-
preserving transduction τ ′ , Ai

τ and Ao
τ respectively be the left contexts A1 and A2 such that the above condition holds. 

Intuitively, the left input context Ai
τ appends words at the left-side of input part of the rational length-preserving transduc-

tion τlp . Similarly, the left output context Ao
τ appends words at the left-side of output part of the rational length-preserving 

transduction τlp .
Given a finite set T of left contextual transductions, let Tlp denote the set of the rational length-preserving transductions 

{τlp | τ ∈ T }. A TrPDS P = (P , �, T , �) is called left contextual TrPDS if T is a finite set of left contextual transductions.

6.2. Prefix-recognizable systems

Prefix-recognizable systems were proposed by Caucal in [29], which generalize pushdown systems. The model checking 
problem of LTL and μ-calculus on prefix-recognizable systems were well-studied in [6,30,7]. In this section, we show that 
prefix-recognizable systems can be viewed as a special case of left contextual TrPDSs.
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Definition 6. [29,6] A prefix-recognizable system (PRS)1 P is a tuple (P , �, �), where P is a finite set of control states, � is a 
finite alphabet, and � is a finite set of transition rules of the form (p, e1, e2, e3, p′) such that p, p′ ∈ P and e1, e2, e3 are 
regular expressions over �.

A configuration of PRS P is a pair 〈p, ω〉 such that p ∈ P and ω ∈ �∗ . Given a regular expression e over �, let L(e) ⊆ �∗
denote the language of the regular expression e. If (p, e1, e2, e3, p′) ∈ �, then for every ω1, ω2, ω ∈ �∗ such that ω1 ∈
L(e1), ω ∈ L(e2) and ω2 ∈ L(e3), the configuration 〈p, ω1ω〉 is an immediate predecessor of the configuration 〈p′, ω2ω〉, 
denoted by 〈p, ω1ω〉 =⇒P 〈p′, ω2ω〉.

We observe that for each transition rule (p, e1, e2, e3, p′) of the PRS P , e1 can be seen as a left input context, e2 can 
be represented by a transduction that checks the input word and produces the input without any change, and e3 can be 
seen as a left output context. Then, PRSs can be seen as a special case of left contextual TrPDSs. Formally, given a PRS 
P = (P , �, �), let P ′ = (P , � ∪ �, T , �′) be a TrPDS such that � /∈ � is a new stack symbol, T = {τt | t ∈ �}, and

t = (p, e1, e2, e3, p′) ∈ � iff 〈p, �〉 τt
↪→ 〈p′, �〉 ∈ �′,

where τt = {(ω1ω, ω2ω) | ω1 ∈ L(A1), ω2 ∈ L(A3), (ω, ω) ∈ τ ′
t }, A1 and A3 are two finite state automata such that L(A1) =

L(e1) and L(A3) = L(e3), τ2 is the transduction such that L(τ ′
t ) = {(ω, ω) ∈ �∗ × �∗ | ω ∈ L(e2)}. It is easy to verify that 

the closure of {τ ′
t | t ∈ �} is finite. Indeed, due to pumping lemma of finite state automata, left quotient operations on 

these transductions only yield a finite number of new transductions τ ′ satisfying that for each pair of word (ω1, ω2) ∈ τ ′ , 
ω1 = ω2. On the other hand, the composition does not introduce any new transductions. Therefore, P ′ is a left contextual 
TrPDS.

6.3. An reduction for left contextual TrPDSs

Given a left contextual TrPDS P = (P , �, T , �) and a rational set of configurations C ⊆ CP , we construct a TrPDS P ′ =
(P ′, �, Tlp, �′) in polynomial time of P such that pre∗

P (C) = pre∗
P ′ (C) ∩ P × �∗ and post∗

P (C) = post∗
P ′ (C) ∩ P × �∗ .

W.l.o.g., for technical reasons, we assume that for every left contextual transduction τ ∈ T , the sets of states of the left 
input context Ai

τ and the left output context Ao
τ are disjointed. �′ and P ′ are computed as follows: for every transition rule 

t = 〈p, γ 〉 τ
↪→ 〈p′, ω〉 ∈ �, let Ai

τ = (Si, �, 
i, {τid}, Si
0, S

i
f ) and Ao

τ = (So, �, 
o, {τid}, So
0, S

o
f ),

1. for every s ∈ Si
0, 〈p, γ 〉 τid

↪→ 〈pt
s, ε〉 ∈ �′;

2. for every s 
γ ′|τid�−→ s′ ∈ 
i ,

(a) 〈pt
s, γ ′〉 τid

↪→ 〈pt
s′ , ε〉 ∈ �′ ,

(b) if s′ ∈ Si
f , then 〈pt

s, γ ′〉 τlp
↪→ 〈pt

s′′ , ε〉 ∈ �′ for every s′′ ∈ So
f ;

3. for every s 
γ ′′|τid�−→ s′ ∈ 
o , γ ′ ∈ �, 〈pt

s′ , γ
′〉 τid

↪→ 〈pt
s, γ ′′γ ′〉 ∈ �′;

4. for every s ∈ So
0, γ ′ ∈ �, 〈pt

s, γ ′〉 τid
↪→ 〈p′, ωγ ′〉 ∈ �′ .

Intuitively, suppose P is at the configuration 〈p, γω′〉 with γ ∈ �, ω′ ∈ �∗ and there is a transition rule t = 〈p, γ 〉 τ
↪→

〈p′, ω〉 ∈ �, then 〈p, γω′〉 =⇒P 〈p′, ωω′′〉 for every ω′′ ∈ τ (ω′). There necessarily exists ω1, ω′
1, ω2, ω′

2 ∈ �∗ such that 
ω′ = ω1ω

′
1, ω

′′ = ω2ω
′
2, ω1 ∈ L(Ai

τ ), ω2 ∈ L(Ao
τ ) and (ω′

1, ω
′
2) ∈ τlp . To have 〈p, γω1ω

′
1〉 =⇒∗

P ′ 〈p′, ωω2ω
′
2〉, we let the run 

of P ′ moves from 〈p, γω1ω
′
1〉 to 〈pt

s, ω1ω
′
1〉, for every initial state s ∈ Si

0 (Item 1). After that, the run of P ′ mimics the run 
of Ai

τ on the word ω1 and pops ω1 from the stack until P ′ reaches the configuration 〈pt
s′ , γ

′ω′
1〉 (Item 2(a)), when γ ′ is 

the bottom of ω1. Since Ai
τ accepts the word ω1 iff the run of P ′ can reach the configuration 〈pt

s′ , γ
′ω′

1〉 from 〈p, γω1ω
′
1〉

such that there is a transition s′ γ ′
�−→ s1 ∈ 
i with s1 ∈ Si

f . The later happens iff the run of P ′ reaches a configuration 

〈pt
s2

, ω′
2〉 from 〈p, γω1ω

′
1〉 for some s2 ∈ So

f ensured by adding the transition 〈pt
s′ , γ

′〉 τlp
↪→ 〈pt

s2
, ε〉 (Item 2(b)). Moving to 

the configuration 〈pt
s2

, ω′
2〉 for s2 ∈ So

f allows P ′ to mimic the run of Ao
τ in a reverse way over the word ω2 and pushes 

ω2 onto the stack until reaching an initial state s3 of Ao
τ , i.e., the run of P ′ reaching the configuration 〈pt

s3
, ω2ω

′
2〉. Item 3 

guarantees that Ao
τ accepts the word ω2 iff the run of P ′ moves from 〈pt

s2
, ω′

2〉 to the configuration 〈pt
s3

, ω2ω
′
2〉 such 

that s3 ∈ So
0. Finally, the run of P ′ moves from 〈pt

s3
, ω2ω

′
2〉 to 〈p, ωω2ω

′
2〉 by the transitions added Item 4. Therefore, 

〈p, γω1ω
′
1〉 =⇒P 〈p′, ωω2ω

′
2〉 iff 〈p, γω1ω

′
1〉 =⇒∗

P ′ 〈p′, ωω2ω
′
2〉.

1 Note that the standard definition of prefix-recognizable systems does not include control states [29]. Indeed, a prefix-recognizable system without 
states can simulate a prefix-recognizable system with states by having the state as the first letter of the unbounded store. We use the definition of 
prefix-recognizable systems with control states for the sake of uniform notation, similar to [6,30].
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Theorem 9. The reachability problem of left contextual TrPDSs P = (P , �, T , �) is decidable if 〈Tlp〉 is finite. Indeed, one can translate 
the reachability problem of left contextual TrPDSs into the problem of finite TrPDSs in polynomial time.

Proof. We show that for every 〈p, ω〉, 〈p′, ω′〉 ∈ CP , 〈p, ω〉 =⇒P 〈p′, ω′〉 iff 〈p, ω〉 =⇒∗
P ′ 〈p′, ω′〉 and the derivation of 

〈p, ω〉 =⇒∗
P ′ 〈p′, ω′〉 only uses configurations in (P ′ \ P ) × �∗ .

(=⇒) Suppose 〈p, ω〉 =⇒P 〈p′, ω′〉, then there exists a transition rule t = 〈p, γ 〉 τ
↪→ 〈p′, ω′′〉 ∈ � such that ω = γ u, ω′ =

ω′′u′ for some u′ ∈ τ (u). There necessarily exist ω1, ω′
1, ω2, ω′

2 ∈ �∗ such that u = ω1ω
′
1, u′ = ω2ω

′
2, ω1 ∈ L(Ai

τ ), ω2 ∈ L(Ao
τ )

and (ω′
1, ω

′
2) ∈ τlp .

Let ω1 = γ1...γn , ω2 = γ ′
1...γ

′
n′ such that γ1, ..., γn, γ ′

1, ..., γ
′

n′ ∈ �. Then, the following two hold:

• for every k : 1 ≤ k ≤ n, there exists sk
γk�−→ sk+1 ∈ 
i such that s1 ∈ Si

0 and sn+1 ∈ Si
f ;

• for every k : 1 ≤ k ≤ n′ , there exists s′
k

γ ′
k�−→ s′

k+1 ∈ 
o such that s′
1 ∈ So

0 and s′
n′+1 ∈ So

f .

By Item 1, we get that 〈p, γω1ω
′
1〉 =⇒P ′ 〈pt

s1
, ω1ω

′
1〉. By Item 2(a), we get that 〈pt

s1
, ω1ω

′
1〉 = 〈pt

s1
, γ1...γnω

′
1〉 =⇒P ′

〈pt
s2

, γ2...γnω
′
1〉 =⇒P ′ ... =⇒P ′ 〈pt

sn
, γnω

′
1〉. By Item 2(b), 〈pt

sn
, γnω

′
1〉 =⇒P ′ 〈pt

s′
n′+1

, ω′
2〉. By Item 3, we get that 〈pt

s′
n′+1

, ω′
2〉

=⇒P ′ 〈pt
s′

n′
, γ ′

n′ω′
2〉 =⇒P ′ ... =⇒P ′ 〈pt

s′1
, γ ′

1...γ
′

n′ω′
2〉 = 〈pt

s′1
, ω2ω

′
2〉. By Item 4, 〈pt

s′1
, ω2ω

′
2〉 =⇒P ′ 〈p′, ω′′ω2ω

′
2〉. Therefore, 

the result immediately follows.

(⇐=) Suppose 〈p, ω〉 =⇒∗
P ′ 〈p′, ω′〉 and the derivation of 〈p, ω〉 =⇒∗

P ′ 〈p′, ω′〉 only uses configurations in (P ′ \ P ) × �∗ , 
then there exist γ , γ1, ..., γn, γ ′

1, ..., γ
′

n′ ∈ �, ω1, ω′
1, ω2 ∈ �∗ such that ω = γ γ1...γnω1, ω′ = ω2γ

′
1...γ

′
n′ω′

1 and the following 
conditions hold:

• 〈p, γ γ1...γnω1〉 =⇒P ′ 〈pt
s1

, γ1...γnω1〉, i.e., 〈p, γ 〉 τid
↪→ 〈pt

s1
, ε〉 ∈ �′;

• for every k : 1 ≤ k ≤ n − 1, 〈pt
sk

, γk...γnω1〉 =⇒P ′ 〈pt
sk+1

, γk+1...γnω1〉, i.e., 〈pt
sk

, γk〉 τid
↪→ 〈pt

sk+1
, ε〉 ∈ �′;

• 〈pt
sn

, γnω1〉 =⇒P ′ 〈pt
s′

n′+1
, ω′

1〉, i.e. 〈pt
sn

, γk〉 τ
↪→ 〈pt

s′
n′+1

, ε〉 ∈ �′ with (ω1, ω′
1) ∈ τ ;

• 〈pt
s′

n′+1
, ω′

1〉 =⇒P ′ 〈pt
s′

n′
, γ ′

n′ω′
1〉, i.e., 〈pt

s′
n′+1

, γ ′′〉 τid
↪→ 〈pt

s′
n′
, γ ′

n′γ ′′〉 ∈ �′ for every γ ′′ ∈ �;

• for every k : 1 < k ≤ n′ , 〈pt
s′k

, γ ′
k ...γ

′
n′ω′

1〉 =⇒P ′ 〈pt
s′k−1

, γ ′
k−1γ

′
k ...γ

′
n′ω′

1〉, i.e., 〈pt
s′

k′
, γ ′′〉 τid

↪→ 〈pt
s′

k′−1
, γ ′

k−1γ
′′〉 ∈ �′ for every 

γ ′′ ∈ �;

• 〈pt
s′1

, γ ′
1...γ

′
n′ω′

1〉 =⇒P ′ 〈p′, ω2γ
′

1′ ...γ ′
n′ω′

1〉, i.e., 〈pt
s′1

, γ ′′〉 τid
↪→ 〈p′, ω2γ

′′〉 ∈ �′ for every γ ′′ ∈ �.

Then, there exists a transition such that the transduction of the transition has those automata Ai = (Si, �, 
i, {τid}, Si
0, S

i
f )

and Ao = (So, �, 
o, {τid}, So
0, S

o
f ), and the following conditions hold:

• for every k : 1 ≤ k ≤ n, there exists sk
γk�−→ sk+1 ∈ 
i such that s1 ∈ Si

0 and sn+1 ∈ Si
f ;

• for every k : 1 ≤ k ≤ n′ , there exists s′
k

γ ′
k�−→ s′

k+1 ∈ 
o such that s′
1 ∈ So

0 and s′
n′+1 ∈ So

f ;
• (ω1, ω′

1) ∈ τ ;

• t = 〈p, γ 〉 τ ′
↪→ 〈p′, ω2〉 ∈ �, where τ ′ = {(ω3ω

′
3, ω4ω

′
4) | ω3 ∈ L(Ai), ω4 ∈ L(Ao), (ω′

3, ω
′
4) ∈ τ }.

Therefore, we get that 〈p, ω〉 =⇒P 〈p′, ω′〉. �
Remark 5. Note that left context excludes the empty word ε , that is S f ∩ S0 = ∅. Suppose a transition rule t =
〈p, γ 〉 τ

↪→ 〈p′, ω〉 ∈ � needs to have ε ∈ L(Ao
τ ). We can replace t by two transition rules tε = 〈p, γ 〉 τε

↪→ 〈p′, ω〉 ∈ � and 
tε = 〈p, γ 〉 τε

↪→ 〈p′, ω〉 ∈ �, where τε = {(ω1ω
′
1, ω

′
2) | ω1 ∈ L(Ai

τ ), (ω′
1, ω

′
2) ∈ τlp} and τε = {(ω1ω

′
1, ω2ω

′
2) | ω1 ∈ L(Ai

τ ), ω2 ∈
L(A0

τ ), ω2 �= ε, (ω′
1, ω

′
2) ∈ τlp}. While transition rules of the form τε can be handled by readapting the reduction of left 

contextual TrPDSs to finite TrPDSs. The case when ε ∈ L(Ai
τ ) can be processed in similar way.

However, in general, the reachability problem of left contextual TrPDSs is undecidable if 〈Tlp〉 is infinite. This is an 
immediate consequence of the undecidability result of TrPDSs P = (P , �, T , �) with infinite set 〈T 〉 [27].

Theorem 10. The reachability problem of left contextual TrPDSs P = (P , �, T , �) is undecidable if 〈Tlp〉 is infinite.
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7. Applications

In [27], Uezato and Minamide presented two potential applications of TrPDSs: checking reachability of conditional PDSs 
[35,25] and discrete-timed PDSs [17] via pre∗ or post∗ computing of TrPDSs. In this section, we will present another two 
potential applications of TrPDSs on software verification. We show how the presence of transductions enables the modeling 
of Boolean programs with call-by-reference parameter passing and low-level assembly programs that manipulate program 
stack content via a stack pointer.

7.1. Application to Boolean programs with call-by-reference parameter passing

Boolean programs in which all variables and parameters (call-by-value) have Boolean type are thought of as an abstract 
representation of C/C++ programs with recursion [31]. In their definition, Boolean programs contain procedures with call-
by-value parameter passing rather than call-by-reference parameter passing. While call-by-reference parameter passing is a 
widely used programming paradigm in C/C++, Java, etc. Using TrPDSs, we can verify safety properties of Boolean programs 
with call-by-reference parameter passing.

7.1.1. Boolean programs with call-by-reference parameter passing
A Boolean program B P is a tuple (Proc, main, G), where Proc is a finite set of procedures, main ∈ Proc is the initial

procedure, G is a finite set of global Boolean variables. Every procedure r ∈ Proc is a tuple (Nr, Er, Lr), where Nr is a finite 
set of control points with rentry as the unique entry node, Er is a finite set of edges, Lr is the finite set of local Boolean 
variables in r. W.l.o.g., we assume that Lr ∩ G = ∅ for all r ∈ Proc. L′

r = Lr ∪ G is a set of visible variables in r. Let Lref
r

be the set of all the call-by-reference formal parameters of the procedure r, Lref
n (resp. Ln) be the set Lref

r (resp. Lr ) such 
that n ∈ Nr . Given a procedure call stmt = r(v1, ..., vm) at the control point n whose return address is n′ , for every formal 
parameter v ′ of r, let fRef(n′)(v ′) ∈ {v1, ..., vm} be the actual parameter of v ′ at the caller site n′ .

A valuation ξ ⊆ L′
r is a subset of L′

r meaning that the Boolean value of x ∈ L′
r is 1 if x ∈ ξ , otherwise 0. Let ξ(x) = 1 if 

x ∈ ξ , otherwise 0. Let ξ [d/x] be the valuation such that ξ [d/x](y) = d if x = y, otherwise ξ(y). The edges in Er are of the 
form (n, ξ, stmt, n′) meaning that n′ is the next control point of n when the valuation at n is ξ , where stmt is the statement 
at n. Let �stmt �ξ be the valuation after executing the statement stmt that is neither a procedure call nor return. The details 
of the execution model and semantics of other statements refer to [31].

7.1.2. Modeling approach
W.l.o.g., we assume that call-by-reference actual parameters are local variables. Indeed, global variables are always vis-

ible for all procedures and do not need to be passed by parameters. Different from call-by-value parameter passing which 
keeps its own copy at callee site, a parameter passed by call-by-reference will not keep its own copy at callee site. Precisely 
speaking, the values of call-by-reference actual parameters at a caller procedure are always same as the values of the corre-
sponding formal parameters at the callee procedure. We will use transductions to encode the changing of call-by-reference 
formal parameters, as transductions in TrPDSs allow us to manipulate the stack content rather than the top of stack in PDSs.

The construction of TrPDSs from Boolean programs B P with call-by-reference parameter passing follows the standard 
modeling approach of PDSs from Boolean programs [1] except the assignments to reference variables should also effect 
on the value of the corresponding actual parameters at the corresponding caller site. The valuations of global variables 
G are put in the control locations of the TrPDSs, the pairs of the valuations of local variables and control points (i.e., 
nodes) of the program are stored in the stack of the TrPDSs. The TrPDS model will be P = (2G , 

⋃
r∈Proc(Nr × 2L

r ), T , �). 
A configuration of the TrPDS model is in the form of c = 〈ξ, (n0, ξ0) · · · (nk, ξk)〉 meaning that the execution of B P is at 
the control point n0 with ξ as the valuation of global variables, ξ0 as the valuation of local variables of the procedure 
containing n0. Moreover, (n1, ξ1) · · · (nk, ξk) is the calling history of the execution such that for every i : 1 ≤ i ≤ k, ni is 
the return address of the procedure call that jumped into the procedure containing ni−1 and ξi is the stored valuation 
of local variables when the procedure call is made. Different from Boolean programs only with call-by-value parameter 
passing, a local variable of a procedure may be a call-by-reference parameter of the procedure. In this case, the value of a 
local variable and its referenced variable are identical. Therefore, the potential possible configurations of the TrPDS model 
should only have admitted valuations with respect to the local variables and their referenced variables. Formally, a word 
(n0, ξ0) · · · (nk, ξk) or a configuration 〈ξ, (n0, ξ0) · · · (nk, ξk)〉 is admissible if for every i : 0 ≤ i ≤ k − 1 and every v ∈ Lref

ni
, v ∈ ξi

iff fRef(ni+1)(v) ∈ ξi+1.
Given two sets of variables ξ ′

0, ξ0 ⊆ ⋃
r∈Proc Lref

r , let τ(ξ ′
0, ξ0) ⊆ �∗ × �∗ be the transduction such that for every 

((n1, ξ1)...(nk, ξk), (n1, ξ ′
1)...(nk, ξ ′

k)) ∈ �∗ × �∗ , the following two conditions hold:

• ((n1, ξ1)...(nk, ξk), (n1, ξ ′
1)...(nk, ξ ′

k)) ∈ τ(ξ ′
0, ξ0) iff (n1, ξ1)...(nk, ξk) is admissible,

• and ∀i : 1 ≤ i ≤ k, ξ ′ = ξi ∪ {fRef(ni)(v) | v ∈ ξ ′ \ ξi−1} \ {fRef(ni)(v) | v ∈ ξi−1 \ ξ ′ }.
i i−1 i−1



F. Song / Information and Computation 259 (2018) 41–71 67
Intuitively, given an admissible word (n1, ξ1)...(nk, ξk) and two sets ξ0 and ξ ′
0 denoting respectively the valuations of local 

variables before and after an assignment, (n1, ξ ′
1)...(nk, ξ ′

k) is the admissible word obtained from (n1, ξ1)...(nk, ξk) with the 
updating of all the actual parameters of the corresponding formal call-by-reference parameters with respect to ξ ′

0 and ξ0.
The set � of transition rules that mimic the control flow of B P is defined as follows: for every edge e = (n, ξ, stmt, n′)

in a procedure r,

• 〈ξ ∩ G, (n, ξ ∩ Lr)〉 τid
↪→ 〈ξ ∩ G, (r′

entry, ξ ′)(n′, ξ ∩ Lr)〉 ∈ � if stmt is a procedure call r′(v1, ..., vm), where ξ ′ = {v ∈ Lr′ |
fRef(n′)(v) ∈ ξ};

• 〈ξ ∩ G, (n, ξ ∩ Lr)〉 τid
↪→ 〈ξ ∩ G, ε〉 ∈ � if stmt is a return;

• 〈ξ ∩ G, (n, ξ ∩ Lr)〉 τe
↪→ 〈�stmt �ξ ∩ G, (n′, �stmt �ξ ∩ Lr)〉 ∈ � otherwise, where τe = τ(�stmt�ξ , ξ) .

The set T of transductions is {τid, τe | e = (n, ξ, stmt, n′) ∈ Er, r ∈ Proc, stmt is neither a procedure call nor return}. 
Intuitively, the TrPDS model mimics the execution of B P . The intuition behind function calls and returns is similar to 
translating from Boolean programs into PDSs. Suppose the execution of B P is at the control point n with the valuation ξ , 
and the calling history is (n1, ξ1)...(nk, ξk).

If the edge e = (n, ξ, r′(v1, ..., vm), n′) is in a procedure r, then, the execution of B P will move from n to the entry 
point r′

entry of the procedure r′ , the valuation ξ ∩ G of the global variables stays the same, the valuation of the local 
variables of r′ at r′

entry takes the value of the actual parameters at n, the return address n′ and the valuation ξ ∩ Lr of 
local variables of r are appended to the calling history (n1, ξ1)...(nk, ξk). Therefore, we add the transition rule 〈ξ ∩ G, (n,

ξ ∩ Lr)〉 τid
↪→ 〈ξ ∩ G, (rentry, ξ ′)(n′, ξ ∩ Lr)〉 into � which allows the TrPDS model to move from the configuration 〈ξ ∩ G, (n,

ξ ∩ Lr)(n1, ξ1)...(nk, ξk)〉 to 〈ξ ∩ G, (rentry, ξ ′)(n′, ξ ∩ Lr)(n1, ξ1)...(nk, ξk)〉.
If the edge e = (n, ξ, return, n′) is in a procedure r, then, the execution of B P will move from n to the return ad-

dress n1, the valuation ξ ∩ G of the global variables stays the same, the valuation of the local variables at n1 recovers 
the valuation ξ1 of local variables when the procedure call is made at the previous node of n1 where the local variables 
passed by call-by-references parameters passing take the latest values at the end of the procedure r. So, we add the tran-

sition rule 〈ξ ∩ G, (n, ξ ∩ Lr)〉 τid
↪→ 〈ξ ∩ G, ε〉 into � which allows the TrPDS model to move from the configuration 〈ξ ∩ G,

(n, ξ ∩ Lr)(n1, ξ1)...(nk, ξk)〉 to 〈ξ ∩ G, (n1, ξ1)...(nk, ξk)〉.
If the edge e = (n, ξ, stmt, n′) is in a procedure r such that stmt is neither a procedure call nor return, then, the exe-

cution of B P will move from n to the next point n′ with the valuation �stmt �ξ . Moreover, the local variables at n1 that 
corresponds to the formal call-by-reference parameters in r should take the values of the call-by-reference parameters 
at n′ . Similarly, for every i : 2 ≤ i ≤ k, the local variables at ni that corresponds to the formal call-by-reference param-
eters in the procedure containing ni−1 should take the values of the call-by-reference parameters at ni . Therefore, we 
add the transition rule 〈ξ ∩ G, (n, ξ ∩ Lr)〉 τe

↪→ 〈�stmt �ξ ∩ G, (n′, �stmt �ξ ∩ Lr)〉 into � which allows the TrPDS model to 
move from the configuration 〈ξ ∩ G, (n, ξ ∩ Lr)(n1, ξ1)...(nk, ξk)〉 to 〈�stmt �ξ ∩ G, (n′, �stmt �ξ ∩ Lr)(n1, ξ ′

1)...(nk, ξ ′
k)〉 for every 

((n1, ξ1)...(nk, ξk), (n1, ξ ′
1)...(nk, ξ ′

k)) ∈ τe . The transduction τe = τ(�stmt�ξ , ξ) correctly specifies the updating of all the actual 
parameters of the corresponding call-by-reference parameters in the calling history.

From the definitions of transductions T and admissible, we can see that all the reachable configurations in the TrPDS 
model from an admissible configuration are also admissible.

Given two transductions τ1 = τ(ξ ′
1, ξ1) , τ2 = τ(ξ ′

2, ξ2) ∈ T , then

τ1 ◦ τ2 =
{ ∅, if ξ ′

1 �= ξ2;
τ(ξ ′

2, ξ1), otherwise.

Given two symbols (n1, ξ1), (n′
1, ξ

′
1) ∈ �∗ and a transduction τ = τ(ξ ′, ξ) ∈ T , we have:


(n1, ξ1), (n
′
1, ξ

′
1)�−1τ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ(ξ ′
1, ξ1), if n1 = n′

1, and

ξ ′
1 =

{
(ξ1 ∪ {fRef(n1)(v) | v ∈ ξ ′ \ ξ})\

{fRef(n1)(v) | v ∈ ξ \ ξ ′}
}

;

∅, otherwise.

Then, for each transduction τ ∈ 〈T 〉, τ must be in the form of τ(ξ ′, ξ) for some r ∈ Proc and ξ, ξ ′ ⊆ Lr . Therefore, we can 
get that 〈T 〉 ⊆ {τ(ξ ′, ξ) | ∃r ∈ Proc : ξ, ξ ′ ⊆ Lr} which is finite.

Theorem 11. The Boolean program B P can reach a control point n of the procedure r with the valuation ξ and the calling history ω
from a control point n′ of r′ with the valuation ξ ′ and the calling history ω′ iff 〈ξ ′ ∩ G, (n′, ξ ′ ∩ Lr′ )ω′〉 =⇒∗ 〈ξ ∩ G, (n, ξ ∩ Lr)ω〉.

Using Theorem 11, we can verify safety properties of Boolean programs with mixed call-by-reference and call-by-value 
parameter passing via solving the reachability problem of TrPDSs. The efficiency heavily relies upon the number of trans-
ductions from the modeling of the Boolean program and the saturation. From the modeling approach, the number of control 
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Fig. 4. (a) Assembly program; (b) Obfuscated assembly program, where f0 denotes the entry point of the function f , fr is the return point of the function 
call to f . (c) and (d) are the PDS models of (a) and (b), respectively.

states, the size of the stack alphabet and transition rules are exponential in the size of variables, as we have to consider 
all the possible valuations of variables. During the saturation procedure, new transductions may be created via left quo-
tient and composition operators. In the worst case, 〈T 〉 = {τ(ξ ′, ξ) | ∃r ∈ Proc : ξ, ξ ′ ⊆ Lr}. Therefore, the number of created 
transductions by the saturation procedure is exponential in the number of variables.

Remark 6. One may argue that Boolean program with mixed call-by-reference and call-by-value parameter passing can be 
translated into a Boolean program with only call-by-value parameter passing by using global variables which can be verified 
by existing techniques such as [31]. However, this will lead to larger state space and may degrade performance.

7.2. Application to low-level programs

Off-the-shelf programs and malwares are available in binary code rather than source code. In order to static analyze 
binary code, binary code is commonly disassembled into an assembly-like low-level program either in an intermediate-
representation language or assembly language. Next, the low-level program is translated into a program model for static 
analysis. In the literature, finite state machines (e.g., [36,37]) and pushdown systems (e.g., [32,33,3]) were proposed to 
model low-level programs. However, programs in stack-based assembly languages such as X86 assembly language or Java 
bytecode heavily manipulate local variables stored in stack frame which cannot be modeled precisely using finite state ma-
chines or pushdown systems. In this section, we show that TrPDSs are a natural model of programs in stack-based assembly 
languages. Therefore, reachability analysis algorithms of TrPDSs can be used to verify these low-level programs. We illustrate 
our idea using a low-level program in Intel X86 32-bit assembly language shown in Fig. 4.

Fig. 4(a) shows an assembly program which calls function f with parameters 2 and 1 (i.e., f (2, 1)), as parameters are 
passed by pushing onto the stack, later the function f uses these parameters via accessing the stack. Fig. 4(b) shows an 
equivalent assembly program of Fig. 4(a) by obfuscating the parameters, in which two 0 are pushed onto the stack and later 
modified via the stack pointer esp. Suppose we are interested to check the property “Whether an assembly program calls 
the function f with parameters 2 and 1”, denoted by E F f (2, 1).

In [32,33,3], the control points of programs are modeled as control states of PDSs, the stack of programs is modeled as 
the stack of PDSs. Statements are modeled as PDS transition rules. For instance, the transition rules in Fig. 4(c) models the 
program in Fig. 4(a). Then E F f (2, 1) can be correctly verified by reachability checking of the program model shown in 
Fig. 4(c). However, as stated in [3], this modeling approach cannot precisely model assembly programs that change the stack 
content by manipulating the stack pointer, i.e., the data in the stack cannot be changed via direct memory access.

Consider the program in Fig. 4(b), the transition rules are given in Fig. 4(d) using this model approach. It is easy to see 
that this program model does not satisfy E F f (2, 1). This limitation can be avoided by using TrPDSs, i.e., TrPDSs can model 
assembly programs that change the stack content by manipulating the stack pointer, as the manipulation of the stack via the 
stack pointer can be modeled as transductions. The TrPDS model of the program in Fig. 4(b) is defined as P = (P , �, T , �), 
where P = {l′1, ..., l′5, f0, fr}, where f0 denotes the entry point of the function f and fr is the return address of the function 
call, � = {0, 1, 2, fr}, T = {τid, τ1} with τ1 = {(γω, 1ω) | γ ∈ �, ω ∈ �∗}, � is given as follows:

� =

⎧⎪⎪⎨
⎪⎪⎩

〈l′1, γ 〉 τid
↪→ 〈l′2,0γ 〉, 〈l′2, γ 〉 τid

↪→ 〈l′3,0γ 〉,
〈l′3, γ 〉 τ1

↪→ 〈l′4, γ 〉, 〈l′4, γ 〉 τid
↪→ 〈l′5,2〉, γ ∈ �

〈l′5, γ 〉 τid
↪→ 〈 f0, frγ 〉

⎫⎪⎪⎬
⎪⎪⎭

.

Since 〈T 〉 is a finite set, E F f (2, 1) can be verified via reachability checking of the TrPDS model P .

Remark 7. The TrPDS model of this program is a finite TrPDS. There exist some assembly programs containing local variables 
that can only be modeled as left contextual TrPDSs.
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Remark 8. The instruction set of Intel X86 32-bit is rich, we do not present the general modeling approach in this work. 
Generally speaking, general assembly programs can be modeled by TrPDSs, as TrPDSs are Turing complete. However, what 
kind of assembly programs that can be modeled by TrPDSs having decidable reachability is unknown. We believe that 
decidable TrPDSs are useful to characterize the type of assembly programs that have decidable reachability. We leave this 
to future work.

8. Related work

Model-checking techniques for PDSs were widely studied and applied to program analysis in the literature [4,1,6–10]. 
PDSs with checkpoint were introduced in [25] as an extension of PDSs. PDSs with checkpoint can inspect the stack content 
and are applied to analyze programs with runtime inspection. The reachability problem and LTL model-checking for PDSs 
with checkpoint were studied in [25] and were applied to the analysis of the HTML5 parser specification in [35]. CTL 
model-checking for PDSs with checkpoint was studied in [2,3]. A similar extension of PDSs was used to formulate abstract 
garbage collection in the control flow analysis of higher-order programs [38].

Weighted PDSs and extended weighted PDSs were introduced in [22,23] for data-flow analysis purpose. These two ex-
tensions associate transitions with elements from semiring domains. The reachability problem is decidable for bounded 
idempotent semirings. (Extended) weighted PDSs and TrPDSs are quite different two computation models. At least, the el-
ements from a semiring can neither inspect nor modify the stack content except the top most symbol on the stack. To 
overcome this problem, weighted pushdown systems with indexed weight domains were proposed in [24,28], which gener-
alize weighted PDSs and TrPDSs.

Recently, well-structured PDSs (WSPDSs) that combine well-structured transition systems and PDSs was introduced by 
[16] in which the infinite set of control states and the infinite stack alphabet are well-quasi-order. WSPDS is a powerful 
model in which recursive vector addition system with states [39,40], multi-set PDSs [41] and dense-timed PDSs are sub-
sumed [42]. However, the reachability problem is undecidable for WSPDSs. But coverability becomes decidable when the set 
of control states is finite. In TrPDSs, the set of control states and the stack alphabet are both finite, but the transductions 
can inspect and modify the stack content.

We should clarify the relation between our work and the works [27,24,28]. TrPDSs were first introduced in [27] which 
generalize PDSs with checkpoint and discrete-timed PDSs. The authors showed that TrPDSs can be simulated by PDSs and 
proposed a saturation procedure to compute pre∗ which is different from ours. The main goal of [24,28] is to generalize 
weighted PDSs and TrPDSs. This article aimed to propose algorithms that are suitable for implementation, relax the restric-
tion of finite TrPDSs and investigate practical applications of TrPDSs. We also proposed a saturation procedure to compute 
post∗ and its algorithm that is suitable for implementation. These two algorithms necessarily improve the complexity due 
to the fact that the algorithms have better complexity than the saturation procedures for pushdown systems. Moreover, we 
presented a practical application of TrPDSs to modeling and verifying Boolean programs with call-by-reference parameter 
passing.

9. Conclusion and future work

We introduced two saturation procedures to compute pre∗ and post∗ for finite TrPDSs. We also presented two algorithms 
for the saturation procedures and measured their complexity, based on which we introduced weak finite TrPDSs whose pre∗
and post∗ can also be computed via the two algorithms. We proposed an extension of finite TrPDSs, called left contextual 
TrPDSs, and presented an reduction from the reachability problem of left contextual TrPDSs to the problem of finite TrPDSs. 
We showed that TrPDSs are powerful enough to model Boolean programs with call-by-reference parameter passing and 
low-level assembly programs that manipulate stack content via a stack pointer. This allows us to verify safety properties of 
Boolean programs with mixed call-by-reference and call-by-value parameter passing and could be used to characterize the 
type of assembly programs such that model-checking safety properties are decidable.

In future, we plan to implement our techniques in a tool and investigate BDD-based symbolic algorithms by represent-
ing transductions and valuations of global and local variables in BDDs. It is also interesting to investigate algorithms for 
weighted pushdown systems with indexed weight domains, which subsume finite TrPDSs and could be served as a general 
framework for program analysis [24,28].
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