
Peeking into the Gray Area of Mobile World:
An Empirical Study of Unlabeled Android Apps

Sen Chen1, Lingling Fan2∗, Cuiyun Gao3, Fu Song4, and Yang Liu5
1College of Intelligence and Computing, Tianjin University, China

2College of Cyber Science, Nankai University, China 3Harbin Institute of Technology (Shenzhen), China
4ShanghaiTech University, China 5Nanyang Technological University, Singapore

Abstract—For the real-world dataset collected by our indus-
trial partner, Pwnzen Infotech Inc., one of the leading industrial
security companies, there are a large number of unlabeled
Android applications (called unlabeled apps in this paper) that
are unlikely to belong to known Android malware families nor
ordinary benign apps according to the industrial black-list (i.e.,
signatures) and white-list (i.e., certificates). However, such apps
have rarely been studied previously, but are important to peek
into the gray area of mobile world. It is a time-consuming task
for software analysts to understand the negative characteristics of
these samples, which would lead to potential security or privacy
threats for app users, significantly negative impacts on mobile
system performance, and bad user experience, etc.

To investigate the characteristics of these industrial unlabeled
apps in a large-scale in practice, and provide insights to industrial
software analysts as well as research communities, we collect a
large-scale dataset of unlabeled apps (i.e., 22,886 in total) from
our industrial partners. Given the common industrial perception
of software analysts that a high percentage of these unlabeled
apps could have some similar behaviors, we leverage the popular
community-detection techniques based on widely-used app fea-
tures in malware detection to cluster these unlabeled apps. After
that, we investigate the common behaviors for different clusters
with substantial human efforts and also conduct cross-validation
across co-authors to check the results. Our manual analysis
unveils the characteristics of these unlabeled apps by sampling
data from different clusters, and discovers 11 categories, some of
which have never been discovered by previous grayware research.
Besides, from our exploration, we find that the community-
based techniques are not effective enough in clustering unlabeled
apps, so that manual analysis is encouraged. Manual analysis is
an important first step towards studying unlabeled apps and
understanding their characteristics. Finally, we highlight the
lessons learned through real case studies, comparison study with
existing malware/grayware research, in-depth discussion with
industrial partners, and feedback from industrial partners.

I. INTRODUCTION

Android apps now have become the most popular way

of performing daily tasks [1], [2], however, more and more

mobile users suffer from Potentially Harmful Apps (PHAS)

(e.g., Android malware [3] and Android grayware [4]). Con-

sequently, a rapidly growing amount of software-engineering

research focuses on studies and analysis of Android apps [5],

[6], [7], [8], [9], [10]. Such research growth also thanks to the

availability of real dataset of Android apps or Android mal-

ware from industry [11], [5], [9] such as Tencent Inc. [12] and

Qihoo 360 [13]. Note that, the real-world samples collected

Lingling Fan is the corresponding author. Email: linglingfan@nankai.edu.cn

by industrial companies are usually with concrete labels such

as malicious and benign, which promotes the corresponding

data-driven research in academia [14], [15], [16], [17].

Nevertheless, our industrial partner, Pwnzen Infotech Inc.,

one of the leading security companies with rich security

experience and advanced technology, recently unveils that

there are a large number of industrial unlabeled Android

applications (called unlabeled apps) that are unlikely to belong

to known families of Android malware nor ordinary benign

apps according to the black-list (i.e., signatures) and white-

list (i.e., certificates) of the industry. Note that, these unlabeled

apps are crawled from various Android markets including the

official market (Google Play) and other third-party markets.

Some of them are collected by monitoring the network traffic.

Such unlabeled apps can be regarded as a peephole to observe

the gray area of mobile world. However, it is difficult to

understand the characteristics of these samples for software

analysts in a large-scale in practice due to the unknown

property and possible diversity of categories. Therefore, there

is a great demand to conduct an empirical study on these in-

dustrial unlabeled apps and provide insights to both academia

and industry, avoiding introducing potential threats for app

users (e.g., security, privacy, and negative impacts). Given

that it is challenging and even infeasible to conduct a large-

scale curation and analysis of these unlabeled apps without

collaboration with industry, we have started collaborating with

our industrial partner to get access to the unlabeled dataset and

exchange insights with people from industry.

Our collaborator allows us to gain access to the large-

scale industrial samples as well as the ensemble industrial

scanning engine used to label samples. The scanning engine

is shared across several security companies such as Qihoo

360 [13], and the signatures of samples stored in the scanning

engine are updated timely for accurately filtering out Android

malware and benign apps. For industry, it is a common practice

to maintain a “black list” storing the signatures of known

malware families and a “white list” storing known benign apps

such as official certificates [5]. The others are then categorized

as “industrial unlabeled apps”, indicating that they are unlikely

to belong to any known malware families or known benign

apps in the official markets.

A common industrial perception of these unlabeled apps

is that a high percentage of them share similar behaviors,

therefore, unlabeled apps may be classified into different cate-

579

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00065

gories based on their behaviors. According to this observation,

we take these unlabeled apps collected from our industrial

partner as our initial starting point to identify and analyze

unlabeled apps, by employing the widely-used community-

based technique in Android malware field [18]. Note that,

different from the malware-specific features (e.g., semantic,

security-related, and context-aware features) extracted for An-

droid malware detection, whose goal is to distinguish malware

from samples [19], [20], [14], [21], [22], the features extracted

for unlabeled app analysis are more general since we aim

to investigate the characteristics of these unlabeled apps as a

whole. Fig. 1 shows that the data preprocessing and sampling

phases are two initial phases for our study, while the core phase

is to conduct an in-depth investigation of these unlabeled apps

in order to understand their characteristics, which sheds light

on the follow-up research towards unlabeled apps.

In this paper, we attempt to use the widely-used feature

types [14], [21] and community-based techniques [18] in

malware research to cluster these unlabeled apps. However,

the clustering results are also not effective enough in our

study, but a coarse-grained filtering can reduce the analysis

efforts, to some extent. So in this paper, instead of relying

on the clustering technique for accurate app grouping, we

adopt the technique to select some representative samples for

study, and manually classify these sampled apps based on their

characteristics. We sample 375 apps from the unlabeled apps

by the sampling criteria to conduct manual analysis (details

in Section III-B). We observe that a lot of unlabeled apps

share common characteristics. Based on our investigation, we

finally summarize 11 categories of unlabeled apps based on

their common characteristics.

We reach out the following findings from our manual

analysis: 1) We distill 11 categories of unlabeled apps. Some

categories are similar to a number of previously-identified

grayware categories [4], showing that our study is able to

identify several grayware categories pointed out by the pre-

vious studies. The previous grayware study [4] only focused

on the apps collected from Google Play Store, in this paper,

we distill more categories and understanding of the gray

area of the mobile world, which thanks to the real dataset

from industry instead of only the official Android market.

Consequently, 8 new categories and 2 more general categories

are discovered based on our analysis. Further, our newly

labeled data can be published as a benchmark dataset of

grayware to foster further classification between grayware and

other app types. 2) Among our identified categories, apps in

several categories have potential security threats for users,

such as Dialing/SMS-Managing Apps, Data Collection Apps,

Porn Apps, and Background Service Apps. To demonstrate

the common behaviors in different categories of unlabeled

apps, we also conduct a case study on several categories to

provide more insights for academic researchers and industrial

analysts. 3) According to the results of our manual analysis,

we also find that some behaviors of unlabeled apps may unveil

special industrial profit chain in the real world. After that, we

highlight the lessons learned through an in-depth discussion

with industrial partner and feedback from industry.

In summary, this paper makes the following contributions:

• To the best of our knowledge, this is the first work

systematically curating and analyzing industrial unlabeled

Android apps based on a large-scale dataset collected from

the industrial company instead of limited case studies.

• We discovered 11 categories of unlabeled apps based on

their internal characteristics and community unit by lever-

aging community-based clustering and substantial manual

analysis. Among these categories, 8 new categories and

2 more general categories are discovered compared to

previous grayware studies, which can also be published

as a new benchmark dataset of grayware.

• We also provide the corresponding case studies on inter-

esting unlabeled app categories and highlight the lessons

learned from the study, which motivates the follow-up

research on unlabeled apps, and helps industrial companies

better characterize unlabeled apps.

II. RELATED WORK

A. Analysis of Android Malware
In practice, most of the researchers’ and practitioners’

efforts target Android malware detection and understanding.

Consequently, various approaches have been exhibited in this

area, such as signature-based [23], behavior-based [24], data-

flow analysis-based (e.g., taint analysis) [25], [26], model

checking-based [27], [28], and machine-learning-based tech-

niques [14], [21], [17], [22], [29], [30], [31], [32]. However, in

the initial research stage of Android malware, manual analysis

and sample clustering are widely-used due to lack of enough

labeled samples and insights of malware characteristics [3],

[33], [18]. For example, in Genome project [3], Jiang et

al. analyzed 1,260 malware samples and summarized their

corresponding characteristics by an in-depth manual analysis

study. Samra et al. [33] analyzed Android malware by lever-

aging clustering techniques. In this work, following the initial

research of Android malware, we first perform an empirical

investigation of industrial unlabeled Android apps through

manual study. In practice, in a new research direction for both

academia and industry, manual analysis is encouraged in an

initial stage to analyze the characteristics of the objects. To

facilitate our study, we also use a similar community-based

technique used in [34] to cluster the unlabeled apps. Note

that, the feature extraction mechanism is different from that

in these two tasks (i.e., malware and clustering), because our

goal of proposing the data sampling shown in Fig. 1 is not to

achieve a high accuracy for malware detection, but to find a

promotive way for manual analysis of unlabeled apps.

B. Analysis of Android Grayware
Andow et al. [4] primarily focused on the Android grayware

collected from Google Play Store. They developed lightweight

heuristics to identify Android grayware, which primarily

combines text analytics by using app reviews. However, the

published app dataset is limited to apps that pass the malware

detection process of Google Play Store. In contrast, there

580

o Taxonomy Analysis of Unlabeled Apps

o Case Study in Different Categories

o Lessons Learned for Academia and Industry

(a) Data Preprocessing

Large-Scale App
Collection from Industry

Black and White Lists
Filtering

Feature
Extraction

Community-based
Clustering

Unlabeled
Apps

Clusters

(b) Data Sampling
Empirical Investigation of Unlabeled Apps

Sampled
Data

Fig. 1: Workflow of our study

is also a prevailing opinion that simply treating grayware

as malware can expose users’ privacy [35]. Moreover, there

also exists a neutral definition that grayware can legitimately

collect user information [36], so the users are willing to trust

the data collection when they use apps or they just ignore

the potential risks induced by the apps. Overall, it is an

initial study on Android grayware with several limitations. In

this work, the dataset collected from our industrial partner is

filtered by an ensemble industrial scanning engine, which is

better initially processed than the samples only collected from

Google Play Store directly. In addition, previous work lacks

manual analysis to further understand the characteristics and

behaviors of the apps. Our manual analysis on the industrial

unlabeled apps unveils that several categories of unlabeled

apps belong to grayware introduced in the first grayware

work [4]. Furthermore, we also inspect several new categories

to foster further research.

C. Analysis of Android Apps
A large number of studies focus on analysis of Android

apps based on the large-scale dataset collected from industrial

companies or commercial Android markets [6], [37], [38]. For

example, Fan et al. [6] investigated the characteristics of fail-

stop errors in Android apps (i.e., app crashes) in order to

help to understand the cause of app crashes, avoid inducing

such errors during app development, and improve the quality

of Android apps. Wei et al. [37], [38] studied the character-

istics of compatibility issues due to Android fragmentation,

including the root causes and the common patches, to help

to detect such fragmentation-induced compatibility issues in

Android apps. However, existing work focuses on improving

the quality, rather than understanding the characteristics of app

itself. Our work focuses on this scope regarding the industrial

unlabeled apps.

III. WORKFLOW OF OUR STUDY

In this section, we first briefly introduce the study design,

and then introduce the data preprocessing and sampling pro-

cess on a large number of unlabeled apps from our industrial

partner. After that, with the help of existing academic cluster-

ing algorithm [18], we take an in-depth investigation on the

characteristics of these apps by employing manual analysis.

Fig. 1 shows our study workflow, which contains three main

phases. (1) Data preprocessing starts with the “unlabeled An-

droid apps”, which fail to be categorized into either malware

families or benign samples when being filtered by an ensemble

industrial scanning engine; (2) Data sampling distillates the

data from the majority of the unlabeled app clusters according

to the clustering results, the sampled data is further used

for manual analysis. (3) We further conduct manual analysis
to investigate the common behaviors in different clustered

categories with substantial efforts. To ensure the reliability of

the analysis results, we cross-validate the results among three

of the co-authors. We accept the categorization results only

when all of us agree on it. Apart from the in-depth analysis,

we demonstrate the characteristics of unlabeled apps in each

category through a case study.

A. Data Preprocessing
Data preprocessing mainly contains two steps: Data col-

lection and Data filtering. We collect the “unlabeled Android

samples” from our industrial partner, Pwnzen Infotech Inc..

Our partner crawls from various Android markets including

Google Play and other third-party markets, and also tracks

the network traffic under a control environment from 2017

to 2020 and obtains the APK files. Before storing these apps

on the server, an ensemble scanning engine including several

industrial scanning engines (e.g., Qihoo 360 and Pwnzen In-

fotech Inc.) is used to classify these collected samples. The en-

semble engine is based on the black-list (e.g., malicious code

signatures) and white-list (e.g., official certificates) provided

by these industrial companies. The black-list and white-list are

timely updated and shared between these industrial companies.

According to the scanning result of the ensemble engine, the

malicious apps are identified and collected for further malware

analysis [21], [22] to extract new malicious features. The

benign apps are filtered and collected for app quality anal-

ysis. The remaining ones are “Unlabeled”. Such “Unlabeled”

samples fail to be categorized into neither malware families

nor ordinary benign samples according to the black-list and

white-list. The industrial companies collected thousands of

such unlabeled apps, which would lead to potential security

or privacy threats for app users. Negative impacts on mobile

system performance and user experience also occur in these

apps. Therefore, it is urgent and essential to understand the

characteristics of these samples for industrial companies like

our partner, which calls for further collaboration with us. To

investigate and understand the characteristics of these apps,

we finally collect 22,886 unlabeled apps in total to conduct

an empirical investigation.

B. Data Sampling
To investigate the characteristics of unlabeled apps, we

first employ the community detection technique based on

the extracted features to cluster unlabeled apps into different

clusters, and sample a statistically-significant number of apps

581

TABLE I: Our selected features

Category Feature #Original #Used

Syntax Features

(used by at least

0.1% apps)

Permissions 717 119

API Calls 1,397 852

Intent Action 845 34

Intent Category 38 4

Hardware 33 12

String Features
Source Code String 100 100

XML Code String 768 768

Total 7 types 3,898 1,889

for further investigation (the confidence level is 95% and the

confidence interval is 5%).

Feature Extraction. Following the widely-used general fea-

ture types in Android malware detection [19], [20], [14], [21],

[22], we extract the following features such as permissions and

API calls (Table I) by decompiling APKs into Smali code

via Apktool [39]. Note that, we, here, do not take the malware-

specific features (e.g., semantic, security-related, and context-

aware features) into account, whose goal is to best represent

the malicious behaviors in order to distinguish malware from

samples.

• Permissions, which are declared in the AndroidMani-

fest.xml file to indicate the necessary permission to access

specific resources.

• API calls, which are invoked by the app to interact with

the underlying Android system, such as sending SMS.

• Intent, which is regarded as the “medium” to transfer data

between different components. We consider two types of

data, i.e., action and category, as the features.

• Hardware, which is requested by the app to get access to

components such as NFC and GPS.

• Strings, which indicate values of variables. We collect

strings from two sources: declared in Smali files and

defined in strings.xml files.

Specifically, for permissions, API calls, intent, and hardware

features, we first extract them from AndroidManifest.xml files

and Smali files, and obtain the union set of them. Since

the size of the union set is too large, to avoid sparse data,

we filter out the features that are used by less than 0.1%

apps, only use the vectors of the remaining features for

clustering. We then decode the features into one-hot vector,

and set the value to “1”, indicating the corresponding feature

is requested by the app, otherwise the value is set to “0”.

For the strings extracted from the Smali files, we split

them by predefined punctuations such as “.”, “//”, and “—”,

and also camel cases for method/class/API names [40], e.g.,

“AdActivity” to “Ad” and “Activity”. To encode them with rich

semantic representations, we resort to the popular GloVe pre-

trained word vectors [41], a published repository containing

27 billion English vocabularies. For each app, we extract the

100-dimension vectors for the tokens from the Smali files

and take the average as the representation for the strings from

the source code of the app. With respect to the strings extracted

from the strings.xml file, since they are generally mingled

with multiple languages including English, Chinese, Hindi,

etc., we turn to the multilingual word embeddings released

by Google [42], and use the similar strategy as we encode

strings from Smali files. The strings.xml file of each app is

represented as 768-dimension real-value vectors.

Community Detection. Community detection algorithm has

been widely adopted in malware detection for clustering

malware into different families [43], [44]. In this paper, to

effectively determine the categories of the numerous unlabeled

apps, we follow the typical strategy [34] to preliminarily

cluster these apps, from which we sample a statistically-

significant number of apps for further manual analysis.

Specifically, we first build a bi-directional graph of the

unlabeled apps. Each app is one node in the graph, and

the edge weight between two nodes is computed based on

the similarity of the corresponding two apps. The similarity

score is determined by the cosine similarity [45] between

their feature vectors. Note that not all the unlabeled apps are

incorporated in the graph. According to Fan et al. [34], an app

is removed from the graph if it presents loose relations with

other apps (i.e., the similarity scores with all the other apps

are lower than 0.751). Such apps can be regarded as outliers

and are not the interest of this work. After this step, 21,403

out of 22,886 apps are remained for subsequent analysis.

Then we use the popular community detection algorithm,

infomap [46], to cluster the unlabeled apps in the graph.

We choose the infomap algorithm since it presents superior

performance on app clustering than other community detection

approaches in prior studies [34]. After conducting the cluster-

ing step, we obtain 594 clusters with the count distributions

of the apps shown in Fig. 2. Since we focus on identifying

whether the unlabeled apps exhibit prominent categories, we

only choose the top clusters for analysis. In this work, we

select the top 15 clusters which include 10,918/21,403 apps,

occupying 51.0% of the apps in the graph, for further analysis.

On average, each of the top cluster has 727 apps.

Finally, we sample representative apps from each cluster.

The representative score of each app is computed as the

sum weight of all the adjacent nodes in the graph, based

on the intuition that the apps presenting more similarities

with surrounding apps tend to be more representative of the

cluster [47]. We extract the top 25 apps from each cluster for

manual analysis. In total, we manually analyze 375 apps (out

of the 10,918 unlabeled apps) providing us with a confidence

level of 95% and a confidence interval of 5%.

IV. EMPIRICAL STUDY

Based on the unlabeled apps we sampled from each cluster,

we take an in-depth manual analysis on these apps from the

following aspects: 1) We summarize the taxonomy of these

unlabeled apps by manually understanding the characteristics

and common behaviors of each app; 2) We present typical

cases from the sampled unlabeled apps to illustrate the ab-

normal behaviors of apps; 3) Finally, we also summarize the

lessons learned from the study on such unlabeled apps, and

propose useful insights for follow-up research.

10.75 is determined following the prior study [34].

582

Fig. 2: Distribution of app numbers for the top 40 clusters.

The top 15 clusters occupy 51.0% of all the clustered apps.

To conduct the manual analysis, we use 3 real mobile

devices (i.e., Samsung Galaxy S10+, Samsung Galaxy S10,

and HUAWEI Mate 20 with Android 9.0 OS) rather than

Android emulators to ensure the real execution environment.

We also use several reverse engineering tools to help analyze

the unlabeled apps, such as Apktool [39] and jadx-GUI [48].

Apart from these tools, we use Android logcat [49] and instru-

mentation techniques to help observe the common behaviors

of apps from different clusters. Meanwhile, all manual analysis

is done under a control environment (in our research lab) to

avoid spreading the threats to real app users.

A. Taxonomy of Unlabeled Apps
To summarize the categories of unlabeled apps and their

common characteristics and behaviors, we select the top 15

clusters where each cluster provides us 25 apps for manual

analysis. Based on the observed common behaviors from

different unlabeled app clusters, the categories are summarized

as follows.

Adware [50]. Unlabeled apps in this type usually pop up ad-

vertisements or notifications on the screen that disturb mobile

users. For example, some of these apps pop up advertisements

very frequently, which largely affects the normal usage of the

apps and annoys users. Such advertisements either redirect

users to the app market or websites to attract users to down-

load apps or register on the websites, which may download

malicious apps or leak private information. In addition, when

analyzing this category, we find many redirected website links

are forbidden by mobile systems due to security threats.

Specifically, some advertisements provide a closing button, but

the button will redirect to a website via mobile browser (the

app is named Lighting). Some advertisements even have a full-

screen image covering the whole screen of the device, however

without a close or cancellation button, thus the users are forced

to click on the advertisement if they want to continue using this

app. For example, Fig. 3a shows a full-screen advertisement,

inducing users to click on the link to register by showing a

30-second video, however without showing the close button

on the top left. The close button only shows after the video is

finished. Therefore users have no choice in the first 30 seconds

but to click on the advertisement. Fig. 3b shows a frequent

advertisement at the bottom. Such advertisements negatively

affects user experience.

Fake Apps [5]. Following the definition in [5], fake apps are

apps that imitate the corresponding official ones or look almost

the same as their official correspondences, however without

official certificates. The ultimate goal of fake apps is to elicit

downloads or manifest malicious behaviors by plagiarizing the

famous official ones. For example, as shown in Fig. 4, the fake

Fruit Ninja app (i.e., Fig. 4b) mimics the similar functionalities

as the original one (i.e., Fig. 4a) to attract app users. For most

normal users, they lack rich experience to distinguish whether

the current is a fake app. Many fake apps are uploaded to

third-party markets and attract more downloads with the help

of popularity of the official apps. From our observation, we

find that such apps contain similar content and functionali-

ties compared with the corresponding original one, however

downgrade some functionalities. Meanwhile, there are dozens

of fake apps that sometimes would target one official app.

Fig. 3c shows some fake apps for an official music app, with

similar icons or app names, we can see some of them are even

with the same icon. Such fake apps negatively affect the use

of the corresponding official apps.

Redirected Downloader Apps. Unlabeled apps in this type

link to external downloads and installations of other apps or

plugins. Such downloading and installation processes can be

triggered when the app is launched, or triggered by user inter-

action, pretending as installing a necessary component provid-

ing the full functionalities, however it would also redirect to

other downloading pages to downloading other unnecessary

apps. Some apps (e.g., one app named Beta WhatsApp in

Fig. 5a) do not actually provide the claimed service, instead,

they contain a single page showing the redirect URL for users

to download the corresponding apps that provide the claimed

service. After users install the provided necessary component,

the app may not provide the claimed functionalities, either.

Moreover, sometimes the installation request dialog pops up

again and again even if the users have already install the

required plugin. Such downloading apps usually conduct the

downloading and installation process by requesting permis-

sions from users, not silently downloading in the background

like what malware do. Fig. 3d shows a redirect downloading

app named Finance Pro, when users open the app, it directly

redirects to download a necessary component in order to

provide the full functionalities.

Redirected Promotion Apps. Different from adware, redi-

rected promotion apps redirect users to external web content

outside of the app, such as following accounts on social media

(e.g., Facebook, Instagram (shown in Fig. 5b), or other sales

apps), usually by opening a web browser page. Sometimes

users are even required to actually click on the promotion links

to do some special tasks (e.g., promoting third-party apps) in

order to continue using the current app, otherwise the users

are unable to use the services provided by the app. When the

third-party apps are downloaded by users, the current app will

check whether the downloaded app is installed on the current

device to further unlock the app. Fig. 3e displays such an app,

which is a WI-FI hacker app, however in order to use the

functionality of hacking WI-FI, users are forced to click on

583

(a) Adware
(Full screen)

(b) Adware
(Bottom)

(c) Fake Apps (d) Redirected
Downloader

(e) Redirected
Promotion

(f) Dialing/SMS
-Managing App

(g) Data
Collection App

(h) Demo App (i) Unfinished App (j) Broken App

Fig. 3: Examples of unlabeled app categories

(a) Original (b) Fake Fruit Ninja

Fig. 4: Original and Fake Fruit Ninja app

one of the three promotions at the bottom of the page.

Dialing/SMS-Managing Apps. Dialing/SMS-Managing apps

usually request permissions related to managing phone calls

(e.g., making/receiving phone calls) or SMS (e.g., sending/re-

viewing SMS) from users, and conduct such behaviors when

users do not attempt to do so. Such app may leak user

personal information such as phone number and may also

cause unexpected financial cost (e.g., calling charge, SMS

charge). For example, Fig. 3f shows such an app named

OhYeah, there is no functionality related to making phone

calls. However it requests permissions of making phone calls,

which is not what it requires to provide the claimed services.

(a) Redirected Downloader (What-
sApp)

(b) Redirected Promotion (Insta-
gram)

Fig. 5: Examples of Redirected Downloader/Promotion apps

The behavior of SMS-Managing Apps is similar to Dialing-

Managing Apps, they ask user to set the current app as the

default app for controlling sending/reviewing SMS. Note that,

it is difficult to identify the potential malicious behaviors

within apps only by the declared permissions related to phone

584

calls/SMS, which is one possible reason that they are not

labeled to malicious and appear to be unlabeled apps.

Data Collection Apps. This type usually forces users to enter

personal information (e.g., age, gender, photo number, address)

or request sensitive permissions (e.g., access to location and

contacts) to get access to the app’s functionality. Sometimes

the requested data is not what is indeed required to provide

the claimed service. In addition, for Android platform, the

Privacy Policy [51] is designed for app developers to declare

what user data will be collected, why it will be collected, and

how it will be used. The declaration is also consistent with

GDPR [52]. Fig. 3g displays an app (named RLC) requesting

access to location before launching the app. In fact, RLC is

the abbreviation of “resurrected life church”, which is not

related to location information. In other words, accessing

location is not a necessary behavior to provide the normal

functionalities. However, users cannot use the app if they deny

such permission requests, which definitely dissatisfies users.

Demo Apps. This type of unlabeled apps shares a com-

mon characteristic that the quality of such unlabeled apps

is extremely low, only containing very limited functionalities

for exercise or demonstration purpose. In detail, the code

structure and Graphical User Interfaces (GUI) design are

extremely simple with only one page. Some of them are

only composed of default widgets which are automatically

generated from Android Studio. For example, Fig. 3h is an

app for demonstration or testing of some basic components,

only containing two EditTexts and a Button with a single page.

Such apps are not ready for release, which would dissatisfy

users with such simple functionalities.

Unfinished Apps. This type of apps contains unfinished

modules, i.e., some functionalities are not fully implemented,

leaving some buttons unresponsive after users click on it, or

leaving some blank contents in the pages. Fig. 3i shows an

unfinished app, which is a suggestion app with no implemen-

tation, and the image buttons (e.g., “Weekends” button, “Child

food”, and “Fast food”) are not responsive, either, thus users

cannot use the corresponding functionalities. The only way

to interact with it is to close it. Such apps fail to fulfill the

expectation of users with the functionalities that they claim to

provide, leading to bad user experience.

Broken Apps. From our observation, this type of unlabeled

apps usually employs WebView [53], a kind of view in

Android, to show web pages in the current app instead of a

standard web browser like Chrome. These web pages usually

contain important parts, if not all of the content and services

that the app is trying to offer are ready to display, the app

would fail to access these pages, making the app useless to

users. Interestingly, the URL of the web pages are usually

invalid, thus they cannot provide the corresponding service to

users. For example, Fig. 3j shows a broken app with invalid

URL, leading to a “Webpage not available” error. Obviously,

such apps are useless for users with just an error page.

Porn Apps. This type contains porn contents and frequently

pops up a dialog, attracting users to click on the links to

externally download the provided “video player”. The so-

called video player is usually an advertising app or a malicious

app collecting personal information. We find that some porn

apps share the same icon and UI design, and the app names are

also very similar, with only several different letters. Moreover,

from our observation, these apps usually request a large

number of permissions to conduct their abnormal behaviors.

Such frequent pop-up windows have a negative impact on

user experience, and pose potential security threats to users.

Moreover, the content in porn apps is a public health risk

for users, especially for the young mobile users. It is a great

demand to distinguish the porn apps for app users in practice.

Background Service Apps. unlabeled apps in this category

share a common characteristic that they keep consuming the

resource (e.g., accessing location, refreshing periodically) in

the background. Sometimes such background service cannot

be stopped by killing the background tasks, which negatively

affects user experience. We take a further investigate on the

code of such apps and demonstrate two cases in Section IV-B

to show the background behaviors.

In summary, we distill 11 categories of unlabeled apps based

on the concrete app behaviors by an in-depth manual analysis.

B. Case Studies of Unlabeled Apps
In this section, we demonstrate a number of real cases found

in the clustering results. These samples are observed with

typical behaviors representing the unlabeled app categories.

1 p u b l i c vo id mining () {
2 / / The mining p r o c e s s r u n s i n a background s e r v i c e
3 miner . g e t S e t t i n g s () . s e t J a v a S c r i p t E n a b l e d (t r u e) ;
4 / / mining . j s c o n t a i n s C o i n h i v e l i b r a r y
5 miner . l o a d D a t a (” mining . j s ” , n u l l) ;
6 }

Listing 1: Simplified code snippet of Urban Pulse live
wallpaper

1) Cases of Background Service Apps: Background service

apps refer to apps that stay running in the background for

their own purpose. One example is an app called Urban Pulse
live wallpaper, which is used to configure live wallpaper for

mobile devices. The corresponding code snippet is shown in

Listing 1. As we can see, in addition to the basic functionality,

it contains a special module using JavaScript to mine

Bitcoin [54] in the background and keeps using the CPU

resources of the mobile system. The mining behavior can

hardly be noticed by mobile users or security analysts due

to the attribute of background services. These characteristics

definitely cause serious user annoyance. Another example is an

app called Geometry Dash, which requests the WAKE LOCK
permission, which can be used to unlock the screen and show

the content of the device. Once Geometry Dash starts running

on the device, the ads will continuously pop up, even if the

user closes the ads. After investigating the decompiled source

code of the app, we find that it uses a timer to periodically

pop up its continuous advertising service in the background.

This kind of background service greatly annoys mobile users

and compromises user experience.

585

Fig. 6: Demo App (ListView) Fig. 7: Unfinished (Button)

2) Cases of Dialing/SMS-Managing Apps: Such apps usu-

ally make phone calls or send SMS unexpectedly without

users’ notice. An app called OhYeah, which is a shopping

app. This app requires users to first register by entering with

users’ names, emails, telephone numbers in the registration

page, then users can view and buy items. The simplified code

snippet of the registration module is shown in Listing 2. After

the user clicks the submit button, the app will first get the

phone number from the input field, and make a call to the

telephone number automatically and unexpectedly (lines 7-8

in Listing 2). Such behavior is abnormal for a shopping app.

1 txtNumber = itemView.findViewById(R.id.pf_number);
2 btn_Llamar = itemView.findViewById(R.id.btn_llamar);
3 btn_Llamar.setOnClickListener({
4 public void onClick(View view) {
5 mNumber = "tel:" + RecView.txtNumber.getText();
6 // Make phone calls unexpectedly
7 Intent llamar = new Intent(
8 "android.intent.action.CALL",Uri.parse(mNumber));
9 Vendedor.startActivity(llamar);

10 }
11 });
12 }

Listing 2: Simplified decompiled code snippet of OhYeah

3) Cases of Demo Apps: Demo apps are too simple to

provide useful services to users, usually containing code-

demos or pure texts. Although no harm will be done to app

users, such unlabeled apps are useless and should never be

published as an item on the Android markets. As shown

in Fig. 6, the app is called ListView, where there is only

one page called MainActivity that creates and displays

a ListView, without any other events attached to the list

items. Listing 3 shows the corresponding code snippet. This

app is only a basic demonstration of ListView for a beginner

in Android development, but is totally useless to users on any

Android markets.

1 public void onCreate(Bundle bundle){
2 String[] values = new String[] {"aaa", "bbb", "ccc"};
3 ArrayAdapter<String> adapter = new ArrayAdapter<

String>(this,
4 android.R.layout.list_view_item, values);
5 setListAdapter(adapter);
6 }

Listing 3: Simplified code snippet of Demo ListView

4) Cases of Unfinished Apps: Unfinished apps refer to apps

that have obvious unfinished features, misleading users to ex-

pect more functionalities than what are actually implemented.

Fig. 7 shows the UI page of an unfinished app called VATCal-
culator, which is used to compute the consumption tax people

need to pay based on the value. The simplified decompiled

code snippet of VATCaculator can be referenced by Listing 4.

This app has a text-input field for users to enter values, and

several buttons to perform calculations. Since the buttons are

clearly visible to users, the users would naturally expect these

clickable buttons to perform some calculation tasks. However,

through an in-depth investigation of the decompiled source

code of the app, we find that it does not implement the

functionality of getting the value from the text-input fields

(i.e., onTouch, TouchDown, and TouchUp), and it also

fails to finish the functionality of performing calculation after

clicking the “calculation” buttons (i.e., onTouch in the source

code). As a result, the users can only observe the buttons

changing colors after being clicked, however without any other

reactions. It is obvious that the underlying functionalities for

these buttons are not implemented, and the functionalities of

this calculator are unfinished.

1 public boolean onTouch(View view, MotionEvent me){
2 /* Only changing the button’s color, no calculation or

value extraction from the text field */
3 if (me.getAction() == 0){
4 if (ShowFeedback()){
5 view.getBackground().setAlpha(70);
6 }
7 TouchDown();
8 }else if(...){
9 ...

10 TouchUp();
11 }
12 }
13 // Only dispatching events, no calculation
14 public void TouchDown(){
15 dispatchEvent(this, "TouchDown", new Object[0]);
16 }
17 // Only dispatching events, no calculation
18 public void TouchUp(){
19 dispatchEvent(this, "TouchUp", new Object[0]);
20 }

Listing 4: Simplified code snippet of VATCaculator

5) Cases of Broken Apps: Broken apps are clustered as

a category with malfunctioning features or failures iden-

tified during the usage. For example, Jubaoyaojin is an

investment app that fails in accessing a web page (i.e.,

http://www.jubaoyinjin.com) immediately after it starts, possi-

bly due to the shut-down server or the expired domain name.

1 public class MainActivity extends BaseActivity{
2 public void initView(){
3 String json = Utils.readJsonFile("property.json");
4 url = getUrl(json);
5 // Invalid url!
6 getCurrentFragment().getBrowser().loadUrl(url);
7 }
8 }

Listing 5: Simplified code snippet of Jubaoyaojin

After analyzing the corresponding decompiled code in List-

ing 5, we can see that whenever the app starts, it immediately

posts a web request to load its official website (Line 6).

The URL is actually stored in a JSON file (Line 3), and is

preloaded into the main page when a fragment is created.

However, the requested URL is invalid due to the shut-down

server or the expired domain name. As a consequence, the

user cannot even load the first page of this app and the app

becomes useless and displays nothing but an error message.

586

C. Comparison with Existing Grayware Study
We first compare our identified categories of unlabeled apps

with recent research results of grayware [4]. Grayware, defined

by Andow et al. [4], represent the apps that contain annoying,

undesirable, or undisclosed behaviors that cannot be classified

as Android malware. Among our 11 identified unlabeled app

categories, we have the following findings:

• 8 new categories are discovered based on our analysis,

which are different from Android grayware studied in

[4], including Redirected Downloader Apps, Redirected
Promotion Apps, Data Collection Apps, Demo Apps,
Unfinished Apps, Broken Apps, Porn Apps, and Back-
ground Service Apps.

• 2 categories (Fake apps and Dialing/SMS-Managing
Apps) strictly subsume two known categories Impos-
tors and Dialers [4], respectively. More specifically, apps

in the category Imposters usually impersonate through

repackage techniques, however, some apps impersonate

functionalities of popular apps to attract installation and

usage from app users. Due to this characteristic, we called

this category as Fake Apps in this work. Dialing/SMS-
Managing Apps not only contains the type of Dialers
defined in [4] but also apps that have SMS behaviors.

• The remaining 1 category is completely matched (Adware)

with the one in [4].

Apart from the 11 identified categories, we find 5 categories

are unrevealed in our dataset compared with the recent re-

search results [4], including Prankware, Scareware, Rooting

Tools, Remote Access Tools, and Hijackers.

In fact, according to our empirical investigation of unlabeled

apps, it seems that almost all the unlabeled apps have “gray”

attributes instead of “malicious” attributes. They do not have

obviously malicious behaviors as malware, so it is not easy

to label them in industry and they are often easily ignored

by analysts. However, according to the comparison results,

we note that several categories of grayware are in the wild

that lead to significant negative impacts on mobile users.

The previous grayware study [4] only focused on the apps

collected from Google Play Store, in this paper, we distill more

categories and understanding of the gray area of the mobile

world, which thanks to the real dataset from industry instead

of only the official Android market.

V. LESSONS LEARNED AND DISCUSSION

A. The Boundary of Malware and Grayware
According to our study, we distill many new grayware

categories with negative attributes for users. In practice, the

boundary of Android malware and benign apps might be

blurry and subjective [15], [16], [21], it is also true for the

two types of Android apps (i.e., malware and grayware). The

definition of special types depends on specific scenarios and

intentions of the apps. For example, for fake apps, they should

be regarded as malware if they are repackaged to conduct

malicious behaviors, however if they are designed to only

receive more attention by imitating certain popular apps, they

belong to the grayware category. Also, adware often wander

between Android malware and grayware [50]. Similarly, some

individual users choose to root their own devices (i.e., gain

administrative or superuser permissions) by using third-party

apps to get more fancy functionalities, which seems to be a

normal operation. However, some analysis tools regard the

rooting app as a malicious one since it gains the administrative

permissions that can manipulate system applications (e.g.,

alter, replace) with privileges, giving highways to malware

to conduct their malicious behaviors. Therefore, the boundary

of them is unclear. In fact, manual analysis is an initial step

to understand the characteristics of the grayware apps in the

wild rather than only the official apps and further identify the

boundary more clearly, especially for the unlabeled apps that

we have analyzed in this paper.

B. Industrial Profit Chain of Unlabeled Apps
From our manual analysis, we find that some behaviors

of unlabeled apps may unveil special industrial profit chain

in the real world, which means that this study is a peep-

hole to see the back-end profit mode of the unlabeled app

ecosystem. For example, for the Adware Apps, we observe

that the advertisements in different app categories redirect to

the same URL to display the same content to maximizing

profit of advertisement providers. Similarly, for the Redirected
Promotion Apps, promotions in some apps redirect to the same

promotion product such as browsers and social apps, such

cases appear frequently in our dataset. In the future work,

we aim to understand the back-end industrial profit chain to

further help to identify the corresponding unlabeled apps, with

the help of the dataset provided by the industry, which is a

more challenging research for both academia and industry.

C. Low Quality Unlabeled Apps
Apart from the apps that are developed for making profit

and have negative impact on user experience, we also find

that some unlabeled apps are clustered by their own attributes

including Demo Apps, Unfinished Apps, and Broken Apps,

causing user dissatisfaction with extremely low quality. Such

kinds of unlabeled apps are hardly a potential threat to the

Android system or users’ personal data due to the limited

complexity or malfunction. As a result, this type of low-

quality unlabeled apps is underestimated and neglected in

previous studies [4], [55]. Apart from such apps with limited

functionalities, we also observed that a large number of apps

suffer from crashes once the apps launch. User cannot use

them at all. For the third-party Android markets, they should

strengthen supervision of app quality to avoid spreading these

low quality apps to users.

D. Propagation of Unlabeled Apps
Compared with malware, unlabeled apps can be propagated

faster, as they are less likely to be identified by anti-virus

detection systems. Before our study on unlabeled apps, there

is no research focusing on this field, let alone the classification

approaches for classifying them to each category. According

587

to our analysis result, none of the unlabeled apps involves

behaviors of attacking the Android system or gaining root

access (i.e., privileged permissions) of the device. In con-

trast, Android malware usually focus on data leakage and

vulnerabilities of the mobile system in order to breach system

protection and gain root access of the device and further

control it [56], [57]. Such nature of malware leads to different

detection abilities of the Android anti-virus mechanism for

malware and unlabeled apps (i.e., unlabeled apps and grayware

are less likely to be identified). Once the system patches the

vulnerability, substantial efforts are needed to find another

vulnerability in order to develop a new malicious app. On

the contrary, unlabeled apps can make profit form network-

traffic theft or advertisements. Therefore, unlabeled apps only

require relatively simpler development for a shell that carries

components such as advertisement frameworks or network-

traffic theft functionalities. As shown in Fig. 4b, a lot of

fake apps are observed in unlabeled app categories, suggesting

that only minor modification is needed for unlabeled app

developers to produce a large number of unlabeled apps.

Moreover, normal system updates do not affect unlabeled apps

as their behaviors do not depend on the patched leakages,

and unlabeled app developers can reuse most parts of the old

versions. As a result, a lot of repeated icons, UI design, and

even app names are observed in most of the unlabeled apps.

E. Feedback from Industrial Partners
According to the clustering results from both industry

and academia, we find that the community-based/clustering

techniques are not effective in characterizing unlabeled apps

in practice. In fact, before the study, our partner leveraged the

string features extracted from APK files and employed N-gram

to cluster these apps. The result showed it was able to identify

some Porn Apps, but ineffective to cluster other categories.

Although it is a great demand for our industrial partner to

use a multi-class classifier to distinguish the unlabeled apps,

the classifier is still ineffective due to the multi-behaviors

within each app. Thus, the labeled apps are especially more

important for this task. To get useful feedback about the

analysis on unlabeled apps from the industry, we had face-to-

face meetings with them to discuss the characteristics of our

analyzed results, they acknowledged our understanding and

findings on unlabeled apps, meanwhile, they mentioned that

compared to academic researchers, the industrial stakeholders

are more interested in unlabeled apps. They aim to reduce the

security risks and negative impacts as much as possible from

a business perspective based on our analysis results.

Benefits to our industry partner. 1) They are constructing

a dataset of all categories of unlabeled apps based on our

empirical investigation, and further leverage learning-based

approaches to classify these apps from others to mitigate the

potential threats. 2) It is difficult to identify all these categories

through one model in the initial stage even based on our

study due to the limited labeled dataset. With the labeled

apps based on our study, the industrial analysts have defined

and extracted special “features” for different categories in

order to achieve the goal of characterizing different types of

unlabeled apps. In fact, our partner has implemented several

“feature” definitions on their app analysis platform, Anony-

mous platform, according to our analysis results. As for Data

Collection Apps, Porn Apps, Background Service Apps, and

Fake Apps, they leveraged different defined features to identify

them with a great performance. For example, Fake apps [5]

have been analyzed and studied by them in depth under our

collaborations. They also encourage academic researchers to

pay more attention on what are the real demand of app analysis

in practice.

VI. THREATS TO VALIDITY

The incompleteness of black/white-lists. This potential threat

is from our initial data collection process. The unlabeled

Android apps are acquired from an industrial company, i.e.,

Pwnzen Infotech Inc., and they use the black-list and white-

list to filter out the known malicious and benign samples,

respectively. It is hard to guarantee that the remaining “indus-

trial unlabeled Android apps” do not contain any malicious

or benign samples. However, manual analysis with cross-

validation can eliminate such negative effect on the dataset

as much as possible.

Manual analysis. Since we apply manual analysis to catego-

rize these unlabeled apps, and investigate the characteristics of

them, there may be bias regarding the analysis results. Thus

we cross-validate the taxonomy and the characteristics across

co-authors to make the result more reliable and convincing.

VII. CONCLUSION

In this paper, we conduct the first data-driven analysis

of industrial unlabeled Android apps, leveraging the cluster

algorithm to categorize unlabeled apps at scale from industry

(i.e., data sampling), and performing an in-depth manual

analysis. We systematically study the clustered unlabeled app

categories by their common characteristics, and summarize 11

unlabeled app categories and their corresponding behaviors.

Along with the categories, we also provide a few case studies

of several categories. The other new categories can be pub-

lished as a benchmark to foster further research on grayware,

which thanks to the dataset of unlabeled apps from industry.

Finally, we highlight our discoveries based on the compari-

son with Android malware and grayware, several categories

are partial/completely match with the first Android grayware

study. Meanwhile, the industrial partners acknowledged our

understanding and findings in this paper, and keep in touch

with us for further investigation and cooperation.

ACKNOWLEDGEMENTS

We sincerely thank Zhushou Tang, affiliated to PWNZEN

InfoTech Co., LTD, for the valuable dataset of Android apps.

This work was partially supported by the National Natural

Science Foundation of China (Grant No. 62102284, 62102197,

62002084, 62072309, 61761136011), and Stable support plan

for colleges and universities in Shenzhen under project No.

GXWD20201230155427003-20200730101839009.

588

REFERENCES

[1] (2018) App download and usage statistics. [Online]. Available:
http://www.businessofapps.com/data/app-statistics

[2] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
rydroid: Automated generation of storyboard for Android apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 596–607.

[3] X. Jiang and Y. Zhou, “Dissecting Android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 95–109.

[4] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study of
grayware on Google Play,” in Proceedings of the 2016 IEEE Security
and Privacy Workshops (SPW). IEEE, 2016, pp. 224–233.

[5] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A
large-scale empirical study on industrial fake apps,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice. IEEE Press, 2019, pp. 183–192.

[6] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in Android apps,” in
Proceedings of the 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 408–419.

[7] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 2018, pp. 486–497.

[8] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
ACM, 2018, pp. 797–802.

[9] C. Gao, W. Zheng, Y. Deng, D. Lo, J. Zeng, M. R. Lyu, and I. King,
“Emerging app issue identification from user feedback: experience
on WeChat,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice. IEEE Press,
2019, pp. 279–288.

[10] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android banking
apps,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1310–1322.

[11] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated test input generation for Android:
Towards getting there in an industrial case,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineer-
ing in Practice Track (ICSE-SEIP), 2017, pp. 253–262.

[12] (2019) Tencent. [Online]. Available: https://www.tencent.com/en-us
[13] (2019) Qihoo 360. [Online]. Available: https://www.360totalsecurity.

com/en
[14] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and

C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in Proceedings of the 21st Annual Network
and Distributed System Security Symposium (NDSS), vol. 14, 2014, pp.
23–26.

[15] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th IEEE/ACM International Conference on
Software Engineering (ICSE), 2015, pp. 426–436.

[16] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext:
Differentiating malicious and benign mobile app behaviors using con-
text,” in Proceedings of the 37th IEEE/ACM International Conference
on Software Engineering (ICSE), pp. 303–313.

[17] Z. Xu, K. Ren, and F. Song, “Android malware family classification and
characterization using CFG and DFG,” in Proceedings of the 2019 In-
ternational Symposium on Theoretical Aspects of Software Engineering
(TASE), 2019, pp. 49–56.

[18] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Cypider: build-
ing community-based cyber-defense infrastructure for Android malware
detection,” in Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 2016, pp. 348–362.

[19] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and API calls tracing,” in
2012 Seventh Asia Joint Conference on Information Security. IEEE,
2012, pp. 62–69.

[20] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining API-level features
for robust malware detection in android,” in International conference on
security and privacy in communication systems. Springer, 2013, pp.
86–103.

[21] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting Android
malware,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security (AsiaCCS), 2016, pp. 377–388.

[22] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach,” Computers & Security, vol. 73,
pp. 326–344, 2018.

[23] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of piggybacked mobile applications,” in Proceedings of the
3rd ACM conference on Data and application security and privacy.
ACM, 2013, pp. 185–196.

[24] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for Android,” in Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices, 2011, pp. 15–26.

[25] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” in Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2014, pp. 259–269.

[26] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

[27] T. Chen, J. He, F. Song, G. Wang, Z. Wu, and J. Yan, “Android
stack machine,” in Proceedings of the 30th International Conference
on Computer Aided Verification (CAV), 2018, pp. 487–504.

[28] F. Song and T. Touili, “Model-checking for Android malware detec-
tion,” in Proceedings of the 12th Asian Symposium on Programming
Languages and Systems (APLAS), 2014, pp. 216–235.

[29] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
performance-sensitive malware detection system using deep learning
on mobile devices,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 1563–1578, 2020.

[30] R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, “Seqmobile: A
sequence based efficient Android malware detection system using rnn
on mobile devices,” arXiv preprint arXiv:2011.05218, 2020.

[31] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W.
Lin, “Mobidroid: A performance-sensitive malware detection system on
mobile platform,” in 2019 24th International Conference on Engineering
of Complex Computer Systems (ICECCS). IEEE, 2019, pp. 61–70.

[32] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and M. R. Lyu,
“Why an Android app is classified as malware: Toward malware classi-
fication interpretation,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 2, pp. 1–29, 2021.

[33] A. A. A. Samra, K. Yim, and O. A. Ghanem, “Analysis of clustering
technique in Android malware detection,” in Proceedings of the 7th
International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing. IEEE, 2013, pp. 729–733.

[34] M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, and T. Liu,
“Graph embedding based familial analysis of Android malware using
unsupervised learning,” in Proceedings of the 41st International Con-
ference on Software Engineering (ICSE), 2019, pp. 771–782.

[35] S. M. Kolekar and P. N. Mahalle, “Malware prevention and detection
system using smart phone,” International Journal of Computer Applica-
tions, vol. 107, no. 21, pp. 31–35, 2014.

[36] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, detection and analysis of malware for smart devices,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 2, pp. 961–987, 2014.

[37] L. Wei, Y. Liu, and S.-C. Cheung, “Taming Android fragmentation:
Characterizing and detecting compatibility issues for Android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM, 2016, pp. 226–237.

[38] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu, “Under-
standing and detecting fragmentation-induced compatibility issues for
Android apps,” IEEE Transactions on Software Engineering, 2018.

[39] (2019) Android Apktool. [Online]. Available: https://ibotpeaches.github.
io/Apktool

589

[40] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of the
40th International Conference on Software Engineering (ICSE), 2018,
pp. 933–944.

[41] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543.

[42] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), 2019, pp. 4171–4186.

[43] H. M. Kim, H. M. Song, J. W. Seo, and H. K. Kim, “Andro-simnet:
Android malware family classification using social network analysis,”
in 16th Annual Conference on Privacy, Security and Trust (PST), 2018,
pp. 1–8.

[44] Y. Du, J. Wang, and Q. Li, “An android malware detection approach
using community structures of weighted function call graphs,” IEEE
Access, vol. 5, pp. 17 478–17 486, 2017.

[45] A. Huang, “Similarity measures for text document clustering,” in Pro-
ceedings of the sixth new zealand computer science research student
conference (NZCSRSC), vol. 4, 2008, pp. 9–56.

[46] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008.

[47] C. Gao, H. Xu, J. Hu, and Y. Zhou, “Ar-tracker: Track the dynamics of

mobile apps via user review mining,” in Proceedings of the 2015 IEEE
Symposium on Service-Oriented System Engineering (SOSE), 2015, pp.
284–290.

[48] (2019) Jadx-GUI. [Online]. Available: https://github.com/skylot/jadx
[49] (2019) Logcat. [Online]. Available: https://developer.android.com/

studio/command-line/logcat
[50] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Should you

consider adware as malware in your study?” in 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 604–608.

[51] (2019) Privacy policy for Android apps. [Online]. Available: https:
//www.iubenda.com/en/help/11552-privacy-policy-for-android-apps

[52] (2019) Gdpr. [Online]. Available: https://gdpr-info.eu
[53] (2019) Android WebView. [Online]. Available: https://developer.

android.com/reference/android/webkit/WebView
[54] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[55] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,

“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the 8th symposium on usable privacy and security, 2012.

[56] A. Stamminger, C. Kruegel, G. Vigna, and E. Kirda, “Automated
spyware collection and analysis,” in Proceedings of the International
Conference on Information Security, 2009, pp. 202–217.

[57] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices, 2011, pp.
3–14.

590

