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Abstract

Machine learning (ML) based classifiers are vulnerable

to evasion attacks, as shown by recent attacks. However,

there is a lack of systematic study of evasion attacks on

ML‐based anti‐phishing detection. In this study, we

show that evasion attacks are not only effective on

practical ML‐based classifiers, but can also be efficiently

launched without destructing the functionalities and

appearance. For this purpose, we propose three

mutation‐based attacks, differing in the knowledge of

the target classifier, addressing a key technical chal-

lenge: automatically crafting an adversarial sample from

a known phishing website in a way that can mislead

classifiers. To launch attacks in the white‐ and gray‐box
scenarios, we also propose a sample‐based collision at-

tack to gain the knowledge of the target classifier. We

demonstrate the efficacy of our evasion attacks on the

state‐of‐the‐art, Google's phishing page filter, achieved

100% attack success rate in less than one second per

website. Moreover, the transferability attack on BitDe-

fender's industrial phishing page classifier, TrafficLight,

achieved up to 81.25% attack success rate. We further

propose a similarity‐based method to mitigate such

evasion attacks, Pelican, which compares the similarity

of an unknown website with recently detected phishing

websites. We demonstrate that Pelican can effectively
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detect evasion attacks, hence could be integrated into

ML‐based classifiers. We also highlight two strategies of

classification rule selection to enhance the robustness of

classifiers. Our findings contribute to design more ro-

bust phishing website classifiers in practice.

KEYWORD S

adversarial attacks, adversarial sample detection, machine
learning, mutation, phishing website

1 | INTRODUCTION

Web phishing is a major cyber threat and have reached a record volume.1 It has been widely
used to steal personal information such as login credentials. In addition, people nowadays
prefer online shopping, which aggravates the harms of phishing attacks in practice. Conse-
quently, phishing attackers are able to gain a (vast) amount of money via phishing websites.2 To
detect phishing attacks, various anti‐phishing solutions have been proposed, such as blacklists,3

similarity‐,4 and machine learning (ML)‐based5 approaches. However, blacklist is ineffective in
detecting 0‐day attacks3; similarity‐based approaches being capable of detecting 0‐day attacks,
have limited scalability and accuracy.6,7 ML‐based ones are not only scalable and accurate, but
can also detect 0‐day attacks, hence have been widely studied5,8–10 and deployed in industrial
browsers (e.g., Chrome and Edge11).

Prior research shows that ML‐based classifiers are vulnerable to evasion attacks, for
example.12–19 Such attacks have been extensively studied in image recognition and malware
detection, but little has done in anti‐phishing. This is potentially due to the new challenge in
this domain: unlike adversarial images which only need to preserve the appearance and
adversarial malware which only need to preserve the functionality, adversarial phishing
websites have to preserve appearance and functionalities simultaneously, to be more effective
for web phishing.5 Hence, it becomes imperative to understand whether it is possible to ef-
fectively launch evasion attacks on ML‐based anti‐phishing classifiers with limited knowledge
of the target classifier, while preserving the functionalities and appearance of the webpages.

In this study, we show that evasion attacks are not only effective on practical ML‐based
classifiers, but can also be launched without destructing functionalities and appearance of
phishing webpages, in all white‐, gray‐, and black‐box scenarios. For this purpose, we propose
advanced evasion attacks, differing in the knowledge (e.g., classification rules, features, and
weights) of a target classifier obtained by the adversary, namely, white‐box attack with full
knowledge, gray‐box attack with partial knowledge, and black‐box attack without any
knowledge, of the ML‐based classifier under attack. Specifically, to effectively and efficiently
craft adversarial samples from known phishing websites, we propose three mutation me-
chanisms, each of which iteratively mutates a sample from a known phishing website ac-
cording to the knowledge of the adversary until the target classifier is misled. To launch attacks
in white‐ and gray‐box scenarios, it is necessary to gain partial or full knowledge of the classifier
under attack. Therefore, we propose a sample‐based collision attack for inferring classification
rules by leveraging the data collected from legitimate and phishing websites. In the white‐box
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attack setting, where (almost) full knowledge of the target classifier is obtained, we use a greedy
strategy to choose which features to delete from or add into a sample to maximally decrease the
decision score at each mutation step. In the gray‐box attack setting, where only partial
knowledge of the target classifier is obtained, we first iteratively delete all the features of known
classification rules that can reduce the decision score, and if necessary, we add classification
rules that do not exist in the original sample but can reduce the decision score. In the black‐box
setting, where no classifier information is exposed except that the adversary can query the
classifier and obtain the decision score, based on our insights of existing ML‐based classifiers,
we first delete DOM nodes (i.e., nodes in HTML Document Object Model) from the sample and
then add DOM nodes into the sample, guided by the decision scores.

To evaluate our attacks, we examined both academic and industrial ML‐based tools
(e.g., CANTINA+,8 Off‐the‐Hook,20 δPhish,9 the tool developed by Ubing et al.,10 Monarch21

and Google's phishing page filter (GPPF)5) and industrial proprietary tools (Bitdefender
TrafficLight, Netcraft Anti‐Phishing Extension, and 360 Internet Protection). Except for GPPF,
all the other tools either are not publicly accessible or cannot output the decision score for each
input which is required even in our black‐box scenario. Thus, we demonstrate our attacks on
the state‐of‐the‐art ML‐based classifier GPPF. We emphasize that many ML‐based classifiers
such as CANTINA+, Off‐the‐Hook, and Monarch use the similar idea as GPPF, differ in
features, architectures, and ML algorithms. Therefore, our attacks could be used for these ML‐
based classifiers. GPPF uses a logistic regression learning algorithm to train a classification
model and is effective in phishing warnings.22 It has been deployed in both Chrome and
Firefox,23 owning billions of users. In terms of false positive rate and accuracy, GPPF is also the
best one among the 14 tools including similarity‐, heuristic‐ and ML‐based ones.20 To show that
our black‐box attack is generic and effective for other practical ML‐based classifiers, we launch
transferability attacks on the industrial tool Bitdefender TrafficLight, which owns the most
users and stars in the add‐ons of Firefox. Furthermore, Bitdefender TrafficLight is proprietary
without any publicly available information about the internal design and implementations,
hence completely black‐box. We also tried to launch transferability attacks on other anti‐
phishing tools, but failed to get their classification results automatically. In summary,
our attacks have 4 prominent advantages:

• Effectiveness: Our attacks achieve 100% attack success rate on GPPF in all the white‐,
gray‐, and black‐box scenarios.

• Efficiency: Adversarial samples are crafted in less than one second per seed on average.
• Transferability: The transferability attack success rate on Bitdefender TrafficLight is up
to 81.25%.

• Nondestructiveness: All the crafted adversarial samples have the same functionalities and
appearance as their original ones, where appearance is measured by two common distortion
criteria of images: mean‐squared error (MSE)24 and mean‐absolute error (MAE).25

To mitigate the real threats posed by evasion attacks, we propose a similarity‐based
method, named Pelican, which compares the similarity of DOM trees between an unknown
one and recently detected phishing websites. This method neither modifies the target
classifier nor relies on specific properties of the classifier, so it could be used to protect a
wide range of classifiers as a pre‐filter. We remark that Pelican is used to efficiently detect
evasion attacks rather than general phishing attacks as done by existing work.4,26

Furthermore, to mitigate collision attacks and enhance the robustness of classifiers, we
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identify weaker classification rules and propose two strategies: removing single classification
rules and subset classification rules from classifiers. We also suggest adding more
appearance‐related features into these classification rules to increase the robustness of the
classifier. Our findings contribute to design more robust phishing website classifiers in
practice. We evaluate Pelican on 915 adversarial samples (one sample per seed and
scenario). Pelican is able to detect all these samples. We also evaluate classification rule
selection strategies using our black‐box attacks and demonstrate their weakness, but
have no side‐effect on checking original phishing/benign websites when subset rules or
single rules are disabled.

In summary, we make the following contributions.

• Novel evasion attacks on ML‐based web phishing classifiers, which are effective, effi-
cient, and nondestructive.

• A sample‐based collision attack that can effectively infer more features/rules for gray‐
and white‐box evasion attacks.

• Evaluation of our attacks which achieved 100% attack success rate on the state‐of‐the‐art
classifier GPPF and achieved up to 81.25% transferability attack success rate on Bitde-
fender TrafficLight, in the real world.

• A defense method, Pelican, to mitigate evasion attacks, and two strategies (i.e., removing
single classification rules and subset classification rules) to enhance the robustness of the
classifiers.

• A data set27 including 3000 phishing websites, 15,000 legitimate website URLs, and
2,566,834 phishing URLs to foster further research such as phishing website detection/
defense and measurement.

To the best of our knowledge, this is the first systematic study of evasion attacks on practical
ML‐based phishing website classifiers considering all the white‐, gray‐ and black‐box scenarios,
the first defense work against evasion attacks in this domain and the first evaluation of the
robustness of single classification rules and subset classification rules under the adversarial
environment.

2 | BACKGROUND

2.1 | Website and webpage structure

A website consists of webpages for presenting information to users. Webpages are accessed via
their corresponding URLs. As shown in Figure 1, a webpage has a basic structure and multiple
corresponding elements, representing in a tree hierarchy, called DOM tree. Specifically, a
webpage has several kinds of nodes, called DOM nodes, including element (e.g., HTML
element), text (e.g., text inside the HTML element), attribute (e.g., the attributes of each HTML
element), and comment codes (no effect on webpage structure).

The children of an element node are text and attribute nodes. In addition, scripts such as
JavaScript code are also an important part of webpages which can manipulate (e.g.,
modify, delete, and add) the DOM tree. In this study, we consider JavaScript only, other
scripting languages can be handled similarly. The appearance and functionalities of a webpage
are determined by the combination of elements, texts, attributes, and scripts.
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2.2 | Web phishing

Web phishing, a type of social engineering attack, is often used to steal user information, such
as login credentials and payment data.28 It occurs when an attacker masquerades the phishing
website as a trusted entity, both of the webpages and URLs are very close to the original
legitimate ones. Typically, attackers first create a fake website and then distribute its URL to
lure users to click the URL link, which redirects to a phishing website from untrusted servers
to extract users' information. Two traditional strategies are often adopted in web phishing to
distribute URL: spoofed emails and fake websites.29 The former is an active attack, which sends
numerous spoofed emails to various users and the spoofed emails lure users to click links in the
email that redirects to a phishing website. In contrast, the latter is a passive attack, which
distributes the URL via other ways (e.g., bulletin board systems, messaging services) and waits
for users' visit of the phishing website. Attackers aim to make the phishing URLs and visual
appearances of webpages as similar as possible to the targeted victim's.

2.3 | ML‐based anti‐phishing

Generally, ML‐based anti‐phishing methods extract a set of features of text, image, or URL
information from DOM trees of authentic and/or phishing websites. A set of classification rules
obtained from the learning algorithms are used for phishing detection. According to the existing
ML‐based anti‐phishing solutions, we define a generic ML‐based phishing classifierc as a tuple

c R π τ( , , ),≜

where R is a finite set of classification rules, π is a function used to compute the final decision
score of a given website, and τ is the threshold. Classification rules are described as follows:

n n n ntype tag children v
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n
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FIGURE 1 Structure of a webpage
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A classification rule r consists of an identity idr , a set of features Fr, and a weight wr
contributing to the final decision score. We denote byW w= ( )r r R∈ the set of weights. A feature
f has a value vf which is computed from a set nf of DOM nodes of webpages. The values of
features in Fr determine the value of r . For example, a feature PageHasForms examines
whether a webpage has a form node, and its value is either 1 or 0. A DOM node has a type ntype
(e.g., element, attribute, and text) and a tag name ntag (e.g., “div”). An element node has
children nchildren that are attribute and text nodes. An attribute or text node has a value nvalue.
For example, a “type” attribute node has the value “password” and a text node has the value
“Hello World!”. In practice, classification rules are usually designed according to domain
knowledge of experts, while their weights are trained from some data set using ML algorithms.

A classification rule r is hit by a website p, denoted by p r⊧ , only if all the values of its
features in p are nonzero. To check a website p, it computes the decision score score p( )c

based on weights of classification rules hit by p using the function π . It is considered to be a
phishing one if the decision score exceeds a predefined threshold, that is, score p τ( )c ≥ ,
otherwise, it is regarded as a legitimate one. Although, classifiers may differ in concrete anti‐
phishing solutions, our definition is generic and is able to capture the cores of many published
ML‐based solutions5,7–10,20,21

3 | THREAT MODEL AND OVERVIEW

In this section, we propose our threat model, and then introduce the overview of our study.

3.1 | Threat model

We assume that an attacker wants to craft a sample from a desired phishing website that has
the same functionalities and appearance, but is misclassified as benign by the target classifier;
and (s)he can query to the classifier as many times as possible. This is feasible in practice, as
limiting the number of query times will restrict the usage of the classifier.

We consider three attack scenarios: white‐, gray‐, and black‐box. White‐box means that the
adversary has almost full knowledge of the target classifier (i.e., both classification rules and
their weights). White‐box scenario is not always tractable in practice, but it is feasible in
practice. For instance, the classifier Bitdefender TrafficLight is proprietary without any publicly
available information about the internal design and implementations, hence it is infeasible to
launch white‐box attack against TrafficLight. However, client‐side classifiers such as GPPF do
run in the environment that may be completely controlled by the adversary. Though labor‐
intensive, the adversary always can find a way to observe its running and gather exploitable
information by, e.g., reverse engineering30 and collision attacks.31 Consequently, the adversary
will have full or partial knowledge of the classifier under attack, allowing (s)he to launch a
white‐box evasion attack on the target classifier. Therefore, white‐box scenario is feasible in
practice.

Gray‐box means that the adversary has access to classification rules, but not their weights,
of the classifier under attack, since the weights of classifiers may be frequently updated in
practice. For instance, Google retrains GPPF daily on the server‐side using samples from
classification data collected over the last three months and updates the weights of GPPF on the
client‐side.5 By launching gray‐box attacks, the adversary does not need to infer the weights of
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the classification rules, hence boosting attack efficiency. Remark that it may be impossible to
obtain full classification rules in practice. For instance, we cannot obtain full classification rules
of GPPF. We argue that essential and practically easy obtained classification rules are sufficient
to launch a successful attack. Indeed, our attack against GPPF under the gray‐box scenario
only has access to partial classification rules rather than full classification rules.

In the more realistic black‐box setting, the adversary does not have any knowledge of the
target classifiers, for example, the classifier Bitdefender TrafficLight. Even under such a rea-
listic scenario, we will show that attacks are still possible via transferability attacks.

In all three scenarios, the adversary does not know any information about the training data
set and training algorithm. We also assume that the classifier outputs the decision score of each
input sample, which is a widely used assumption even in black‐box scenario.12,32,33 We will
demonstrate that our approach is effective in transferability attacks, allowing us to attack
classifiers that only output the category of each input instead of the decision score.

3.2 | Approach overview

Figure 2 shows the overview of our work on attacks and defenses of phishing classifiers:
including advanced evasion attacks in white‐, gray‐, and black‐box scenarios and an effective
similarity‐based method for evasion attack detection. We first propose a sample‐based col-
lision to get the knowledge of classifiers such as classification rules and their corresponding
weights (marked ➀). Second, given the desired phishing website that can be successfully
classified as phishing by the classifier under attack, according to the knowledge the attacker
obtained, (s)he leverages evasion attacks to craft adversarial samples that mislead the
classifier (marked ➁).

In the defense part, when the original one is identified as phishing by the classifier, its
webpage structures are extracted (marked ➂) for evasion attack detection. We propose an
effective similarity‐based method named Pelican (marked ➃), which compares the similarity of
DOM trees between an unknown one with recently detected phishing websites. If the similarity
exceeds a pre‐defined threshold, we regard the input website as a phishing one constructed by
evasion attacks, but without invoking the ML‐based classifier.

FIGURE 2 Overview of our study [Color figure can be viewed at wileyonlinelibrary.com]
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We further come up with two classification rule selection strategies for enhancing the
robustness of the classifiers and increasing the attack cost.

4 | ADVANCED EVASION ATTACKS

In this section, we propose a class of advanced evasion attacks under three different attack
scenarios. Given a desired phishing website p, an evasion attack on a target classifier
c R π τ= ( , , ) is to craft an adversarial sample mutated from p that can mislead the classifier c,
according to the knowledge of c the attacker obtained.

To explain our approach, we will use GPPF as the target classifier, which is trained by a
gradient descent logistic regression learning algorithm. Recall that all the other tools we ex-
amined either are not publicly accessible or cannot output decision score (cf. Section 1),
therefore, we demonstrate our generic methods on the state‐of‐the‐art classifier GPPF. In
GPPF GPPFc R π τ R= ( , , ), GPPFc R π τ R= ( , , ), consists of 2130 classification rules that rely
upon 1,009 features in total and the decision score function π is defined as

π x
e

e
x w w v( ) =

1 +
and = + ,

x

x r

i

r

f F

f

=2

2130

i

ri

1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∏⋅

∈

where

• the threshold τ is 0.5,
• for every i w1 2130, ri≤ ≤ is the weight of the classification rule ri and Fri denotes the set
of features that ri relies upon,

• for every i1 2130≤ ≤ and every feature f F v,r fi
∈ denotes the value of feature f in a

given webpage p.

4.1 | Sample‐based collision attack

To launch a gray‐ or white‐box attack on a target classifier, it is necessary, but nontrivial, to
obtain full or partial information of the classifier. To solve this problem, we propose a sample‐
based collision attack to infer classification rules.

4.1.1 | Data preparation

As shown in Table 1, we collect phishing websites from PHISHTANK,34 and legitimate web-
sites from PHISHNET,35 as subjects to infer classification rules. We only collect URLs of
inactive phishing websites. Finally, we collected 3000 phishing websites and 2,566,834 URLs
from PHISHTANK and 15,000 legitimate websites with their corresponding webpages from
PHISHNET.

Specific data should be extracted from the collected websites to launch collision attacks, as
features may differ in classifiers. As aforementioned, we demonstrate our methods using GPPF as
the target classifier. GPPF consists of three categories of features: URL‐related, Dom‐related, and
term‐related features, as shown in Table 2. URL‐related features come from URLs, containing four
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types of features. Dom‐related features come from links and action fields (e.g., form element) in
webpages, containing two types of features. Term‐related features are collected from texts in
webpages, including one type of features (i.e., PageTerm). We extract all links and texts from the
collected websites and URLs as the data set for inferring classification rules of GPPF.

4.1.2 | Collision attacks

We demonstrate how to infer classification rules in GPPF by leveraging the collected data set.
The main goal is to identify the features used in classification rules. GPPF uses the SHA256
hash algorithm to protect these features. Therefore, we compute the hash value of each feature
in the data set using the SHA256 hash algorithm. We then compare its hash value with the
hard‐coded hash values in the source code of GPPF. If it matches one of the hard‐coded hash
values in GPPF, then the feature is identified. It remains to understand the semantics of the
identified features, which is required to launch white‐ and gray‐box attacks. However, it is
difficult to recognize it from the feature names. For example, it is hard to guess the semantics of
the feature PageLinkDomain=*, which actually means that “a” element with the “href ”
attribute whose value is string (i.e., * denotes wildcard). To address this problem, we manually
extract the semantics of each feature from the code of GPPF. The results are shown in Table 4,
which will be explained in detail in Section 4.4. This approach is not limited to the SHA256
hash algorithm or GPPF, instead, we believe it could be used for other hash algorithms and
client‐side classifiers.

4.2 | Mutation mechanisms

We propose three mutation mechanisms for white‐, gray‐, and black‐box evasion attacks, which
craft adversarial samples by leveraging mutation techniques. During mutation, we always
preserve the appearance and functionalities of the websites. This is achieved by carefully

TABLE 1 Data set used in this study

Data set types Number Source

Phishing URLs 2,566,834 PHISHTANK

Phishing Websites 3000 PHISHTANK

Legitimate URLs 15,000 PHISHNET

Legitimate Websites 15,000 PHISHNET

TABLE 2 Extracted features in GPPF

Feature categories Feature Types

URL‐related UrlTld=*, UrlDomain=*, UrlOtherHostToken=*, UrlPathToken=*

Dom‐related PageActionURL=*, PageLinkDomain=*

Term‐related PageTerm=*
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designing mutation operations for implementing our mutation mechanisms. Since changing
URLs of websites is very easy for an attacker in real scenarios, but it is difficult to automatically
craft adversarial samples via mutating URLs to maintain similarity to the victim's URLs.
Therefore, we do not try to modify URLs in our evasion attacks.

4.2.1 | White‐box attacks

To evade a classifier with its full knowledge, we should mutate a sample starting from a phishing
website by deleting or adding classification rules until the decision score is less than the
threshold. The challenge is how to choose such classification rules. Since classification rules can
contribute to the decision score either positively or negatively, we partition the classification rules
into two sets:

• R r R w= { > 0}r
+ ∈ ∣ the set of positive classification rules indicating when being added

the decision score will increase.
• R r R w= { < 0}r

− ∈ ∣ the set of negative classification rules indicating when being added
the decision score will decrease.

We address the challenge by deleting positive classification rules and add negative
classification rules so that the decision score finally becomes less than the threshold.
We leverage a greedy algorithm to choose which classification rules to add or delete aiming
at maximally decreasing the decision score at each mutation step. It is worth noting that
once a feature is deleted, all the classification rules relying on this feature are also deleted.
On the other hand, to add a classification rule, all the features relied on this classification
rule should be added. Therefore, we regard each feature of negative classification rules as a
mutation “atom” during deletion operation, and regard each positive classification rule as a
mutation “atom” during addition operation instead of individual features. At each mutation
step, features and classification rules are selected based on their influence on the decision
score.

For each feature f that appears in the website p, we define the influence δ p f( , ) of f as

δ p f w v( , )
′
,

r R f p r

r

f F

f

( ) ′ r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∏≜ ⋅

∈ ∩ ⊧ ∈

where

• R f( ) denotes the set of classification rules that rely upon the feature f ,
• for every classification rule r R f( )∈ that relies upon the feature f F, r denotes the set of
features that the classification rule r rely upon,

• for every feature f F′ r∈ that the classification rule r relies upon, v
′f
denotes the value of

feature f ′ in the webpage p.

Intuitively, δ p f( , ) is the diff of weights after deleting the feature f .
To add one negative classification rule r , all the features of r should be added, by which

more than one classification rules may be added, hence adding the features of one classification
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rule may result in the addition of more than one classification rule. Therefore, we define the
influence δ p r( , ) of a classification rule r as

δ p r w v( , )
′ ′

,

′ ′
r R p r F F

r

f F

f

′ ′ ′r r r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∏≜ ⋅

∈ ∧ ⊭ ∧ ⊆ ∈

indicating the diff of weights after adding all the features of the classification rule r .
Now, we describe the procedure of our white‐box attack. For a given phishing website p, we

iteratively mutate p as follows until its decision score becomes less than the threshold:

1. if there exists a feature f of a positive classification rule such that δ p f δ( , ) > 0,

p f δ p f( , ) ( , ′)≥ for all other features f ′ of positive classification rules, and
δ p f δ p r( , ) ( , )≥ ∣ ∣ for all negative classification rules r , then delete f from the website p;
otherwise goto step 2.

2. if there is a negative classification rule r in the website p such that δ p r( , ) < 0 and
δ p r δ p r( , ) ( , ′)≤ for all other negative classification rules r′, then add the classifica-
tion rule r (i.e., all the features of r) into p; otherwise terminate.

4.2.2 | Gray‐box attacks

In gray‐box scenario, the attacker knows classification rules, but not weights of the classifi-
cation rules. Therefore, it is impossible to choose the best features or classification rules so that
the decision score can be reduced maximally at each mutation step. For efficiency considera-
tion, based on our insights of ML‐based classifiers (cf. Section 6.2), we first iteratively delete
features that can reduce the decision score; if the decision score is still no less than the
threshold after deleting all such features, we add other classification rules of the target classifier
that do not exist in the website and check which classification rule can reduce the decision
score until no more classification rules can be added. We stop deleting/adding once the deci-
sion score becomes less than the threshold. Since we do not know the weights of rules, feature
deletion and addition operations may be interleaved during mutation.

4.2.3 | Black‐box attacks

In black‐box scenario, the attacker neither knows classification rules nor their weights. Hence, it is
impossible to directly delete/add classification rules or features during mutation. To overcome this
problem, we iteratively add and/or modify DOM nodes, instead of classification rules or features.
According to our insight of existing classification rules in ML‐based classifiers, we find that: (1)
deleting one feature leads to the deletion of all rules that rely on this feature, and (2) to add a rule,
all the features of this rule should be added. Therefore, we first iteratively modify DOM nodes. If
the decision score becomes less than the threshold, we stop mutating. Otherwise, we iteratively and
randomly add nodes that are extracted from legitimate websites but do not exist in the phishing
website, to reduce the decision score. If the decision score becomes smaller, we continue mutating
the current website. Otherwise, we continue mutating the previous one. We will elaborate details in
the next subsection. All these operations are carefully designed to preserve functionality and
appearance of the phishing webpage, but without using the obtained features and weights.
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4.3 | Mutation operations

According to the above mechanisms, our white‐ and gray‐box attacks need to delete and/or add
features. These operations are achieved by manipulating DOM nodes, the same as in black‐box
scenario. We extract the DOM nodes related to a feature, and add/delete this feature by ma-
nipulating these nodes. For example, consider the feature named PageHasPswdInputs in
GPPF, here we assume that “PageHasPswdInputs= True” in the sample website. To
delete this feature, we identify the nodes (i.e., input) related to this feature, then modify these
nodes to break “PageHasPswdInputs=True.” Hence, manipulating DOM nodes is a key
operation to achieve our evasion attacks. However, directly manipulating DOM nodes will
destruct appearance and/or functionalities of webpages, which are determined by the DOM
tree and their nodes. To address this challenge, we introduce two mutation operations: node
“addition” and node “modification,” which respectively adds and modifies DOM nodes so that
(G1) the values of features in positive classification rules become zero, or (G2) the values of
features in negative classification rules become positive, but without destructing the appearance
and functionalities.

4.3.1 | Node modification

To achieve G1 or G2, we illustrate node modification for different types of nodes (i.e., attribute
nodes and text nodes) as follows.

Attribute nodes
Attribute nodes are modified by replacing them with other grammars so that these nodes will
not be the features of the classifier. For instance, we can use “event” in HTML to achieve this
goal. HTML4 and HTML5 support the event trigger actions in a browser, and the effect is the
same as executing a script when a user clicks on an element. In addition, to ensure the same
appearance, we also need to add the style attribute. For instance, the attribute “type” whose
value is “submit” in the button element can be modified, as shown below.

We replace the attribute “type”with value “submit” by leveraging the “onclick” event, parse the
“css” file and “style” tags to find the styles defined for the button, and add these styles to the button
so that the appearance of the button remain unchanged. The crafted button is shown below.

It is very difficult for the users to perceive such changes since the two actions do not destruct
the appearance and functionality of webpages. Table 3 lists the function‐related attribute nodes
which can be modified. We remark that not all attribute nodes can be modified, as some of them
are related to webpage appearance (e.g., “align” attribute in a “p” element and “background”
attribute in a “body” element) unless the appearance can be imitated by changing “style” attri-
bute. For example, we cannot modify the attribute “type” whose value is “radio” in “input”
element, because its appearance cannot be imitated by changing “style” attribute.

SONG ET AL. | 5221



Text nodes
Classifiers usually check text through string comparison. Thus, we can modify text nodes by
inserting an invisible (e.g., the zero‐width space “&#65279;”) character, which looks like that it
does not exist. For example, a text node “Hello World!” in a “p” element, as shown below

It can be modified by inserting the character “&#65279;” between “l” and “o,” displayed the
same as the original one, resulting in the following code:

4.3.2 | Node addition

To preserve the appearance and functionalities of webpages, we demonstrate node addition by
adding invisible element nodes, that is, with no size and color. We remark that the parent of an
attribute or text node is an element node. If the element node is invisible, then all its children
are also invisible. Therefore, to add attribute and text nodes, we add them as children of an
invisible element node.

However, in black‐box scenario, we do not know any information about the classifier and thus
cannot determine which node to add to hit negative classification rules after node modification. We
assume that there are more negative classification rules in legitimate websites than in phishing ones.
Therefore, based on this assumption, we collect three types of nodes (i.e., element nodes, attribute
nodes, and text nodes) from the collected legitimate websites. After that, we randomly select nodes
from the collected data and add them to the target website. To avoid adding useless nodes in black‐
box scenario, we come up with a rollback mechanism. Specifically, if the decision score does not
decrease after adding a specified number (e.g., 3) of nodes, we roll back to the previous sample and
continue to add other nodes. Otherwise, we continue adding nodes into the latest one.

In summary, all nodes can be added into the webpages, but only attribute and text
nodes can be modified according to mutation operations.

TABLE 3 Modifiable function‐related attributes where * refers to the “type” attribute in “input” element,
which can be deleted only when its value is “reset,” “button,” or “password”

Element Function‐related Attributes Event

button form, formaction, formenctype, formmethod, formnovalidate, formtarget,
name, type, value

onclick

input accept, submit, text, type*, step, size, required, name, placeholder, min, max,
formtarget, formnovalidate, formmethod, formenctype, formaction, form, accept

onfocus

form action, enctype, method, name, novalidate, target oninput

a download, href, hreflang, media, rel, target, type onclick

table summary onmousemove
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Though our node modification and addition are simple, they are effective in our experi-
ments. It might be able to improve the resilience of classifiers by proposing new classification
rules following disclosure of our findings, we believe more sophisticated methods (e.g., script
and Shadow DOM36) could be leveraged to achieve node modification and addition, which are
widely used in legitimate websites, but very difficult to analyze statically.

4.1 | Concretizing our attacks on GPPF

In this section, we show how to concretize our attacks on the classifier GPPF. We successfully
extracted the 2130 classification rules from the source code of Chromium, in which each classifi-
cation rule r consists of a classification rule identity (ID), a weight wr and a set Fr of hashed features.
In total, there are 1009 hashed features. Table 4 lists all features excluding URL‐related features in
GPPF. As aforementioned, all the features can be added, while only some features can be deleted.
For example, the feature PageHasForms denotes whether a webpage has a “form” node. The
“form” node is an element node that cannot be modified. We cannot delete features 4 and 5 neither,
as they are appearance‐related attribute nodes. Features 6, 7, 8, and 9 representing the frequency of
special links can be deleted by adding links whose domain is internal. When the frequency value is
lower than a predefined threshold in GPPF, GPPF cannot detect such features. We cannot delete
script‐related features 10 and 11, as deleting them may affect the functionalities of websites.

Features 2, 3, 12, and 13 can be deleted by using the attribute nodes (e.g., event) which
implement the same functionality but making them undetectable by the classifier. For example,
feature 3 indicates whether the website has an “input” element whose “type” is “password,” as
shown below:

After modifying it using the event attribute node, it becomes

Thus, the classifier cannot detect this feature. For feature 14, we can delete it directly since
it is a term‐related feature.

5 | DEFENSE METHODS

In this section, we first propose a similarity‐based defense method, named Pelican, to detect evasion
attacks. Pelican addresses the scenario where a phishing website is already detected by a classifier,
and the attacker is trying to mutate it to mislead the classifier. We then propose two classification
rule selection strategies to increase attack cost, hence enhancing the robustness of the classifier.

5.1 | Similarity‐based evading detection

Our detection is based on the following two observations of mutation‐based evasion attacks: (1)
adding or deleting features do change the structures of the webpages, but, (2) the change is
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limited. Therefore, if a website has a high “similarity” compared with a recently detected
phishing one, we regard it as an adversarial sample crafted by evasion attacks. We remark that
our approach aims at detecting evasion attacks rather than general phishing attacks. It can be
deployed with a ML‐based classifier to prevent it from mutation‐based evasion attacks.

5.1.1 | DOM tree similarity (baseline)

We first propose to compute the similarity of DOM trees as a baseline. We denote by T and T′
two DOM trees of a recently detected phishing website and an unknown website. If the si-
milarity between T and T′ is high, we conclude that T′ is mutated from T , thus successfully
identify the crafted phishing website without using the ML‐based classifiers.

In detail, we traverse the DOM trees T and T′ using a breadth‐first search algorithm and
compute the hash values of the element nodes in each layer. As there are two types of nodes
(i.e., text nodes and attribute nodes) that rely on an element node, thus, to measure the
similarity of two element nodes, we compare both the hash values of their text and attribute
nodes. We only consider the similarity of two elements with the same tag name. If two ele-
ments have distinct tag names, they are regarded as different elements. The similarity of
elements in the ith layer is defined as:

similarity E E
a a

a a

t t

t t
ele i i

i i

i i

i i

i i( , ′ ) +1 2

1 2

1 2

1 2

≜
∣ ∩ ∣

∣ ∪ ∣

∣ ∩ ∣

∣ ∪ ∣

where a i1 (resp. a
i
2) denotes the set of attribute nodes belonging to the element node Ei (resp.

E′i ), t
i
1 (resp. t

i
2) denotes the set of text nodes belonging to the element node Ei (resp. E′i ). Finally,

we compute the proportion of the common nodes commi with the same hash values against all
the nodes of the current layer i in two DOM trees. The similarity similarity T Ttree( , ′)

between T and T′ is defined as the average common nodes of each layer, that is,

similarity T Ttree
m

( , ′)
i

m
i

=1

∑≜
ℓ

where m is the maximal number of layers in the DOM trees, commi
i n ni i

1 2

ℓ ≜
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comm similarity E Ei ele j j( , ′)
j

n n

=1

i i
1 2≜ ∑

∣ ∪ ∣ , n i
1 (resp. n

i
2) denotes the set of element nodes at the

ith layer of T (resp. T′).

5.1.2 | Personalized similarity (Pelican)

The DOM tree similarity method (baseline) is effective to detect most crafted samples, but
failed on several cases, for example, adversarial samples crafted by the gray‐box attack. After an
in‐depth analysis, we found there are four types of features related to “frequency,” namely,
features at No. 6–9 in Table 4. To evade classifiers, it requires to add or modify a large number
of nodes, which may significantly reduce the DOM tree similarity, occurring in our gray‐box
scenario. In addition, if the attacker obtains the knowledge of our DOM tree similarity method,
(s)he may add more irrelevant nodes or attributes, invisible elements, and layers to reduce the
similarity. However, it is difficult to directly remove the nodes and attributes without

SONG ET AL. | 5225



destructing the appearance and functionalities. Therefore, we propose a personalized similarity
method, named Pelican, that is defined as follows:

similarity E E
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where similarity E Eele Pelican i i_ ( , ′ ) is the similarity of elements in the ith layer by using
Pelican,m is the number of layers in the DOM treeT , and ni denotes the set of element nodes at
the ith layer in T . In particular, to defend against attacks that insert layers into the DOM
tree during mutation, Pelican continues comparing the next layer of T′ until the two layers are
similar. If all the remaining layers are not similar enough, we just roll back to compute the
similarity of elements in the same layer.

5.1.3 | Application scenario in practice

Figure 3 depicts the application scenario of our defense method Pelican in practice. For each
website, the system first queries whitelist and blacklist to quickly identify legitimate and known
phishing website in a standard way. Whitelist and blacklist can be customized by users or use
third‐party resources.9,34,35 If the website is neither in whitelist nor blacklist, then Pelican is
applied to check whether the website is crafted by an evasion attack. If it is an evasion attack, a
phishing warn alerts without passing to the ML‐based classifier. Otherwise, the ML‐based
classifier is used to check the website. The website is added into the phishing website database
for Pelican if it is classified as a phishing one. To avoid storing all the detected phishing
websites, we only need to store either recent k phishing websites and/or the phishing websites
detected in recent h hours. This is feasible in practice, as browsers also cache recently visited
webpages in disks. By doing so, Pelican can prevent from querying directly and efficiently to the
ML‐based classifiers by the attackers, but still detect phishing attacks.

5.2 | Classification rule selection

To enhance the robustness of the classifiers, we introduce two classification rule selection
strategies to increase attack cost.

FIGURE 3 Application scenario in practice [Color figure can be viewed at wileyonlinelibrary.com]
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5.2.1 | Negative subset classification rule pruning

Given two classification rules r and r′, we say r′ is a sub‐rule of r , if the set of features
of r subsumes the one of r′. Such subset classification rules decrease the attack overhead,
because if the attacker has inferred the classification rule r′, then the classification rule r as
well. Attackers can improve the attack effectiveness and efficiency by leveraging negative
subset classification rules. When the attacker adds all the features of a negative classifi-
cation rule r into a website, both classification rules r and r′ will be added into the sample.
Therefore, the mutation can maximally reduce the decision score by adding all features
of r . To enhance the robustness of the classifiers, it is better to prune subset classification
rules, which is demonstrated by our experiments (cf. Section 6.4.2).

5.2.2 | Single classification rule pruning

A classification rule is single if it relies on features that are not relied on any other classification
rules. Single classification rules are completely independent of other classification rules, de-
leting or adding them will not affect any other classification rules. Therefore, attackers can
aggressively add all negative single classification rules if they are addable, which can definitely
reduce the decision score. In addition, in white‐box scenario, attackers can also directly delete
all positive single classification rules. Addition and deletion of single classification rules are
very efficient and do not have any side effect on other classification rules. Therefore, single
classification rules have a potentially severe hazard to classifiers and should be pruned
to enhance the robustness of the classifiers. This also has been confirmed by our experiments
(cf. Section 6.4.3).

6 | EXPERIMENTS

In this section, we first introduce the data set and experimental settings, then demonstrate our
sample‐based collision attack for inferring classification rules, and finally, evaluate our pro-
posed evasion attacks and defense methods for evading detection and robustness improvement
of the classifier.

6.1 | Data set and experimental settings

6.1.1 | Data set

We use two data sets (cf. Table 1), for evaluating our collision attack. We tested 3000
phishing websites using the classifier GPPF. Among them, 305 can be detected by GPPF
(i.e., score 0.5≥ ). Remark that this does mean that GPPF is not powerful for detecting
phishing websites, as the other undetected phishing websites are inactive and out of date.
We use these 305 phishing websites as the subjects to evaluate evasion attacks and defense
methods.
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6.1.2 | Settings

As mentioned in Section 1, we examined several academic and industrial ML‐based tools, all
the other tools (except GPPF) either are not publicly accessible or cannot output decision
scores for each input which is required even in our black‐box scenario. Thus, we demonstrate
our attacks on the state‐of‐the‐art ML‐based classifier GPPF.

We use DEPOT_TOOLS37 to obtain the code of Chromium (version: 72.0.3626), and use
ninja38 to compile Chromium. We target the classifier GPPF which is deployed in
Chromium. To obtain the decision score of each website, we added an instruction that prints
the return value of the function ComputeScore in the file scorer.cc. We run
Chromium in UI mode for our experiments. Our experiments are carried out on a server (i.e.,
Ubuntu 16.40 or Windows 10) with 32 GB Memory and 1 TB hard disk.

To demonstrate that our black‐box attack is generic and effective for other practical ML‐
based classifiers, we launch transferability attacks on the industrial tool TrafficLight, coming
from BitDefender, a popular security company. It is able to detect phishing webpages and part
of the processing is done in the cloud with some intelligent engines. Recall that BitDefender
TrafficLight is proprietary without any publicly available information about the internal design
and implementations, hence completely black‐box. However, only 32 out of 305 seeds can be
detected by BitDefender TrafficLight. Thus, we use all the crafted adversarial samples (32 × 3)
from these 32 phishing websites as subjects. We also managed to launch transferability attacks
on the industrial tools: Netcraft Anti‐Phishing Extension and 360 Internet Protection, as add‐
ons of Chrome. However, both tools failed to detect any of the 305 seeds. We guess this may be
due to that the phishing websites are deployed in a controllable network with a fake URL,
while Netcraft Anti‐Phishing Extension and 360 Internet Protection detect phishing websites
using URL.

6.2 | Evaluation of collision attack

To evaluate the effectiveness of our sample‐based collision attack, we demonstrate on the
classifier GPPF. We leverage our collected phishing and legitimate data set from PHISHTANK
and PHISHNET in Table 1. We directly recovered 14 hashed features out of 1009 features after
analyzing Chromium, while the remaining 995 hashed features cannot be directly recovered.
Our collision attack is able to successfully infer 878 features (88.24%) out of 995 hashed fea-
tures, as shown in Table 5.

In detail, our collision attack successfully inferred 491 URL‐related and Dom‐related fea-
tures in 0.68 h, and 387 term‐related features in 11.66 h. Term‐related features include (1)
containing numbers, (2) involving Arabic, or (3) using the degree as a value such as “1∘.” For

TABLE 5 Inferred features

Feature categories #Total features #Inferred features Time (h)

URL‐related and Dom‐related 563 491 0.68

Term‐related 432 387 11.66

Total 995 878 12.34
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ethical consideration, we do not provide details of concrete features. Our collision attack suc-
cessfully inferred them because those terms are easy to be found in real‐world websites.

Recall that each classification rule r in GPPF consists of a classification rule identity (ID), a
weight wr and a set Fr of hashed features, where the weights of classification rules are given in
plaintext in the source code of Chromium. Using successfully inferred hashed features, we fully
inferred 1,952 (91.64%= 1952/2130) classification rules in total based on the inferred features.
However, not all of them can be used for evasion attacks because some of them are related to
appearance or functionalities or URLs. Table 6 shows the 1327 classification rules that can be used
for our evasion attacks, in which 427 classification rules are negative classification rules that can be
used for addition, and 941 classification rules are positive classification rules that can be used for
deletion. We remark that it is nontrivial to fully resolve all the features of these inferred classifi-
cation rules, as we can only know partial features of some classification rules. Such classification
rules can only be deleted during evasion attacking. Therefore, classification rule deletion is con-
sidered to be more effective than classification rule addition.

6.3 | Evaluation of evasion attacks

6.3.1 | Effectiveness and efficiency

To evaluate the effectiveness and efficiency of our evasion attacks, we respectively conduct white‐,
gray‐ and black‐box attacks against the classifier GPPF using 305 phishing websites as seeds. The
results of our proposed evasion attacks are shown in Table 7. Column “Score” shows the decision
score range, with the corresponding number of phishing websites in Column “#Phishing Web-
sites.” Columns “#Succeeded Websites” indicate the number of crafted adversarial websites. Col-
umns “Mutated Time” indicate the average time spent on crafting the adversarial websites. Columns
“#Mutated Features/Rules” show the average number of mutation operations (i.e., deletion and
addition) for crafting the adversarial websites, which also indicates query times to the classifier.
Remark that the number of mutated classification rules is always larger than that of features, as
when one feature is mutated, classification rules that rely on this feature are also mutated.

From the results in Table 7, we can see that our white‐ and gray‐box attacks achieve 100%
attack success rate, and our black‐box attack successfully crafts 298 adversarial samples by only

TABLE 6 Statistic of inferred classification rules

Rule weight #Total #Addable Rule weight #Total #Deletable

[−6.0, −7.0) 2 1 [6.0, 7.0) 6 4

[−5.0, −6.0) 2 0 [5.0, 6.0) 13 8

[−4.0, −5.0) 6 3 [4.0, 5.0) 39 26

[−3.0, −4.0) 30 15 [3.0, 4.0) 114 76

[−2.0, −3.0) 110 48 [2.0, 3.0) 266 175

[−1.0,−2.0) 298 157 [1.0, 2.0) 455 307

[0.0, −1.0) 359 203 [0.0, 1.0) 430 345

Total 807 427 1323 941
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modifying DOM nodes for 305 seeds. (Note that in the black‐box scenario, we first modify
nodes and then add nodes, while node modification and addition operations may be mixed
during mutation in white‐ and gray‐box scenarios. Although features are deleted first in gray‐
box attacks, the feature deletion is achieved by node modification and addition.)

The black‐box attack failed to craft adversarial samples for seven websites (cf. Table 8) by
only modifying nodes. Therefore, we continue mutating them by adding nodes. Table 8 shows
the results, which target five domains. Column “Score after modification” gives the decision
score after node modification. Column “#Addition Operations” gives the number of node
addition operations. Column “Mutate Time” gives the time of node addition operations.

From the results in Table 8, we can observe that the adversarial samples of all the 7 websites
can be crafted by node addition, using at least 543 steps. After a deep analysis of these added nodes,
we found that only one or two classification rules are changed. This demonstrates that node

TABLE 7 Performance of our attacks in white‐, gray‐ and black‐box scenarios

Score
#Phishing
websites

#Succeeded
websites

Mutation
time (ms)

#Mutated
features/rules

Performance of white‐box attacks

1 1 1 572.00 5.00/30.00

[0.9,1.0) 131 131 91.00 1.65/9.81

[0.8,0.9) 59 59 49.59 1.10/4.51

[0.7,0.8) 14 14 48.71 1.00/3.93

[0.6,0.7) 68 68 26.35 1.00/4.32

[0.5,0.6) 32 32 32.22 1.00/2.31

Total 305 305 – –

Performance of gray‐box attacks

1 1 1 966.00 14.00/48.00

[0.9,1.0) 131 131 165.76 6.81/19.77

[0.8,0.9) 59 59 121.63 6.22/16.14

[0.7,0.8) 14 14 194.86 5.50/12.57

[0.6,0.7) 68 68 139.25 5.01/12.53

[0.5,0.6) 32 32 106.38 3.84/7.50

Total 305 305 – –

Performance of black‐box attacks (node modification only)

1 1 1 606.32 12.00/50.00

[0.9,1.0) 131 124 244.96 4.27/20.70

[0.8,0.9) 59 59 206.34 1.97/9.76

[0.7,0.8) 14 14 291.00 1.93/8.36

[0.6,0.7) 68 68 231.97 2.29/0.03

[0.5,0.6) 32 32 219.94 1.09/4.69

Total 305 298 – –

5230 | SONG ET AL.



modification is more efficient than node addition in black‐box scenario. The most difficult website
is the last one whose initial decision score is 0.99. After modifying all modifiable nodes, its decision
score becomes 0.93, which is still larger than the threshold 0.5. It takes 1032 times of addition
operations to reduce its decision score below 0.5. Table 9 shows the details of classification rules
that are hit by the website, but cannot be deleted. Column “Features” represents the features of
each classification rule. Although we delete many positive classification rules from the website, the
weights of the remaining classification rules hit by the websites are still larger enough so that the
decision score is still larger than 0.5. Though the black‐box attack on these seven websites requires
a relatively large number of queries, the number of queries on the other 298 websites is comparable
with that of white‐box attack. We remark that state‐of‐the‐art black‐box attacks on image classi-
fiers,16 PDF malware classifiers,32 and speaker classifiers15 also require a much larger number of
queries, due to the lack of knowledge of the classifier.

6.3.2 | Visual impact

To evaluate the visual impact of the mutated webpages, we capture screenshots of all webpages
of phishing and crafted adversarial websites and compare each phishing screenshot with its

TABLE 8 Seven phishing websites that fail to evade GPPF by only modifying nodes in black‐box scenario

Target domain
Score after
modification

#Addition
operations

Mutate
time (ms)

sso.godaddy.com/login 0.81 543 62.87

passport.alibaba.com/icbu_login.htm 0.83 543 56.12

store.cpanel.net/login/ 0.84 543 60.10

store.cpanel.net/login/ 0.84 543 57.61

store.cpanel.net/login/ 0.84 543 58.27

passport.alibaba.com/icbu_login.htm 0.90 543 60.76

passport.alibaba.com/icbu_login.htm 0.93 1032 299.54

TABLE 9 Classification rules that cannot be deleted in the real case

Rule Features Rule weight

1 PageNumScriptTags>6, PageExternalLinksFreq 0.55

2 UrlPathToken=* 2.23

3 PageNumScriptTags>1,PageNumScriptTags>6, PageExternalLinksFreq 0.52

4 UrlPathToken=*, PageHasForms 0.21

5 PageNumScriptTags>6, UrlPathToken=* 0.46

6 PageNumScriptTags>1, UrlPathToken=* 1.17

7 PageNumScriptTags>1, UrlPathToken=* 0.43

8 PageImgOtherDomainFreq 0.34

9 PageNumScriptTags>1, PageExternalLinksFreq 1.48

SONG ET AL. | 5231



adversarial ones using MSE24 and MAE25 criterion, two common distortion measures of ima-
ges. All the values of MAE and MSE are 0, which demonstrates that our attacks preserve
appearance. We discuss two cases of visual impact which respectively target Yahoo and PayPal.

Figure 4 shows the screenshots of the original phishing website targeting Yahoo (Figure 4A)
and an adversarial sample (Figure 4B), crafted in gray‐box scenario. Our tool added 17 PageTerm
features, one PageImgOtherDomainFreq feature, and one PageHasPswdInputs
feature, deleted one PageExternalLinkFreq feature and two PageTerm features. Add-
ing PageImgOtherDomainFreq and deleting PageExternalLinkFreq features are
achieved by adding 3321 <a> nodes with internal href and 554 <img> nodes with external href.
The values of both MAE and MSE are 0.

Figure 5 shows the screenshots of a phishing website targeting PayPal (Figure 5A) and an
adversarial sample (Figure 5B), crafted in black‐box scenario. Our tool deleted threePage-
Term features, one PageHasPswInputs feature, and one PageLinkDomain feature.
The values of both MAE and MSE are 0.

FIGURE 5 Screenshots of two webpages targeting PayPal, (A) Original phishing webpage and (B)
Adversarial sample crafted in black‐box scenario [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Screenshots of two webpages targeting yahoo, (A) Original phishing webpage and (B)
Adversarial sample crafted in grey‐box scenario [Color figure can be viewed at wileyonlinelibrary.com]
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Transferability attack
As aforementioned, we evaluate the transferability attack on BitDefender TrafficLight. Table 10
shows the results of the transferability attack on BitDefender TrafficLight. We can observe that
adversarial samples crafted by the black‐ and gray‐box attacks achieved 81.25% and 50%
transferability attack rate. On contrary, BitDefender TrafficLight detected all the adversarial
samples crafted by the white‐box attacks. This is because our white‐box attack only made minor
changes that are very specific to features/rules of GPPF, whereas black‐box attack made more
changes independent of GPPF, hence, is more robust than others for transferability attacks.

As aforementioned, BitDefender TrafficLight is completely black‐box and part of its pro-
cessing is done in the cloud with some intelligent engines, therefore it is impossible to find the
reason why adversarial examples crafted by our attacks on GPPF are still effective against
BitDefender TrafficLight. One possible reason is that BitDefender TrafficLight may leverage
similar features as GPPF to decide whether a website is phishing or not.

6.4 | Evaluation of defense methods

6.4.1 | Evaluation of similarity‐based evasion detection

We evaluate both DOM tree similarity method and Pelican against three evasion attacks. For
each method, we compare the similarity between the adversarial sample and its original
phishing website. We use the 305 original phishing websites and their corresponding adver-
sarial samples as the subjects. Figure 6 shows the results of similarity comparison using two
methods under three attacks. We can observe that both the DOM tree similarity method and
Pelican achieve high similarity (i.e., over 90%) on most of the adversarial samples crafted by
white‐ and black‐box attacks. Surprisingly, on the adversarial websites crafted by gray‐box

TABLE 10 Transferability of crafted samples

Attack #Detected/#Crafted Detection ratio

White‐box 32/32 100%

Gray‐box 16/32 50%

Black‐box 6/32 18.75%

FIGURE 6 Results of similarity comparison [Color figure can be viewed at wileyonlinelibrary.com]

SONG ET AL. | 5233

http://wileyonlinelibrary.com


attacks, Pelican significantly outperforms the DOM tree similarity method. After a further
investigation of these websites, we find that there are four frequency‐related features in GPPF,
adding or deleting these features needs to mutate a lot of nodes to reduce/increase the fre-
quency of some elements. Hence, the mutation of these features adds lots of invisible nodes,
which reduces DOM tree similarity by increasing the number of nodes.

For example, a phishing website with domain “login.microsoftonline.com.best10reviews.com”
has decision score 0.92. It hits a classification rule with weight 2.00 in the classifier, the classifi-
cation rule consists of two features: “PageSecureLinksFreq” and “PageHasPswdInputs.” “PageSe-
cureLinksFreq” is a frequency‐related feature, computed as secure links

total links
# _

# _
. Currently, it equals to 1,

indicating that all the “href” links in the website are secure (i.e., “https”). To delete this feature, our
gray‐box attack adds lots of insecure (i.e., “http”) and invisible “href” links. Consequently, the
DOM tree similarity is 46.78%, thus can bypass the DOM tree similarity‐based detection. However,
such frequency‐related features have no effect on Pelican, as Pelican computes the similarity of the
number of nodes in the phishing website, instead of that in the crafted sample. Thus, such websites
can be detected by Pelican.

6.4.2 | Evaluation of subset classification rule pruning

We found that GPPF has at least 150 addable negative subset classification rules. Therefore, we
conduct experiments on GPPF without subset classification rules to investigate the impact on
attack cost and accuracy. To remove subset classification rules in GPPF, we set the values of
such classification rules to 0, as it is impossible for us to retrain GPPF.

Impact on attack cost
We automatically create 50 personalized phishing websites (10 websites in each decision score
range) as our subjects. Inspired by the seven phishing websites in Table 8 on which feature
deletion fails to craft adversarial examples in black‐box scenario, we first collect static webpages
from legitimate websites and change the action field of HTML forms in these websites for
phishing, then delete all deletable features, and finally add some undeletable features to make
their decision scores within the desired range.

We compare the attack costs with and without using subset classification rules in black‐box
scenario. Table 11 shows the results. We can observe that the attack requires more operations
to craft an adversarial sample in black‐box scenario without using subset classification rules,
hence, conclude that pruning subset classification rules can increase the attack cost.

TABLE 11 Attack cost comparison with/without subset classification rules

Score #Websites #Operations (with) #Operations (without)

[0.9,1.0) 10 1331.7 3015.0

[0.8,0.9) 10 643.4 1028.8

[0.7,0.8) 10 418.2 967.0

[0.6,0.7) 10 273.5 353.8

[0.5,0.6) 10 212.3 221.0
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Impact on accuracy
We check all 305 original phishing websites and 15,000 legitimate website using GPPF without
subset classification rules. Although, there are 2017 legitimate and 232 phishing websites
whose decision scores changed after disabling subset classification rules, the changes are small
so that none of them are misclassified by the classifier.

6.4.3 | Evaluation of single classification rule pruning

We found that GPPF has at least 34 addable and 39 deletable single classification rules, as
shown in Table 12. Therefore, we conduct experiments on GPPF.

Impact on attack cost
To understand the impact on attack cost, we conduct experiments in white‐box and gray‐box
scenarios by only using single classification rules for mutation. We achieved a 100% attack
success rate using only these single classification rules. An adversarial sample is crafted in less
than 1ms for the 305 phishing websites. Therefore, we conclude that single classification rules
have a potentially severe hazard to classifiers, and should be pruned from the classification
rules to enhance the robustness.

Impact on accuracy
To understand the impact on accuracy, we set the values of all deletable or addable single
classification rules to 0 for all websites. We check all 305 original phishing websites and 15,000
legitimate websites using GPPF. Although there are 60 legitimate and 29 phishing websites
whose decision score changed after disabling single classification rules, none of them is mis-
classified by GPPF.

7 | RELATED WORK

7.1 | Phishing website detection

Phishing website detection has been studied in several work, such as blacklist,3 similarity‐
based,4 and ML‐based5,9 anti‐phishing solutions. The blacklist approach maintains a list of
URLs of known phishing websites, but it is only able to detect phishing websites whose URLs
are in the list. Similarity‐based approaches compare similarity between authentic and phishing
webpages, differing in terms of: features extracted to identify similarity and the matching
algorithm used. Similarity‐based approaches are able to detect new phishing websites, although
not greatly improve the accuracy of other existing approaches.20 ML‐based approaches train a

TABLE 12 Single classification rules in GPPF

Feature #Deletable Total weight #Addable Total weight

PageTerm=* 23 43.42 14 −22.94

PageLinkDomain=* 16 39.96 20 −19.89

Total 39 83.38 34 −42.83
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classification model using features/rules from known phishing websites and authentic web-
sites, differing in terms of: features for training and ML algorithm used. They are scalable and
accurate.

However, blacklist‐based classifiers are shown vulnerable to evasion attacks by Oest et al.3

In this study, we showed that ML‐based classifiers are also vulnerable to evasion attacks even in
black‐box scenario. We conjecture that classifiers based on other approaches are also vulner-
able to evasion attacks, in particular in white‐ and gray‐box scenarios, for which the adversary
can gain details of classifiers. The similarity‐based approaches are closely related to our defense
method Pelican. The main differences are: (1) Pelican aims at detecting evasion attacks rather
than general phishing websites; (2) Pelican compares the similarity between an unknown one
and recently detected phishing webpages rather than the similarity between an unknown one
and authentic webpages; and (3) we compute similarity layer‐by‐layer and only need to record
recently detected phishing webpages due to (1), hence is both time‐ and space‐efficient.

7.2 | Attacks on classifiers

Evasion attacks have been exhibited in different scenarios such as malicious PDF files12,32 and
malware.13,39 However, domain‐specific characteristics that usually pose new challenges
should be taken into account in different scenarios. For example, adversarial images usually
minimize distortion when adding pixel‐level noise,40 and adversarial (PDF) malware usually
need to keep original malicious functionalities13 only. However, adversarial phishing websites
usually have to preserve both appearance and functionalities which arise new challenges
compared with other scenarios. These new challenges potentially make this study area
less noticed and more difficult. For instance, although the method proposed by Xu et al.32 is
generic for crafting adversarial samples. This method leverages an evolutionary algorithm to
mutate PDF malware and relies on an oracle to determine if a generated variant preserves
maliciousness. It is nontrivial to be directly adapted into our setting. In addition, in recent
years, attacks on deep neutral network based‐classifiers are also widely studied40, which have
the similar theory by leveraging adversarial images in ML. In summary, all these existing
studies consider domain‐specific scenarios with many differences compared with ours in
phishing website detection which owns new challenges.41 proposes a white‐box attack to evade
phishing website detection. However, this approach not only has access to the information of
the detector, but also destructs the appearance and functionalities of webpages, making them
less effective for web phishing.

7.3 | Defenses for classifiers

It is not surprising that many defense solutions have been proposed to enhance the robustness
of ML‐based classifiers. Saeys et al.42 use ensemble feature selection techniques and demon-
strate that multiple feature selection methods can receive more robust results. Biggio et al.43 use
multiple classifiers to gain a better result in adversarial environments. Goodfellow et al.44 re‐
train on adversarial samples to improve the robustness of classifiers, and highlight those en-
semble methods have some limitations for evasion attacks. Zhang et al.45 use adversarial
feature selection to increase the robustness of classifiers. In the area of malware, Chen et al.13

propose a similarity‐based approach for filtering Android crafted samples by leveraging the
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most benign and malicious samples. In addition, many recent studies focus on identifying
adversarial samples in deep neural networks.46,47 These solutions are all preventive in advance.
However, all these studies are tailored to a different setting than ours. It is difficult to apply
these solutions to enhance the robustness of the phishing website classifiers directly due to the
domain‐specific characteristics.

As for the client‐side classifiers, the effective solution is to increase the complexity of
reverse engineering by using more advanced obfuscation techniques. The less information an
attacker gets from a classifier, the safer the classifier is. In terms of the defense solutions for
phishing website classifiers with evasion attacks, to our best knowledge, there are no existing
studies that focus on it.

8 | CONCLUSION AND FUTURE WORK

In this study, we conducted the first systematic study on evasion attacks of ML‐based web phishing
classifiers and revealed their weaknesses. Specifically, we proposed a novel sample‐based collision
attack which is able to effectively and efficiently infer almost all the hashed features and classifi-
cation rules of the classifier GPPF. We also proposed a class of advanced evasion attacks for three
attack scenarios (i.e., white‐, gray‐, and black‐box) by leveraging mutation techniques and the first
defense method against evasion attacks. We further presented two classification rule selection
strategies to enhance the robustness of the classifiers and increase the attack cost. Experimental
results demonstrated that our attacks can achieve 100% attack success rate in less than one second
per seed on GPPF, and 81.25% transferability attack rate on TrafficLight. Our defense
method is effective in detecting crafted adversarial websites, hence can be used to detect evasion
attacks and enhance the robustness of classifiers. Our study shows that a sophisticated phishing
attack is still a severe cyber security vector.

Currently, our attack mutates seeds by leveraging a greedy algorithm. In the future, we plan
to investigate attacks by leveraging genetic algorithms, which have been used to fool PDF
malware classifiers32 and face recognition systems.48 It is interesting to understand which
algorithm is more effective and efficient. Another future direction is to investigate attacks
against ML‐based classifiers that only outputs the decision result instead of the decision score
for each input test.
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