
Formal Verification of Masking
Countermeasures for Arithmetic Programs

Pengfei Gao , Hongyi Xie, Pu Sun, Jun Zhang, Fu Song , and Taolue Chen

Abstract—Cryptographic algorithms arewidely used to protect data privacy inmanyaspects of daily lives fromsmart card to cyber-physical

systems. Unfortunately, programs implementing cryptographic algorithmsmay be vulnerable to practical power side-channel attacks, which

may infer private data via statistical analysis of the correlation between power consumptions of an electronic device and private data. To

thwart these attacks, several masking schemes have been proposed, giving rise to effective countermeasures for reducing the statistical

correlation between private data and power consumptions. However, programs that rely on securemasking schemes are not secure a

priori. Indeed, designing effectivemasking programs is a labor intensive and error-prone task. Although some techniques have been

proposed for formally verifyingmasking countermeasures and for quantifyingmasking strength, they are currently limited to Boolean

programs and suffer from low accuracy. In thiswork, we propose an approach for formally verifyingmasking countermeasures of

arithmetic programs. Our approach is more accurate for arithmetic programs andmore scalable for Boolean programs comparing to

the existing approaches. It is essentially a synergistic integration of type inference andmodel-counting basedmethods, armedwith

domain specific heuristics. The type inference system allows a fast deduction of leakage-freeness of most intermediate computations,

themodel-counting basedmethods accounts for completeness, namely, to eliminate spurious flaws, and the heuristics facilitate both type

inference andmodel-counting based reasoning, which improve scalability and efficiency in practice. In case that the program does

contain leakage, we provide amethod to quantify its masking strength. A distuiguished feature of our type sytem lies in its support of

compositonal reasoning when verifying programswith procedure calls, so the need of inlining procedures can be significantly reduced.

We have implemented our methods in a verification tool QMVERIF which has been extensively evaluated on cryptographic benchmarks

including full AES, DES andMAC-Keccak. The experimental results demonstrate the effectiveness and efficiency of our approach,

especially for compositional reasoning. In particular, our tool is able to automatically prove leakage-freeness of arithmetic programs for

which only manual proofs exist so far; it is also significantly faster than the state-of-the-art tools: EasyCrypt on common arithmetic

programs, QMSINFER, SC Sniffer andmaskVerif on Boolean programs.

Ç

1 INTRODUCTION

CRYPTOGRAPHY plays a crucial role in many aspects of our
daily lives from smart card to cyber-physical systems to

Internet of things, forming the backbone of security mecha-
nisms. Modern cryptography is founded on complexity the-
ory; it is highly non-trivial to extract private data (e.g.,
cryptographic keys) by directly analyzing the input-output
relation of cryptographic programs. However, in practice,

side-channel attacks allow an attacker to efficiently extract
the private data by exploiting the statistical correlation
between the private data and non-functional measurements
of electronic devices, for instance, power consumption [2]
and execution time [3]. Implementations of almost all major
cryptographic algorithms both in software and hardware,
such as DES, AES, RSA and Elliptic curves, have been suc-
cessfully broken [2], [4], [5], [6], [7], [8], [9], [10], [11], [12].
As an example, consider the instruction c ¼ p� k where k is
a private variable and p is a non-random variable. The
power consumption of a device executing c ¼ p� k usually
depends on the value of k, which can be exploited via power
based side-channel attacks (e.g., differential power analy-
sis [13]) to deduce the value of k.

A common countermeasure to thwart power side-channel
attacks is masking, which has been widely used to reduce
the statistical correlation between private data and power
consumptions via randomization. Given a security param-
eter d, an order-d secret-sharing masking scheme typically
splits the private data k into ðdþ 1Þ shares such that any
subset of at most d shares is statistically independent of k.
Computation on k is then reduced to the one based on its
ðdþ 1Þ shares. For instance, the private data k can be
masked by computing the exclusive-or operation (�) with
a uniform random variable r, so-called Boolean masking
scheme [14], leading to two shares k� r and r. One can
observe that the probability distributions of r and k� r
do not rely upon k. The value of k can be recovered by

� Pengfei Gao is with the School of Information Science and Technology,
ShanghaiTech University, Pudong, Shanghai 201210, China, the Shanghai
Institute of Microsystem and Information Technology, Chinese Academy
of Sciences, Shanghai 200031, China, and also with the University of
Chinese Academy of Sciences, Beijing 100049, China.
E-mail: gaopf@shanghaitech.edu.cn.

� Hongyi Xie, Pu Sun, and Jun Zhang are with the School of Information
Science and Technology, ShanghaiTech University, Pudong, Shanghai
201210, China. E-mail: {xiehy, sunpu, zhangjun}@shanghaitech.edu.cn.

� Fu Song is with the School of Information Science and Technology,
ShanghaiTech University, Pudong, Shanghai 201210, China, and also
with the Shanghai Engineering Research Center of Intelligent Vision and
Imaging, Shanghai, China. E-mail: songfu@shanghaitech.edu.cn.

� Taolue Chen is with the Department of Computer Science, University of
Surrey, GU2 7XH Guildford, U.K., and also with the State Key Laboratory
for Novel Software Technology, Nanjing University, Nanjing 210093,
China. E-mail: taolue.chen@surrey.ac.uk.

Manuscript received 11 Aug. 2019; revised 3 July 2020; accepted 9 July 2020.
Date of publication 13 July 2020; date of current version 15 Mar. 2022.
(Corresponding author: Fu Song.)
Recommended for acceptance by Z. Jin.
Digital Object Identifier no. 10.1109/TSE.2020.3008852

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022 973

0098-5589� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0003-3800-2565
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-0581-2679
mailto:gaopf@shanghaitech.edu.cn
mailto:xiehy@shanghaitech.edu.cn
mailto:sunpu@shanghaitech.edu.cn
mailto:zhangjun@shanghaitech.edu.cn
mailto:songfu@shanghaitech.edu.cn
mailto:taolue.chen@surrey.ac.uk

computing ðk� rÞ � r ¼ k, which is usually referred to as
de-masking.

Apart fromBooleanmasking, arithmeticmasking schemes
such as additive masking schemes (e.g., ðkþ rÞmodn) and
multiplicative masking schemes (e.g., ðk� rÞmodn) have
also been proposed [15], [16], [17], [18], [19]. Booleanmasking
is adopted for algorithms that have Boolean operations only.
It can be advantageous to use arithmetic masking to protect
arithmetic operations. Formasking cryptographic algorithms
that embrace both Boolean and arithmetic operations such
as IDEA [20], RC6 [21], and SPECK [22], one may need to
switch between Boolean and arithmetic masking whenever
necessary.

Several secure conversion algorithms between Boolean
and arithmetic maskings (e.g., [16], [17], [18], [19], [23]) as
well as masked programs of cryptographic algorithms (e.g.,
[14], [24], [25], [26], [27], [28], [29], [30], [31]) have been pub-
lished over the past years. However, it is labor-intensive
and error-prone to develop effective and/or efficient
masked implementations particularly for non-linear func-
tions which are widely used in cryptographic algorithms.
For instance, the masked AES programs proposed by
Schramm and Paar [27] is shown to be vulnerable [32], [33].
One commonly accepted remedy is to formally and auto-
matically verify masking countermeasures of program
implementations of cryptographic algorithms, which is the
main topic of the current work.

Techniques for formally verifying masking countermeas-
ures of cryptographic programs do exist. In general, these
techniques can be classified into two categories: rule based
approaches [34], [35], [36], [37], [38], [39], [40] and model-
counting based approaches [41], [42], [43], [44]. In a nutshell,
rule based approaches check the security of intermediate
computation results via their syntactic information, from
which one may prove leakage-freeness of the target pro-
gram, or identify potential flaws. These approaches are usu-
ally sound and efficient for programs using Boolean
masking schemes when the computations are syntactically
independent of the private data or masked by a unique ran-
dom variable. However, they are not complete, namely,
leakage-free programs may fail to pass the verification (i.e.,
false positive), and spurious flaws are hard to be automati-
cally identified so tedious manual examination is usually
necessary. In contrast, model-counting based approaches
reduce the verification problem to the satisfiability problem
of a series of constraints which encode model-counting
and are solved by leveraging SAT/SMT solvers. These
approaches enjoy both soundness and completeness. How-
ever, due to the inherent complexity of the model-counting
problem and the exponential blow-up induced by the
reduction, these approaches pose great challenges to scal-
ability and can be very slow in practice. Currently they are
limited to Boolean programs only. In general, there is a short-
age of verification approaches and tools that can effectively
and efficiently verify masking countermeasures of arithmetic
programs.

To tackle this problem, one naive solution is to trans-
form arithmetic programs into equivalent Boolean pro-
grams through bit-blasting [45] and then apply existing
verification tools on the Boolean programs. It is possible in
principle, but practically unfavourable due to the following

deficiencies: (1) arithmetic programs admit rich operations
and one has to encode them (e.g., finite-field multiplica-
tion) as bit-wise operations; (2) verifying the order-d secu-
rity of a 8-bit program must be done by verifying the
order-8d security of its Boolean translation, where each
8d-tuple of internal variables in the Boolean translation cor-
responds to a d-tuple of internal variables in the original 8-
bit program. This means that verifying a first-order 8-bit
program with m internal variables must be done by per-
forming m verifications on sets of 8 Boolean variables such
that each set corresponds to an internal variable in the
8-bit program. Note that the state-of-the-art higher-order
verification tool maskVerif [37] already takes more than
18 minutes to verify just order-5 masked Boolean imple-
mentation of DOM Keccak Sbox [46] which only contains
618 internal variables.

In this article, we propose an approach for formally veri-
fying the security of first-order masking countermeasures of
arithmetic programs without bit-blasting. Essentially, our
approach is a synergistic integration of type systems and
model-counting based methods. We introduce a new type
system for inferring distribution types of internal variables
by designing inference rules for both Boolean and arithme-
tic operations. It is often able to quickly obtain soundness
proofs when the program is leakage-free. A distinguished
feature of the type system lies in its support for composi-
tional reasoning so inlining procedures in the program can
be largely avoided or be reduced at least. To resolve prob-
lems that cannot be proved by the type system, we propose
two model-counting based methods: a brute-force method
and an SMT-based method. The brute-force method com-
putes the probability distribution of a potential flaw by
exhaustively enumerating all possible valuations of varia-
bles. The SMT-based method transforms the verification
problem of a potential flaw to the satisfiability problem of a
(quantified-free) first-order logic formula that can be solved
by SMT solvers (e.g., Z3 [47]). Although expensive, model-
counting based methods are powerful to completely deter-
mine if the potential flaw is spurious or not. Furthermore,
we propose three heuristics to simplify the intermediate
computations of internal variables. These heuristics allow
the type system to resolve more inclusive answers and
thus reduce the burden of model-counting, which could
significantly improve the scalability and efficiency of our
approach.

Perfect masking is ideal, but does not necessarily hold
in practice. In certain scenarios, there are intended flaws
when only a limited number of random variables are
allowed for efficiency consideration [48]. However, when
this is the case, it is important to measure the resource the
attacker needs in order to infer the private data via power
side-channels. For this purpose, we adapt the notion of
Quantitative Masking Strength (QMS), which was proposed
by Eldib et al. [49], [50]. It is empirically shown that there is a
correlation between the number of power traces to success-
fully infer private data and QMS values [49], [50]. We pro-
pose a binary search based algorithm to compute QMS
values of flaws in Boolean/arithmetic programs by leverag-
ing model-counting based methods. We remark that the
approach of Eldib et al. [49], [50] approximates QMS values
on Boolean programs only.

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

We have implemented our approach in a verification tool
QMVERIF (Quantitative Masking VERIFier) and conducted
extensive experiments on masked Boolean and arithmetic
programs including the full AES, DES and MAC-Keccak
implementations. QMVERIF could be used to verify high-
level arithmetic programs at design and implementation
stages, when these programs are supposed be deployed in
security-critical software, especially when their power con-
sumptions of the execution may be probed by attackers.

Contributions. We summarize the main contributions as
follows.

� We propose a type system supporting compositional
reasoning, two model-counting based methods, and
their synergistic integration with domain specific
heuristics, which can efficiently and effectively prove
masking countermeasures for both Boolean and
arithmetic programs; the approach is not only sound
but also complete.

� We propose a binary search based algorithm for com-
puting exact quantitative masking strength of arith-
metic programs by leveraging our model-counting
basedmethods.

� We develop an open-source software tool that
implements the above approaches and heuristics for a
specifically designed language. It supports both quali-
tative and quantitative verification of masking coun-
termeasures of Boolean and arithmetic programs.

� We conduct extensive experiments on both masked
Boolean and arithmetic programs including full
AES, DES and MAC-Keccak implementations. Exp-
erimental results demonstrate the effectiveness of
our approach, and show orders of magnitude impro-
vement with respect to previous verification meth-
ods on common benchmarks.

It is worth mentioning that our approach and tool can
automatically prove the security of several conversion algo-
rithms (e.g., implementations of Boolean to arithmetic
masking [16], [17], [19] and arithmetic to Boolean mask-
ing [16], [17]). To the best of our knowledge, it is the first
time that they are proved leakage-free by computer-aided
tools rather than manually.

One feature of our approach is that it could avoid inlining
procedure calls in the program via supporting compositional
reasoning in the assume-guarantee style. The experiments
show it is able to verify various implementations of Sbox and
full AES in less than one secondwhenprocedure assumptions
are provided. Even when no procedure assumptions or only
one procedure assumption is provided, lots of procedure
inlines can be avoided. Our experiments also find, perhaps
surprisingly, that for solving model-counting constraints, the

widely adoptedmethods based on SMT solvers (e.g. [41], [42],
[43], [44]) may not be the best option, as the alternative brute-
force method is comparable for Boolean programs, and sig-
nificantly faster for arithmetic programs with (finite-field)
multiplication, hence calls for further effort towards the
solving of domain-specificmodel-counting constraints.

This paper is an extension of the conference paper [1],
and is related to our previous work [43], [44]. Detailed com-
parison between them are given in Section 6.

Organization. The rest of the paper is organized as follows.
In Section 2, we introduce cryptographic programs consid-
ered in this work, leakage and threat models, and the notions
of perfect masking and quantitative masking strength.
Section 3 gives a running example used to illustrate our tech-
niques and an overview of our approach. Section 4 presents
our methodology, including a type system supporting com-
positional reasoning (Section 4.1), twomodel-counting based
methods (Section 4.2). three heuristics to improve scalability
and efficiency in practice (Section 4.3) and the overall algo-
rithms (Section 4.4). Section 5 reports experimental results.
We discuss related work in Section 6. Finally, we conclude
thework in Section 7.

The implementation of QMVERIF is open-sourced, avail-
able at http://s3l.shanghaitech.edu.cn/software/qmverif.

2 PRELIMINARIES

In this section, we introduce the cryptographic programs
which will be considered in this article, threat model and
leakage models, as well as the notions of perfect masking
and quantitative masking strength.

We fix a natural number n > 0 and an integer domain
D ¼ f0; . . . ; 2n � 1g. The domain D is isomorphic to the
Galois field GFð2Þ½x�=ðpðxÞÞ (or simply GFð2nÞ) for some
irreducible polynomial p, e.g., GFð28Þ and pðxÞ ¼ x8 þ x4 þ
x3 þ xþ 1, which is usually referred to as Rijndael’s (AES)
finite field. We will denote by~1 the value 2n � 1 2 D.

2.1 Cryptographic Programs

In this article, we consider cryptographic programs rather
than arbitrary software programs. It is common to assume
that cryptographic programs are branching-free (i.e., in
straight-line forms) for formal verification [35], [42]. (Remark
that our tool supports programs with static loops by loop
unfolding. We do not consider cryptographic programs that
inherently contain branching in this work, but some pro-
grams which can be transformed to the branching-free form
can be tackled.)

Syntax.The syntax of the program under verification is
given in Fig. 1. A (cryptographic) program P consists of a

Fig. 1. Syntax of the programming language used by QMVerif.

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 975

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

http://s3l.shanghaitech.edu.cn/software/qmverif

sequence of procedure definitions fða1; . . . ; amÞ, where f
denotes the procedure name and a1; . . . ; am are the formal
arguments of f . We assume that the procedure names of P
are distinct, there is a unique procedure named main as the
entry point of P , and all the procedures only use local varia-
bles and formal arguments, but no global variable unless
the program contains only the main procedure. A procedure
fða1; . . . ; amÞ consists of a sequence of assignments followed
by a return statement return x1; . . . ; xk. Note that a return
statement could return more than one value in our language
for the sake of convenience.

An assignment of the form x ¼ e, as usual, assigns the
value of the expression e to the variable x. An assignment of
the form r ¼ $ assigns a uniformly sampled random
value from the domain D to the variable r where effectively
r is a random variable. An assignment of the form
x1; . . . ; xk ¼ fðy1; . . . ; ymÞ is a procedure call which passes the
actual arguments y1; . . . ; ym to the formal arguments
a1; . . . ; am of f , executes the function body of fða1; . . . ; amÞ
and finally assigns the return values to the variables
x1; . . . ; xk, assuming that the number of return values of f is k.

We assume that each procedure call x1; . . . ; xk ¼
fðy1; . . . ; ymÞ is associated with a unique call-site ‘ (e.g., line
number) and let fðy1; . . . ; ymÞ½i�@‘ denote the ith return
value of the procedure call fðy1; . . . ; ymÞ at the call-site ‘.
Therefore, the procedure call x1; . . . ; xk ¼ fðy1; . . . ; ymÞ can
be treated as a sequence of assignments

x1 ¼ fðy1; . . . ; ymÞ½1�@‘;

� � � ;
xk ¼ fðy1; . . . ; ymÞ½k�@‘; :

An expression e is built up from n-bit variables and con-
stants using the following operations:

� bit-wise operations: and (^), or (_), negation (:), exclu-
sive-or (�), right shift� and left shift	;

� modulo 2n arithmetic operations: subtraction (�), addi-
tion (þ), and multiplication (�), for whichD is consid-
ered to be Z2n , i.e., the ring of integers modulo 2n;

� finite-field operation: multiplication (
), for which D is
considered to be a Galois field GFð2nÞ. (Note that
addition and subtraction operations over Galois
fields are essentially bit-wise exclusive-or.)

In the rest of the paper, we denote by O� the set of opera-
tions O [f	;�g. For each procedure fða1; . . . ; amÞ defined
in the program P , let Xf denote the set of variables defined
in the procedure fða1; . . . ; amÞ (called internal variables),
Xf

r � Xf denote the set of random variables defined in the
procedure fða1; . . . ; amÞ, and Xf

a denote the set of formal
arguments fa1; . . . ; amg. We assume, without loss of gener-
ality, that each variable x 2 Xf is defined at most once in
fða1; . . . ; amÞ, namely, the procedure fða1; . . . ; amÞ is in the
single static assignment (SSA) form, and each expression con-
tains at most one operation. Indeed, any straight-line proce-
dure can be transformed into the one satisfying these
conditions. For the main procedure mainða1; . . . ; amÞ, the
set of formal arguments Xmain

a is partitioned into two dis-
joint sets: public input variables ðXpÞ and private input vari-
ables ðXkÞ.

Computation. For each variable x used in the procedure
fða1; . . . ; amÞ, the (intermediate) partial computation EðxÞ of x
is defined as follows:

� If x is a formal argument or random variable, i.e.,
x 2 Xf

a [Xf
r , then EðxÞ ¼ x;

� Otherwise, EðxÞ is obtained by
1) initially, EðxÞ ¼ e if x is defined by the assignment

x ¼ e, or EðxÞ ¼ gðy1; . . . ; ymÞ½i�@‘ if the proce-
dure call x1; . . . ; xi�1; x; xiþ1; . . . ; xk ¼ gðy1; . . . ; ymÞ
is made at the call-site ‘ in fða1; . . . ; amÞ;

2) then recursively replacing each variable y in EðxÞ
with its partial computation EðyÞ until the updat-
ing is stabilized.

Intuitively, the partial computation EðxÞ of x is an expres-
sion in terms of random variables ðXf

r Þ and formal argu-
ments ðXf

aÞ, without inlining procedure calls. Being in the
single static assignment form guarantees that EðxÞ is well-
defined.

A partial computation EðxÞ is a full computation if EðxÞ
does not contain any procedure calls and all the formal
arguments used in EðxÞ are from Xmain

a (i.e., the formal
arguments of the main procedure).

Procedure Inlining. In this paper, we consider non-recur-
sive programs, for which we can inline all the procedure
calls so that the resulting program contains only the main
procedure. For the sake of presentation, we introduce the
procedure inlining as follows.

For each procedure call x1; . . . ; xk ¼ fðy1; . . . ; ymÞ at
the call-site ‘ in the procedure g where the procedure body
of f is

fða1; . . . ; amÞ ¼ s1; . . . st; return z1; . . . ; zk; ;

we inline the procedure call x1; . . . ; xk ¼ fðy1; . . . ; ymÞ by
replacing them with the following statements:

a1@‘ ¼ y1; . . . ; am@‘ ¼ ym;

s01; . . . s0t;

x1 ¼ z1@‘; . . . xk ¼ zk@‘;

where for every 1
 i
 t, the statement s0i denotes the
statement obtained from si by replacing every variable
z 2 Xf [Xf

a with z@‘. Moreover, if si is a procedure call
with the call-site ‘0, then the call-site of s0i becomes ‘0@‘
which tracks the call-site ‘. It follows that a call-site ‘
may be a sequence of call-sites of the form ‘k@ � � �@‘1.
The resulting procedure of g is denoted by inlineðg; ‘Þ,
namely, the procedure call at the call-site ‘ in g is
inlined. For a sequence of procedure calls with call-sites
‘1; . . . ; ‘k, we denote by inlineðg; ‘1; . . . ; ‘kÞ the procedure
inlineð. . . inlineðinlineðg; ‘1Þ; ‘2@‘1Þ; . . . ; ‘k@ � � �@‘1Þ,
with inlineðg; ‘1; . . . ; ‘kÞ ¼ g if k ¼ 0.

For any non-recursive program P , by iteratively inlining
all the procedure calls, we can obtain an equivalent pro-
gram, denoted by Pinlined, which only has the main proce-
dure. Assuming that the variable names used in the
program P do not contain @, the program Pinlined is in the
SSA form. For a variable x 2 Xf defined in a procedure
fða1; . . . ; amÞ, x will become the variables x@‘k � � �@‘1 in
Pinlined, for sequences of call-sites ‘1 � � � ‘k from the proce-
dure main to the procedure f in the call graph of P .

976 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

We denote by inlineðxÞ the set of such variables in Pinlined.
Obviously, each internal variable x defined in Pinlined has a
unique full computation EðxÞ. Moreover, a partial com-
putation EðxÞ defined in the procedure fða1; . . . ; amÞ corre-
sponds to the full computations Eðx0Þ for the variables
x0 2 inlineðxÞ in Pinlined.

Similarly, for any partial computation EðxÞ of a variable x
defined in a procedure g, and a procedure call fðe1; . . . ; emÞ
at the call-site ‘ in the procedure g, all the terms of the form
fðe1; . . . ; emÞ½i�@‘ in EðxÞ can be inlined by replacing it with
the partial computation E0ðziÞ, where E0ðziÞ is obtained from
EðziÞ of the procedure body

fða1; . . . ; amÞ ¼ s1; � � � st; return z1; . . . ; zk;

by replacing the formal arguments a1; . . . ; am in EðziÞ with
the partial computations e1; . . . ; em respectively, replacing
random variables r in EðziÞ by r@‘, and replacing the
symbol @‘0 in EðziÞ with @‘0@‘. Indeed, the resulting par-
tial computation, denoted by inlineðEðxÞ; ‘Þ, is the partial
computation EðxÞ of the variable x in the procedure
inlineðg; ‘Þ. We denote by EðxÞinlined the partial compu-
tation of the variable x obtained by iteratively inlining all
the terms of the form fðe1; . . . ; emÞ½i�@‘. When x is a vari-
able defined in the main procedure, i.e., x 2 Xmain,
EðxÞinlined is a full computation of x in the program
Pinlined.

Semantics. A valuation for a set of variables Y is a func-
tion assigning to each variable y 2 Y a concrete value
c 2 D. For a subset of variables Z � Y , two valuations
ðs1; s2Þ are Z-equivalent, denoted by s1 ’Z s2, if
s1ðzÞ ¼ s2ðzÞ for all variables z 2 Z. We denote by Q the set
of valuations for the set of variables Xp [Xk. Given an
expression (i.e., computation) e and a valuation s 2 Q, let
eðsÞ be the expression obtained from e in which all the vari-
ables x 2 Xp [Xk are instantiated by the concrete values
sðxÞ. By abuse of notation, for an assignment s of formal
arguments and variables in the partial computation e, we
also denote by eðsÞ the expression obtained from e, where
all the formal arguments and variables x in e are instanti-
ated by the concrete values sðxÞ.

For a full computation e, the random variables in eðsÞ are
uniformly distributed. We write ½½e��s for the resulting ran-
dom variable which gives rise to a distribution as follows.
Namely, for each concrete value c 2 D

½½e��sðcÞ ¼
jfm : Xr ! D j eðs;mÞ ¼ cgj

jDjjXrj
;

where eðs;mÞ denotes the value of the full computation eðsÞ
by instantiating random variables r 2 Xr with concrete val-
ues mðrÞ. As a result, ½½e��sðcÞ is the probability that eðsÞ eval-
uates to c under the valuation s.

Given a program P , for each variable x 2 Xmain of the
program Pinlined and valuation s 2 Q, we denote by ½½x��s
the distribution ½½EðxÞ��s (note that EðxÞ must be a full com-
putation). The semantics of P is a (partial) function ½½P �� that
gives the distribution ½½x��s for each valuation s 2 Q and var-
iable x 2 Xmain of the program Pinlined.

2.2 Threat Model and Leakage Models

In this work, we adopt a commonly used threat model [41],
[42], [43], [44], [51], [52], which assumes that the adversary
has access to public input variables Xp, but not to private
input variables Xk, of the program P . Moreover, the adver-
sary may have access to results of intermediate full compu-
tations (i.e., internal variable x in Pinlined) via power side-
channel information. Under these assumptions, the goal of
the adversary is to deduce the information ofXk.

For power side-channel attacks, it is the correlations
between power consumption values, rather than the abso-
lute power consumption, that matters. The correlation
between power consumption values usually comes from,
for instance, the leakage currents of CMOS transistors
which comprise static and dynamic leakage currents. The
former always exists, but its volume depends on whether
the transistor is on or off which corresponds to the logical 1
and 0 of a bit. The latter occurs only when a transistor is
switched (bit flip) which corresponds to the switch between
logical 1 and 0 of a bit. Both static and dynamic leakage cur-
rents can be used by the adversary to infer the private data.

Towards formally verifying masking countermeasures,
we define a leakage model that precisely captures the infor-
mation that may be leaked to the adversary. In this work,
we consider two such models: the Hamming Weight (HW)
and Hamming Distance (HD) leakage models. Both models
have been used as leakage models for verifying masking
countermeasures [40], [41], [42], [43], [52], and been vali-
dated on real devices [2], [6], [13], [53], [54], [55].

2.2.1 HW Leakage Model

The HW leakage model maps intermediate full computation
results (i.e., data values) of an executing program to power
consumptions that are induced by static leakage currents.
For a constant c 2 D, the Hamming weight of c, denoted by
HWðcÞ, is the number of logical 1 bits in c, namely

HWðcÞ ¼ Sn�1
i¼0 ci;

where ci denotes the ith greatest significant bit of c. Intui-
tively, HWðcÞ measures the power consumptions of CMOS
transistors (e.g., register) for storing the constant c. For
instance, consider the instruction a ¼ 0xFF� k where k is a
private input variable. If k ¼ 0x00 (resp. k ¼ 0xFF), then the
value of a is 0xFF (resp. 0x00). The power consumption of
executing this instruction is proportional to HWð0xFFÞ ¼ 8
(resp. HWð0x00Þ ¼ 0), hence depends on the value of k. The
adversary can infer the value of k via attacks that use the
HW leakage model such as the simple power analysis
in [56] or the differential power analysis in [2], [57].

2.2.2 HD Leakage Model

The HD leakage model maps intermediate full computation
results of an executing program to power consumptions
that are induced by dynamic leakage currents. For two con-
stants c; c0 2 D, the Hamming distance of c and c0 that are con-
secutively assigned to a variable, denoted by HDðc; c0Þ, is the
number of positions at which the logical values are different
at c and c0. Namely

HDðc; c0Þ ¼ S
n�1
i¼0 ðci � c0iÞ ¼ HWðc� c0Þ:

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 977

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

Intuitively, for two constants c; c0 2 D that are consecutively
assigned to the same variable, HDðc; c0Þ measures the power
consumptions of CMOS transistors (e.g., register) that
update from c to c0 via switching between logical 1 and 0.
For instance, consider two instructions

a ¼ r1 � r2;

a ¼ a� k;

where r1, r2 are two random variables, and k is a private
input variable. For any value of k, the Hamming weights of
the values of a are uniformly distributed, so the adversary
cannot infer the value of k via attacks using the HW leakage
model, e.g., the simple power analysis in [56] or the differen-
tial power analysis in [2], [57] that use the HW leakage
model. However, the Hamming distance HDðc; c0Þ of two
consecutive values c; c0 of a is the Hamming weight of the
value of k, i.e., HDðr1 � r2; ðr1 � r2Þ � kÞ ¼ HWðkÞ. There-
fore, the adversary is able to infer the value of k via attacks
that use the HD leakage model, e.g., the correlation power
analysis in [54]. Note that the simple power analysis [56] or
the differential power analysis [2], [57] could be used to infer
the value of k, if the HD leakage model is used. Similarly, the
correlation power analysis [54] could be adapted for the HW
leakage model. The details of power consumption, HW/HD
leakagemodels and their relation are given in, e.g., [13].

We remark that the HW leakage model is equivalent to
the (value-based) first-order probing model proposed by
Ishai et al. [14], and the HD leakage model is equivalent to
the transition-based first-order probing model [58], but the
HD leakage model differs from the (value-based) second-
order probing model as shown by Wang et al. [40].

2.2.3 From HD Leakage Model to HW Leakage Model

Since we assume that each variable is defined at most once,
i.e., no variables will be assigned twice, hence in theory no
leakage occurs under the HD leakage model. However, in
practice, some values may be assigned to the same variable
in the original programs (i.e., programs before being trans-
formed to SSA forms) or in low-level programs due to regis-
ter allocation and assignment. To alleviate this problem, we
assume that, when the HD leakage model is considered, a
set of variable pairs is associated with each procedure of the
SSA program. Intuitively, the variables in each pair ðx1; x2Þ
refer to the same variable x in the original program or in the
low-level program after register allocation and assignment,
and they are used to record, for instance, two consecutive
values of x before and after assignment (as intermediate
computation results of Eðx1Þ and Eðx2Þ). If one wants to con-
sider pairs of variables from different procedures, the pro-
gram P can be transformed into an equivalent program
Pinlined and verify Pinlined under the HD leakage model.

The set of variable pairs could be obtained by inspecting
the transformation from the original program to the SSA
form or register allocation and assignment. To verify the
program under the HD leakage model, we reduce to verify-
ing a new program under the HW leakage model by (1)
adding a dummy variable x1;2 for each variable pair ðx1; x2Þ
and (2) inserting a new instruction x1;2 ¼ x1 � x2 after the
assignments of x1 and x2, as HDðx1; x2Þ ¼ HWðx1 � x2Þ ¼
HWðx1;2Þ. Therefore, for ease of presentation, we shall use

the HW leakage model during the illustration of our
approach.

We remark that our formal verification approach is gen-
eral and could be integrated into compilation as done by
Wang et al. [40] so that the set of variable pairs could be
automatically inferred.

2.3 Perfect Masking

We fix a program P in this section. For each internal vari-
able x of the program Pinlined, we say x is uniform in
Pinlined, denoted by x-UF, if ½½x��s is a uniform distribution
for all valuations s 2 Q, and x is statistically independent in
Pinlined, denoted by x-SI, if ½½x��s1 ¼ ½½x��s2 for all pairs of val-
uations ðs1; s2Þ 2 Q2

Xp
, where Q2

Xp
denotes the set

fðs1; s2Þ 2 Q�Q j s1 ’Xp s2g. It is straightforward to see
that if Pinlined is x-UF, then Pinlined is x-SI. Note that the
inverse does not hold in general.

An internal variable x of Pinlined is called perfectly
masked in Pinlined if it is x-SI, otherwise x is called leaky.
The program Pinlined is perfectly masked if all internal varia-
bles in Pinlined are perfectly masked. Intuitively, if the pro-
gram Pinlined is x-UF, then the values of x for each
valuation s 2 Q are uniformly distributed. This implies
that the Hamming weights of the values of x, hence the
power consumptions, are uniformly distributed. Therefore,
the adversary cannot deduce any information of private
data through the variable x. Note that a difference between
distributions which does not result in a difference under
the HW model can still be used for an attack, so we define
perfect masking in the above form. Similarly, if the pro-
gram Pinlined is x-SI, then the distributions of values of x
for each pair of valuations ðs1; s2Þ 2 Q2

Xp
are the same.

This implies that the distributions of Hamming weights of
the values of x are the same. Therefore, the distributions of
power consumptions through the variable x do not rely on
private data and the adversary cannot deduce any infor-
mation of private data through the variable x. We say the
program P is perfectly masked if the program Pinlined is per-
fectly masked.

To verify whether the program P is leakage-free, we
focus on the leaks of individual internal variables of Pinlined

instead of the whole program Pinlined. If all the individual
internal variables of Pinlined are leakage-free, i.e., the pro-
gram Pinlined is x-SI for all internal variables x of Pinlined,
then the whole programs P and Pinlined are leakage-free,
i.e., private data in the program P is perfectly masked.

As an example, consider a program snippet P shown
below, where k0, k1 are private variables, and r0, r1 are ran-
dom variables. P is x0-UF and x1-UF, but x2 is leaky, as the
value of x2 statistically depends on k1.

Program P Modified Program P 0

x0 ¼ r0 � k0; x0 ¼ r0 � k0;
x1 ¼ r0 � k1; x1 ¼ r0 � k1;
x2 ¼ r1 ^ k1; x0;1 ¼ x0 � x1;

x2 ¼ r1 ^ k1;

Suppose the same register is assigned to x0 and x1, then
the security of P under the HD leakage model can be
checked by verifying the modified program P 0 under the
HW leakage model. Since x0;1 is leaky in P 0 under the HW

978 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

leakage model and HWðx0;1Þ ¼ HDðx0; x1Þ ¼ HWðr0 � k0 �
r0 � k1Þ ¼ HWðk0 � k1Þ, we deduce that P under the HD
leakage model is not secure.

2.4 Quantitative Masking Strength

To quantify masking strength of Boolean programs, Eldib
et al. [49], [50] introduced a notion, called Quantitative Mask-
ing Strength (QMS), which is a generalization of perfect
masking. It was empirically shown that, for Boolean pro-
grams the number of power traces needed to successfully
infer the private data from the computation results of an
internal variable x is exponential in the QMS value of x.

In this work, we generalize the notion of QMS from
Boolean setting to the arithmetic one. The Quantitative Mask-
ing Strength (QMS) of an internal variable x of Pinlined is
defined as

QMSx :¼ 1�maxðs1;s2Þ2Q2
Xp

c2D

�
½½x��s1ðcÞ � ½½x��s2ðcÞ

�
:

It is easy to see that Pinlined is x-SI iff QMSx ¼ 1. We remark
that the notion of QMS is same as the one in Eldib et al. [49],
[50] when n ¼ 1, i.e., the domain D becomes the Boolean
domain f0; 1g.Research Objective. The main goal of this work
is to verify whether a cryptographic program P is perfectly
masked, and to assess how strong it is for each leaky vari-
able in terms of QMS in case that P is not perfectly masked.

3 RUNNING EXAMPLE AND OVERVIEW

In this section, we present a running example and an over-
view of our approach.

3.1 A Running Example

We illustrate the notions and techniques by the program
P 254 shown in Fig. 2, which implements the first-order
secure exponentiation to the power 254 over GFð28Þ [28],
i.e., computes k254 for a given input k. To thwart first-order
side-channel attacks, the private input variable k is masked
by a uniform random variable r in the main procedure,
yielding two shares, i.e., r and k1 ¼ k� r. Remark that this
masking process should be performed outside of the pro-
gram and the input of the main procedure is indeed the pair
ðr; k1Þ. We added here for verification purpose only. Then it
invokes the procedure SecExp254 to compute k254 using the
shares ðr; k1Þ.

The procedure SecMult is used to compute first-order
secure multiplication over GFð28Þ. Namely, given two
shares ða0; a1Þ of a (i.e., a0 � a1 ¼ a) and two shares ðb0; b1Þ
of b (i.e., b0 � b1 ¼ b), it outputs two shares ðx5; x7Þ such that
x5 � x7 ¼ a
 b. The procedure RefreshMasks is used to re-
mask shares, which, given two shares ða0; a1Þ of a, outputs
two shares ðy0; y1Þ such that y0 � y1 ¼ a0 � a1 ¼ a. However,
here y0 and y1 are masked by the new random variable r1.
The procedure SecExp254 is used to compute the (first-order
secure) exponentiation to the power 254 over GFð28Þ. For
two shares ða0; a1Þ of a, it outputs two shares ðz16; z17Þ such
that z16 � z17 ¼ ða0 � a1Þ254 ¼ a254.

For the procedure SecMult, we have:

� XSecMult ¼ fr0; x0; . . . ; x7g,
� XSecMult

r ¼ fr0g,
� XSecMult

a ¼ fa0; a1; b0; b1g.

The partial computations of internal variables in XSecMult

are listed below:

Eðr0Þ ¼ r0;

Eðx0Þ ¼ a1
 b0;

Eðx1Þ ¼ a0
 b1;

Eðx2Þ ¼ ða0
 b1Þ � r0;

Eðx3Þ ¼ ðða0
 b1Þ � r0Þ � ða1
 b0Þ;
Eðx4Þ ¼ a0
 b0;

Eðx5Þ ¼ ða0
 b0Þ � r0;

Eðx6Þ ¼ a1
 b1;

Eðx7Þ ¼ ða1
 b1Þ � ððða0
 b1Þ � r0Þ � ða1
 b0ÞÞ:

For the procedure SecExp254, we have:

� XSecExp254 ¼ fz0; . . . ; z17g,
� XSecExp254

r ¼ ;,
� XSecExp254

a ¼ fa0; a1g.

Fig. 2. The program P 254 that implements the first-order secure expo-
nentiation to the power 254 over GFð28Þ [28].

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 979

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

By inlining the procedure call RefreshMasksðz0; z1Þ at the
call-site 24, we obtain the procedure inlineðSecExp254; 24Þ,
as shown in Fig. 4.

For the procedure inlineðSecExp254; 24Þ, we have:

� XinlineðSecExp254;24Þ ¼ fz0; . . . ; z17; a0@24; a1@24;
r1@24; y0@24; y1@24g,

� XinlineðSecExp254;24Þ
r ¼ fr1@24g,

� XinlineðSecExp254;24Þ
a ¼ fa0; a1g.

3.2 Approach Overview

An overview of our approach is given in Fig. 3, which con-
sists of four components: pre-processor, type system,
model-counting method and QMS computing.

For a given non-recursive program P , the pre-processor
transforms P to an equivalent program P 0 in the SSA form
and constructs the call graph of P 0. At a high-level, the type
system is used to quickly obtain soundness proofs when an
internal variable is perfectlymasked. To resolve instances that
cannot be inferred by the type system, the model-counting
method is applied which is, in theory, powerful enough to
completely determine if an internal variable is perfectly
masked or leaky. Regardless ofwhether it is perfectlymasked,
the result is fed back to improve the type inference. Finally,
based on the refined type inference result, we continue to
analyze other internal variables. For the leaky variables, the
QMS computing component can be applied to compute their
QMS values by leveraging the model-counting method.

To verify the program P 0 using the type system, one pos-
sible way is to transform it into the equivalent program
P 0
inlined by inlining all the procedures and then verify all the

full computations of P 0
inlined. The shortcoming of this

approach is that some variables in P 0 may need to be ana-
lyzed multiple times (e.g., variables in RefreshMasks and Sec-
Mult in Fig. 2), which may disadvantage scalability. We
hence propose a compositional verification technique to
address this issue. We directly analyze the program P 0

instead of P 0
inlined. The subprocedures within P 0 which are

invoked multiple times are to be analyzed in isolation in the
reverse topological order of its call graph (note that P 0 is
non-recursive, so the call graph is essentially a DAG), and
the results are composed to give the overall verification.

For instance, the call graph of the program P 254 is shown
in Fig. 5, where the labels on edges denote call-sites. We can
verify the procedures in the order of (RefreshMasks, SecMult,
SecExp254,main) or (SecMult,RefreshMasks, SecExp254,main).

To verify each procedure in isolation, the main challenge
is to verify partial computations, that may be dependent on
external variables of the procedure. For instance, consider
an internal variable x0 that is defined in SecMult, which cor-
responds to the variables fx0@25@40; x0@29@40; x0@32@40;
x0@33@40g, i.e., inlineðxÞ in P 254

inlined. It is impossible to
obtain the full computations Eðx0@25@40Þ, Eðx0@29@40Þ,
Eðx0@32@40Þ and Eðx0@33@40Þ in isolation, as they rely
upon the formal arguments a1 and b0. Likewise, the variable
z2 in SecExp254 corresponds to the variable z2@40 in the
program P 254

inlined, which relies upon the first return value of
the procedure call RefreshMasksðz0; z1Þ, i.e., RefreshMasks
ðz0; z1Þ½1�. To address this challenge, we adopt the assume-
guarantee reasoning [59], which is a modular technique that
uses assumptions when checking procedures in isolation.

In our assume-guarantee framework, each procedure
fða1; . . . ; amÞ can be annotated with an assumption Ff by
the user which expresses the properties of the formal argu-
ments a1; . . . ; am. For this purpose, we introduce a simple
logic. For each internal variable x 2 Xf , we infer the distri-
bution type of the partial computation EðxÞ under the anno-
tated assumption Ff via our type system. If the partial
computation EðxÞ is statistically independent of the private
input variables under the annotated assumption Ff and the

Fig. 3. Overview of our approach.

Fig. 4. The procedure inlineðSecExp254; 24Þ. Fig. 5. Call graph of the program P 254.

980 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

actual arguments of the procedure call fðx1; . . . ; xmÞ at the
call-site ‘ do satisfy the assumption, we can deduce that
the partial computation Eðx@‘Þ is indeed statistically inde-
pendent of the private input variables after inlining this
procedure. Finally, if all the procedure calls from the
main procedure to the procedure fðx1; . . . ; xmÞ with the
sequence of the call-sites ‘1; . . . ; ‘k; ‘ satisfy the correspond-
ing assumptions, then we can deduce that the full computa-
tion Eðx@‘@‘k � � �@‘1Þ in the program Pinlined is indeed
perfectly masked. By this way, the verification obligation is
to check whether each procedure in isolation is perfectly
masked under the annotated assumption, and that the
assumption of each procedure call holds. Note there is no
guarantee that this approach can always work successfully.
In case that the type inference fails on EðxÞ or the procedure
call does not satisfy the corresponding assumption, we will
inline the procedure call and apply the type system on the
partial computation Eðx@‘Þ. This procedure is repeated
until it is proved or becomes the full computation. If the
type system still fails on the full computation, we resort to
(expensive) model-counting which is powerful enough to
completely decide if the full computation is leakage-free.

4 METHODOLOGY

In this section, we present our type system, model-counting
method, domain specific heuristics and overall algorithms.

4.1 Type System

We first introduce the distribution types, the notion of dom-
inant variables which will be used in the type inference
rules, and a simple logic for expressing the assumptions of
procedures. We then present the type inference rules and
explain how to deal with procedure calls.

4.1.1 Distribution Types

In our type system, there are four distribution types:
tuf; tsi; tlk and tuk. We denote by T the set ftuf; tsi; tlk; tukg.
Intuitively, for each (partial or full) computation e,

� e : tuf meaning that the distribution of the values of e
is uniform;

� e : tsi meaning that the distribution of the values of e
is statistically independent on private inputs;

� e : tlk meaning that the distribution of the values of e
is statistically dependent on private inputs;

� e : tuk meaning that the distribution of the values of e
is unknown.

where tuf is a subtype of tsi.
Given a procedure fða1; . . . ; amÞ, let Ff ¼ fc1; . . . ;ckg be

the annotated assumption of f (the language for expressing
formulas ci will be defined in Section 4.1.3). To infer the dis-
tribution type of a partial computation e, the type judge-
ment of e is defined in the form of

Ff ‘ e : t;

where t 2 T denotes the distribution type of the partial
computation e under the assumption Ff .

A type judgement Ff ‘ e : t is valid if the type judge-
ment c ‘ e : t is valid for every formula c 2 Ff . We will
present type inference rules in Section 4.1.4 to derive the

valid type judgement c ‘ e : t. We say the procedure
fða1; . . . ; amÞ is perfectly masked under the assumption Ff , if
for every variable x 2 Xf , either Ff ‘ EðxÞinlined : tuf or
Ff ‘ EðxÞinlined : tsi is valid.

4.1.2 Dominant Variables

Given a computation e, a random variable r is a dominant
variable of e if the following conditions hold:

1) r (syntactically) occurs in e exactly once,
2) and in the abstract syntax tree of e, for each operator

� 2 O� on the path between the root and the leaf
labeled by r, one of the following cases holds:
� � ¼
 and one of its children is a non-zero

constant;
� � 2 f�;:;þ;�g;
� � is a (univariate) bijective function, e.g., Sbox.

For efficiency consideration, to determine whether a ran-
dom variable is dominant or not, we take a purely syntactic
approach. For instance, r is not considered to be a dominant
variable in r� ððr� yÞ � rÞ, although r is a dominant vari-
able in the equivalent y� r. We will address this limitation
in Section 4.3.

Intuitively, for every variable x 2 Xf , if r is a dominant
variable of the computation EðxÞinlined, then the distribution
of EðxÞinlined is uniform, as the random variables in
EðxÞinlined are uniformly distributed.

Let VarðeÞ denote the set of variables used in the compu-
tation e, and RVarðeÞ � VarðeÞ the set of random variables.
We denote by DomðeÞ � RVarðeÞ the set of all dominant ran-
dom variables of e. All these sets can be computed in linear
time in the size of e. It is straightforward to have:

Proposition 1. If DomðEðxÞinlinedÞ 6¼ ;, then the distribution
of the values of EðxÞinlinedðsÞ is uniform for all possible assign-
ments s of formal arguments and variables in EðxÞinlined.

4.1.3 A Logic for Expressing Assumptions

To express assumptions of procedures, we introduce a sim-
ple logic to specify properties of formal arguments. For each
procedure fða1; . . . ; amÞ, its assumption is given as a set of
formulas Ff ¼ fc1; . . . ;ckg, such that every 1
 i
 k, the
formula ci is defined by the following logic:

f ::¼ > j ai : t j DomðaiÞ n RVarðajÞ 6¼ ;
j f1 ^ f2 j RVarðaiÞ \ RVarðajÞ ¼ ;;

where t 2 T is a distribution type, ai and aj are formal argu-
ments of fða1; . . . ; amÞ.

A procedure call fðx1; . . . ; xmÞ made in the procedure g
satisfies the assumption Ff , denoted by fðx1; . . . ; xmÞ � Ff ,
iff fðx1; . . . ; xmÞ � c for some c 2 Ff , where the latter is
inductively defined as follows:

� fðx1; . . . ; xmÞ � > always holds;
� fðx1; . . . ; xmÞ � ai : t iff Fg ‘ EðaiÞ : t is valid, where

Fg denotes the assumption of the procedure g;
� fðx1; . . . ; xmÞ � DomðaiÞ n RVarðajÞ 6¼ ; iff

DomðEðxiÞinlinedÞ n RVarðEðxjÞinlinedÞ 6¼ ;;
� fðx1; . . . ; xmÞ � RVarðaiÞ \ RVarðajÞ ¼ ; iff

RVarðEðxiÞinlinedÞ \ RVarðEðxjÞinlinedÞ ¼ ;

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 981

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

� fðx1; . . . ; xmÞ � f1 ^ f2 iff both fðx1; . . . ; xmÞ � f1

and fðx1; . . . ; xmÞ � f2.
Given a sequence p of procedure calls f1ðx1

1; . . . ; x
1
m1

Þ; . . . ;
fkðxk

1; . . . ; x
k
mk

Þ, let p‘ ¼ ‘1; . . . ; ‘k denote the sequence of the
corresponding call-sites, and Fp denote the sequence of
assumptions Ff1 ; . . . ;Ffk . We say p satisfies Fp, denoted by
p � Fp, if fiðxi1; . . . ; ximi

Þ � Ffi for every 1
 i
 k.
We remark that the assumption of the main procedure is

not needed, as there is no procedure call to the main proce-
dure. (Alternatively one can assume it to be f>g.)

4.1.4 Type Inference Rules

Given a procedure fða1; . . . ; amÞ, for every variable x 2 Xf

such that EðxÞ ¼ e, to derive valid type judgements c ‘ e : t
for all formulas c 2 Ff , we design type inference rules
(shown in Fig. 6). We will drop the context c from c ‘ e : t
when c ¼ >.

Rule (DOM) directly follows Proposition 1. Rule (COM) fol-
lows the commutative law of operations ? 2 O. Rule
(NOKEY) describes that full computations without using any
private input variables have type tsi. Note that we cannot
apply this rule to computations that contain some formal
arguments, but are neither public nor private. Rule (KEY)
enures that each private input has type tlk. Rules (IDEi) for
i ¼ 1; 2; 3; 4 are straightforward. Rule (APT) follows from the
assumption c.

Rule (SID1) states that if e1 has type tuf, e2 has type tsi, and
e1 has a dominant variable r which is not used by e2 (imply-
ing that e2inlined does not use r), then e1 � e2 for
� 2 f^;_;
;�g has type tsi. This is because that e1 � e2 can
be seen as r � e2, and the distributions of the values of r and
e2 are independent. In this rule, when e1 and e2 are formal
arguments, we check the premise Domðe1Þ n RVarðe2Þ 6¼ ;
using the type context c.

Likewise, if both e1 and e2 have type tsi (as well as its
subtype tuf), and e1 and e2 use disjoint random variables,
then e1 � e2 for � 2 O� has type tsi, as the distributions of

values of e1 and e2 are independent. This is captured by rule

(SID2). Similar to rule (SID1), rule (LEAK) states that if e1 has

type tlk, e2 has type tuf, and e2 has a dominant variable r

which is not used by e1, we can deduce that e1 � e2 for

� 2 f^;_;
;�g has type tlk.
Our type system is designed to infer types of partial com-

putations for each procedure in isolation. Therefore, DomðeÞ
and RVarðeÞ rather than DomðeinlinedÞ and RVarðeinlinedÞ
are used in the type inference rules, according to Proposi-

tion 2. When it fails to derive a valid type judgement and e

contains a procedure call with the call-site ‘, rule (INLINE)

can be used to infer the type of e by inferring the type of

inlineðe; ‘Þ. These features allow to inline procedures as

less as possible.
The type judgements derived by the above rules are con-

clusive, therefore the type system is sound. We also demon-

strate in our experiments that for cryptographic programs,

these rules suffice to drive type judgements of most compu-
tations. However, there may exist computations whose

types cannot be inferred by the above rules. Therefore, for

these computations, we design a specific rule (UKD) which

assigns unknown distribution type to these computations.

We will address this problem for the full computations in

Section 4.2 by leveraging model-counting methods. It is

easy to see that:

Theorem 1. Given a program P , for every variable x defined in
the program Pinlined,

� Pinlined is x-UF, if ‘ EðxÞ : tuf is valid;
� Pinlined is x-SI, if ‘ EðxÞ : tsi is valid;
� Pinlined is not x-SI, if ‘ EðxÞ : tlk is valid.

4.1.5 Compositional Property

To verify the program P but avoid a full construction of the
program Pinlined, we show the following compositional
property.

Fig. 6. Type inference rules, where ? 2 O; � 2 f^;_;
;�g, � 2 O�, ffl2 f^;_g and � 2 f�;�g, ai and aj denote formal arguments of the procedure
fða1; . . . ; amÞ.

982 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

Theorem 2. Given a procedure fða1; . . . ; amÞ of P , for
every x 2 Xf and sequence p of procedure calls starting from
one in the main procedure to f with p‘ ¼ ‘1 � � � ‘k, if
p � Fp and Ff ‘ EðxÞ : t is valid for t 2 ftuf; tsi; tlkg,
then ‘ Eðx@‘k � � �@‘1Þinlined : t is valid. (Note that
Eðx@‘k � � �@‘1Þinlined is the full computation of the variable
x@‘k � � �@‘1 in Pinlined.)

By Theorems 1 and 2, we can deduce that the program
Pinlined is x@‘k � � �@‘1-UF (resp. x@‘k � � �@‘1-SI or not
x@‘k � � �@‘1-SI), if p � Fp and Ff ‘ EðxÞ : tuf (resp.
Ff ‘ EðxÞ : tsi or Ff ‘ EðxÞ : tlk) is valid. The correctness of
Theorem 2 directly follows from the following two lemmas.

The first lemma shows that it suffices to infer the distribu-
tion type of the observable variable x defined in a procedure
from its partial computation EðxÞ using our type system.

Lemma 1. Given a procedure fða1; . . . ; amÞ, for every variable
x 2 Xf , formula c 2 Ff and t 2 ftuf; tsi; tlkg, c ‘ EðxÞ : t is
valid iff c ‘ EðxÞinlined : t is valid.

The second lemma shows that the distribution type of the
partial computation Eðx@‘k � � �@‘1Þ can be deduced from
the distribution type of the partial computation EðxÞ when
the corresponding procedure assumptions are satisfied by
their procedure calls.

Lemma 2. For every path p ¼ f1ðx1
1; . . . ; x

1
m1

Þ; . . . ;
fkðxk

1; . . . ; x
k
mk

Þ in the call graph of the program P with
p‘ ¼ ‘1; . . . ; ‘k, suppose f1ðx1

1; . . . ; x
1
m1

Þ is made in the proce-
dure g. For every x 2 Xfk and t 2 ftuf; tsi; tlkg, if p � Fp and
Ffk ‘ EðxÞ : t is valid, then Fg ‘ Eðx@‘k � � �@‘1Þ : t is valid,
where x@‘k � � �@‘1 is the variable defined in the procedure
inlineðg; ‘1; . . . ; ‘kÞ.

Formal proofs of Lemmas 1 and 2 are given in the sup-
plemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2020.3008852.

Remarkably, if ‘ EðxÞ : t is valid, we can still deduce
Fg ‘ Eðx@‘k � � �@‘1Þ : t even if fkðxk

1; . . . ; x
k
m1

Þ 6� Ffk .

Example 1. Let us consider the program in Fig. 2. Suppose
the procedure SecMult is annotated with the assumption
FSecMult ¼ fc1;c2g, where

� c1 ¼
V

0
i;j
1ðDomðaiÞ n RVarðbjÞ 6¼ ; ^ bj : tsiÞ,
� c2 ¼

V
0
i;j
1ðDomðbiÞ n RVarðajÞ 6¼ ; ^ aj : tsiÞ.

The partial computations of variables x 2 XSecMult are
given in Section 3.1. For every i 2 f1; 2g, by applying rule
(SID1), it is easy to derive

ci ‘ Eðx0Þ : tsi;ci ‘ Eðx1Þ : tsi;
ci ‘ Eðx4Þ : tsi;ci ‘ Eðx6Þ : tsi:

We can also deduce that Eðr0Þ, Eðx2Þ, Eðx3Þ, Eðx5Þ and
Eðx7Þ have type tuf by applying rule (DOM) even if the
assumption FSecMult ¼ f>g, as they are dominated by a
local random variable r0 which never occur in Eða0Þ,
Eða1Þ, Eðb0Þ and Eðb1Þ.

Similarly, for the variables r1, y0 and y1 defined in
RefreshMasks, our type system can derive ‘ Eðr1Þ : tuf,
‘ Eðy0Þ : tuf and ‘ Eðy1Þ : tuf, as Eðr1Þ, Eðy0Þ and Eðy1Þ are
dominated by the random variable r1.

For the procedure SecExp254, let FSecExp254 ¼ fa0 : tuf^
a1 : tufg, we can derive

� FSecExp254 ‘ Eðz0Þ : tsi and FSecExp254 ‘ Eðz1Þ : tsi
by applying rule (IDE2),

� ‘ Eðz2Þ : tuf, ‘ Eðz3Þ : tuf‘ Eðz4Þ : tuf and ‘ Eðz5Þ : tuf
by applying rule (INLINE),

� ‘ Eðz6Þ : tsi and ‘ Eðz7Þ : tsi by applying rule (IDE2),
� ‘ Eðz8Þ : tuf, ‘ Eðz9Þ : tuf, ‘ Eðz10Þ : tuf, ‘ Eðz11Þ : tuf

by applying rule (INLINE),
� ‘ Eðz12Þ : tsi and ‘ Eðz13Þ : tsi by applying rule (IDE2),
� ‘ Eðz14Þ : tuf, ‘ Eðz15Þ : tuf, ‘ Eðz16Þ : tuf, ‘ Eðz17Þ : tuf

by applying rule (INLINE).
One can observe that the procedure call SecExp254ðr; k1Þ

satisfies a0 : tuf ^ a1 : tuf. Suppose FRefreshMasks ¼ f>g. It
is easy to verify that all the procedure calls SecMult
ðz2; z3; a0; a1Þ, SecMultðz4; z5; z8; z9Þ, SecMultðz12; z13; z8; z9Þ
and SecMultðz14; z15; z2; z3Þ satisfy either c1 or c2. There-
fore, we can deduce that the program P 254 is perfectly
masked.

4.1.6 Reducing Procedure Inlines Further

One may observe that

1) to verify variables whose computations depend
upon the return values of some procedure calls, we
may have to apply the rule (INLINE) (e.g., z2 and z3 in
Example 1);

2) to check whether a procedure call fðy1; . . . ; ymÞ
satisfies the formula DomðaiÞ n RVarðajÞ 6¼ ; (resp.
RVarðaiÞ \ RVarðajÞ ¼ ;), we have to verify whether
DomðEðyiÞinlinedÞ n RVarðEðyjÞinlinedÞ 6¼ ; (resp.
RVarðEðyiÞinlinedÞ \ RVarðEðyjÞinlinedÞ ¼ ;);

3) RVarðe1inlinedÞ \ RVarðe2inlinedÞ ¼ ; is a premise of a
type inference rule in our type system (cf. Table 6).

Verifying these conditions requires procedure inlines. In
this section, we present our solutions so that some proce-
dure inlines can be avoided.

To tackle the first issue, consider the following function

fða1; . . . ; amÞ ¼ s1; . . . st; return z1; . . . ; zk:

For each variable xi which is defined by xi ¼ fðy1; . . . ; ymÞ
½i�@‘; for some 1
 i
 k after procedure inlining, we regard
the partial computation EðxiÞ (without inlining) as a special
computation such that

� DomðEðxiÞÞ ¼ fr@‘ j r 2 DomðEðziÞÞg;
� RVarðEðxiÞÞ ¼ fr@‘ j r 2 RVarðEðziÞÞg [RA, where

RA ¼
S

ai2VarðEðziÞÞRVarðEðyiÞÞ is the set of random
variables used in the partial computations
RVarðEðyiÞÞ of the actual parameters on which EðziÞ
relies when the procedure call is inlined.

For each computation e that relies upon some return val-
ues xi of the procedure call fðy1; . . . ; ymÞ, RVarðeÞ and
DomðeÞ can be extended accordingly by taking RVarðEðxiÞÞ
and DomðEðxiÞÞ into account for all return values xi of the
procedure call simultaneously. This is done only when the
original sets RVarðeÞ and DomðeÞ are insufficient. For
instance, for each variable z 2 fz2; . . . ; z5; z8; . . . ; z11; z14; . . . ; z17g
of the running example, we can deduce ‘ EðzÞ : tuf without
applying the rule (INLINE), as DomðEðzÞÞ 6¼ ;.

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 983

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSE.2020.3008852
http://doi.ieeecomputersociety.org/10.1109/TSE.2020.3008852

To tackle the second issue, we first consider the formula
DomðaiÞ n RVarðajÞ 6¼ ;. For every variable x 2 Xf and pro-
cedure call at the call-site ‘ in the procedure fða1; . . . ; amÞ, it
is easy to see that DomðEðxÞÞ � DomðinlineðEðxÞ; ‘ÞÞ.
Indeed, if there exists some r 2 DomðEðxÞÞ, then r must be a
local variable of f , implying that r is used in

� neither Eðx1Þinlined; . . . ; EðxmÞinlined for all procedure
calls fðx1; . . . ; xmÞ,

� nor the procedure call at the call-site ‘.
Therefore, r 2 DomðinlineðEðxÞ; ‘ÞÞ. Similarly, for every

pair of variables x; x0 2 Xf , we have that

DomðEðx0ÞÞ n RVarðEðxÞÞ ¼ DomðEðx0ÞÞ n RVarðinlineðEðxÞ; ‘ÞÞ:

By leveraging the solution to the first issue, we have that,
if DomðEðyiÞÞ n RVarðEðyjÞÞ 6¼ ;, then DomðEðyiÞinlinedÞn
RVarðEðyjÞinlinedÞ 6¼ ;. This often allows us to prove that
the procedure call fðy1; . . . ; ymÞ satisfies the formula
DomðaiÞ n RVarðajÞ 6¼ ; without fully inlining all the proce-
dure calls.

Example 2. Let us consider the procedure SecExp254
in the running example. Since DomðEðy0ÞÞ ¼ fr1g,
DomðEðz2ÞÞ ¼ ; can be refined to the set DomðEðz2ÞÞ ¼
fr1@24g. From RVarðEða0ÞÞ ¼ ;, we can get that
DomðEðz2ÞinlinedÞ n RVarðEða0ÞinlinedÞ 6¼ ;, hence SecMult
ðz2; z3; a0; a1Þ satisfies the formula Domða0Þ n RVarðb0Þ 6¼ ;,
which is a conjunct of the annotation c1 of the procedure
SecMult.

Note that currently we cannot prove that
SecMultðz12; z13; z8; z9Þ satisfies Domðb0Þ n RVarða0Þ 6¼ ;,
as the random variable r1@28 2 DomðEðz8ÞÞ occurs in
RVarðEðz10ÞÞ, hence also occurring in RVarðEðz12ÞÞ. We
will address this problem in Section 4.3.

We consider RVarðe1inlinedÞ \ RVarðe2inlinedÞ ¼ ; which
is involved in both the second and the third issue. This is
much more involved, as RVarðEðxÞÞ \ RVarðEðx0ÞÞ ¼ ; does
not imply RVarðinlinedðEðxÞ; ‘ÞÞ \ RVarðinlinedðEðx0Þ; ‘ÞÞ ¼ ;
when the inlined procedure at the call-site ‘ introduces
random variables that occur in both inlinedðEðxÞ; ‘Þ and
inlinedðEðx0Þ; ‘Þ. This means that even when RVarðEðaiÞÞ\
RVarðEðajÞÞ ¼ ;, RVarðEðaiÞinlinedÞ \ RVarðEðajÞinlinedÞ ¼ ;
may not hold.

To address this problem, we write EðxÞ y Eðx0Þ if EðxÞ and
Eðx0Þ do not involve the same procedure call. If EðxÞ y Eðx0Þ
and RVarðEðxÞÞ \ RVarðEðx0ÞÞ ¼ ; both hold, we have that

� RVarðinlinedðEðxÞ; ‘ÞÞ \ RVarðinlinedðEðx0Þ; ‘ÞÞ ¼ ;
� and inlinedðEðxÞ; ‘Þ y inlinedðEðx0Þ; ‘Þ.
This implies that, if inlinedðEðaiÞ; ‘Þ y inlinedðEðajÞ; ‘Þ

and RVarðinlinedðEðaiÞ; ‘ÞÞ \ RVarðinlinedðEðajÞ; ‘ÞÞ ¼ ;
for some call-site ‘, then we have: RVarðEðaiÞinlinedÞ \
RVarðEðajÞinlinedÞ ¼ ;. The third issue can be handled
similarly.

The above observations are summarized by the following
proposition.

Proposition 2. For two variables x; x0 2 Xf of the procedure
fða1; . . . ; amÞ and a procedure call g at ‘ in EðxÞ,

1) DomðEðxÞÞ � DomðinlinedðEðxÞ; ‘ÞÞ
� DomðEðxÞinlinedÞ;

2) DomðEðx0ÞÞ n RVarðEðxÞÞ
¼ DomðEðx0ÞÞ n RVarðinlinedðEðxÞ; ‘ÞÞ
¼ DomðEðx0ÞÞ n RVarðEðxÞinlinedÞ
� DomðinlinedðEðx0Þ;
‘ÞÞ n RVarðinlinedðEðxÞ; ‘ÞÞ;

3) if EðxÞ y Eðx0Þ and RVarðEðxÞÞ \ RVarðEðx0ÞÞ ¼ ;, then
RVarðinlinedðEðxÞ; ‘ÞÞ \ RVarðinlinedðEðx0Þ; ‘ÞÞ ¼ ;;

4) ifDomðEðxÞÞ 6¼ ;, then the distribution of the computa-
tion EðxÞinlined is uniform for all possible assignments
s of formal arguments and variables in EðxÞinlined.

4.2 Model-Counting Based Methods

In this subsection, we propose two model-counting based
methods for checking whether QMSx � q for a given rational
number q 2 ½0; 1�. Recalling that a program is x-SI iff
QMSx ¼ 1, hence, we can verify whether a program is x-SI
by checking whether QMSx � 1. Indeed, the program is x-SI
iff QMSx � 1 holds. On the other hand, we will present a
binary search based algorithm for computing QMS values
by iteratively querying QMSx � q (cf. Section 4.4.2). Note that
model-counting based methods are performed on full com-
putations instead of partial computations.

4.2.1 Brute-Force Method

Recall that QMSx :¼ 1�maxðs1;s2Þ2Q2
Xp

;c2Dð½½x��s1ðcÞ � ½½x��s2ðcÞÞ.
To check whether QMSx � q, the brute-force method (cf.
Algorithm 1): (1) enumerates all possible assignments hp of
public input variables (Line 4), (2) for each hp, enumerates
all possible assignments hk of private input variables
(Line 7), and (3) for each pair of hk and h0k (function COUNT-

ING), computes corresponding distributions ½½x��hp;hk and

½½x��hp;h0k again by enumerating the assignments hr of random

variables (Line 18). The distribution ½½x��hp;hk (resp. ½½x��hp;h0k) is

Algorithm 1. A Brute-Force Algorithm

1 Function BFENUMðP; x; qÞ
2 m ¼ number of bits of random variables in EðxÞ;
3 Dq

x ¼ ð1� qÞ � 2m;
4 forall hp : ðXp \ VarðEðxÞÞÞ ! D do
5 D1 ¼ a map with domain D such that for all

c 2 D:D1ðcÞ ¼ 0;
6 b ¼ false;
7 forall hk : ðXk \ VarðEðxÞÞÞ ! D do
8 D2 ¼ a map with domain D such that for all

c 2 D:D2ðcÞ ¼ 0;
9 if b ¼¼ false then
10 D1 ¼ COUNTINGðP; x; hp; hkÞ;
11 b ¼ true;
12 else
13 D2 ¼ COUNTINGðP; x; hp; hkÞ;
14 ifmaxc2DjD1½c� �D2½c�j > Dq

x then
15 return UNSAT

16 return SAT;
17 Function COUNTINGðP; x; hp; hkÞ
18 forall hr : RVarðEðxÞÞ ! D do
19 c ¼ the value of EðxÞ under hp, hk and hr;
20 D½c�++;
21 returnD;

984 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

stored as an arrayD1 (resp.D2) in which each entity indexed
by c is the number of assignments hr of random variables
such that the full computation EðxÞ evaluates to c under hp, hk
and hr (resp. hp, h

0
k and hr). Oncemaxc2DjD1½c� �D2½c�j > Dq

x

holds, we can deduce that QMSx � q does not hold.

Theorem 3. Given a program P , for every variable x of Pinlined,
QMSx � q iff BFENUMðPinlined; x; qÞ returns SAT.

The complexity of Algorithm 1 is exponential in the num-
ber of (bits of) variables in EðxÞ, so it would experience sig-
nificant performance degradation when facing a large
number of variables.

4.2.2 SMT-Based Method

The SMT-based method is a generalization of the one pro-
posed by Eldib et al. [49], [50] from the Boolean setting to
the arithmetic one.

For a given variable x, a valuation s 2 Q and a constant
c 2 D, we denote by]ðc ¼ ½½x��sÞ the number of assignments
of random variables under which the full computation
EðxÞðsÞ evaluates to c. Then, checking whether QMSx � q can
be reduced to checking the unsatisfiability of the following
model-counting constraint

9c 2 D:9s1; s2 2 Q2
Xp
:
�
]ðc ¼ ½½x��s1Þ �]ðc ¼ ½½x��s2Þ

�
> Dq

x;
(1)

where Dq
x ¼ ð1� qÞ � 2m, andm is the number of bits of ran-

dom variables in EðxÞ. Indeed,

QMSx � q holds
iff

1�maxðs1;s2Þ2Q2
Xp

;c2Dð½½x��s1ðcÞ � ½½x��s2ðcÞÞ � q holds

iff
maxðs1;s2Þ2Q2

Xp
;c2Dð½½x��s1ðcÞ � ½½x��s2ðcÞÞ
 1� q holds

iff
maxðs1;s2Þ2Q2

Xp
;c2D

�
]ðc ¼ ½½x��s1Þ �]ðc ¼ ½½x��s2Þ

�

 Dq

x holds

iff
Eqn. (1) does not hold:

Furthermore, Eqn. (1) can be encoded as a (quantifier-
free) first-order formula Cq

x to be solved by an off-the-shelf
SMT solver such as Z3 [47]

Cq
x :¼

^
f:RVarðEðxÞÞ!D

ðQf ^Q0
fÞ

0
@

1
A ^Qb2i ^Q0

b2i ^Qq
diff;

where

� Program logic (Qf and Q0
f). For every assignment of

random variables f : RVarðEðxÞÞ ! D, the logical
formula Qf encodes the computation EðxÞ in the way
that each occurrence of a random variable
r 2 RVarðEðxÞÞ is instantiated by its concrete value
fðrÞ and asserts that the value of EðxÞ equals to a
fresh variable cf .

Q0
f is similar to Qf with the exception that cf and

variables k 2 Xk are replaced by fresh variables c0f
and k0 respectively.

Note that there are jDjjRVarðEðxÞÞj distinct copies of
Qf (resp. Q0

f) that share the same variables from Xp

andXk.

� Boolean to integer (Qb2i and Q0
b2i). The logical formula

Qb2i asserts that for each assignment of random varia-
bles f : RVarðEðxÞÞ ! D, a fresh integer variable If is
1 if c ¼ cf , and 0 otherwise. In this way, we can count
the number of assignments of random variables under
which EðxÞ evaluates to c by accumulating If ’s. For-
mally

Qb2i :¼
^

f :RVarðEðxÞÞ!D

If ¼ ðc ¼ cfÞ ? 1 : 0:

Q0
b2i is similar to Qb2i except that If and cf are

replaced by I 0f and c0f respectively.
� Different sums (Qq

diff).Q
q
diff asserts that the difference

between the number of assignments of random vari-
ables under which the computations EðxÞ and EðxÞ0
evaluate to c is greater than Dq

x, where EðxÞ0 denotes
the computation EðxÞ in which the private variables
k are replaced by k0. Formally

Qq
diff :¼

X
f:RVarðEðxÞÞ!D

If �
X

f:RVarðEðxÞÞ!D

I 0f > Dq
x:

Theorem 4. QMSx � q iff Cq
x is unsatisfiable, where C

q
x is poly-

nomial in size of EðxÞ and exponential in jRVarðEðxÞÞj and jDj.

Example 3. To illustrate the SMT-encoding, consider the
program SecExp3 (shown in Fig. 7), which is a fragment
of P 254

inlined. Given a private input k, it returns two shares
ðx7; x9Þ such that x7 � x9 ¼ k3. This program is made
buggy for the illustration purpose: the procedure call
RefreshMasksðz0; z1Þ at call-site 24 in P 254 is removed.

For each variable xi, by applying the type system, we
can deduce:

‘ EðxÞ : tuf; ‘ Eðx0Þ : tsi; ‘ Eðx1Þ : tsi;
‘ Eðx2Þ : tuk; ‘ Eðx3Þ : tuk; ‘ Eðx4Þ : tuf;
‘ Eðx5Þ : tuf; ‘ Eðx6Þ : tuk; ‘ Eðx7Þ : tuf;
‘ Eðx8Þ : tsi; ‘ Eðx9Þ : tuf:

There are only three full computations (of x2; x3 and
x6) whose distribution types are unknown. Suppose

Fig. 7. SecExp3: A fragment of SecExp254.

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 985

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

D ¼ f0; 1; 2; 3g, thenCq
x2

is

c0 ¼ ððk� 0Þ
 ðk� 0ÞÞ
 0 ^
c00 ¼ ððk0 � 0Þ
 ðk� 0ÞÞ
 0 ^
c1 ¼ ððk� 1Þ
 ðk� 1ÞÞ
 1 ^
c01 ¼ ððk0 � 1Þ
 ðk� 1ÞÞ
 1 ^
c2 ¼ ððk� 2Þ
 ðk� 2ÞÞ
 2 ^
c02 ¼ ððk0 � 2Þ
 ðk� 2ÞÞ
 2 ^
c3 ¼ ððk� 3Þ
 ðk� 3ÞÞ
 3 ^
c03 ¼ ððk0 � 3Þ
 ðk� 3ÞÞ
 3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

^

I0 ¼ ðc ¼ c0Þ ? 1 : 0 ^
I1 ¼ ðc ¼ c1Þ ? 1 : 0 ^
I2 ¼ ðc ¼ c2Þ ? 1 : 0 ^
I3 ¼ ðc ¼ c3Þ ? 1 : 0

0
BBB@

1
CCCA

^

I 00 ¼ ðc ¼ c00Þ ? 1 : 0 ^
I 01 ¼ ðc ¼ c01Þ ? 1 : 0 ^
I 02 ¼ ðc ¼ c02Þ ? 1 : 0 ^
I 03 ¼ ðc ¼ c03Þ ? 1 : 0

0
BBB@

1
CCCA

^

ðI0 þ I1 þ I2 þ I3Þ � ðI 00 þ I 01 þ I 02 þ I 03Þ > ð1� qÞ � 22
� �

:

The formula C1
x2

(i.e., q ¼ 1) is satisfiable, so we con-
clude that x2 is leaky. We can also conclude that x6 is per-
fectly masked, while x3 is leaky. This cannot be done by
type systems in literature.

4.3 Domain Specific Heuristics

We provide in this subsection three heuristics to facilitate
both type inference and model-counting based reasoning.

4.3.1 Ineffective Variable Elimination

In cryptographic programs, masking and de-masking are
mixed during computations. The values of some random
variables in a computation may become ineffective (see
below for formal definition) after de-masking, then these
variables can be instantiated by any concrete values without
changing the distribution of the computation, but can facili-
tate both type inference and model-counting based reason-
ing. Based on this observation, we present an algorithm to
identify and eliminate such kind of variables.

Given a partial computation e that does not contain any
procedure calls, a random variable r 2 RVarðeÞ is ineffective
in e if e and e½c=r� are equivalent for any c 2 D while e½c=r�
contains less variables, where e½c=r� is obtained from e by
instantiated r with c. Otherwise, we say r is effective in e. We
denote by InEffRðeÞ and EffRðeÞ the sets of ineffective and
effective random variables in e, respectively.

A naive approach for computing all the effective varia-
bles of e is iteratively invoking a SAT solver for checking
whether e 6¼ e½c=x� is satisfiable or not for some constant
c 2 D, for each random variable x 2 RVarðeÞ, as e 6¼ e½c=x� is
satisfiable iff the variable x is effective in the computation e.
However, this approach needs to invoke SAT solvers at
least jRVarðeÞj times. (Recall that the satisfiability problem
of propositional formulae is NP-complete.) In order to
improve the efficiency in practical applications, we use an
alternative, simple approach: once it is known that x is an

ineffective variable (i.e., x 2 InEffRðeÞ) in the computation e,
we immediately replace the variable x by some concrete
value c 2 D and simplify the resulting computation e½c=x�
by algebraic laws. Here, rather than choosing a concrete
value c 2 D for the variable x randomly, we choose a spe-
cific value c based on the syntactic structure of the computa-
tion e, so that the computation e can be simplified as much
as possible. The basic idea is that if a variable x is an ineffec-
tive variable in a computation e and the computation x � e0
is a sub-expression therein for some � 2 f^;
;�;	;�g,
then it gains to replace the variable x by the value 0, as 0 � e0
resulting in the constant 0which can be used to simplify the
computation e further. Similarly, replacing the variable x by
the value ~1 (note that ~1 :¼ 1n) can simplify x _ e0 into the
constant ~1, and replacing x by 0 simplifying x � e0 for
� 2 f�;þg into e0. In practice, several sub-expressions may
co-exist. Our strategy is then to instantiate the variable x
based on the number of such sub-expressions: If the compu-
tation e contains more sub-expressions of the form x � e0
and e0 � x (� 2 f^;
;�;	;�;�;þg) than those of the form
x _ e0 and e0 _ x, we instantiate the variable x by the value 0,
otherwise by the value~1.

Algorithm 2 presents the pseudo-code, where SubðeÞ
denotes the set of all the sub-expressions in e, and
Sub�xðeÞ for every operator � and variable x denotes the set
of sub-expressions fe0 2 SubðeÞ j e0 is in the form of x � e1 or
x � e1 for some expression e1g. Given a computation e that

Algorithm 2. Simplifying Expression

1 Function SIMPLIFYðeÞ
2 if e is :e0 then
3 return :SIMPLIFYðe0Þ;
4 if e is e1 � e2 then
5 e ¼ SIMPLIFYðe1Þ� SIMPLIFYðe2Þ;
6 forall r 2 RVarðeÞ do
7 if SATðe 6¼ e½0=r�Þ==No then
8 if

P
�2f^;
;�;	;�;�;þg jSub

�
rðeÞj � jSub_r ðeÞj then

9 e ¼MUTATEðe; r; 0Þ;
10 else
11 e ¼MUTATEðe; r;~1Þ;
12 return e;
13 FunctionMUTATEðe; r; cÞ
14 forall e1 2

S
�2f�;þgSub

�
rðeÞwith e1 as r � e2 or e2 � r do

15 e ¼ ðc ¼~1Þ ? e½ð~1 � e2Þ=e1� : e½e2=e1� ;
16 forall e1 2

S
�2f^;�;
;	;�gSub

�
rðeÞwith e1 as r � e2 or

e2 � r do
17 if c ¼¼ 0 then
18 e ¼MUTATEðe½r=e1�; r; 0Þ;
19 else
20 e ¼ e½ð~1 � e2Þ=e1�;
21 forall e1 2 Sub_r ðeÞwith e1 as r _ e2 or e2 _ r do

22 if c ¼¼~1 then
23 e ¼MUTATEðe½r=e1�; r;~1Þ;
24 else
25 e ¼ e½e2=e1�;
26 if :x 2 SubðeÞ then
27 e ¼MUTATEðe½rnew=ð:rÞ�; xnew;:cÞ;
28 e ¼ e½c=r�;
29 return e;

986 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

does not contain any procedure calls, SIMPLIFYðeÞ computes
an equivalent but simpler computation e0 with RVarðe0Þ ¼
EffRðeÞ. In detail, if e is in the form of :e0, SIMPLIFY returns
:SIMPLIFYðe0Þ (Line 3). Otherwise if e is in the form of e1 � e2,
then we replace the sub-expression ei by SIMPLIFYðeiÞ for
i 2 f1; 2g (Line 5). In our implementation, in order to reduce
the number of calls to SAT/SMT solvers, we adopt a lazy
strategy, i.e., we replace the computation ei by SIMPLIFYðeiÞ
only if it has been computed. As a result, each random vari-
able x 2 RVarðeÞ is checked at most once by verifying
whether the logical formula ðe 6¼ e½0=x�Þ is satisfiable or not
(Line 7). If it is not satisfiable (i.e., SATðe 6¼ e½0=x�Þ=No in
Algorithm 2), x 2 InEffRðeÞ and we then invoke the function
MUTATE (Lines 9 and 11).

MUTATE ðe; x; cÞ mutates e according to the concrete value
c of the variable x using algebraic laws, where e½e2=e1�
denotes the computation obtained from e by replacing all
the occurrences of e1 with e2. It is easy to verify that:

Theorem 5. For every computation e that does not contain
any procedure calls, SIMPLIFYðeÞ is equivalent to e and
RVarðSIMPLIFYðeÞÞ ¼ EffRðeÞ. Moreover, SIMPLIFYðeÞ invokes
SAT solvers at most RVarðeÞ times.

Example 4. For instance, r is not a dominant variable in
ðr� yÞ � r, but is ineffective. Therefore, ðr� yÞ � r can be
simplified into ð0� yÞ � 0 by instantiating r with 0.
ð0� yÞ � 0 is further simplified into y by algebraic laws.

Remark that in Algorithm 2 we do not count the number
of computations of the form :x � e when choosing concrete
values, and we only check random variables. This is
because: (1) negation rarely occurs in masked programs
according to benchmarks we found; (2) some of the random
variables may become ineffective after de-masking while
this is rarely the case for other (non-random) variables.
Reducing the number of random variables gains most
because our SMT-based method constructs logic formulae
whose sizes are exponential in the number of bits of random
variables (cf. Section 4.2).

Besides computing EffRðeÞ, the function SIMPLIFYðeÞ can
also simplify e. It is complementary to the two heuristic
rules: rule (Conv) of Barthe et al. [35] and elementary circuit
transformations of Coron [39].

4.3.2 Dominated Subexpression Elimination

Recall that if r is a dominant (random) variable of a compu-
tation e, then the distribution of the values of EðxÞinlinedðsÞ
is uniform for all possible assignments s of formal argu-
ments and variables in EðxÞinlined (cf. Proposition 1 and
Proposition 2 (1)). This means that e can be safely regarded
as a random variable r. Based on this observation, for any
partial computation e0 that contains e, we can regard e as a
random variable r when evaluating e0 if r does not appear
in e0½r=e�. In other words, if e is an r-dominated partial com-
putation in e0 and the variable r does not occur in e0½r=e�, we
can safely reason on e0½r=e� instead of e0.

For a given partial computation e, we denote by be the com-
putation obtained by iteratively applying ineffective variable
and dominated subexpression eliminations on the computa-
tion e. Note that ineffective variable elimination can be
applied only if e does not contain any procedure calls.

Lemma 3. For any variable x in the program P , EðxÞinlinedðsÞ
and dEðxÞinlinedðsÞ have the same distribution for any assign-

ment s of variables and formal arguments in EðxÞinlined.

Example 5. Let us consider the variable x6 in the pro-
gram shown in Fig. 7, where ‘ Eðx6Þ : tuk and Eðx6Þ ¼
ððk� r0Þ
 ðk� r0ÞÞ
 ðk� r0Þ. It is easy to see that
ðk� r0Þ is r0-dominated computation of Eðx6Þ. Therefore,
Eðx6Þ can be simplified into dEðx6Þ ¼ r0
 r0
 r0. Conse-
quently, we can deduce that ‘ Eðx6Þ : tsi by applying rule
(NOKEY) on dEðx6Þ. This avoids to invoke the expensive
model-counting methods.

We also leverage dominated subexpression elimination
to handle variables that are return values of function
calls. Recall that for each variable xi which is defined
by xi ¼ fðy1; . . . ; ymÞ½i�@‘; for some 1
 i
 k after proce-
dure inlining, we regard the partial computation EðxiÞ
(without inlining) as a special computation such that
RVarðEðxiÞÞ ¼ fr@‘ j r 2 RVarðEðziÞÞg [RA. For each com-
putation e that uses xi, when reasoning on the computation
e, RVarðEðxiÞÞ will be refined to the set DomðEðxiÞÞ if
DomðEðxiÞÞ \ RVarðe½x0

i=xi�Þ ¼ ;, where x0
i denotes a fresh

variable. Similarly, to check whether DomðeÞ n RVarðe0Þ 6¼ ;
and/or RVarðeÞ \ RVarðe0Þ ¼ ;, RVarðEðxiÞÞ will be refined
to the set DomðEðxiÞÞ if DomðEðxiÞÞ \ RVarðe½x0

i=xi�Þ ¼ ;
and DomðEðxiÞÞ \ RVarðe0½x0

i=xi�Þ ¼ ;.

Example 6. Let us consider the procedure SecExp254 in our
running example. Since z10 in the partial computation
Eðz12Þ ¼ z1610 is a return value of the procedure call at the
call-site 29 and DomðEðz10ÞÞ ¼ fr0@29g, RVarðEðz10ÞÞ ¼
fr0@29; r0@25; r1@24; r1@28g can be refined to the set
RVarðEðz10ÞÞ ¼ fr0@29g. Since r1@28 2 DomðEðz8ÞÞ, we
have that DomðEðz8ÞÞ n RVarðEðz12ÞÞ 6¼ ;, hence SecMult
ðz12; z13; z8; z9Þ satisfies the formula Domðb0Þ n RVarða0Þ 6¼ ;,
which is a conjunct of the annotation c1 of the procedure
SecMult.

4.3.3 Transformation Oracle

In order to utilize human knowledge of cryptographic pro-
grams which can facilitate both type inference and model-
counting based reasoning, we provide a mechanism called
transformation oracle. The transformation oracle V is a set
of 3-tuples of the form ðe; r; 1Þ and ðe1; e2; 0Þ such that

� if ðe; r; 1Þ 2 V, then for every partial computation e0

containing e and random variable r does not occur in
e0½r=e�, e in e0 can be replaced by r;

� if ðe1; e2; 0Þ 2 V, then for every partial computation e0

containing e1, all the occurrences of e1 in e0 can be
safely replaced by the partial computation e2.

For instance, the tuple ðr� ðð2� rÞ ^ eÞ; r; 1Þ is used in
our experiments.

For a given transformation oracle V and a partial compu-
tation e0, we denote by Vðe0Þ the resulting computation after
applying the transformation oracle V on e0 when it is
applicable.

4.4 Overall Algorithms

In this subsection, we present the overall algorithm for veri-
fying perfect masking and computing QMS values, by

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 987

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

leveraging the three key techniques presented in the preced-
ing three subsections.

We denote by ½½e��F a pair ðt; cxtÞ consisting of the distri-
bution type t of the computation e obtained by type infer-
ence without using rule (INLINE) and cxt is a flag indicating

whether the assumption F is used during type inference
(cxt being set True means F is used). Rule (INLINE) is used in
an on-demand fashion. We also denote by MCSolverðe; qÞ
the procedure of model-counting (cf. Section 4.2) which
returns SAT if QMSx � q for e ¼ EðxÞ.

4.4.1 Algorithm for Perfect Masking Verification

Fix a non-recursive program P which uses the sets of public
(Xp) and private (Xk) input variables. The overall procedure
for perfect masking verification is shown in Algorithm 3.

We use the following data structures: Ylk is a set storing
all the internal variables of Pinlined that are leaky, �t is a
map that labels each variable with its distribution type, �exp

is a map that records the computation of each internal vari-

able, Y f
cxt � Xf stores the variables whose distribution types

are tsi or tuf under the assumption Ff , and Y f
ukd � Xf stores

the variables whose distribution types are tuk.
The function PMCHECKING (in Algorithm 3) checks

whether P is perfectly masked. After initialization (Lines 2
and 3), it checks each procedure in a reverse topological
order of the call graph of P by invoking the function CHECK-

PROC (Line 5). Recalling that P is non-recursive, reverse
topological order ensures that all the called procedures in f
have been verified when checking the procedure f .

The function CHECKPROC infers the distribution types of
internal variables of the given procedure f . It first initializes
the set Todo storing the internal variables whose computa-
tions should be verified (Line 8). Then, it iteratively traver-
ses statements in the procedure f (Line 9). For each
statement s, it works as follows. (Note that if s is in the form
of r ¼ $, then r is a random variable and must have type tuf,
hence such statements are skipped.)

1) If s is in the form of x ¼ e and x 2 Todo (Line 10),
then the partial computation EðxÞ is constructed and
stored in �exp (Line 11). It first applies the type sys-
tem to infer its distribution type by invoking the
function CHECKEXPR (Line 12), which returns a pair
ðt; cxtÞ, where t denotes the distribution type of
�expðxÞ and cxt is a flag indicating whether the
assumption Ff is used or not during type inference.
a) If the type of �expðxÞ is not tuk (Line 13), then the

type of x is recorded in �t (Line 16). Moreover, if
the assumption Ff is used during type inference,
then x is added into the set Y f

cxt (Line 15) which
will be verified again when a procedure call to f
does not satisfy the assumption Ff . In other
words, variables that can be proved having type
tsi or tuf or tlk without using the assumption Ff

will not be verified again even if Ff is not satis-
fied by procedure calls to f .

b) If �expðxÞ has type tuk and contains a procedure
call at the call-site ‘ (Line 17), then �expðxÞ is
updated by inlining the procedure call at ‘ (Line
19) and continues inferring distribution type
�expðxÞ, i.e., step 1).

3) If �expðxÞ has type tuk and does not contain any
procedure call and f is not the main procedure
(Lines 26–27), x is added into the set Y f

ukd (Line
28) which will be verified again when the proce-
dure f is inlined no matter the assumption Ff is
satisfied or not.

Algorithm 3. Perfect Masking Verification

1 Function PMCHECKINGðP;Xp;Xk;VÞ
2 Ylk ¼ ;; �t ¼ �exp ¼emptymap;
3 Y f

cxt ¼ Y f
ukd ¼ ; for each procedure f of P ;

4 foreach procedure f of P in a reverse topological order of the
call graph P do

5 CHECKPROCðfÞ;
6 return Ylk;
7 Function CHECKPROCðfÞ
8 Todo ¼ Xf nXf

r ;
9 foreach statement s of f from the first to the last do
10 if s is x ¼ e and x 2 Todo then
11 �expðxÞ ¼ EðxÞ;
12 ðt; cxtÞ ¼ CHECKEXPRð�exp; x;FfÞ;
13 if t 6¼ tuk then
14 if cxt ¼¼ True then
15 Y f

cxt ¼ Y f
cxt [fxg;

16 �tðxÞ ¼ t;
17 else if �expðxÞ contains a procedure call at the call-site

‘ then
18 while �expðxÞ contains a procedure call at the call-site

‘ do
19 �expðxÞ ¼ inlineð�expðxÞ; ‘Þ;
20 ðt; cxtÞ ¼ CHECKEXPRð�exp; x;FfÞ;
21 if t 6¼ tuk then
22 if cxt ¼¼ True then
23 Y f

cxt ¼ Y f
cxt [fxg;

24 �tðxÞ ¼ t;
25 break;
26 if t ¼¼ tuk then
27 if f 6¼ main then
28 Y f

ukd ¼ Y f
ukd [fxg;

29 else
30 ifMCSolverð�expðxÞ; 1Þ 6¼SAT then
31 Ylk ¼ Ylk [fxg;
32 �tðxÞ ¼ tlk;
33 else �tðxÞ ¼ tsi;
34 else if s is x1; . . . ; xk ¼ gðy1; . . . ; ymÞ at ‘ then
35 if gðy1; . . . ; ymÞ � Fg then
36 if Y g

ukd 6¼ ; then
37 Todo ¼ Todo [fy@‘ j y 2 Y g

ukdg;
38 f ¼ inlineðf; ‘Þ;
39 else
40 Todo ¼ Todo [fy@‘ j y 2 Y g

cxt [Y g
ukdg;

41 f ¼ inlineðf; ‘Þ;
42 return;
43 Function CHECKEXPR(�; x;F)
44 if ½½�ðxÞ��F½0� 2 ftsi; tuf; tlkg then
45 return ½½�ðxÞ��F;
46 �ðxÞ ¼ d�ðxÞ;
47 if ½½�ðxÞ��F½0� 2 ftsi; tuf; tlkg then
48 return ½½�ðxÞ��F;
49 if 9Vð�ðxÞÞ : ½½Vð�ðxÞÞ��F½0� 2 ftsi; tuf; tlkg then
50 return ½½Vð�ðxÞÞ��F;
51 return ðtuk; TrueÞ;

988 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

4) If �expðxÞ has type tuk and does not contain any
procedure call and f is the main procedure (Line
29), then we apply the model-counting based
methods by invoking MCSolverð�expðxÞ; 1Þ (Line
30). There are two possible outcomes: �expðxÞ is
tsi or tlk. The type is also stored in �t (Lines 32
and 33). Moreover, if the type is tlk, then x is
added into Ylk, i.e., x is leaky. The update of the
type of �expðxÞ might facilitate the type inference
for fan-out computations of x.

2) If s is a procedure call x1; . . . ; xk ¼ gðy1; . . . ; ymÞ at
call-site ‘ (Line 34), then it checks whether the proce-
dure call gðy1; . . . ; ymÞ satisfies the assumption Fg.
a) If gðy1; . . . ; ymÞ satisfies Fg and Y g

ukd is nonempty
(Lines 35–36), then the procedure call at ‘ is
inlined and the variables y@‘ for y 2 Y g

ukd are
added into Todo for rechecking (Line 37). We
emphasize that when gðy1; . . . ; ymÞ satisfies Fg

and Y g
ukd is empty, the whole procedure call

x1; . . . ; xk ¼ gðy1; . . . ; ymÞ can be skipped without
inlining, as the distribution types of variables
y@‘ and y are the same for each y 2 Xg.

b) If gðy1; . . . ; ymÞ does not satisfy Fg (Line 39), the
procedure call x1; . . . ; xk ¼ gðy1; . . . ; ymÞ at ‘ is
inlined and the variables y@‘ for y 2 Y g

ukd [Y g
cxt

are added into Todo for rechecking (Line 40).
Note that variables y 2 Xg n ðY g

ukd [Y g
cxtÞ are not

added into Todo, as the distribution types of their
computations can be inferred without using the
assumption Fg.

To check whether a procedure call gðy1; . . . ; ymÞ satisfies
the assumption Fg in Algorithm 3, we iteratively
check whether the procedure call gðy1; . . . ; ymÞ satisfies
some formula c 2 Fg, which is done by iteratively checking
each conjunct of c according to the satisfaction rela-
tion defined in Section 4.1.3. To check gðy1; . . . ; ymÞ �
DomðaiÞ n RVarðajÞ 6¼ ; and/or gðy1; . . . ; ymÞ � RVarðaiÞ \
RVarðajÞ ¼ ;. we leverage Proposition 2 which may allow
to get the conclusive result without constructing (cf.
Section 4.1.6).

Theorem 6. Given a non-recursive program P , by Algorithm 3,
Ylk ¼ ; iff P is perfectly masked. Moreover, if x@‘k � � �@‘1 2
Ylk, then the internal variable x@‘k � � �@‘1 is leaky, where
‘1; . . . ; ‘k is the sequence of call-sites to reach the procedure
that contains x.

By disabling model-counting in Algorithm 3 and inter-
preting all tuk-typed variables as potentially flaws, Algo-
rithm 3 degenerates to a sound type inference procedure,
which is fast and potentially more accurate than those
in [35], [43], [60], [61], owing to the heuristics introduced in
Section 4.3 and the type system supporting compositional
reasoning.

4.4.2 Algorithm for QMS Computing

To quantify resistance of a program, we present a binary
search based function QMSCOMPUTING (in Algorithm 4) to
compute QMS values. QMSCOMPUTING first invokes the func-
tion PMCHECKING (in Algorithm 3) to perform perfect mask-
ing verification (Line 2). Then, it checks for each variable

x 2 Leakpoints. For each variable x 2 Leakpoints whose
computation �expðxÞ does not contain any random variable,
we directly deduce that QMSx ¼ 0 (Line 5). Otherwise if
�expðxÞ contains some random variables, we use either the
brute-force method or an SMT-based binary search to com-
pute QMSx based on the following observation:

QMSx ¼ i

2n�jRVarð�expðxÞÞj
; for some 0
 i
 2n�jRVarð�expðxÞÞj:

The while-loop in Algorithm 4 (Lines 9–15) executes at
most Oðn� jRVarð�expðxÞÞjÞ times for each x, hence Algo-
rithm 4 always terminates.

5 IMPLEMENTATION AND EVALUATION

We have implemented our approach in a verification tool
QMVERIF, which uses Z3 [47] as the underlying SMT
solver with fixed size bit-vector theory. We conduct
experiments on both Boolean and arithmetic programs
including various implementations of full AES, DES and
MAC-Keccak.

The experiments are designed to answer the following
research questions (RQs):

RQ1. How effective and efficient is the type inference algo-
rithm on arithmetic programs with procedure calls?

RQ2. How is the overall approach performed on arithme-
tic programs (without procedure calls), compared
with EasyCrypt [35]?

RQ3. How is the overall approach performed on Boolean
programs (without procedure calls), compared with
state-of-the-art tools QMSINFER [44], SC Sniffer [42],
[50] and maskVerif [37]?

In all experiments, we used a machine with Intel Xeon
E5-2690v4 2.6 GHz CPU, 64-bit Ubuntu 16.04.4 LTS operat-
ing system, and 256 GB RAM (only one core is used in our
computation).

Algorithm 4. Computing QMS

1 Function QMSCOMPUTING(P;Xp;Xk;V)
2 Leakpoints ¼ PMCHECKING(P;Xp;Xk;V);
3 foreach x 2 Leakpoints do
4 if RVarð�expðxÞÞ ¼¼ ; then
5 QMSx ¼ 0;
6 else
7 low ¼ 0;
8 high ¼ max ¼ 2n�jRVarð�expðxÞÞj;
9 while low < high do
10 mid ¼ dlowþhigh

2 e;
11 q ¼ mid

max
;

12 ifMCSolverð�expðxÞ; qÞ 6¼SAT then
13 high :¼ mid� 1
14 else
15 low ¼ mid;
16 QMSx ¼ low

max
;

17 return;

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 989

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

5.1 RQ1: Experiments on Arithmetic Programs With
Procedure Calls

To address RQ1, we implemented 10 versions of Sbox based
on the algorithm in [33] by varying the underlying sub-
procedures as shown in Table 1. Column 1 gives the bench-
mark name. Columns 2-3 show the masking order (note that
we only verify first-order even for second-order bench-
marks). Columns 4-5 show the two variants of Refresh func-
tions: where the first one is addition-based mask refreshing
algorithm from [28], and the second one is a multiplication-
based mask refreshing algorithm from [14]. Columns 6-7
show the two variants of SecMult functions, where the first
one is a SecMult algorithm with Oðn2) memory from [28]
and the second one is the improvement of the first which is a
linear memory algorithm proposed in [62]. Columns 8-9
show the two Power254 functions, where the first one is
from [28] which needs mask refreshing and the second is
from [33] which does not needmask refreshing.

We also implemented 10 versions of AES based on the
algorithm in [28] by varying the underlying Sbox imple-
mentations and 4 versions of DES based on the existing
implementations,1 where AESi uses the Sboxi from Table 1,
DES1 is a countermeasure with the Parity-Split method of
Sbox computation which requires 10 non-linear multiplica-
tions from [63], DES2 is an improved method from [64]
which requires only 4 non-linear multiplications, DES3 is
based on the table recomputation [62], and DES4 [65] is a
variant of, but twice as efficient as, DES3.

We verify these benchmarks using Algorithm 3 (i.e., per-
fect masking verification under the HW model), but exclud-
ing the model-counting methods. In order to gain insights
on the assume-guarantee based compositional reasoning,
we conduct experiments under four different settings:

1) Pre-inlined: all the procedure calls are inlined in
advance;

2) No-assumption: all the procedures are only anno-
tated by >, but are inlined on-demand;

3) One-assumption: all the procedures of AES except
for SecMult and all the procedures of DES except for
Sbox are annotated by >, but are inlined on-demand;

4) All-assumptions: all the procedures are annotated by
well-designed assumptions.

Results. The experimental results are reported in Table 2,
where Columns 2-4 (resp. Columns 5-7, Columns 8-10 and
Columns 11-13) show the number of internal variables
that have been checked (note that variables of the form
x@‘k � � �@‘1 that appear after procedure inlining are
regarded as new internal variables instead of the variable x),
the running time of verification (in second), and the number
of times procedure inlining was performed. Note that the
“No-assumption” setting corresponds to the type system
proposed in the preliminary version of this paper [1].

Overall, our type inference algorithm is highly effective
and efficient on programs with annotated assumptions.
All the programs of AES can be proved secure in less than
1 second and all the programs of DES can be proved secure
in less than 4 minutes (3 out of 4 were done in less
than 15 seconds). By comparing Columns 2-4 with Columns
11-13, we observe that the compositional reasoning signifi-
cantly reduces the number of times procedure inlining was
performed, hence reducing the number of internal variables
that have to be checked, and verification time (on AES
family of programs, there are 3-4 orders of magnitude
reductions).

We can also observe from Columns 5-10 that at large our
type inference algorithm is also effective on large programs
(AES1–AES10 and DES1–DES4) that do not have any
assumptions or have only one procedure annotated with
assumption. (Some exceptions include DES3 and DES4
under the “No-assumption” setting, the reason of which
will be explained below.) This demonstrates the significance
of on-demand procedure inlining.

One may notice that the effectiveness and efficiency vary
in benchmarks under different settings, namely, (1) the
assumption of SecMult does not reduce the number of pro-
cedure inlines on Sbox3, Sbox4, Sbox9, Sbox10, AES3, AES4,
AES9 and AES10, compared with the “No-assumption”
setting, but it does reduce the number of procedure inlines
on the other Sbox and AES benchmarks; (2) the verification
time on DES3 and DES4 under “No-assumption” setting is
greater than the one under “Pre-lined” setting although the
number of procedure inlines is reduced; and (3) the number
of procedure inlines on DES1–DES4 under the “All-
assumptions” setting is greater than the one under the “No-
assumption” and “One-assumption” settings, but the verifi-
cation time is reduced.

To explain this observation, an in-depth analysis reveals
that: For observation (1), all the benchmarks Sbox3, Sbox4,
Sbox9, Sbox10, AES3, AES4, AES9 and AES10 use the
Power254 procedure in Sbox (cf. Table 1), while there are
some tuk-typed variables in Power254, which are not
resolved after inlining the procedure calls to Power254 in
Sbox. These tuk-typed variables are proved secure eventu-
ally in the main procedure. Consequently, these tuk-typed
variables have to be checked multiple times. This problem
is avoided when more procedure assumptions are pro-
vided, as shown under the “All-assumptions” setting.
Observation (2) follows similar explanation as in observa-
tion (1). For observation (3), each procedure call is inlined
only once under the “Pre-inlined” setting, while some pro-
cedure calls may be inlined multiple times under the other

TABLE 1
Variant Versions of Sbox Implementations, Where column Order

Denotes the Masking Order, Column Refresh Denotes the
Procedure Refresh, Column SecMult Denotes the Procedure
SecMult, Column Power254 Denotes the Procedure Power254

Order Refresh SecMult Power254

1st 2nd [28] [14] [28] [62] [28] [33]

Sbox1 @ @ @ @
Sbox2 @ @ @ @
Sbox3 @ @ @
Sbox4 @ @ @
Sbox5 @ @ @ @
Sbox6 @ @ @ @
Sbox7 @ @ @ @
Sbox8 @ @ @ @
Sbox9 @ @ @
Sbox10 @ @ @

1. [Online.] Available: https://github.com/coron/htable.

990 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

[Online.] Available: https://github.com/coron/htable

settings. For instance, consider an internal variable x whose
partial computation EðxÞ relies upon some return values of
several procedure calls to f , while the partial computation
of these return values also relies upon the return values of
another procedure call g. In this case, the same procedure
call to g will be inlined once for each procedure call to f ,
resulting in multiple times of procedure inlines in partial
computations. This limitation could be avoided by directly
inlining the procedure calls in procedures instead of partial
computations. We do not use this strategy, as we found that
the verification time mainly depends on the number of
internal variables to be checked rather than the number of
procedure inlines. Moreover, inlining some procedure calls
may be unnecessary and could increase the size of partial
computations.

5.2 RQ2: Experiments on Arithmetic Programs
Without Procedure Calls

To address RQ2, we use the first-order masked arithmetic
programs provided by the authors of [35], which are secure
multiplication (SecMult) [28], Sbox [28], [33], full AES [33],
full MAC-Keccak. In addition, we implemented the conver-
sion algorithms from Boolean to arithmetic maskings
(B2A) [16], [17], [18], [19], conversion algorithms from arith-
metic to Boolean maskings (A2B) [16], [17], and buggy frag-
ments k3; . . . ; k254 of first-order secure exponentiation [28]
without the first RefreshMask function. For all the pro-
grams, we setD ¼ f0; . . . ; 28 � 1g.

We conduct experiments of perfect masking verification
and of computing QMS values, under both the HW and HD
leakage models.

5.2.1 Perfect Masking Verification Under HW Model

The experimental results of perfect masking verification
under the HW leakage model are reported in Table 3.
Column 1 gives the name and reference of the program.
Column 2 shows the ground truth. Column 3 shows the
number of internal variables. Column 4 shows the number
of leaky variables. Column 5 shows the number of variables
for which the model-counting based methods are needed.
Columns 6-7 respectively show the total running time of
our tool QMVERIF using SMT-based and brute-force meth-
ods. For comparison purpose, in Column 11, we replicate
the total running time reported by Barthe et al. [35] on the
common benchmarks, i.e., the first four programs in Table 3.
The machine used there was a headless VMwith a dual core
64-bit processor clocked at 2 GHz (only one core is used in
the computation). Their tool is a type based proof system
which is sound but incomplete. (Remark that, to our knowl-
edge, there is no open-source tool for automatically verify-
ing masking countermeasure of arithmetic programs under
the HW/HD leakage model.)

The experimental results show that: (1) almost all the
internal variables can be proved leakage-free using our type
system; (2) some internal variables cannot be proved leak-
age-free by our type system (e.g., in B2A [16], B2A [18] and

TABLE 2
Results of Perfect Masking Verification Under the HW Leakage Model, Where Pre-InlinedMeans That All the Procedure Calls are
Inlined Before Verification, No-AssumptionMeans That All the Procedures are Only Annotated by >, One-AssumptionMeans That
All the Procedures of AES Except for SecMult and All the Procedures of DES Except for Sbox are Annotated by >, All-Assumptions

Means That All the Procedures are Annotated by Well-Designed Assumptions, Column Name Gives the Benchmark Name,
Columns Labeled by]Checked Give the Number of Internal Variables That are Checked, Columns Labeled by Time(s) Show the

Running Time of Verification in Second, Columns]Inlining Show the Number of Times Procedure Inlining was Performed

Name Pre-inlined No-assumption One-assumption All-assumptions

]Checked Time(s)]Inlining]Checked Time(s)]Inlining]Checked Time(s)]Inlining]Checked Time(s)]Inlining

Sbox1 46 �0 8 47 �0 8 35 �0 4 19 �0 0

Sbox2 50 �0 8 47 �0 8 35 �0 4 19 �0 0

Sbox3 70 �0 6 141 �0 6 141 �0 6 60 �0 4

Sbox4 68 �0 6 141 �0 6 141 �0 6 60 �0 4

Sbox5 110 �0 8 104 �0 8 77 �0 5 42 �0 2

Sbox6 122 �0 8 104 �0 8 77 �0 5 42 �0 2

Sbox7 118 �0 8 116 �0 8 89 �0 5 50 �0 2

Sbox8 130 �0 8 116 �0 8 89 �0 5 50 �0 2

Sbox9 178 �0 6 317 �0 6 317 �0 6 150 �0 3

Sbox10 172 �0 6 317 �0 6 317 �0 6 150 �0 3

AES1 11,142 314.5 2,632 3,678 1.4 362 3,666 0.2 358 2,182 0.1 320

AES2 11,942 196.9 2,632 3,678 1.4 362 3,666 0.3 358 2,183 0.1 320

AES3 15,942 558.6 2,232 6,570 274.1 387 6,570 274.8 387 2,393 0.1 338

AES4 15,542 559.6 2,232 6,570 292.5 387 6,570 293.6 387 2,392 0.1 338

AES5 24,724 2,669.8 2,632 6,501 7.7 362 6,474 0.5 359 4,214 0.4 345

AES6 27,124 3,504.7 2,632 6,501 7.7 362 6,474 0.6 359 4,214 0.4 345

AES7 26,324 2,932.8 2,632 6,991 8.7 362 6,964 0.6 359 4,430 0.5 345
AES8 28,724 3,129.8 2,632 6,991 9.3 362 6,964 0.6 359 4,430 0.5 345

AES9 38,324 2,928.6 2,232 12,823 1,268.1 387 12,823 1,286.3 387 3,786 0.2 338

AES10 37,124 3,064.1 2,232 12,823 1,252.7 387 12,823 1,266.6 387 3,786 0.2 338

DES1 82,304 327.3 6,450 74,507 289.8 458 50,571 257.0 458 38,288 222.4 516

DES2 39,552 81.4 4,914 23,237 26.3 446 16,165 16.6 446 7,748 14.1 549

DES3 248,448 53.6 3,122 157,618 287.3 432 22,450 20.0 432 6,602 7.4 491

DES4 215,680 86.7 3,122 85,681 153.0 432 20,145 18.2 432 6,345 13.4 491

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 991

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

Sbox [27], meaning that the type inference is inconclusive in
these cases), but can be resolved by our model-counting
based methods; (3) on the programs (except B2A [18]) where
the model-counting based methods is needed (i.e.,]Count is
non-zero), the brute-force method is significantly faster than
the SMT-based one. In particular, on programs k15; . . . ; k254,
Z3 crashed with segmentation fault after verifying 12 inter-
nal variables in 93 minutes, while the brute-force method
comfortably returns the results. After a manual examination
of these programs, we found that the computations of
tuk-typed variables (where the brute-force method is more
efficient) involve finite-field multiplication (
), while the
computation of the tuk-typed variable in B2A [28] (where
the SMT-based method is more efficient) only use the exclu-
sive-or (�) operations and one subtraction (�) operation.
This gives an empirical suggestion on which model-count-
ing method should be selected.

One may notice that the verification time (0.2 s) of AES
(4) [33] is significantly shorter than the results in Table 2
under the “Pre-inlined” setting. After an in-depth analysis
of the source code provided by the authors of [35], we found
errors in the implementation of the AddRoundKey procedure
so that many of internal variables can be quickly proved.
We have informed authors of [35].

Compared with the tool of Barthe et al. [35] which also
verified the first four programs, the performance of small
programs SecMult [28] and Sbox (4) [33] is comparable, but
on larger programs AES [33] and MAC-Keccak, our tool is
significantly (4.8 and 64 times) faster than their tool.

It is important to mention that the transformation oracle
is only used for verifying the program A2B [16]. In theory,
model-counting based methods could be able to verify the

program A2B [16], unfortunately, both the SMT-based and
brute-force methods failed to terminate in 3 days. We also
notice that the brute-force method had verified more inter-
nal variables than the SMT-based one. For instance, on the
computation ðð2� r1Þ � ðx� rÞ � r1Þ ^ r where x is a pri-
vate input and r; r1 are random variables, the brute-force
method successfully verified in a few minutes, but the state-
of-the-art SMT solver Z3 could not terminate in 2 days. We
also tried another SMT solver Boolector [66] which is the
winner of SMT-COMP 2018 on QF-BV, Main Track. It also
failed to terminate in 3 days. Undoubtedly more systematic
experiments are required in the future, but our results sug-
gest that, contrary to the common belief, currently SMT-
based approaches are not promising, which calls for more
scalable techniques for domain-specific constraints.

5.2.2 Computing QMS Values Under HW Model

The experimental results of computing QMS values are
reported in Table 3. Column 8 shows the time of the SMT-
based method. Column 9 shows the time of the brute-force
method. Column 10 shows the QMS values of all leaky vari-
ables (note that duplicated values are omitted). We only
reported the time for computing QMS values here, while
the time for perfect masking verification is excluded. We
remark there is no tool for computing QMS values of arith-
metic programs, so no baseline is given there.

The experimental results show that: (1) the brute-force
method is effective in computing QMS values, but it is less
efficient comparing to perfect masking verification: it takes
roughly 64 hours on the programs k15, k240, k252 and k254; (2)
the brute-force method is also more efficient than the

TABLE 3
Results of Perfect Masking Verification and Computing QMS Values on Masked Arithmetic Programs Under the HW Leakage

Model, Where Column Description Gives the Name and Reference of the Program, Column Result Gives the Ground Truth (3 for
Leakage-Free and 7 for the Opposite), Column jXij Denotes the Number of Internal Variables, Column]tlk Denotes the Number of
Leaky Internal Variables, Column]ModelCounting Denotes the Number of Internal Variables Which Need Model-Counting Methods,
Column SMT Denotes the Verification Time Using the SMT-Based Method as the Model-Counting Method, Column B.F. Denotes
the Verification Time Using the Brute-Force Method as the Model-Counting Method, Column Value Shows the QMS Values of All
Leaky Variables (Note That Duplicated Values are Omitted), Column EasyCrypt Replicates the Total Running Time Reported by

Barthe et al. [35], and (12) in Column SMTMeans That Z3 Emits Segmentation Fault After Verifying 12 Internal Variables

Description Result jXij]tlk Perfect Masking Verification QMS EasyCrypt [35]
]ModelCounting SMT B.F. SMT B.F. Value Time

SecMult [28] 3 11 0 0 �0s �0s - - 1 �0s
Sbox (4) [33] 3 66 0 0 �0s �0s - - 1 �0s
AES (4) [33] 3 20,060 0 0 �2s �2s - - 1 128s
MAC-Keccak 3 18,218 0 0 �83s �83s - - 1 405s
B2A [16] 3 8 0 1 17s 2s - - 1
A2B [16] 3 46 0 0 �0s �0s - - 1
B2A [17] 3 82 0 0 �0s �0s - - 1
A2B [17] 3 41 0 0 �0s �0s - - 1
B2A [18] 3 11 0 1 1m 35s 10m 59s - - 1
B2A [19] 3 16 0 0 �0s �0s - - 1
Sbox [28] 3 45 0 0 �0s �0s - - 1
Sbox [27] 7 772 2 1 �0s �0s 0.9s �0s 0
k3 7 11 2 2 96m 59s 0.2s > 4d 32s 0.988
k12 7 15 2 2 101m 34s 0.3s > 4d 27s 0.988
k15 7 21 4 4 93m 27s (12) 28m 17s > 4d �64h 0.988, 0.98
k240 7 23 4 4 93m 27s (12) 30m 9s > 4d �64h 0.988, 0.98
k252 7 31 4 4 93m 27s (12) 32m 58s > 4d �64h 0.988, 0.98
k254 7 39 4 4 93m 27s (12) 30m 9s > 4d �64h 0.988, 0.98

992 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

SMT-based method for computing QMS values; (3) the
SMT-based method is only able to compute the QMS value
of the leaky variable in Sbox [28], but fails for the others
after 4 days. Indeed, Z3 cannot even finish the first iteration
of the binary search on the smallest formula in 4 days. This,
again, indicates the ineffectiveness of current SMT-based
approaches. We manually examine k3; . . . ; k254 programs
and find out that (1) variables used in the computations
EðxÞ of leaky variables x are the same, and (2) the computa-
tions that can be quickly verified contain at most 4 opera-
tions, while the others contain at least 19 operations.

5.2.3 Perfect Masking Verification Under HD Model

In order to conduct experiments under the HD leakage
model, we collect a set of variable pairs for each program.
For each variable pair, we add a dummy variable as dis-
cussed in Section 2.2. The experimental results of QMVERIF

with the brute-force method enabled are reported in Table 4.
Column 1 shows the program under consideration in which
dummy variables are added. Column 2 gives the ground
truth. Columns 3–5 show the numbers of original internal
variables, dummy variables, and the total number of inter-
nal variables. Column 6 is the number of tlk variables. Col-
umn 7 is the number of variables for which the brute-force
method is invoked. Column 8 is the number of variables on
which the verification runs out of time (15 minutes per vari-
able). Column 9 is the total running time of verification.

We can observe that: (1) many programs that are secure
under the HW leakage model are still secure under the HD
leakage model; and (2) almost all the dummy variables can
be solved using type inference, while some dummy varia-
bles do need to invoke the brute-force model-counting
method; (3) some variables cannot be verified in 15 minutes.
We remark that no transformation oracle can be applied on

many dummy variables in A2B [16], which may explain
that the verification of these variables runs out of time.

5.2.4 Computing QMS Values Under HD Model

We conduct experiments of computing QMS values under
the HD model on the modified arithmetic programs from
Section 5.2.3. The experimental results of QMVERIF with the
brute-force method enabled are shown in the last three col-
umns of Table 4, where Column 10 shows the number of
internal variables on which QMVERIF runs out of time for
computing QMS values (15 minutes per variable); Column
11 shows the running time for computing QMS values
excluding the time of perfect masking verification; and Col-
umn 12 shows the minimum one of QMS values.

The experimental results show that (1) QMVERIF is able to
compute the QMS values of most leaky variables under the
HD leakage model; and (2) QMVERIF fails to compute QMS
values in 15 minutes for some leaky variables, due to the
large size of computations (more than 20 operations per
computation).

5.3 RQ3: Experiments on Boolean Programs
Without Procedure Calls

To address RQ3, we collect Boolean programs from the pub-
licly available cryptographic software implementations [41].
There are 17 Boolean programs (P1–P17). We choose the
programs P12–P17, which are the regenerations of MAC-
Keccak reference code submitted to the SHA-3 competition
held by the US National Institute of Standards and Technol-
ogy. (The other programs P1–P11 are relatively small and
can be verified in less than 1 second.)

All the experiments on Boolean Programs are conducted
under the HW leakage model. We compare the performance
of our tool QMVERIF with three state-of-the-art tools

TABLE 4
Results of Perfect Masking Verification and Computing QMS Values on Masked Arithmetic Programs Under the HD Leakage Model,
Where Column Description Gives the Name and Reference of the Original Program, Column Result Gives the Ground Truth (3 for
Leakage-Free and 7 for Opposite), Column jXij Denotes the Number of Internal Variables in the Original Program, Column]D
Denotes the Number of Introduced Dummy Variables in the Modified Program, Column jXij+]D Denotes the Total Number of

Internal Variables in the Modified Program, Column]tlk Denotes the Number of Leaky Internal Variables of the Modified Program,
Column]ModelCounting Denotes the Number of Internal Variables Which Need Model-Counting, Column]Running Out-of-Time

Denotes the Number of Internal Variables on Which QMVERIF Runs Out of Time (Threshold=15 Minutes per Variable), Column Time
Denotes the Total Running Time for Each Modified Program, and Columnmin(Value) Gives the Minimum One of QMS Values

Description Result jXij]D jXij þ]D]tlk Perfect Masking Verification QMS

]ModelCounting]Out-of-time Time]Out-of-time Time min(Value)

SecMult [28] 3 11 3 14 0 0 0 0.1s - - 1
Sbox (4) [33] 7 66 43 109 2 4 2 30m 25s 1 15m 23s 0.99
B2A [16] 3 8 4 12 0 1 0 2s - - 1
A2B [16] 3 46 41 87 0 25 19 327m 44s - - 1
B2A [17] 3 82 46 128 0 0 0 0.1s - - 1
A2B [17] 3 41 14 55 0 0 0 0.1s - - 1
B2A [18] 3 11 1 12 0 1 0 11m - - 1
B2A [19] 3 16 3 19 0 1 1 15m 1s - - 1
Sbox [28] 3 45 31 76 0 0 0 0.1s - - 1
Sbox [27] 7 772 511 1283 2 1 0 0.1s 0 0.1s 0
k12 7 15 4 19 2 2 0 0.3s 0 22.1s 0.988
k15 7 21 9 30 4 6 2 47m 21s 2 30m 25s 0.988
k240 7 23 11 34 4 6 2 47m 22s 2 30m 25s 0.988
k252 7 31 18 49 4 8 4 75m 40s 2 30m 26s 0.988
k254 7 39 25 64 4 8 4 77m 41s 2 30m 25s 0.988

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 993

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

QMSINFER [44], SC Sniffer [42], [50] and maskVerif [37],
which are designed for verifying masking countermeasure
of Boolean programs only. In particular, SC Sniffer is an SMT-
based tool with an incremental heuristic which is similar to
our dominated subexpression elimination. Since SC Sniffer
is not publicly available, we implemented the algorithms
according to the papers [42], [50] for perfect masking verifi-
cation and computing QMS values. We remark that instead
of computing exact QMS values, SC Sniffer approximates
QMS values by directly binary searching the QMS value q
between 0 to 1 with a pre-defined step size � ¼ 0:01 [50].
Similar to our tool QMVERIF, QMSINFER is a tool that integra-
tes a type system and SMT-based model-counting method,
and maskVerif is a tool that integrates a proof system and a
brute-force enumeration. Note that we do not compare our
tool QMVERIF with the Fourier analysis based tool rebecca
developed by Bloem et al. [67], as rebecca is designed for
masked hardware Boolean programs and more importantly,
maskVerif [37] has turned to be significantly better than
rebecca. Since the input format of maskVerif [37] differs
from the syntax of P12–P17, we transform P12–P17 into the
forms that can be accepted by maskVerif.

5.3.1 Perfect Masking Verification

The experimental results of perfect masking verification on
the programs P12–P17 are reported in Table 5. Column 1
shows the name of the program. Column 2 gives the ground
truth. Column 3 shows the number of internal variables.
Column 4 shows the number of leaky internal variables.
Column 5 shows the number of internal variables which
needs the model-counting methods. Column 6–7 respec-
tively show the total time of our tool QMVERIF using SMT-
based and brute-force methods. Columns 8–10 respectively
show the total time of the tool QMSINFER [44], the incremen-
tal verification method of SC Sniffer [50] and the tool
maskVerif [37].

Recall that the syntax of input programs for maskVerif is
different from ours, we equivalently transformed the pro-
grams P12–P17 into the input syntax ofmaskVerif. maskVerif
arose “Fatal error: exception Stack overflow” on all the Bool-
ean programs during parsing. Therefore, the results of mask-
Verif in Column 10 are conducted on the reduced programs,
where the last 50,000 lines of assignments (out of nearly
210,000 lines of assignments) are removed. Furthermore, on

leakage programs P13–P17,maskVerif terminates once a flaw
is identifiedwithout checking the rest.

The experimental results show that: (1) our tool QMVERIF

is effective in verifying Boolean programs; and (2) contrary
to the results on arithmetic programs, the performance of
the SMT-based and brute-force methods in our QMVERIF for
verifying perfect masking of Boolean programs is largely
leveled.

Compared with QMSINFER [44] and SC Sniffer [50] (1) our
tool QMVERIF is significantly faster (18–213 times) on the
leakage programs (i.e., P13–P17); and (2) on the leakage-free
program P12, QMVERIF is comparable with QMSINFER, but is
at least 1,500 times faster than SC Sniffer.

Compared with maskVerif [37], (1) our tool QMVERIF is at
least 2,000 times faster on the leakage-free program P12; (2)
QMVERIF also outperforms on the leakage program P13,
P14, P16 and P17, although maskVerif terminates immedi-
ately once a flaw is identified, while QMVERIF identified all
flaws; and (3) maskVerif failed to verify the leakage pro-
gram P15 as it contains the bit-wise or operation ð_Þ which
maskVerif does not support. We did not replace the bit-
wise or operation ð_Þ by other bit-wise operations (e.g., and
operation ð^Þ and negation ð:Þ operation) supported by
maskVerif, as we believe that the experimental results on
the Boolean programs considered here suffice to demon-
strate the superiority of our tool.

5.3.2 Computing QMS Values

The experimental results of computing QMS values on
P13–P17 (P12 is excluded because it does not contain any
leaky internal variable) are reported in Table 6. Column 2
shows the number of leaky internal variables. Columns 3–
8 show statistics of our tool QMVERIF including the number
of iterations in binary search (cf. Section 4.4.2), the time of
using SMT-based (resp. brute-force) method, the minimal,
maximal and average of QMS values. Column 9 shows the
time of QMSINFER. Note that QMSINFER gives the same sta-
tistics as QMVERIF except for time. Columns 10–14 shows
the total number of iterations in the binary search, time,
the minimal, maximal and average of QMS values using
the algorithm from [42]. Note that all the times reported in
Table 6 exclude the times used for perfect masking verifica-
tion, and maskVerif [37] does not support computing QMS
values.

TABLE 5
Results of Perfect Masking Verification on Boolean Programs, Where Column Name Gives the Name of the Program, Column
Result Gives the Ground Truth (3 for Leakage-Free and 7 for Opposite), Column jXij Denotes the Number of Internal Variables,
Column]tlk Denotes the Number of Leaky Internal Variables, Column]ModelCounting Denotes the Number of Internal Variables
Which Need Model-Counting, Column SMT Denotes the Results of Applying the SMT-Based Method, Column B.F. Denotes the
Results of Applying the Brute-Force Method, the Last Four Columns Respectively Show the Total Verification Time of the Tools

QMSINFER [44], SC Sniffer [42] and maskVerif [37]

Name Result jXij]tlk QMVERIF QMSINFER [44] SC Sniffer [42] maskVerif [37]

]ModelCounting SMT B.F. Time Time]ModelCounting Time

P12 3 197k 0 0 2.9s 2.7s 3.8s 68m 3s 0 99m 4s
P13 7 197k 4.8k 4.8k 2m 8s 2m 6s 38m 53s 70m 13s 1 2m 15s
P14 7 197k 3.2k 3.2k 1m 58s 1m 45s 42m 44s 86m 58s 1 19m 52s
P15 7 198k 1.6k 3.2k 2m 25s 2m 43s 44m 12s 93m 38s N/A N/A
P16 7 197k 4.8k 4.8k 1m 50s 1m 38s 48m 20s 91m 02s 1 2m 18s
P17 7 205k 17.6k 12.8k 1m 24s 1m 10s 81m 1s 248m 34s 1 2m 37s

994 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

Compared with the two state-of-the-art tools QMSIN-

FER [44] and SC Sniffer [42], our tool QMVERIF is significantly
faster than them. We mention that the number of iterations
in binary search of the tools QMVERIF and QMSINFER [44]
depends on the number of bits of random variables, while it
is fixed in SC Sniffer for each computation. This results in
different time performance. In particular, the QMS values of
leaky variables whose computations do not contain random
variables (e.g., P13 and P17), do not need the binary search.
The improvement of QMVERIF compared with QMSINFER

owns to our heuristics. In terms of accuracy, QMVERIF and
QMSINFER have the same results, while SC Sniffer some-
times computes approximate QMS values, e.g., P14, P15
and P17. On the other hand, the brute-force method also
outperforms the SMT-based method in our tool.

To conclude, our basic findings can be summarized as
follows:

� QMVERIF is effective to prove security of leakage-free
programs and identify flaws of leakage programs,
and shows orders of magnitude improvements over
the state-of-the-art tools QMSINFER [44], SC Sniffer [42]
andmaskVerif [37];

� Arithmetic programs (B2A [16], A2B [16], B2A [17],
A2B [17] and B2A [19]) can be proved secure automat-
ically computer-aided tools rather thanmanually;

� The brute-force model-counting method signifi-
cantly outperforms the SMT-based one on arithmetic
programs, and they are roughly comparable on Bool-
ean programs.

6 RELATED WORK

In this section, we discuss masking schemes, verification
approaches, mitigation techniques and measurement of
information leakage related to power side-channel attacks.
Work on other side-channel attacks that rely on execution-
time [3], [68], [69], [70], [71], [72], [73], [74], [75], [76],
faults [52], [77], [78], [79], and cache [80], [81], [82], [83], [84],
[85], [86], [87], [88], [89] do exist, but is orthogonal to ours,
hence will not be discussed in this section.

6.1 Masking Schemes

To thwart power side-channel attacks, various masking
schemes as countermeasures have been proposed, such as
Boolean masking scheme, arithmetic masking scheme and

their combination [14], [15], [16], [25], [26], [27], [28], [29],
[30], [31], [51], [90], [91]. These schemes differ in adversary
models, efficiency, cryptographic algorithms and compact-
ness. Countermeasures are often manually designed for
specific cryptographic algorithms and implementations of
cryptographic algorithms that rely on secure masking
schemes are not secure automatically. In this context, there
is a shortage of effective and automated tools for proving
their security and accurately identifying flaws [32], [33].

6.2 Verification Approaches

We discuss related work on masking countermeasure verifi-
cation along two categorizations: symbolic approaches and
model-counting based approaches.

6.2.1 Symbolic Approaches

Symbolic approaches have been widely used in the verifica-
tion of side-channel attacks with early work [34], [92], where
masking compilers are provided which can transform an
input program into a functionally equivalent program that
is resistant to first-order DPA. However, these systems
either are limited to certain operations (i.e., � and table
look-up), or suffer from unsoundness and incompleteness
under the threshold probing model [14] or the HW/WD
leakage model.

One of the most groundbreaking works in this direction
are the works of Barthe et al. [35], [36], [37]. In [35], Barthe
et al. introduced the notion of noninterference (NI) and
inference system for proving masked arithmetic programs.
In [36], Barthe et al. introduced the notion of strong non-
interference (SNI) which is an extension of the NI notion.
The SNI notion allows to prove the security of masked arith-
metic programs compositionally, instead of proving the
security of a whole implementation at once. However, their
compositional verification requires that the programs are
either free of procedure calls, or consist of sequences of pro-
cedure calls that satisfy NI/SNI condition and each share is
used at most once except for a SNI refresh function. For
instance, the procedure SecExp254 in our running example
does not satisfy these conditions. The restriction of NI/SNI
procedure calls is addressed in [93], but it is still limited to
some specific procedures and Boolean programs only.
Recently, Barthe et al. implemented a unified framework for
both Boolean software and hardware implementations in the
tool maskVerif [37], featuring the NI and SNI notions

TABLE 6
Results of Computing QMS Values on Boolean Programs, Where Column Name Gives the Name of the Program, Column]Iter
Denotes the Number of Iterations of Binary Search, Column]tlk Denotes the Number of Leaky Internal Variables, Column SMT
Denotes the Results of Applying the SMT-Based Method, Column B.F. Denotes the Results of Applying the Brute-Force Method,

ColumnsMin,Max and Arg. Respectively Give the Minimal, Maximal and Average QMS Values, the Last Six Columns
Respectively Show the Total Verification Time of the Tools QMSINFER [44] and SC Sniffer [50]

Name]tlk QMVERIF QMSINFER [44] SC Sniffer [50]

]Iter SMT B.F. Min Max Arg. Time]Iter Time Min Max Avg.

P13 4.8k 0 0 0 0.00 1.00 0.98 0 480k 97m 23s 0.00 1.00 0.98
P14 3.2k 9.6k 2m 56s 39s 0.50 1.00 0.99 33m 3s 160k 40m 13s 0.51 1.00 0.99
P15 1.6k 4.8k 1m 36s 1m 32s 0.50 1.00 1.00 28m 7s 80k 23m 26s 0.51 1.00 1.00
P16 4.8k 6.4k 1m 40s 8s 0.00 1.00 0.98 45m 14s 320k 66m 27s 0.00 1.00 0.98
P17 17.6k 4.8k 51s 1s 0.00 1.00 0.94 72m 14s 1440k 337m 46s 0.00 1.00 0.93

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 995

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

extended of glitches and transitions. Further work along
this line includes improvements for efficiency [38], [39] but
limited to few certain operations, generalization for assem-
bly-level code [60], [61] and LLVM IR [40], extensions with
glitches for hardware programs [94] and extensions with
transitions [58], [95].

The HW leakage model considered in this work is equiv-
alent to the first-order threshold probing model [14] and
corresponds to the NI notion introduced in [35]. The HD
leakage model is equivalent to the first-order threshold
probing model [14] and corresponds to the NI notion pro-
posed in [35] with transitions. While the NI/SNI
notions [35], [36], [37] are stronger than the HW leakage
model, leakage-free programs under the HW leakage model
may leak under the NI/SNI notions. It was shown by Wang
et al. [40] that the HD leakage model differs from the sec-
ond-order probing model, hence, also differs from the NI/
SNI notions even with glitches. It is unclear whether our
approach could be extended to verify programs under the
NI/SNI leakage models. Moreover, all the approaches
(except [37]) discussed above are not complete, i.e., secure
programs may fail to pass their verification and spurious
flaws cannot be automatically identified, while [37] is lim-
ited to Boolean programs only. Experimental results on
Boolean programs also demonstrate that our tool QMVERIF

significantly outperforms maskVerif [37].

6.2.2 Model-Counting Based Approaches

Model-counting based approaches also have been proposed
for formally verifying masking countermeasures of crypto-
graphic programs [41], [42], [49], [50], [67], [96], [97]. In [41],
Eldib et al. first proposed a model-counting based approach
by leveraging SMT solvers under the HW leakage model,
which is later extended to taking the HD leakage model into
account [42] and to quantifying masking strength of resis-
tance using the QMS notion [49], [50] under the HW leakage
model. The main advantage of their verification approaches
is completeness [41], [42]. However, all the works [41], [42],
[49], [50] are limited in scalability and Boolean programs
only. Blot et al. generalized the SMT-based approach to
higher-order Boolean programs and presented composi-
tional rules for fragments of code [97]. However, it requires
that all the compositional fragments have disjointed ran-
dom variables and each sequential composition of two frag-
ments should be connected by a refresh of shares. Another
model-counting based approaches solve the verification
problem via Fourier analysis [67], [96]. In the nutshell, by
using the Fourier expansion of the Boolean functions, they
reduce the verification problem under the (higher-order)
HW leakage model (or equivalently threshold probing
model [14]) with/without glitches to checking whether cer-
tain coefficients of the Fourier expansion are zero or not.
The latter is solved by leveraging SAT solvers in [67] which
is sound but not complete. Moreover, [67], [96] are limited
to Boolean programs and qualitative analysis under the HW
leakage model only.

To improve efficiency, a hybrid approach integrating
type inference and SMT-based model-counting based
approaches was proposed by Zhang et al. [43]. The type sys-
tem of [43] is inspired by, but goes beyond, the one in [60],
[61]. Indeed, the type system from [60], [61] uses syntactic

information of the computations, whereas the type system
from [43] uses both syntactic and semantic information
where the type inference is an iterative process, making use
of SMT-based model-counting approach to refine the type
dynamically. The hybrid approach is extended to comput-
ing exact QMS later [44], but is still limited to Boolean pro-
grams and the HW leakage model.

In the preliminary version of this paper [1], we generalize
the approach of [43], [44] from the Boolean setting to the arith-
metic setting by extending the notation of dominant variables
and type inference rules. It not only extends the applicability
but also achieves significant improvement in efficiency even
for Boolean programs (cf. Table 5). The type system sub-
sumes that of [43], [44], [60], [61] and provides additional
inference rules for arithmetic operations; our SMT-based
method extends that in [41], [42], [43], [44], [49], [50]; our tool
QMVERIF supports both quantitative and qualitative verifi-
cation of Boolean and arithmetic programs. Moreover, we
propose a brute-force method for solving model-counting
constraints and additional heuristics, which make our tool
more scalable and efficient in practice. Although [60], [61]
have already mentioned that solving model-counting via
SMT solvers [42], [43] may not be the best approach, we went
further by demonstrating that solving model-counting via
SMT solvers [42], [43] is doable on Boolean programs and on
arithmetic programswithout involving (finite-field) multipli-
cation, but may be inferior for arithmetic programs with
(finite-field) multiplication. This provides empirical sugges-
tions on which model-counting method should be selected,
and suggests potential future research directions of domain
specificmodel-countingmethods.

Last but not least, the current work extends the prelimi-
nary version [1] on several aspects: (1) it provides a refined
narrative of the motivation, a complex running example
to better illustrate our techniques, and an extensive litera-
ture review together with thorough comparison of the
related work; (2) it formulates Algorithms 1 and 2 which
are only informally described in [1]; (3) it considers
the HD leakage model and demonstrates the performance
of our approach under the HD leakage model so our
approach has broader applicability; (4) it introduces a novel
type system supporting for compositional reasoning which
significantly improves efficiency; and (5) it conducts consid-
erably more experiments and gives an in-depth analysis of
the results.

6.3 Mitigation

Mitigation techniques have been proposed to generate side-
channel leakage-free programs. [98] proposed a dual-spacer
dual-rail delay-insensitive logic circuit design methodology
to mitigate power side-channel attack. It guarantees bal-
anced switching activities between the two rails of each sig-
nal, hence makes attackers difficult to compute the
correlation of power consumption data. [34], [36], [99], [100]
rely on compiler-like pattern matching, the ones proposed
in [97], [101], [102] use inductive program synthesis and
[40] leverages register allocation and assignment. Some of
the work can provide security guarantee which mainly
relies on (qualitative) countermeasure verification techni-
ques to find (potential) flaws. In particular, [101] relies upon
SMT-based approaches [41], [42], while [36], [40] rely upon

996 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

sound but incomplete verification approaches. These
incomplete approaches may report spurious flaws which
could be fixed by post mitigation techniques [36], [40] pro-
ducing leakage-free programs, but which may incur over-
head of the resulting programs. Nevertheless, it would be
interesting to investigate whether our new approach can
aid in the synthesis of better masking countermeasures, as
done in [36], [40], [101].

6.4 Measurement

Quantitative verification of side-channel resistance is related
to quantitative information flow (QIF) analysis [103], [104],
[105], [106], [107]. QIF measures the flow of information in
programs by leveraging notions from information theory,
e.g., Shannon entropy and mutual information. The QIF
analysis has been investigated for side-channel analysis [108],
[109], [110]. There are several key differences between our
work and QIF. First, the programs under verification are dif-
ferent. We consider masked programs in straight-line forms,
while QIF targets at fully-fledged programs (including
branching and loops) so program analysis techniques (e.g.,
symbolic execution) are needed. Second, the metric is differ-
ent. We use the notion of QMS that is correlated with the
number of power traces needed to successfully infer private
data, while QIF leverages notions from information theory
which is used to quantify the volume of leakages. Finally,
although both work rely on model-counting, the constraints
in QIF over the input are usually linear, while the ones in our
setting involve arithmetic operations in rings and fields.
Approximation techniques can be leveraged in QIF [107],
[110], but are not suitable for ours. Furthermore, it is worth
mentioning that in general input variables in QIF should be
partitioned into two disjoint sets (public and private varia-
bles), and the former needs to be existentially quantified.
This was also observed by, e.g., [110], but without any
implementation.

7 CONCLUSION

In this work, we have proposed an integration of type system
and model-counting based methods, aided by heuristics for
verifying masking countermeasures of arithmetic programs
under both the HW and HD leakage models. The type infer-
ence allows an efficient, lightweight procedure to determine
most internal variables whereas model-counting accounts for
completeness, bringing the best of two worlds. In particular,
our type system can support compositional reasoning for pro-
gramswith procedure calls,which can reduce the need of pro-
cedure inlining, and thus substantially improve the efficiency
of type inference. We also provided a binary search based
algorithm to quantify resistance of masking countermeasures
by leveraging model-counting based methods. We have
implemented our approach in a verification tool QMVERIF and
evaluated it on standard cryptographic benchmarks. The
experimental results demonstrate that QMVERIF is effective to
prove security of leakage-free programs and identify flaws of
leakage programs in a compositional manner. Furthermore,
QMVERIF is substantially (order of magnitude in some cases)
faster than QMSINFER, SC Sniffer and maskVerif. Several con-
version algorithms between Boolean and arithmetic maskings
(e.g., B2A [16], A2B [16], B2A [17], A2B [17] and B2A [19])

have been formally proved leakage-free by QMVERIF, which
were only possiblemanually in previouswork.

Future work includes further investigation of efficient
model-counting techniques for domain-specific problems
and generalization of the work in the current paper to verifi-
cation of higher-order masking schemes which remains to
be a very challenging task. Under the higher-order setting
where the attacker is able to probe multiple variables simul-
taneously, we have to verify that the joint distribution of
each set of the probed variables is statistically independent
of the private input variables. There are two technical chal-
lenges. First, probed variables may occur in different proce-
dures. In this case, our type system cannot verify each
procedure in isolation, calling for a new type system
strengthening the compositional reasoning. Second, the
number of variables involved in the computation of multi-
ple probed variables may be large, while the complexity of
the model-counting based method is exponential in the
number of variables. Thus, more efficient model-counting
techniques are needed to tackle the scalability.

Another research direction is how to verify programswith
inherent branching and loops that cannot be transformed
into the straight-line form. Currently, all of the existing secu-
rity notions (i.e., perfect masking, NI and SNI) are defined
over straight-line programs. Whether these notions can be
easily adapted to more general programs and how to verify
them remain to be an important and challenging problem.

ACKNOWLEDGMENTS

The authors would like to thank Professor Gilles Barthe, Pro-
fessor Benjamin Gr�egoire and Professor Chao Wang for pro-
viding benchmarks, and the anonymous reviewers for their
valuable comments and suggestions. P. Gao, H. Xie, P. Sun,
J. Zhang and F. Songwere partially supported by theNational
Natural Science Foundation of China (NSFC) grants (No.
61532019 and No. 61761136011); T. Chen was partially sup-
ported by UK EPSRC grant (No. EP/P00430X/1), NSFC grant
(No. 61872340), Guangdong Science and Technology Depart-
ment grant (No. 2018B010107004), Natural Science Founda-
tion of Guangdong Province, China (No. 2019A1515011689),
andOverseasGrant (KFKT2018A16) from the State Key Labo-
ratory of Novel Software Technology, Nanjing University,
China. A preliminary version of this paper [1] appeared in the
Proceedings of the 25th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’19), held as part of the European Joint Conferences
on Theory and Practice of Software (ETAPS’19), Prague,
Czech Republic, April 6-11, 2019.

REFERENCES

[1] P. Gao, H. Xie, J. Zhang, F. Song, and T. Chen, “Quantitative veri-
fication of masked arithmetic programs against side-channel
attacks,” in Proc. 25th Int. Conf. Tools Algorithms Construction
Anal. Syst., 2019, pp. 155–173.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proc. Int. Cryptol. Conf. Advances Cryptol., 1999, pp. 388–397.

[3] P. C. Kocher, “Timing attacks on implementations of diffie-hell-
man, RSA, DSS, and other systems,” in Proc. Int. Cryptol. Conf.
Advances Cryptol., 1996, pp. 104–113.

[4] L. Goubin and J. Patarin, “DES and differential power analysis
(the ”duplication” method),” in Proc. 1st Int. Workshop Cryptogr.
Hardware Embedded Syst., 1999, pp. 158–172.

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 997

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

[5] J. Coron, “Resistance against differential power analysis for ellip-
tic curve cryptosystems,” in Proc. 1st Int. Workshop Cryptogr.
Hardware Embedded Syst., 1999, pp. 292–302.

[6] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power
analysis in the presence of hardware countermeasures,” in
Proc. Int. Workshop Cryptogr. Hardware Embedded Syst., 2000,
pp. 252–263.

[7] K. Itoh, T. Izu, and M. Takenaka, “Address-bit differential power
analysis of cryptographic schemes OK-ECDH and OK-ECDSA,”
in Proc. 4th Int. Workshop Cryptogr. Hardware Embedded Syst., 2002,
pp. 129–143.

[8] H. B. Choi, H. J. Lee, C. S. Kim, B. H. Chang, and D. Won, “On
differential power analysis attack on the addition modular 2n

operation of smart cards,” in Proc. Int. Conf. Secur. Manage., 2003,
pp. 260–266.

[9] W. Wang, Y. Yu, F. Standaert, J. Liu, Z. Guo, and D. Gu, “Ridge-
based DPA: Improvement of differential power analysis for
nanoscale chips,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5,
pp. 1301–1316, May 2018.

[10] M. J. Kannwischer, A. Genêt, D. Butin, J. Kr€amer, and J. Buchmann,
“Differential power analysis of XMSS and SPHINCS,” in Proc. 9th
Int. Workshop Constructive Side-Channel Anal. Secure Des., 2018,
pp. 168–188.

[11] J. Xu, A. Fan, M. Lu, andW. Shan, “Differential power analysis of
8-bit datapath AES for IoT applications,” in Proc. 17th IEEE Int.
Conf. Trust Secur. Privacy Comput. Commun. 12th IEEE Int. Conf.
Big Data Sci. Eng., 2018, pp. 1470–1473.

[12] C. Luo, Y. Fei, and D. R. Kaeli, “Effective simple-power analysis
attacks of elliptic curve cryptography on embedded systems,” in
Proc. Int. Conf. Comput.-Aided Des., 2018, Art. no. 115.

[13] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Berlin, Germany: Springer,
2007.

[14] Y. Ishai, A. Sahai, and D. A. Wagner, “Private circuits: Securing
hardware against probing attacks,” in Proc. Int. Cryptol. Conf.
Advances Cryptol., 2003, pp. 463–481.

[15] J. Coron and L. Goubin, “On boolean and arithmetic masking
against differential power analysis,” in Proc. 2nd Int. Workshop
Cryptogr. Hardware Embedded Syst., 2000, pp. 231–237.

[16] L. Goubin, “A sound method for switching between boolean and
arithmetic masking,” in Proc. 3rd Int. Workshop Cryptogr. Hard-
ware Embedded Syst., 2001, pp. 3–15.

[17] J. Coron, J. Großsch€adl, and P. K. Vadnala, “Secure conversion
between boolean and arithmetic masking of any order,” in Proc.
16th Int. Workshop Cryptogr. Hardware Embedded Syst., 2014,
pp. 188–205.

[18] J. Coron, “High-order conversion from boolean to arithmetic
masking,” in Proc. 19th Int. Conf. Cryptogr. Hardware Embedded
Syst., 2017, pp. 93–114.

[19] L. Bettale, J. Coron, and R. Zeitoun, “Improved high-order con-
version from boolean to arithmetic masking,” IACR Trans. Cryp-
togr. Hardware Embedded Syst., vol. 2018, no. 2, pp. 22–45, 2018.

[20] X. Lai and J. L. Massey, “A proposal for a new block encryption
standard,” in Proc. Workshop Theory Appl. Cryptogr. Techn., 1990,
pp. 389–404.

[21] S. Contini, R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin,
“Improved analysis of some simplified variants of RC6,” in Proc.
6th Int. Workshop Fast Softw. Encryption, 1999, pp. 1–15.

[22] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark , B. Weeks, and
L. Wingers, “The SIMON and SPECK families of lightweight
block ciphers,” IACR Cryptol. ePrint Archive, vol. 2013, 2013,
Art. no. 404.

[23] M. Hutter and M. Tunstall, “Constant-time higher-order boolean-
to-arithmetic masking,” J. Cryptogr. Eng., vol. 9, no. 2, pp. 173–184,
2019.

[24] W. Wang, Y. Yu, and F. Standaert, “Provable order amplification
for code-based masking: How to avoid non-linear leakages due
to masked operations,” IEEE Trans. Inf. Forensics Security, vol. 14,
no. 11, pp. 3069–3082, Nov. 2019.

[25] W. Wang et al., “Inner product masking for bitslice ciphers and
security order amplification for linear leakages,” in Proc. 15th Int.
Conf. Smart Card Res. Adv. Appl., 2016, pp. 174–191.

[26] T. S. Messerges, “Securing the AES finalists against power analy-
sis attacks,” in Proc. Int. Workshop Fast Softw. Encryption, 2000,
pp. 150–164.

[27] K. Schramm and C. Paar, “Higher order masking of the AES,” in
Proc. RSA Conf. Topics Cryptol., 2006, pp. 208–225.

[28] M. Rivain and E. Prouff, “Provably secure higher-order masking
of AES,” in Proc. Workshop Cryptogr. Hardware Embedded Syst.,
2010, pp. 413–427.

[29] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang,
“Pushing the limits: A very compact and a threshold implemen-
tation of AES,” in Proc. Int. Conf. Theory Appl. Cryptogr. Techn.,
2011, pp. 69–88.

[30] E. Prouff and M. Rivain, “Masking against side-channel attacks:
A formal security proof,” in Proc. 32nd Annu. Int. Conf. Theory
Appl. Cryptogr. Techn., 2013, pp. 142–159.

[31] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating masking schemes,” in Proc. Annu. Cryptol. Conf.,
2015, pp. 764–783.

[32] J. Coron, E. Prouff, and M. Rivain, “Side channel cryptanalysis of
a higher order masking scheme,” in Proc. Workshop Cryptogr.
Hardware Embedded Syst., 2007, pp. 28–44.

[33] J. Coron, E. Prouff, M. Rivain, and T. Roche, “Higher-order side
channel security and mask refreshing,” in Proc. Int. Workshop
Fast Softw. Encryption, 2013, pp. 410–424.

[34] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler
assisted masking,” in Proc. 14th Int. Workshop Cryptogr. Hardware
Embedded Syst., 2012, pp. 58–75.

[35] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Gr�egoire, and
P. Strub, “Verified proofs of higher-order masking,” in Proc. 34th
Annu. Int. Conf. Theory Appl. Cryptogr., 2015, pp. 457–485.

[36] G. Barthe et al., “Strong non-interference and type-directed
higher-order masking,” in Proc. ACM Conf. Comput. Commun.
Secur., 2016, pp. 116–129.

[37] G. Barthe, S. Belaı̈d, P. Fouque, and B. Gr�egoire, “maskVerif:
Automated verification of higher-order masking in presence of
physical defaults,” in Proc. 24th Eur. Symp. Res. Comput. Secur.,
2019, pp. 300–318.

[38] E. Bisi, F. Melzani, and V. Zaccaria, “Symbolic analysis of higher-
order side channel countermeasures,” IEEE Trans. Comput.,
vol. 66, no. 6, pp. 1099–1105, Jun. 2017.

[39] J. Coron, “Formal verification of side-channel countermeasures
via elementary circuit transformations,” in Proc. 16th Int. Conf.
Appl. Cryptography Netw. Secur., 2018, pp. 65–82.

[40] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels
during compilation,” in Proc. ACM Joint Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2019, pp. 590–601.

[41] H. Eldib, C. Wang, and P. Schaumont, “SMT-based verification
of software countermeasures against side-channel attacks,” in
Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2014,
pp. 62–77.

[42] H. Eldib, C. Wang, and P. Schaumont, “Formal verification of
software countermeasures against side-channel attacks,” ACM
Trans. Softw. Eng. Methodol., vol. 24, no. 2, 2014, Art. no. 11.

[43] J. Zhang, P. Gao, F. Song, and C. Wang, “SCInfer: Refinement-
based verification of software countermeasures against side-
channel attacks,” in Proc. 30th Int. Conf. Comput. Aided Verifica-
tion, 2018, pp. 157–177.

[44] P.Gao, J. Zhang, F. Song, andC.Wang, “Verifying and quantifying
side-channel resistance of masked software implementations,”
ACM Trans. Softw. Eng. Methodol., vol. 28, no. 3, pp. 16:1–16:32,
Jul. 2019.

[45] D. Kroening and O. Strichman, Decision Procedures - An Algorith-
mic Point of View, 2nd ed. Berlin, Germany: Springer, 2016.
[Online]. Available: https://doi.org/10.1007/978–3-662-50497-0

[46] H. Groß, D. Schaffenrath, and S. Mangard, “Higher-order side-
channel protected implementations of KECCAK,” in Proc. Euro-
micro Conf. Digit. Syst. Des., 2017, pp. 205–212.

[47] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2008, pp.
337–340.

[48] M. Nassar, Y. Souissi, S. Guilley, and J. Danger, “RSM: A small
and fast countermeasure for AES, secure against 1st and 2nd-
order zero-offset SCAs,” in Proc. Des. Autom. Test Eur. Conf.
Exhib., 2012, pp. 1173–1178.

[49] H. Eldib, C. Wang, M. Taha, and P. Schaumont, “QMS: Evaluat-
ing the side-channel resistance of masked software from source
code,” in Proc. ACM/IEEE Des. Autom. Conf., 2014, pp. 209:1–
209:6.

[50] H. Eldib, C.Wang,M.M. I. Taha, and P. Schaumont, “Quantitative
masking strength: Quantifying the power side-channel resistance
of software code,” IEEE Trans. Comput.-AidedDesign Integr. Circuits
Syst., vol. 34, no. 10, pp. 1558–1568, Oct. 2015.

998 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/978--3-662-50497-0

[51] J. Bl€omer, J. Guajardo, and V. Krummel, “Provably secure mask-
ing of AES,” in Proc. Int. Workshop Sel. Areas Cryptogr., 2004,
pp. 69–83.

[52] H. Eldib, M. Wu, and C. Wang, “Synthesis of fault-attack coun-
termeasures for cryptographic circuits,” in Proc. Int. Conf.
Comput. Aided Verification, 2016, pp. 343–363.

[53] T. S. Messerges, “Using second-order power analysis to attack
DPA resistant software,” in Proc. Int. Workshop Cryptogr. Hard-
ware Embedded Syst., 2000, pp. 238–251.

[54] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” in Proc. Int. Workshop Cryptogr. Hardware
Embedded Syst., 2004, pp. 16–29.

[55] A. Moradi, “Side-channel leakage through static power,” in Proc.
Int. Workshop Cryptogr. Hardware Embedded Syst., 2014, pp. 562–
579.

[56] S. Mangard, “A simple power-analysis (SPA) attack on imple-
mentations of the AES key expansion,” in Proc. 5th Int. Conf. Inf.
Secur. Cryptol., 2002, pp. 343–358.

[57] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to dif-
ferential power analysis,” J. Cryptogr. Eng., vol. 1, no. 1, pp. 5–27,
2011.

[58] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert,
“On the cost of lazy engineering for masked software
implementations,” in Proc. Int. Conf. Smart Card Res. Adv. Appl.,
2014, pp. 64–81.

[59] C. B. Jones, “Specification and design of (parallel) programs,” in
Proc. IFIP 9th World Comput. Congr., 1983, pp. 321–332.

[60] I. B. E. Ouahma, Q. Meunier, K. Heydemann, and E. Encrenaz,
“Symbolic approach for side-channel resistance analysis of
masked assembly codes,” in Proc. Int. Workshop Secur. Proofs
Embedded Syst., 2017, pp. 17–32.

[61] I. B. E. Ouahma, Q. L. Meunier, K. Heydemann, and E. Encrenaz,
“Side-channel robustness analysis of masked assembly codes
using a symbolic approach,” J. Cryptogr. Eng., vol. 9, no. 3,
pp. 231–242, 2019.

[62] J. Coron, “Higher order masking of look-up tables,” in Proc. 33rd
Annu. Int. Conf. Theory Appl. Cryptogr. Techn., 2014, pp. 441–458.

[63] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain,
“Higher-order masking schemes for S-boxes,” in Proc. 19th Int.
Workshop Fast Softw. Encryption, 2012, pp. 366–384.

[64] J. Coron, A. Roy, and S. Vivek, “Fast evaluation of polynomials
over binary finite fields and application to side-channel counter-
measures,” in Proc. 16th Int. Workshop Cryptogr. Hardware Embed-
ded Syst., 2014, pp. 170–187.

[65] J. Coron, F. Rondepierre, and R. Zeitoun, “High order masking of
look-up tables with common shares,” IACR Cryptol. ePrint
Archive, vol. 2017, 2017, Art. no. 271.

[66] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0 system
description,” J. Satisfiability Boolean Model. Comput., vol. 9,
pp. 53–58, 2014.

[67] R. Bloem, H. Groß, R. Iusupov, B. K€onighofer, S. Mangard, and
J. Winter, “Formal verification of masked hardware implementa-
tions in the presence of glitches,” in Proc. 37th Annu. Int. Conf.
Theory Appl. Cryptogr. Techn., 2018, pp. 321–353.

[68] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and
M. Emmi, “Verifying constant-time implementations,” in Proc.
USENIX Secur. Symp., 2016, pp. 53–70.

[69] C. S. Pasareanu, Q. Phan, and P. Malacaria, “Multi-run side-
channel analysis using symbolic execution and Max-SMT,” in
Proc. IEEE Comput. Secur. Found. Symp., 2016, pp. 387–400.

[70] L. Bang, A. Aydin, Q. Phan, C. S. Pasareanu, and T. Bultan,
“String analysis for side channels with segmented oracles,”
in Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 2016,
pp. 193–204.

[71] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in Proc. IEEE Com-
put. Secur. Found. Symp., 2017, pp. 328–342.

[72] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi,
and S. Wei, “Decomposition instead of self-composition for prov-
ing the absence of timing channels,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2017, pp. 362–375.

[73] J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel
vulnerabilities using quantitative cartesian hoare logic,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 875–890.

[74] T. Brennan, S. Saha, and T. Bultan, “Symbolic path cost analysis
for side-channel detection,” in Proc. Int. Conf. Softw. Eng., 2018,
pp. 424–425.

[75] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing
side-channel leaks using program repair,” in Proc. 27th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2018, pp. 15–26.

[76] M. Wu and C. Wang, “Abstract interpretation under speculative
execution,” in Proc. 40th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2019, pp. 802–815.

[77] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” inProc. Annu. Int. Cryptol. Conf.), 1997, pp. 513–525.

[78] G. Barthe, F. Dupressoir, P. Fouque, B. Gr�egoire, and J. Zapalowicz,
“Synthesis of fault attacks on cryptographic implementations,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2014,
pp. 1016–1027.

[79] J. Breier, X. Hou, and Y. Liu, “Fault attacks made easy: Differen-
tial fault analysis automation on assembly code,” IACR Trans.
Cryptogr. Hardware Embedded Syst., vol. 2018, no. 2, pp. 96–122,
2018.

[80] P. Grabher, J. Großsch€adl, and D. Page, “Cryptographic side-
channels from low-power cache memory,” in Proc. IMA Int. Conf.
Cirencester Cryptography Coding, 2007, pp. 170–184.

[81] B. K€opf, L. Mauborgne, and M. Ochoa, “Automatic quantifica-
tion of cache side-channels,” in Proc. Int. Conf. Comput. Aided Ver-
ification, 2012, pp. 564–580.

[82] G. Doychev, D. Feld, B. K€opf, L. Mauborgne, and J. Reineke,
“CacheAudit: A tool for the static analysis of cache side
channels,” in Proc. USENIX Secur. Symp., 2013, pp. 431–446.

[83] G. Barthe, B. K€opf, L. Mauborgne, and M. Ochoa, “Leakage resil-
ience against concurrent cache attacks,” in Proc. 3rd Int. Conf.
Princ. Secur. Trust, 2014, pp. 140–158.

[84] D. Chu, J. Jaffar, and R. Maghareh, “Precise cache timing analysis
via symbolic execution,” in Proc. IEEE Symp. Real-Time Embedded
Technol. Appl., 2016, pp. 293–304.

[85] S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller,
“Quantifying the information leakage in cache attacks via sym-
bolic execution,” ACM Trans. Embedded Comput. Syst., vol. 18,
no. 1, pp. 7:1–7:27, 2019.

[86] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Iden-
tifying cache-based timing channels in production software,” in
Proc. USENIX Secur. Symp., 2017, pp. 235–252.

[87] C. Sung, B. Paulsen, and C. Wang, “CANAL: A cache timing
analysis framework via LLVM transformation,” in Proc. IEEE/
ACM Int. Conf. Automated Softw. Eng., 2018, pp. 904–907.

[88] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing
side-channel leaks using program repair,” in Proc. Int. Symp.
Softw. Testing Anal., 2018, pp. 15–26.

[89] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execution
for detecting concurrency-related cache timing leaks,” in Proc.
ACM SIGSOFT Symp. Found. Softw. Eng., 2018, pp. 377–388.

[90] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-
channel analysis resistant description of the AES S-box,” in Proc.
Int. Workshop Fast Softw. Encryption, 2005, pp. 413–423.

[91] D. Canright and L. Batina, “A very compact ”perfectly masked”
S-box for AES,” in Proc. Int. Conf. Appl. Cryptography Netw. Secur.,
2008, pp. 446–459.

[92] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Auto-
mated verification of software power analysis countermeasures,”
in Proc. Workshop Cryptogr. Hardware Embedded Syst., 2013,
pp. 293–310.

[93] S. Belaı̈d, D. Goudarzi, and M. Rivain, “Tight private circuits:
Achieving probing security with the least refreshing,” in
Proc. 24th Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2018,
pp. 343–372.

[94] S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert,
“Composable masking schemes in the presence of physical
defaults and the robust probing model,” IACR Cryptol. ePrint
Archive, vol. 2017, 2017, Art. no. 711.

[95] J. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and
P. K. Vadnala, “Conversion of security proofs from one leakage
model to another: A new issue,” in Proc. 3rd Int. Workshop
Constructive Side-Channel Anal. Secure Des., 2012, pp. 69–81.

[96] S. Bhasin, C. Carlet, and S. Guilley, “Theory of masking with
codewords in hardware: Low-weight dth-order correlation-
immune boolean functions,” IACR Cryptol. ePrint Archive,
vol. 2013, 2013, Art. no. 303.

[97] A. Blot, M. Yamamoto, and T. Terauchi, “Compositional synthe-
sis of leakage resilient programs,” in Proc. Int. Conf. Princ. Secur.
Trust, 2017, pp. 277–297.

GAO ETAL.: FORMALVERIFICATION OF MASKING COUNTERMEASURES FOR ARITHMETIC PROGRAMS 999

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

[98] W. Cilio, M. Linder, C. Porter, J. Di, D. R. Thompson, and
S. C. Smith, “Mitigating power-and timing-based side-channel
attacks using dual-spacer dual-rail delay-insensitive asynchro-
nous logic,”Microelectron. J., vol. 44, no. 3, pp. 258–269, 2013.

[99] A. G. Bayrak, F. Regazzoni, P. Brisk, F. Standaert, and P. Ienne,
“A first step towards automatic application of power analysis
countermeasures,” in Proc. ACM/IEEE Des. Autom. Conf., 2011,
pp. 230–235.

[100] G. Agosta, A. Barenghi, and G. Pelosi, “A code morphing meth-
odology to automate power analysis countermeasures,” in Proc.
ACM/IEEE Des. Autom. Conf., 2012, pp. 77–82.

[101] H. Eldib and C. Wang, “Synthesis of masking countermeasures
against side channel attacks,” in Proc. Int. Conf. Comput. Aided
Verification, 2014, pp. 114–130.

[102] C. Wang and P. Schaumont, “Security by compilation: An auto-
mated approach to comprehensive side-channel resistance,”
SIGLOG News, vol. 4, no. 2, pp. 76–89, 2017.

[103] P. Malacaria and J. Heusser, “Information theory and security:
Quantitative information flow,” in Proc. 10th Int. School Formal
Methods Des. Comput. Commun. Softw. Syst., 2010, pp. 87–134.

[104] Q. Phan, P. Malacaria, C. S. Pasareanu, and M. d’Amorim,
“Quantifying information leaks using reliability analysis,” in
Proc. Int. Symp. Model Checking Softw., 2014, pp. 105–108.

[105] C. G. Val, M. A. Enescu, S. Bayless, W. Aiello, and A. J. Hu,
“Precisely measuring quantitative information flow: 10k lines of
code and beyond,” in Proc. IEEE Eur. Symp. Secur. Privacy, 2016,
pp. 31–46.

[106] Q. Phan and P. Malacaria, “Abstract model counting: A novel
approach for quantification of information leaks,” in Proc. 9th
ACM Symp. Inf. Comput. Commun. Secur., 2014, pp. 283–292.

[107] F. Biondi, M. A. Enescu, A. Heuser, A. Legay, K. S. Meel, and
J. Quilbeuf, “Scalable approximation of quantitative information
flow in programs,” in Proc. 19th Int. Conf. Verification Model
Checking Abstract Interpretation, 2018, pp. 71–93.

[108] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in Proc. 30th IEEE
Comput. Secur. Found. Symp., 2017, pp. 328–342.

[109] C. S. Pasareanu, Q. Phan, and P. Malacaria, “Multi-run side-
channel analysis using symbolic execution and Max-SMT,” in
Proc. IEEE 29th Comput. Secur. Found. Symp., 2016, pp. 387–400.

[110] P. Malacaria, M. H. R. Khouzani, C. S. Pasareanu, Q. Phan, and
K. S. Luckow, “Symbolic side-channel analysis for probabilistic
programs,” in Proc. 31st IEEE Comput. Secur. Found. Symp., 2018,
pp. 313–327.

Pengfei Gao received the BS degree in computer
science from the China University of Mining and
Technology, Jiangsu, China, in 2017. He is cur-
rently working toward thePhD degree at Shanghai-
Tech University, Shanghai, China, supervised by
professor Fu Song. His research interests include
program analysis and software security.

Hongyi Xie is currently working toward the
undergraduate degree at ShanghaiTech Univer-
sity, Shanghai, China, supervised by professor
Fu Song. His research interests include satisfi-
ability modulo theories and solving of model-
counting constraints.

Pu Sun received the BS degree in computer sci-
ence fromNortheastern University at Qinhuangdao,
Hebei, China, in 2018. He is currently working
toward the MS degree at ShanghaiTech University,
Shanghai, China, supervised by professor Fu
Song. His research interests include software test-
ing and software security.

Jun Zhang received the BS degree in communica-
tion engineering from Shandong University, Shan-
dong, China, in 2016. He is currently working
toward the MS degree at ShanghaiTech University,
Shanghai, China, supervised by professor Fu
Song. His research interests include program anal-
ysis and software security.

Fu Song received the BS degree from Ningbo
University, Ningbo, China, in 2006, the MS degree
in software engineering from East China Normal
University, Shanghai, China, in 2009, and the PhD
degree in computer science from the University
Paris-Diderot, Paris, France, in 2013. From 2013
to 2016, he was a lecturer and an associate
research professor with East China Normal Uni-
versity. Since August 2016, he is an assistant pro-
fessor with ShanghaiTech University, Shanghai,
China. His research interests include software

engineering, formal methods and computer security, especially about
automata, logic, model checking, and program analysis. He was a recipi-
ent of EASSTBest Paper Award at ETAPS 2012.

Taolue Chen received the bachelor’s and mas-
ter’s degrees from the Nanjing University, Nanj-
ing, China, both in computer science, and the PhD
degree from the Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands. He was a junior
researcher with the Centrum Wiskunde & Infor-
matica (CWI). He is currently a senior lecturer
with the Department of Computer Science, Uni-
versity of Surrey. His research interests include
formal verification and synthesis, program analy-
sis, software security, software engineering, and
machine learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1000 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 3, MARCH 2022

Authorized licensed use limited to: ShanghaiTech University. Downloaded on April 29,2022 at 03:46:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

