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ABSTRACT Alternating-time temporal logics (ATL/ATL∗) represent a family of modal and temporal logics
for reasoning about strategic abilities of agents in multiagent systems. These logics are usually interpreted
over concurrent game structures (CGSs), and their interpretations may vary depending on the abilities of
agents, such as perfect versus imperfect information and perfect versus imperfect recall. These different
abilities lead to a variety of variants that have been studied extensively in the literature. However, all of these
variants are defined at the semantic level, which may restrict modeling flexibility, or even give counter-
intuitive interpretations. For example, an agent may have different abilities when achieving two different
goals on the same CGS. To mitigate these issues, in this paper, we propose to extend CGSs with agents’
abilities, resulting in Abilities Augmented CGSs, where concrete abilities can be defined at the syntactic
level. We study ATL/ATL∗ over this newmodel. We give formal definitions of the new semantics and present
model-checking algorithms for ATL/ATL∗. We also identify the computational complexity of ATL/ATL∗

model checking problem, i.e.,1P
3 -/2EXPTIME-complete. The model-checking algorithms are implemented

in a prototype tool. The experimental results show the practical feasibility and effectiveness of our approach.

INDEX TERMS Model-checking, multi-agent systems, alternating-time temporal logics, agents’ abilities.

I. INTRODUCTION
Multiagent systems (MASs) comprising multiple
autonomous agents have become a widely adopted paradigm
of intelligent systems. Game-based models and associated
logics, as the foundation of MASs, have received tremendous
attentions in recent years. The seminar work [1] proposed
concurrent game structures (CGSs) as the model of MASs
and alternating-time temporal logics (typically ATL and
ATL∗) as specification languages for expressing temporal
goals. In a nutshell, a CGS consists of multiple players which
are used to represent autonomous agents, components and
the environment. The model describes how the MAS evolves
according to the collective behavior of agents. ATL/ATL∗,
an extension of the Computational Tree Logic (CTL/CTL∗),
features coalition modalities 〈〈A〉〉, each of which is parame-
terized with a set of agents A. The formula 〈〈A〉〉ϕ expresses
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the property that the coalition A has a collective strategy to
achieve a certain goal specified by ϕ.

A series of extensions of ATL-like logics have been studied
which take different agents’ abilities into account. These abil-
ities typically include whether agents can identify the current
state of the system completely or only partially (perfect vs.
imperfect information), andwhether agents canmemorize the
whole history of observations or simply part of them (perfect
vs. imperfect recall). Different abilities usually induce dis-
tinct semantics, which are indeed necessary because of the
versatility of problem domains. These semantic variants and
their model-checking problems comprise subjects of active
research for almost two decades, to cite a few [2]–[7].

While agents’ abilities play a prominent role [8],
the semantics of ATL-like logics only refers to them implic-
itly. In other words, the logic per se does not specify what
ability an agent has; instead one could infer the ability an
agent requires by examining the specification expressed in
the logic. This approach, being elegant and valuable to under-
stand the relationship between different abilities, suffers from
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a few shortcomings: (1) From the modeling perspective, it is
common in practice that agents in a MAS vary in their abil-
ities (for instance, agents modeling sensors may not identify
the complete state of the system so can only use strategies
with imperfect information). When constructing a model,
these abilities ought to be encoded explicitly. Such model-
ing flexibility is not supported by the existing formalisms.
(2) From the semantic perspective, ATL-like logics may
exhibit some counter-intuitive semantics. Using the core
modality 〈〈A〉〉 of ATL, the formula 〈〈A〉〉ϕ, is interpreted
as that the coalition A has a collective strategy to achieve
the goal ϕ ‘‘no matter what the other agents do’’ rather
than ‘‘no matter which strategies the other agents choose’’.
The delicate difference suggests that the (multi-player) game
nature in the evolution of MASs is not fully captured by
ATL. For instance, in the imperfect information/recall setting,
only agents that are quantified in 〈〈A〉〉 are assumed to use
imperfect information/recall strategies, while the other agents
not in 〈〈A〉〉 may still use perfect information and perfect
recall strategies. Even worse, if the coalition modalities are
nested, the same agent may have different abilities to fulfill
the objectives specified in different subformulae, resulting in
inconsistency in the strategies it uses. This phenomenon has
also been mentioned, e.g., in [9], which proposed a strategic
logic making explicit references to strategies of all agents
(including those not in 〈〈A〉〉), though all agents should have
same abilities therein.

To summarize, it occurs to us that the current approach in
which temporal formulae are with implicit agents’ abilities at
the semantic level impedes necessary modeling flexibilities
and often yields unpleasant (even weird) semantics. Instead,
we argue that coupling agents’ abilities at the syntactic level
of system models would deliver a potentially better approach
to overcome the aforementioned limitations. Bearing the
rationale in mind, we propose a new MAS model: Abilities
Augmented Concurrent Game Structures (ACGSs), which
encompass agents’ abilities explicitly.
We investigate ATL and ATL∗ over ACGSs. We give

formal definitions of the new semantics and show that in
general the new semantics of ATL/ATL∗ over ACGSs is
incomparable with others even if the underlying CGSs mod-
els are the same. We also study the model-checking problem
of ATL/ATL∗ over ACGSs. We show that this problem is
generally undecidable. However, we manage to show that the
model-checking problem for ATL∗ (resp. ATL) on ACGSs is
2EXPTIME-complete (resp. 1P

3 -complete) when the imper-
fect information and perfect recall strategies are disallowed.
We implement our algorithms in a prototype tool MCMAS-
ACGS1 and conduct experiments on some standard applica-
tions from the literature. The results confirm the feasibility
and effectiveness of our approach.
Organization: The rest of the paper is organized as fol-

lows. Section II and Section III recap CGSs and ATL/ATL∗.
Section IV introduces ACGSs on which the semantics of

1Available at https://github.com/MCMAS-ACGS.

ATL/ATL∗ are revised. Section V discusses the effects of
strategy types. Section VI gives the undecidable results of the
ATL/ATL∗ model-checking problem on ACGSs. Section VII
and Section VIII respectively study themodel-checking prob-
lem of ATL and ATL∗ on ACGSs by disallowing imper-
fect information and perfect recall strategies. Section IX
reports experimental results. Section X discusses related
work. Section XI concludes with a summary and future work.

II. CONCURRENT GAME STRUCTURES
We fix a finite set AP of atomic propositions. Given an
infinite word ρ = s0s1 · · · , we denote by ρj the symbol
sj, by ρ[0..j] the prefix s0s1 · · · sj, and by ρ[j..∞] the suffix
sjsj+1 · · · . Similarly, for a finite word ρ = s0s1 · · · sm, we
denote by ρj the symbol sj for 0 ≤ j ≤ m, and by lst(ρ) the
symbol sm.
A concurrent game structure (CGS) G is a tuple

G , (S, S0,Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,1, λ),

where
• S is a finite set of states;
• S0 ⊆ S is a set of designated initial states;
• Ag = {1, . . . , n} is a finite set of agents;
• Aci for i ∈ Ag is a finite set of local actions of agent i;
• ∼i⊆ S × S for i ∈ Ag is an epistemic accessibility
relation (i.e., an equivalence relation), which is used
to characterize observable abilities of agent i, namely,
agent i cannot distinguish equivalent states;

• Pi : S → 2Aci is a protocol function, which specifies
the set of available local actions of agent i at the each
state. We assume that Pi(s) = Pi(s′) for every s ∼i s′,
as agent i should have the same available local actions
at two indistinguishable states;

• 1 : S × Ac → S is a transition function in which
Ac =

∏
i∈Ag Aci is a set of joint actions;

• λ : S → 2AP is a labeling function which assigns each
state a set of atomic propositions.

Given a joint action Ea = 〈a1, . . . , an〉 ∈ Ac, we use Ea(i)
to denote the local action of agent i in Ea. For each state
s ∈ S, a joint action Ea uniquely determines the successor
state1(s, Ea) of s. A path is an infinite sequence ρ = s0s1 · · ·
of states such that for every j ≥ 0, sj+1 = 1(sj, Eaj) for
some joint action Eaj ∈

∏
i∈Ag Pi(sj). A path ρ yields a trace

τ (ρ) = α0α1 · · · over the alphabet 2AP, where for every j ≥ 0,
αj = λ(ρj). Two finite sequences ρ = s0 . . . sm ∈ S+ and
ρ′ = s′0 . . . s

′
m ∈ S

+ are indistinguishable for agent i, denoted
by ρ ∼i ρ′, if for every j : 0 ≤ j ≤ m, sj ∼i s′j.

A. STRATEGIES
A strategy of an agent i ∈ Ag specifies what the agent i plans
to do at each state. Typical agents’ abilities are captured by
the following types of strategies [2]. For i ∈ Ag,
• Ir-strategy θi : S → Ac such that for every s ∈ S,
θi(s) ∈ Pi(s), i.e., the local action chosen by agent i
depends only on the current state of the system.
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• IR-strategy θi : S+ → Ac such that for every finite
sequence ρ ∈ S+, θi(ρ) ∈ Pi(lst(ρ)), i.e., the local
action chosen by agent i depends on the whole history
of the game so far, instead of only the last state.

• ir-strategy θi : S → Ac, the same as Ir-strategies but
with the additional constraint

s ∼i s′ ⇒ θi(s) = θi(s′),

i.e., agent i has to choose the same local action at the
states that are indistinguishable from each other by the
agent i;

• iR-strategy θi : S+ → Ac, the same as IR-strategies
but with the additional constraint

ρ ∼i ρ
′
⇒ θi(ρ) = θi(ρ′),

i.e., agent i has to choose the same local action on the
finite paths that are indistinguishable from each other by
the agent i.

Intuitively, i (resp. I) signals that agents can only observe
partial information characterized via epistemic accessibility
relations ∼i (resp. complete information with all epistemic
accessibility relations being the identity relation). r (resp. R)
signals that agents can make decisions based on the current
observation (resp. the whole history of observations). For
instance, Ir stands for perfect information imperfect recall
strategies, while iR stands for imperfect information perfect
recall strategies. We will, by slightly abusing notation, extend
both Ir-strategies and ir-strategies to the domain S+ such
that for all ρ ∈ S+, θi(ρ) = θi(lst(ρ)). We denote by Tstr
the set of strategy types {Ir,IR,ir,iR}. For each strategy
type σ ∈ Tstr, we denote by 2σi the set of σ -strategies for
agent i ∈ Ag and by 2σA the set

⋃
i∈A2

σ
i , for a coalition

A ⊆ Ag.

B. OUTCOMES
Given a set of agents A ⊆ Ag, a collective σ -strategy for the
coalition A is a function υσA : A → 2σA such that for each
agent i ∈ A, υσA (i) ∈ 2

σ
i is a σ -strategy of agent i. For i ∈ A

and ρ ∈ S+, we denote the local action υσA (i)(ρ) of agent i by
υσA (i, ρ), and the complementary set Ag \ A by A.

Given a state s, a collective σ -strategy υσA and a collective
σ ′-strategy υσ

′

A
, let play(s, υσA , υ

σ ′

A
) denote the path such

that ρ0 = s and for every j ≥ 0, ρj+1 = 1(ρj, Eaj) for some
Eaj ∈ Ac such that for every i ∈ Ag:

Eaj(i) =

{
υσA (i, ρ[0..j]), if i ∈ A;
υσ
′

A
(i, ρ[0..j]), if i ∈ A.

Intuitively, play(s, υσA , υ
σ ′

A
) is the unique play when the

CGS starts from the state s and all the agents enforce strate-
gies specified by υσA and υσ

′

A
.

For every state s ∈ S and collective σ -strategy υσA of the
coalition A, the outcome of the CGS G is defined as follows:

Oσ
G(s, υ

σ
A ) ,

{
play(s, υσA , υ

IR
A

) | ∀i ∈ A, υIR
A

(i) ∈ 2IR
i

}
.

Intuitively, Oσ
G(s, υ

σ
A ) is the set of all the possible plays that

may occur when each agent i ∈ A enforces its σ -strategy
υσA (i) from the state s no matter which IR-strategies the other
agents choose. The subscript G is dropped from Oσ

G when it
is clear from the context.

III. ALTERNATING-TIME TEMPORAL LOGICS
The alternating-time temporal logics: ATL and ATL∗ are
respectively extensions of the branching-time logics CTL and
CTL∗ by replacing the existential path quantifier E with col-
lation modalities 〈〈A〉〉 [1], each of which is parameterized by
a coalition A ⊆ Ag. Intuitively, the formula 〈〈A〉〉φ expresses
that the coalitionA has a collective strategy to achieve the goal
φ nomatter which strategies the agents inA choose. Formally,
ATL∗ is defined by the following grammar:

State formulae ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉φ,

Path formulae φ ::= ϕ | ¬φ | φ ∧ φ | X φ | φ U φ,

where q ∈ AP and A ⊆ Ag.
The derived operators are defined as usual:

φ1 ∨ φ2 , ¬(¬φ1 ∧ ¬φ2) F φ , true U φ

φ1→ φ2 , φ2 ∨ ¬φ1 G φ , ¬F ¬φ

[[A]]φ , ¬〈〈A〉〉¬φ φ1 R φ2 , Gφ2 ∨ φ2U(φ1 ∧ φ2)

In this work, ATL∗ formulae refer to ATL∗ state formu-
lae. A path formula of ATL∗ with the state formulae being
restricted to atomic propositions is called an LTL formula.
Formally, LTL is defined by the following grammar:

φ ::= q | ¬φ | φ ∧ φ | X φ | φ U φ.

The semantics of ATL∗ is traditionally defined over CGSs.
When strategy abilities are considered, it is often parameter-
ized with a strategy type σ ∈ Tstr, denoted by ATL∗σ [8].
Formally, let G be a CGS and s be a state of G, the semantics
of ATL∗σ (i.e., the satisfaction relation |Hσ ) is defined induc-
tively as follows:
Semantics of State Formulae:
• G, s |Hσ q iff q ∈ λ(s);
• G, s |Hσ ¬ϕ iff G, s 6|Hσ ϕ;
• G, s |Hσ ϕ1 ∧ ϕ2 iff G, s |Hσ ϕ1 and G, s |Hσ ϕ2;
• G, s |Hσ 〈〈A〉〉φ iff there exists a collective σ -strategy υσA
for the coalitionA such that for each path ρ ∈ Oσ (s, υσA ):
G, ρ |Hσ φ;

Semantics of Path Formulae:
• G, ρ |Hσ ϕ iff G, ρ0 |Hσ ϕ;
• G, ρ |Hσ ¬φ iff G, ρ 6|Hσ φ
• G, ρ |Hσ φ1 ∧ φ2 iff G, ρ |Hσ φ1 and G, ρ |Hσ φ2;
• G, ρ |Hσ Xφ iff G, ρ[1,∞] |Hσ φ;
• G, ρ |Hσ φ1Uφ2 iff there exists an integer k ≥ 0 such
that G, ρ[k,∞] |H φ2 and for all j : 0 ≤ j < k:
G, ρ[j,∞] |Hσ φ1.

Given an ATL∗ formula ϕ, a CGS G and a strategy type
σ ∈ Tstr, the model-checking problem is to determine
whether G, s |Hσ ϕ or not, for each initial state s of the
CGS G.
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A. VANILLA ATL
(Vanilla) ATL is a sublogic of ATL∗ where each occurrence
of the collation modality 〈〈A〉〉 is immediately followed by a
temporal operator. Formally, ATL is defined by the following
grammar:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉(ϕRϕ) | 〈〈A〉〉(ϕUϕ),

where q ∈ AP and A ⊆ Ag.
Remark that the release operatorR cannot be defined using

the until (U) and global (G) operators in ATL [10], so is
included for completeness.

An ATL/ATL∗ formula of the form 〈〈A〉〉φ is simple if φ is
an LTL formula. An ATL/ATL∗ formula ϕ is positive if (1)
each subformula 〈〈A〉〉φ in ϕ is a simple formula, (2) there
is no occurrence of [[A]]φ in ϕ, and (3) negations ¬ only
appear in front of atomic propositions. For example, 〈〈A〉〉X q
is simple and positive, but ¬〈〈A〉〉X q is neither simple nor
positive.

B. SOME SEMANTICS ISSUES
We observe that the semantics of ATL/ATL∗ refers to
the agents’ abilities in an implicit manner. For the for-
mula 〈〈A〉〉ϕ, the specified σ -strategies only apply to agents
in the coalition A while the agents in the coalition A
(i.e., outside of A) could still choose beyond σ -strategies
(e.g., IR-strategies). In other words, the coalition A has a
collective σ -strategy to achieve ϕ no matter what the other
agents do. When σ is IR as in the original work by [1], this
interpretation of 〈〈A〉〉ϕ is plausible, as ‘‘no matter what the
other agents do’’ is effectively the same as ‘‘no matter which
strategies the other agents choose’’. However, when σ is set
to be more restricted than IR, agents not in the coalition A
are still allowed to use IR-strategies.
As mentioned in the introduction, this results in a few

shortcomings. From a modeling perspective, agents’ abili-
ties should be arguably decided by the practical scenario.
Namely, they should be fixed when the model is built, and all
agents stick to their respective abilities independent of logic
formulae. More concretely, from the semantic perspective,
the existing semantics only take into account the abilities
of agents that are quantified in 〈〈A〉〉, but does not take into
account the abilities of agents who are not in the coalition A,
and neglects the (multi-player) game nature in the evolution
of MASs. As a result, it may exhibit some counter-intuitive
semantics. For instance, consider two formulae 〈〈A〉〉φ and
〈〈A′〉〉φ′, the agent i ∈ A \ A′ may have different abilities to
achieve φ and φ′.

Let us consider an autonomous road vehicle scenario to
see why this is not ideal. There are several autonomous cars
which can only observe partial information and have bounded
memory. A CGSmodel G consists of a set A of agents model-
ing autonomous cars, and an additional environment agent e.
We can reasonably assume that all the car agents use ir-
strategies, while e uses IR-strategies. The property 〈〈A′〉〉φ
expresses that autonomous cars A′ ⊂ A can cooperatively
achieve the goal φ no matter which strategies the other cars

and the environment choose. Verifying thatG satisfies 〈〈A′〉〉φ
under the existing semantics would allow car agents A \ A′

to use IR-strategies. If G satisfies 〈〈A′〉〉φ, then the result
is conclusive, i.e., 〈〈A′〉〉φ holds for the system. However,
if G invalidates 〈〈A′〉〉φ, we cannot deduce that 〈〈A′〉〉φ fails
because we overestimate the abilities of agents in A\A′ when
evaluating 〈〈A′〉〉φ. In other words, for the formula 〈〈A′〉〉φ
under |Hσ where σ 6= IR, it seems to be inappropriate to
render the agents in A \ A′ extra powers of IR to potentially
defeat agents from A′ when the abilities of the agents in A\A′

are actually much weaker and agents in A′ are certainly aware
of this. The over-approximation of strategic abilities in such
cases are unnecessary and may not be sufficient.

IV. ABILITIES AUGMENTED ACGSs
In this section, we introduce abilities augmented concurrent
game structures (ACGSs in short), which explicitly equip
each agent with a strategy type from Tstr. As such, agents
have fixed strategic abilities for a given ACGS. Formally,
an ACGS is a pair

M = (G, π),

where G is a CGS and π : Ag → Tstr is a function that
assigns a strategy type π (i) to each agent i ∈ Ag. The strategy
type π (i) explicitly characterizes the abilities of agent i in the
CGS model. Recalling that epistemic accessibility relations
are used to characterize observable abilities of agents, agents
with Ir-strategies or IR-strategies are able to distinguish two
distinct states, hence we assume that, for each agent i ∈ Ag
with π (i) ∈ {IR,Ir}, the epistemic accessibility relation ∼i
is an identity relation, denoted by id∼.
Paths and traces of ACGSs are defined in the same way as

in CGSs, but strategies and outcomes have to be revised as
follows.

A. STRATEGIES AND OUTCOMES OF ACGSs
Let A be a set of agents. A collective strategy of the coalition
A in the ACGS M is a function ξA : A →

⋃
i∈A2

π (i)
i that

assigns each agent i ∈ A a π (i)-strategy ξA(i) ∈ 2
π (i)
i .

Given a state s ∈ S and a set of agents A ⊆ Ag, for
every collective strategy ξA of the coalition A, the outcome
OM(s, ξA) of M is the set of all possible paths that may
occur when each agent i ∈ A enforces its π (i)-strategy ξA(i)
from the state s, and any other agent i ∈ A can only choose
π (i)-strategies (rather than general IR-strategies). Formally,
OM(s, ξA) is defined as

OM(s, ξA) ,
{
play(s, ξA, ξA) | ∀i ∈ A, ξA(i) ∈ 2

π (i)
i

}
.

Wewill omit the subscriptM fromOM(s, ξA) when it is clear
from context.

B. SEMANTICS OF ATL AND ATL∗ ON ACGSs
The difference of outcomes between ACGSs and CGSs
induces distinct semantics of ATL/ATL∗ on ACGSs
than CGSs. Let M be an ACGS and s be a state in M,
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FIGURE 1. An illustrating example, where ? ∈ {b1,b2}.

the semantics of ATL/ATL∗ onM (i.e., the satisfaction rela-
tion |H) is defined similar to the one on a CGS, except that the
semantics of the state formulae of the form 〈〈A〉〉φ is defined
as follows:

M, s |H 〈〈A〉〉φ if there exists a collective strategy
ξA : A →

⋃
i∈A2

π (i)
i for the coalition A such that

M, ρ |H φ, for all paths ρ ∈ O(s, ξA).

Remark that this semantics takes into account whether the
agents from A have perfect or imperfect information/recall.

Given an ACGS M and an ATL/ATL∗ formula ϕ, the
model-checking problem is to determine whether M, s |H ϕ
holds, for every initial state s ofM. Given a state formula ϕ,
let JϕKM denote the set of the states of M that satisfy ϕ.
We remark that, as per formal semantics, the system model

is syntactic and their computations are semantic. In previous
work in literature, the abilities of agents are determined when
ATL/ATL∗ formulae are interpreted using computations of
the system model. In contrast, in this work, the abilities of
agents are defined explicitly in the system model without
referring to ATL/ATL∗ formulae or computations of the sys-
tem model. Therefore, we assert that the abilities of agents
are defined at the semantic level in previous work, whereas at
the syntactic level in this work.

V. EFFECTS OF STRATEGY TYPES
Given an ATL/ATL∗ formula ϕ, we denote by Agϕ the set
of agents that appear in ϕ. The semantics of ATL/ATL∗

defined on ACGSs is different from the one defined on CGSs.
In general, they are incomparable.
Proposition 1: There are an ACGS M = (G, π),

an ATL/ATL∗ formula 〈〈A〉〉φ, and a type σ ∈ Tstr such
that π (i) = σ for all i ∈ A and M, s |H 〈〈A〉〉φ holds,
but G, s 6|Hσ 〈〈A〉〉φ.

Proof: Let us consider the CGS shown in Figure 1.
There are two agents {1, 2}, four states {s0, s1, s2, s3} (s0 is
the initial state), λ(s0) = λ(s1) = λ(s2) = {q} and λ(s3) = ∅,
∼1 is the identity relation, s ∼2 s′ for every s, s′ ∈ {s0, s1, s2}
and s3 ∼2 s3.
Consider the function π such that π (1) = IR and π (2) =

ir, then M, s0 |H 〈〈{1}〉〉Gq, but G, s0 6|HIR 〈〈{1}〉〉Gq. �
Proposition 1 reveals that for positive ATL/ATL∗ formulae

ϕ such that π (i) = σ for each i ∈ Agϕ , even if the agents of
Agϕ have the same strategy types in the ACGS (G, π) and the
CGS G, verifying G against ϕ under σ may examine more
behavior than verifying (G, π) against ϕ. Therefore, if the
behavior of a MAS is exactly modeled as an ACGSM rather

than a CGS G with strategy type σ , verifying G against ϕ
under σ may lead to incorrect result.

By restricting all the strategy types toIR, straightforwardly
we have:
Proposition 2: Let M = (G, π) be an ACGS where for

each i ∈ Ag, π (i) = IR. For each state s of M and ATL∗

formula ϕ, G, s |HIR ϕ iffM, s |H ϕ.

Proof: By applying structural induction on ϕ, it suffices
to show that the result holds for formulae of the form 〈〈A〉〉φ.
By the induction hypothesis, for every path ρ, the following

holds: G, ρ |HIR ϕ iff M, ρ |H ϕ.
For each pair (ξA, υIRA ) of collective strategies such that

ξA = υ
IR
A , we have: OM(s, ξA) = OIR

G (s, υIRA ). Each agent
i ∈ A has same sets of possible IR-strategies in G and M,
hence G, s |HIR 〈〈A〉〉φ iff M, s |H 〈〈A〉〉φ. �

In light of Proposition 1 and Proposition 2, in this section
we shall investigate the effects of strategy types by consider-
ing ACGSs with various different setups of strategy types.

Given a set A ⊆ Ag and two functions π1, π2 :
Ag → Tstr, π1 is coarser than π2 with respect to the
coalition A, denoted by π1 �A π2, if for every i ∈ A,
π1(i) = π2(i) and for every j ∈ A, one of the following
conditions holds:
• π1(j) = IR, π2(j) = IR;
• π1(j) = Ir, π2(j) ∈ {IR,Ir};
• π1(j) = iR, π2(j) ∈ {IR,iR};
• π1(j) = ir, π2(j) ∈ {IR,Ir,iR,ir} = Tstr.
Proposition 3: Let A be a set of agents and s be a state

of a CGS G. For two functions π1, π2 : Ag → Tstr with
π1 �A π2, and any collective strategy ξA of the coalition A,
we have:

O(G,π1)(s, ξA) ⊆ O(G,π2)(s, ξA).

Proposition 3 reveals the effect of strategy types of A on
the outcomes. It is easy to observe that if π2(i) = σ for
all i ∈ A, then for every collective σ -strategy υσA such that
ξA = υσA , we have: O(G,π2)(s, ξA) ⊆ Oσ

G(s, υ
σ
A ). Moreover,

if π2(i) = IR for all i ∈ A, then O(G,π2)(s, ξA) = Oσ
G(s, υ

σ
A ).

By Proposition 3, we have:
Proposition 4: Given a CGSG, a state s inG and a positive

ATL/ATL∗ formula ϕ, for each pair of two functions π1, π2 :
Ag→ Tstr such that π1 �Agϕ π2,

if (G, π2), s |H ϕ, then (G, π1), s |H ϕ.
Proof: By applying structural induction on ϕ, it suffices

to show that the result holds for formulae of the form 〈〈A〉〉φ.
Suppose (G, π2), s |H 〈〈A〉〉φ (otherwise the proposition

immediately holds), then there exists a collective strategy ξA
for the coalition A such that for each path ρ ∈ O(G,π2)(s, ξA),
(G, π2), ρ |H φ holds. Since A ⊆ Agϕ and for every i ∈
Agϕ , π1(i) = π2(i) and π1 �Agϕ π2, then π1 �A π2.
By Proposition 3, we get thatO(G,π1)(s, ξA) ⊆ O(G,π2)(s, ξA).

By the induction hypothesis, for every state formula ϕ′ in
φ and every state s′, if (G, π2), s′ |H ϕ′, then (G, π1), s′ |H ϕ′.
Therefore, for each path ρ ∈ O(G,π1)(s, ξA), we get that

(G, π1), ρ |H φ. The result immediately follows. �
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More restrictions on strategy types and ATL/ATL∗ for-
mulae can make two semantics coincide, as the following
proposition shows.
Proposition 5: Let s be a state of the ACGS M = (G, π)

and σ ∈ Tstr be a strategy type. Assume an ATL/ATL∗

formula ϕ that satisfies
1) for every i ∈ Agϕ , π (i) = σ ,
2) for every i ∈ Ag \ Agϕ , π (i) = IR, and
3) for every occurrence of 〈〈A′〉〉φ in ϕ, Agϕ = A′.

Then we have G, s |Hσ ϕ iffM, s |H ϕ.

Proof: The proof directly follows from the fact that
O(G,π2)(s, ξAgϕ ) = Oσ

G(s, υ
σ
Agϕ ) for every state s ∈ S, col-

lective strategy ξAgϕ and collective σ -strategy υσAgϕ such that
ξAgϕ = υ

σ
Agϕ . �

VI. UNDECIDABLE RESULTS
In this section, we present the following undecidable results.
Theorem 1: The ATL/ATL∗ model-checking problem for

ACGSs is undecidable.

Proof: It has been shown [5] that the Halting prob-
lem of Turing machines can be reduced to the ATLiR
model-checking problem of CGSs against the formula
ϕ = 〈〈{1, 2}〉〉G ok , where ok is an atomic proposition.

In other words, one can construct a CGS G =

(S, {s0},Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,1, λ) from a Tur-
ing machine such that G, s0 |HiR 〈〈{1, 2}〉〉G ok iff the Turing
machine does not halt on the empty word.

Let M = (G, π) be an ACGS such that for every agent
i ∈ Ag, π (i) = iR if i ∈ {1, 2}, otherwise π (i) = IR. Clearly,
G, s0 |HiR 〈〈{1, 2}〉〉G ok iff M, s0 |H 〈〈{1, 2}〉〉G ok . The
undecidability immediately follows. �

By Theorem 1, in the rest of this paper, we focus on
the model-checking problem of ACGSs by restricting the
function π to Ag→ Tstr \ {iR}.

VII. ATL MODEL-CHECKING FOR ACGSs
In this section, we show that the ATL model-checking prob-
lem for ACGSs is 1P

3 -complete. We first propose a model-
checking algorithm and then prove the 1P

3 -hardness of the
problem.

Our model-checking algorithm iteratively computes the set
of states satisfying state formulae from the innermost subfor-
mulae. The main challenge is how to compute J〈〈A〉〉φKM.
To this end, we first show how to compute J〈〈A〉〉φKM for
a simple formula 〈〈A〉〉φ, and then present the algorithm for
general ATL formulae.

A. MODEL-CHECKING FOR SIMPLE ATL
For a simple ATL formula of the form 〈〈A〉〉φ, we can show
that whether it is satisfied or not is irrelevant to whether the
agents that have perfect information abilities admit perfect
recall strategies or not.
Proposition 6: Given a simple ATL formula 〈〈A〉〉ϕ,

consider an ACGS M = (G, π) such that G =

(S, {s},Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,1, λ) andπ : Ag→

Tstr \ {iR}, let π ′ be a function such that for every i ∈ Ag,

π ′(i) =

{
Ir, if i ∈ A ∧ π (i) = IR;

π (i), otherwise.

For every state s inM, the following holds:

(G, π), s |H 〈〈A〉〉ϕ iff (G, π ′), s |H 〈〈A〉〉ϕ.
Proof: Recalling that for each agent i ∈ Ag with

π (i) ∈ {IR,Ir}, ∼i is an identity relation, we can
then safely regard all the agents in Ag with Ir-strategies
as ir-strategies with the identity relation. We first con-
struct the tree-unfolding M∗

s of M from the state s. Let
M∗

s = (G∗, π∗) such that

G∗ = (S+, S∗0 ,Ag, (Aci)i∈Ag, (∼
∗
i )i∈Ag, (P

∗
i )i∈Ag,1

∗, λ∗),

where
• S∗0 = {s};
• for every i ∈ Ag,

π∗(i) =

{
Ir, if i ∈ A ∧ π (i) = IR;

π (i), otherwise.

• for every i ∈ Ag and ρ, ρ′ ∈ S+, ρ ∼∗i ρ
′, if

– either π (i) 6= IR and lst(ρ) ∼i lst(ρ′)
– or π (i) = IR and ρ = ρ′;

• P∗i (ρ) = Pi(lst(ρ)) for every i ∈ Ag and ρ ∈ S+;
• 1∗(ρ, Ea) = ρ · 1(lst(ρ), Ea) for every ρ ∈ S+ and
Ea ∈ Ac;

• λ∗(ρ) = λ(lst(ρ)) for every ρ ∈ S+.
We observe that the tree-unfolding M∗

s is a tree-like
ACGS, namely, every state can be reached by a unique finite
path from the state s. Hence, IR-strategies of the coalition
A from the state s in M correspond exactly to Ir-strategies
of the coalition A from the state s in the tree unfolding M∗

s ,
while the types of other agents are same under π and π∗. We
show that M, s |H 〈〈A〉〉ϕ iff M∗

s , s |H 〈〈A〉〉ϕ. (We remark
that this result does not hold if ϕ is a general LTL formula.)

(⇒) SupposeM, s |H 〈〈A〉〉ϕ, then there exists a collective
strategy ξA such that for every path ρ ∈ OM(s, ξA): M,

ρ |H ϕ. From the collective strategy ξA, we define the
function ξ∗A such that for every i ∈ A and ρ ∈ S+:

ξ∗A(i)(ρ) =

{
ξA(i)(lst(ρ)), if π (i) 6= IR;

ξA(i)(ρ), if π (i) = IR.

First, we show that ξ∗A is a collective strategy of the coali-
tion A in M∗

s . Consider an agent i ∈ A and two states
ρ, ρ′ ∈ S+, if ρ ∼∗i ρ′, then either (π (i) 6= IR and
lst(ρ) ∼i lst(ρ′)) or (ρ = ρ′ and π (i) = IR).
• If π (i) 6= IR and lst(ρ) ∼i lst(ρ′), then
we get that ξA(i)(lst(ρ)) = ξA(i)(lst(ρ′)), hence
ξ∗A(i)(ρ) = ξ

∗
A(i)(ρ

′).
• If ρ = ρ′ and π (i) = IR, then we get that
ξA(i)(ρ) = ξA(i)(ρ′), hence ξ∗A(i)(ρ) = ξ

∗
A(i)(ρ

′).
Therefore, ξ∗A is a collective strategy of the coalition A inM∗

s .
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Next, we show that for every collective strategy ξ∗
A
of A in

M∗
s , play(s, ξ

∗
A, ξ
∗

A
) |H ϕ holds.

Suppose play(s, ξ∗A, ξ
∗

A
) = ρ0ρ1 · · · . Let ξA be the func-

tion such that for every i ∈ A and j ≥ 0,

ξA(i)(lst(ρj)) = ξ
∗

A
(i)(ρj), if π (i) 6= IR;

ξA(i)(ρ0 · · · ρj) = ξ
∗

A
(i)(ρ0 · · · ρj), if π (i) = IR.

Consider j, k ≥ 0 such that lst(ρj) ∼i lst(ρk ) for some
i ∈ A, then either π (i) 6= IR or π (i) = IR.
• If π (i) 6= IR, then ρj ∼

∗
i ρk . This implies

that ξ∗
A
(i)(ρj) = ξ∗

A
(i)(ρk ). Hence ξA(i)(lst(ρj)) =

ξA(i)(lst(ρk )).
• If π (i) = IR, then the agent i can choose any action at
any state of ρj.

Therefore, ξA is a collective strategy of A in M and
play(s, ξA, ξA) = lst(ρ0)lst(ρ1) · · · . Following from the
fact that λ∗(ρ) = λ(lst(ρ)) for every ρ ∈ S+, we get that
M∗

s , s |H 〈〈A〉〉ϕ.
(⇐) Suppose M∗

s , s |H 〈〈A〉〉ϕ, then there exists a collec-
tive strategy ξ∗A such that for every path ρ ∈ OM∗

s
(s, ξ∗A):

M∗
s , ρ |H ϕ. Without loss of generality, we assume that there

is an arbitrary total order � on set S+, and denote by min(U )
the minimal one of the set of states U ⊆ S+ with respect to
the order �.

Let ξA be the function such that for every i ∈ A and s′ ∈ S:

ξA(i)(s′) = ξ∗A(i)
(
min({ρ ∈ S+ | lst(ρ) = s′})

)
.

First, we show that ξA is a collective strategy of the
coalition A in M. Consider an agent i ∈ A and two
states s1, s2 ∈ S, if s1 ∼i s2, then eitherπ (i) 6= IR or (s1 = s2
and π (i) = IR).
• If π (i) 6= IR, then for each pair of states ρ1, ρ2 ∈ S+

such that lst(ρ1) = s1 and lst(ρ2) = s2, we have:
ρ1 ∼

∗
i ρ2. This implies that ξ∗A(i)(ρ1) = ξ

∗
A(i)(ρ2), hence

ξA(i)(s1) = ξA(i)(s2).
• If s1 = s2 and π (i) = IR, we choose ξA(i)(s1) =
ξA(i)(s2) = ξ∗A(i)(min({ρ ∈ S+ | lst(ρ) = s1})).

Therefore, ξA is a collective strategy of the coalition A inM.
Consider a collective strategy ξA of A in M, let

ρ = play(s, ξA, ξA), then we have:

ρ[0..0]ρ[0..1]ρ[0..2] · · · ∈ OM∗
s
(s, ξ∗A).

Following from the fact that λ∗(ρ) = λ(lst(ρ)) for every
ρ ∈ S+, we get that M, s |H 〈〈A〉〉ϕ.

Since {(lst(ρ), ρ) | ρ ∈ sS∗} is bisimulation between
G and G∗ (cf. Definition 5.1 and Lemma 5.2 [11]), we get
that (G∗, π∗), s |H 〈〈A〉〉ϕ iff (G, π∗), s |H 〈〈A〉〉ϕ. Therefore,
we get that (G, π), s |H 〈〈A〉〉ϕ iff (G∗, π∗), s |H 〈〈A〉〉ϕ iff
(G, π∗), s |H 〈〈A〉〉ϕ. �
We remark that Alur et al. [1] observed that both semantics

of ATL under Ir-strategies and IR-strategies are coincide
for CGSs. This result was generalized and formally proved
for infinite CGSs (i.e., no finiteness with respect to the set of
states and actions) (cf. Proposition 1 [8]). Proposition 6 can

be seen as a generalization of the result of [1] and could
be extended to the infinite ACGSs similar to [8]. Moreover,
Proposition 6 could be generalized to allow all agents that
are perfect information to be imperfect recall. We prefer not
to do so because it would not improve complexity result,
meanwhile it may reduce scalability, as we have to check
more strategies of agents not in the coalitionA (see themodel-
checking algorithm below).

By Proposition 6, all the agents in the coalition A with
IR-strategies can be seen as with Ir-strategies. Moreover,
for each agent i ∈ Agwith Ir/IR-strategies,∼i is an identity
relation. Therefore, without loss of generality, we can safely
assume that π (i) = ir for all i ∈ A, and π (i) ∈ {ir,IR} for
all i ∈ A. Let Air denotes the set {i ∈ A | π (i) = ir}.
For two collective strategies ξA and ξAir , let

M(ξA, ξAir ) , (G′, π)

be the ACGS obtained from (G, π) by enforcing strategies ξA
and ξAir , namely, by removing transitions whose actions of
agents in A ∪ Air do not conform to ξA and ξAir . We have
that
Lemma 1: J〈〈A〉〉φKM ≡

⋃
ξA

⋂
ξAir

J〈〈∅〉〉φKM(ξA,ξAir )
.

Proof: (⇒) Suppose s ∈ J〈〈A〉〉φKM, then there exists
a collective strategy ξA : A→

⋃
i∈A2

π (i)
i such that for each

path ρ ∈ OM(s, ξA): M, ρ |H φ.
For every collective strategy ξAir : Air →

⋃
i∈Air 2

ir
i ,

we denote by Pathss(M(ξA, ξAir )) the set of paths in
M(ξA, ξAir ) that start from s. Then,Pathss(M(ξA, ξAir )) ⊆
OM(s, ξA). This implies that for every path ρ ∈

Pathss(M(ξA, ξAir )): M, ρ |H φ holds. Therefore, we get
that s ∈ J〈〈∅〉〉φKM(ξA,ξAir )

for every collective strategy

ξAir : Air→
⋃

i∈Air 2
ir
i . The result immediately follows.

(⇐) Suppose s ∈
⋃
ξA

⋂
ξAir

J〈〈∅〉〉φKM(ξA,ξAir )
, then

there exists a collective strategy ξA : A →
⋃

i∈A2
π (i)
i such

that s ∈
⋂
ξAir

J〈〈∅〉〉φKM(ξA,ξAir )
. This implies that for every

collective strategy ξAir : Air→
⋃

i∈Air 2
ir
i , and every path

ρ ∈ Pathss(M(ξA, ξAir )), ρ |H φ holds.
Since OM(s, ξA) =

⋃
ξAir

Pathss(M(ξA, ξAir )), we get
that for every path ρ ∈ OM(s, ξA), ρ |H φ holds. Therefore,
s ∈ J〈〈A〉〉φKM. �
Algorithm for Simple ATL: To compute J〈〈A〉〉φKM,

the Turing machine first existentially guesses a collective
strategy ξA : A →

⋃
i∈A2

π (i)
i by restricting the tran-

sition function of M. Then the Turing machine reaches
the universal state, and explores all collective strategies
ξAir : Air →

⋃
i∈A2

π (i)
i by restricting the transition func-

tion of M, and finally computes J〈〈∅〉〉φKM(ξA,ξAir )
which

amounts to CTL model-checking and can be done in polyno-
mial time in the size ofM(ξA, ξAir ) and 〈〈∅〉〉φ [12]. Clearly,
the number of choices is limited by the size of the transi-
tion function and each choice can be doing in polynomial
time. Therefore, J〈〈A〉〉φKM can be computed in polynomial
time by an alternating Turing machine with two alternations
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FIGURE 2. Running example: (a) Mr , (b) M′
r (ξ{1}, ξ{2}) and (c) M′

r (ξ{1}, ξ ′{2}), where ? ∈ {a,b}.

(starting in an existential state). By the characterization of the
polynomial hierarchy (PH), we obtain the following result.
Lemma 2: For a state s and a simple ATL formula 〈〈A〉〉φ,

checking whether s ∈ J〈〈A〉〉φKM is in 6P
2 (i.e., NP

NP).
Example 1: Consider the ACGSMr = (G, π) defined as

follows.
• G = (S, {s0},Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,1, λ),
where
– S = {s0, s1, s2, s3, s4};
– Ag = {1, 2, 3};
– Aci = {a, b} for i ∈ Ag;
– ∼1=∼3= {(s, s) | s ∈ S},∼2=∼1
∪{(s0, s3), (s3, s0)};

– P1(s0) = P1(s2) = {a, b}, P1(s1) = P1(s3) = {a},
P1(s4) = {b};

– P2(s0) = P2(s3) = {a, b}, P2(s1) = P2(s2) = {a},
P2(s4) = {b};

– P3(s0) = {a, b}, P3(s1) = P3(s2) = P3(s3) = {a},
P3(s4) = {b};

– 1 is shown in Figure 2(a);
– λ(s1) = {q2}, λ(s0) = λ(s2) = λ(s3) =
λ(s4) = {q1}.

• π : Ag → Tstr is the function such that π (1) = IR,
π (2) = ir and π (3) = IR.

We consider the ATL formula ϕr := 〈〈{1}〉〉(q1Uq2) express-
ing that the agent 1 has a strategy to achieve the goal q1Uq2.
Obviously, ϕr is a simple ATL formula. By Proposition 6,
we get that Mr , s0 |H ϕr iff M′

r , s0 |H ϕr , where M′
r =

(G, π ′) with π ′(1) = ir, π ′(2) = π (2) and π ′(3) = π (3).
Consider the collective strategies ξ{1}, ξ{2} and ξ ′{2} defined

as follows.
• ξ{1}(1) = {s0 7→ a, s1 7→ a, s2 7→ a, s3 7→ a, s4 7→ b}.
• ξ{2}(2) = {s0 7→ a, s1 7→ a, s2 7→ a, s3 7→ a, s4 7→ b}.
• ξ ′
{2}(2) = {s0 7→ b, s1 7→ a, s2 7→ a, s3 7→ b, s4 7→ b}.

We obtain two ACGSs M′
r (ξ{1}, ξ{2}) and M′

r (ξ{1}, ξ
′

{2})
depicted in Figure 2(b) and Figure 2(c), respectively. Then,
we have:
• J〈〈∅〉〉(q1Uq2)KM′

r (ξ{1},ξ{2}) = {s0, s1, s2};
• J〈〈∅〉〉(q1Uq2)KM′

r (ξ{1},ξ
′

{2})
= {s1, s2}.

This shows that s0 /∈
⋂
ξ :{2}→2ir

2
J〈〈∅〉〉(q1Uq2)KM′

r (ξ{1},ξ ).
We can get the same result for other collective strategies of
the agent 1. Therefore,M′

r , s0 6|H ϕr .

6P
2 -hardness. Next, we show that the model-checking

problem for simple ATL is 6P
2 -hard.

Lemma 3: For a state s and a simple ATL formula 〈〈A〉〉φ,
checking whether s ∈ J〈〈A〉〉φKM is 6P

2 -hard.

Proof: We prove by a reduction from the satisfiability of
quantified Boolean formulas with two alternations of quanti-
fiers (QBF2) which is known to be 6P

2 -complete.
Let ∃X .∀Y .ψ be an instance of QBF2, where X =

{x1, · · · , xm} and Y = {y1, · · · , yk} are sets of Boolean
variables, ψ is a Boolean formula over Boolean variables of
X ∪ Y . Without loss of generality, we assume that ψ is in
3-CNF

∧
j(`

1
j ∨ `

2
j ∨ `

3
j ), where `j is a literal that is either

a Boolean variable or its negation. We denote by cj for the
clause `1j ∨ `

2
j ∨ `

3
j , and cl(ψ) the set of clauses of ψ .

∃X .∀Y .ψ is satisfiable iff an assignment f1 : X → {0, 1}
exists such that for all assignments f2 : Y → {0, 1}, ψ
evaluates to 1 under f1 and f2.

Let M = ((S, {s},Ag, (Aci)i∈Ag, (∼i)i∈Ag, (Pi)i∈Ag,
1, λ), π) be an ACGS, where
• S = Sc∪S`∪{s⊥, s>, s}, S` = {sz, s¬z | z ∈ X ∪Y } and
Sc = {sc | c ∈ cl(ψ)};

• Ag = {gx | x ∈ X} ∪ {gy | y ∈ Y } ∪ {gd , gψ };
• For each i ∈ Ag,

Aci =


{a�, ac | c ∈ cl(ψ)}, if i = gψ ;
{a1, a2, a3, a�}, if i = gd ;
{a⊥, a>, a�}, otherwise.

• For each i ∈ Ag,
– ∼i is an identity relation id∼, if i ∈ {gd , gψ };
– ∼i= id∼ ∪ {(sz, s¬z), (s¬z, sz)}, if i = gz for
z ∈ X ∪ Y .

• For each i ∈ Ag, Pi is defined as follows: for each s′ ∈ S,

Pi(s′) =



{ac | c ∈ cl(ψ)}, if i = gψ ∧ s′ = s;
{a�}, if i = gψ ∧ s′ 6= s;
{a1, a2, a3}, if i = gd ∧ s′ = sc;
{a�}, if i = gd ∧ s′ 6= sc;
{a⊥, a>}, if i = gz ∧ s′ ∈ {sz, s¬z};
{a�}, if i = gz ∧ s′ 6∈ {sz, s¬z};
{a�}, if s′ ∈ {s>, s⊥}.
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• 1 is defined as follows: for every (s′, Ea) ∈ S × Ac,

1(s′, Ea) =



sc, if s′ = s ∧ Ea(gψ ) = ac;

s`i , if s′ = s`1∧`2∧`3 ∧ Ea(gd ) = ai;

(1) if s′ = s¬z ∧ Ea(gz) = a>,

s⊥, (2) or s′ = sz ∧ Ea(gz) = a⊥,

(3) or s′ = s⊥;

(1) if s′ = s¬z ∧ Ea(gz) = a⊥,

s>, (2) or s′ = sz ∧ Ea(gz) = a>,
(3) or s′ = s>.

• λ is the function such that for all s′ ∈ S: λ(s′) = q> if
s′ = s>, λ(s′) = ∅ otherwise;

• π (i) = ir for every i ∈ Ag.
Intuitively, the agent gψ controls the state s and chooses a

clause c to verify by selecting the action ac. Then, the agent
gd controls the state sc and chooses a literal `i (e.g., z or ¬z)
of c to verify by selecting the action ai. Next, the agent gz
controls the state s`i and chooses a truth value for the variable
z by selecting a> or a⊥. If the literal `i is true under z, then
M enters the state q>, otherwise M enters the state q⊥.
The relation ∼gz ensures that the agent gz chooses the same
truth value at the states sz and s¬z. The ACGS M can be
constructed in polynomial time in the size of ∃X .∀Y .ψ .

Let Ag∃ denote the set {g`, gx | x ∈ X}, then we have

s ∈ J〈〈Ag∃〉〉Fq>KM iff ∃X .∀Y .ψ is satisfiable.

Indeed, there exists an assignment f1 : X → {0, 1} such
that ψ evaluates to 1 under f1 regardless of the values of the
variables in Y iff there is a collective strategy ξAg∃ such that
M, ρ |H Fq> for all paths ρ ∈ O(s, ξAg∃ ), where for every
x ∈ X , f1(x) = 1 (resp. f1(x) = 0) iff the agent gx selects the
action a> (resp. a⊥) at the states sx and s¬x .

The proof is completed. �
We remark that the following result also holds:

s ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉Fq>KM iff ∃X .∀Y .ψ is satisfiable.

which will later be used in the proof of Lemma 5.
Following Lemma 2 and Lemma 3, we have that:
Theorem 2: The model-checking problem for simple ATL

formulae is 6P
2 -complete.

B. MODEL-CHECKING FOR GENERAL ATL
Algorithm for General ATL: We now present the model-
checking algorithm for general ATL, which computes JϕKM
from the innermost subformulae.

Algorithm 1 shows the pseudo code, which takes an ACGS
M = (G, π) and an ATL formula ϕ as inputs, and outputs
JϕKM which contains all the states that satisfy ϕ.
We also incorporate epistemic modalities Kiϕ,EAϕ,DAϕ

and CAϕ from [13] into our algorithm with the following
semantics:
• G, s |Hσ Kiϕ iff ∀s′ ∈ S, s ∼i s′ H⇒ G, s′ |Hσ ϕ;
• G, s |Hσ EAϕ iff ∀s′ ∈ S, s ∼EA s

′
H⇒ G, s′ |Hσ ϕ;

Algorithm 1 ATL Model-Checking Algorithm
Input: An ACGS M = (G, π) and an ATL formula ϕ
Output: JϕKM

1 Function MC(M, ϕ)
2 switch ϕ :
3 case q return {s ∈ S | q ∈ λ(s)};
4 case ¬ϕ′ return S \ MC(M, ϕ′);
5 case ϕ1 ∧ ϕ2 return MC(M, ϕ1) ∩ MC(M, ϕ2);
6 case Kiϕ

′ return {s ∈ S | [s]∼i ⊆ MC(M, ϕ′)};
7 case EAϕ′ return {s ∈ S | [s]∼

E
A ⊆ MC(M, ϕ′)};

8 case DAϕ
′ return {s ∈ S | [s]∼

D
A ⊆ MC(M, ϕ′)};

9 case CAϕ
′ return {s ∈ S | [s]∼

C
A ⊆ MC(M, ϕ′)};

10 case 〈〈A〉〉φ
11 foreach sub-state-formula ϕ′ in φ do
12 Replace ϕ′ by a fresh atomic proposition

qϕ′ in ϕ, and let λ(qϕ′ ) := MC(M, ϕ′);
13 J〈〈A〉〉φKM :=⋃

ξA

⋂
ξAir

J〈〈∅〉〉φKM(ξA,ξAir )
;

14 return J〈〈A〉〉φKM;

• G, s |Hσ DAϕ iff ∀s′ ∈ S, s ∼DA s
′
H⇒ G, s′ |Hσ ϕ;

• G, s |Hσ CAϕ iff ∀s′ ∈ S, s ∼CA s′ H⇒ G, s′ |Hσ ϕ,
where ϕ is a state formula, ∼EA=

⋃
i∈A ∼i, ∼DA=⋂

i∈A ∼i, ∼
C
A= (∼EA )

+ (i.e., the transitive closure of ∼EA ).
Kiϕ,EAϕ,DAϕ and CAϕ denote that ‘‘i knows’’, ‘‘every
agent in the coalition A knows’’, ‘‘agents in the coalition A
have distributed knowledge’’, and ‘‘agents in the coalition A
have common knowledge’’ on the fact ϕ, respectively. The
ATL logic extended with these epistemic modalities is called
ATLK logic. Given a state s ∈ S and a binary relation
w⊆ S × S, we denote by [s]w the set {s′ ∈ S | s w s′}.
By Lemma 2, the model-checking problem for ATLK on

ACGSs is solvable in 1P
3 (i.e., PNP

NP
).

Lemma 4: The model-checking problem for ATLK on
ACGSs is in 1P

3 .
1P

3 -hardness. We show that the model-checking problem
for ATL is 1P

3 -hard by a reduction from the sequentially
nested satisfiability problem of quantified Boolean formulae
(SNSAT2), which is known to be 1P

3 -complete [10], [14].
An instance Im of SNSAT2 is given bymBoolean variables

Z = {z1, · · · , zm} and a list of m equations

z1
.
= ∃X1.∀Y1.ψ1(X1,Y1)

z2
.
= ∃X2.∀Y2.ψ2(X2,Y2, z1)
...

zm
.
= ∃Xm.∀Ym.ψm(Xm,Ym, z1, · · · , zm−1)

where for every i : 1 ≤ i ≤ m,

• ψi is a 3-CNF Boolean formula over variables Xi ∪ Yi ∪
Z<i with Z<i = {z1, · · · , zi−1};

• Xi = {x i1, · · · , x
i
mi}, Yi = {y

i
1, · · · , y

i
ki} are two sets of

Boolean variables.
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The instance Im is satisfiable iff there exists an assignment
fm : Z → {0, 1} such that for every i : 1 ≤ i ≤ m,

fm(zi) = 1 iff ∃Xi.∀Yi.ψi is satisfiable under fm.

Lemma 5: The model-checking problem for ATL on
ACGSs is 1P

3 -hard.

Proof: We reduce SNSAT2 to the ATL model-checking
problem. For every equation zj

.
= ∃Xj.∀Yj.ψj, let

Mj

= ((S j, {sj},Agj, (Acji)i∈Agj , (∼
j
i)i∈Agj , (P

j
i)i∈Agj ,1

j, λj), π j)

be the ACGS constructed as in the proof of Lemma 3 from
the formula ∃Xj.∀Yj.ψj. Let M

j
be the ACGS obtained from

Mj, where the initial state sj is renamed to sj. We recursively
construct two families of ACGSs: (N j)1≤j≤m and (N j

)1≤j≤m.
For j = 0, let N 1

= M1 and N 1
= M1

. For j > 0,
we define N j and N j

as follows.
1) N j (resp.N j

) starts from the initial state szj (resp. s¬zj )
which is controlled by the agent gzj with two available
actions a⊥ and a> at the state szj (resp. s¬zj ).

2) At the state szj (resp. s¬zj ),

a) if the agent gzj selects the action a>, then N j

(resp. N j
) goes to the state sj (the initial state

of Mj) and then behaves the same as Mj until
some state of the form szi or s¬zi for some i < j is
reached;

b) if the agent gzj selects the action a⊥, then N j

(resp. N j
) goes to the state sj (the initial state

of Mj
) and then behaves the same as Mj

until
some state of the form szi or s¬zi for some i < j is
reached.

3) N j andN j
behaves the same asN i (resp.N i

) after the
state szi (resp. s¬zi ) for some i < j.

Each state of the form sj is associated with the atomic propo-
sition q, i.e., λ(sj) = {q}. Let Ag∃ denote the set {g`, gx |
x ∈

⋃m
i=1 Xi} ∪ {gz | z ∈ Z }. The ATL formula is con-

structed recursively as follows: φ0 ≡ false and for every
j : 1 ≤ j < m,

φj+1 ≡ 〈〈Ag∃〉〉X(q↔ 〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φj)))

where a↔ b denotes (a ∧ b) ∨ (¬a ∧ ¬b).
The result follows from the following claim.
Claim:
1) sm ∈ Jq ∧ 〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φm−1))KNm

iff the instance Im is satisfied by some assignment
fm : Z → {0, 1} such that fm(zm) = 1.

2) sm ∈ J¬q ∧ ¬〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φm−1))KNm

iff the instance Im is satisfied by some assignment fm :
Z → {0, 1} such that fm(zm) = 0.

If the instance Im is satisfied by an assignment fm : Z →
{0, 1}, then we have that: for every j : 1 ≤ j ≤ m, fm(zi) = 1
iff ∃Xi.∀Yi.ψi is satisfiable under fm. It suffices to prove that

sm ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q>∨φm−1))KNm iff Im
is satisfied by some assignment fm : Z → {0, 1}
such that fm(zm) = 1.

We prove this by applying induction on m.
Base Case m = 1: Following the proof of Lemma 3,

s1 ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉Fq>KM1 iff ∃X1.∀Y1.ψ1 is satisfiable.

Then, the result immediately follows from the fact that φ0 is
false. Note that q is always false after the state s1.
Inductive Step m > 1: Recall that sm ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉

(¬qU(q> ∨ φm−1))KNm iff a collective strategy ξ : Ag∃ →⋃
i∈Ag∃ 2

π (i)
i exists such that for every path ρ ∈ ONm (smc , ξA)

and every success state smc of sm:Nm, ρ |H ¬qU(q>∨φm−1).
For every path ρ ∈ ONm (smc , ξA), we have that:
• ρ visits some state ρi of the form sj or sj for 1 ≤ j < m
iff ρi ∈ JφjKNm ,

• ρ does not visit any state ρi of the form sj or sj for
1 ≤ j < m iff ρ ends with a loop on the state q>.

By the induction hypothesis, we have that:
• sj ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φj−1))KN j iff the
instance Ij is satisfied by an assignment
fj : Z<j+1→ {0, 1} such that fj(zj) = 1.

• sj ∈ J¬〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q> ∨ φj−1))KN j iff Ij is
satisfied by an assignment fj : Z<j+1→ {0, 1} such that
fj(zj) = 0.

Therefore, sm ∈ J〈〈∅〉〉X 〈〈Ag∃〉〉(¬qU(q>∨φm−1))KNm iff
Im is satisfied by an assignment fm : Z → {0, 1} such that
fm(zm) = 1 and for every j : 1 ≤ j < m, fm(zj) = fj(zj).
Note that szj ∼gzj s¬zj for every j : 1 ≤ j ≤ m, hence the

agent gzj always chooses the same action at the states szj and
s¬zj . This ensures that fm is well-defined. �
Following Lemma 4 and Lemma 5, we get that:
Theorem 3: The model-checking problem for ATL (hence

ATLK) formula is 1P
3 -complete.

VIII. ATL∗ MODEL-CHECKING FOR ACGSs
In this section, we show that the ATL∗ model-checking
problem for ACGSs is 2EXPTIME-complete. The model-
checking algorithm mainly follows Algorithm 1 which iter-
atively computes the set of states satisfying state formulae
from the innermost subformulae. The main challenge is how
to compute J〈〈A〉〉φKM, as Proposition 6 does not hold if φ is
a general LTL formula. To solve this problem, we propose a
novel reduction to the solving of parity games.

A. MODEL-CHECKING SIMPLE ATL∗

Given a simple ATL∗ formula 〈〈A〉〉φ and an ACGS M =

(G, π), we compute J〈〈A〉〉φKM by a reduction to the problem
of computing the winning region of a turn-based two-player
parity game. We first introduce some basic concepts which
will be used in our reduction.
A deterministic parity automaton (DPA) A is a tuple

(P, 6, δ, p0,R), where
• P is a finite set of states;
• 6 is a finite input alphabet;
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• δ : P×6→ P is a transition function;
• p0 ∈ P is an initial state;
• R : P→ {0, . . . , k} is a rank function.

A run ρ of A over an ω-word α0α1 . . . ∈ 6ω is an infinite
sequence of states ρ = p0p1 . . . such that for every i ≥ 0,
pi+1 = δ(pi, αi). Let inf(ρ) be the set of states visited
infinitely often in ρ. An infinite word is recognized byA ifA
has a run ρ over this word such that minp∈inf(ρ) R(p) is even.
For every LTL formula φ, one can construct a DPA Aφ =

(P, 2AP, δ, p0,R) with 22
O(|φ|)

states and rank k = 2O(|φ|) such
that Aφ recognizes all the ω-words satisfying φ [15], where
each ω-word corresponds to a trace τ (ρ) of a path ρ in the
ACGS.

A (turned-based, two-player) parity game P is a tuple
(V = V0 ] V1,E, 4), where
• Vi for i ∈ {0, 1} is a finite set of vertices controlled by
Player-i;

• E ⊆ V × V is a finite set of edges;
• 4 : V → {0, . . . , k} is a rank function.

A play ρ starting from the vertex v0 is an infinite sequence of
vertices v0v1 . . . such that for every i ≥ 0, (vi, vi+1) ∈ E . ρ
is accepting if minv∈inf(ρ)4(v) is even. A strategy of Player-i
is a function θ : V ∗Vi → V such that for every ρ ∈ V ∗ and
v ∈ Vi, (v, θ(ρ · v)) ∈ E . Given a strategy θ0 for Player-0
and a strategy θ1 for Player-1, let P(θ0, θ1) be the play
where Player-0 and Player-1 enforce their strategies θ0 and θ1,
respectively. θ0 is a winning strategy for Player-0 if P(θ0, θ1)
is accepting for all strategies θ1 of Player-1. The winning
region of Player-0, denoted byWR0, is the set of vertices from
which Player-0 has a winning strategy.

We will use the following notations in our reduction.
• dom(g) denotes the domain of the function g.
• Aσ := {i ∈ A | π (i) = σ } and Aσ := {i ∈ A | π (i) = σ }.
• Fir is the set of (total) functions f : Air × S →⋃

i∈Air Aci such that for all (i, s) ∈ Air × S, f (i, s) ∈
Pi(s) and s ∼i s′ entails that f (i, s) = f (i, s′).

• Given a state s, let F sIR be the set of functions f : AIR→⋃
i∈AIR Aci such that f (i) ∈ Pi(s) for every i ∈ AIR, and

FIR :=
⋃

s∈S F
s
IR.

• Gir is the set of partial functions g : Air × S →⋃
i∈Air Aci, such that for each (i, s) ∈ Air×S, if g(i, s) ∈

dom(g), then for all s′ ∈ S with s ∼i s′: g(i, s) =
g(i, s′) ∈ Pi(s).

• 5ir :=
{
G ⊆ Gir | ∀g, g′ ∈ G, dom(g) = dom(g′)

}
.

We construct a parity game Pφ as follows:

Pφ = (V = V0 ] V1,E, 4),

where
• V0 = S ∪ (S × P× Fir ×5ir);
• V1 = (S × Fir) ∪ (S × P× Fir × FIR ×5ir);
• 4 : V → {0, · · · , k} is a rank function such that:,

– 4(s) = 4(s, f ) = 0 for every s ∈ S and f ∈ Fir,
– 4(s, p, f1,G) = 4(s, p, f1, f2,G) = R(p), for every
s ∈ S, p ∈ P, f1 ∈ Fir, f2 ∈ FIR and G ∈ 5ir.

• E is defined as follows:
1) (s, (s, f1)) ∈ E for (s, f1) ∈ S × Fir;
2) ((s, f1), (s, p0, f1,∅)) ∈ E for (s, f1) ∈ S × Fir;
3) ((s, p, f1,G), (s, p, f1, f2,G)) ∈ E for (s, p,

f1,G) ∈ V0 and f2 ∈ F sIR;
4) ((s, p, f1, f2,G), (s′, δ(p, λ(s)), f1,G′)) ∈ E for

every (s, p, f1, f2,G) ∈ V1 and s′ ∈ S, where
G′ ∈ 5ir is the largest set such that the following
conditions hold: for every g′ ∈ G′,
(1) either G = ∅ or there exists g ∈ G such that

dom(g′) = dom(g) ∪
{
(i, s′′) ∈ Air × S | s ∼i s′′

}
and for every (i, s′′) ∈ dom(g), g′(i, s′′) = g(i, s′′);
(2) there exists Ea ∈ Ac such that s′ = 1(s, Ea), and
for every (i, s) ∈ Ag× S,

Eai =


f1(i, s), if (i, s) ∈ dom(f1);
g′(i, s), if (i, s) ∈ dom(g′);
f2(i), if i ∈ dom(f2).

In this reduction, intuitively, the function f1 ∈ Fir encodes
ir-strategies of agents in Air, and the collection of the
functions f2 ∈ FIR in plays of Pφ from the vertex (s, f1)
encodes IR-strategies of agents in AIR. These functions
together encode a collective strategy of the coalition A. Each
function g ∈ Gir encodes ir-strategies of agents in Air.
The imperfect information abilities of agents are ensured by
the definitions of the functions f ∈ Fir and g ∈ Gir.

Intuitively, to check whether s ∈ J〈〈A〉〉φKM, Pφ starts
with the vertex s. At the first step, Player-0 chooses a function
f1 ∈ Fir meaning that the ir-strategies of the agents in Air
are chosen. Next,Pφ moves from (s, f1) to (s, p0, f1,∅) which
lets the DPA Aφ start with p0 (note that Player-1 has only
one choice at this step). At a vertex (s, p, f1,G) controlled
by Player-0, Player-0 chooses actions for agents in AIR by
choosing one function f2 ∈ F sIR. Then Player-1 chooses
actions for agents in A with respect to the chosen actions
of agents in Air tracked by G. These selections of actions
together with f1 and G determine a joint action Ea, based on
which Pφ moves to (s′, δ(p, λ(s)), f1,G′) such that s′ is the
successor state of the state s after the joint action Ea, and
δ(p, λ(s)) is the successor state of the state p in Aφ which
allows to mimics the run of Aφ over the trace τ (ρ) induced
by the play ρ of M. During this step, f2 is dropped from the
vertex ofPφ , as f2 corresponds to actions of agents in AIR and
needs not track. The actions of agents in Air are preserved in
G′ from G. This ensures imperfect recall abilities of agents
in Air. Note that it is important to associate the functions
g ∈ Gir to the same state s′ that is reached via same sequence
of states for a given function f1 ∈ Fir (i.e., Item 4) in the
definition of E), otherwise the agents from AIR may choose
different actions on the same path of M.
Lemma 6: WR0 ∩ S = J〈〈A〉〉φKM.

Proof: According to the definition of Pφ , each
Pφ(θ0, θ1) must be of the form

s(s, f1)(s, p0, f1,∅)(s, p0, f1, f2,∅)
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(s1, p1, f1,G1)(s1, p1, f1, f 12 ,G1)

(s2, p2, f1,G2)(s2, p2, f1, f 22 ,G2)

(s3, p3, f1,G3)(s3, p3, f1, f 32 ,G3)

· · ·

Let ρθ0,θ1 be the path ss1s2s3 · · · obtained from Pφ(θ0, θ1).
(⇒) Suppose s ∈ WR0 ∩ S, then Player-0 has a winning

strategy θ : V ∗V0 → V such that minv∈inf(Pφ (θ,θ1))4(v) is
even for every strategy θ1 of Player-1.
It is well-known that, for parity games, if Player-0 has a

winning strategy, then it also has a pure memoryless winning
strategy [16]. Let θ0 : V0→ V be a purememoryless winning
strategy for Player-0 such that minv∈inf(Pφ (θ0,θ1))4(v) is even
for every strategy θ1 of Player-1. Then, the DPA Aφ recog-
nizes the ω-word τ (ρθ0,θ1 ). This implies thatM, ρθ0,θ1 |H φ.
Let ξA be the collective strategy for the coalition A such

that

• for every (i, s′) ∈ Air × S: ξA(i)(s′) = f1(i, s′); and
• for every i ∈ AIR, strategy θ1 of Player-1 and prefix
s1 · · · sj of ρθ0,θ1
– ξA(i)(ss1 · · · sj) = f j2(i), if j ≥ 1;
– ξA(i)(s) = f2(i), otherwise.

For every collective strategy ξA : A →
⋃

i∈A2
π (i)
i , let θ1

be a strategy of Player-1 such that

• for every (s, f1) ∈ V1: θ1(s, f1) = (s, p0, f1,∅);
• for every (s, p, f1, f2,G) ∈ V1:

θ1(s, p, f1, f2,G) = (s′, δ(p, λ(s)), f1,G′),

where G′ satisfies the conditions in the reduction.
Moreover, for every g ∈ G′ and (i, s′′) ∈ dom(g),

g(i, s′′) = ξA(i)(s).

Then, ρθ0,θ1 = play(s, ξA, ξA). Therefore, s ∈ J〈〈A〉〉φKM.
(⇐) Suppose s ∈ J〈〈A〉〉φKM, then there exists a collective

strategy ξA for the coalition A such that for every collective
strategy ξA of the coalition A:M,play(s, ξA, ξA) |H φ.

Let θ0 be a strategy of Player-0 such that

• θ0(s) = (s, f1) where f1 ∈ Fir such that for every
(i, s′) ∈ Air × S: f1(i, s′) = ξA(i)(s′);

• and θ0(sj, pj, f1,Gj−1) = (sj, pj, f1, f
j
2,Gj−1) where

f j2 ∈ F
sj
IR such that for every i ∈ AIR: f

j
2(i) =

ξA(i)(ss1 · · · sj).

Similarly, for every strategy θ1 for Player-1, we can con-
struct a collective strategy ξA of the coalition A such that
play(s, ξA, ξA) = ρθ0,θ1 . Since M,play(s, ξA, ξA) |H φ,
minv∈inf(Pφ (θ0,θ1))4(v) is even. Therefore, θ0 is a winning
strategy of Player-0, namely, s ∈ WR0 ∩ S. �

The winning region of Player-0 in Pφ can be computed in
time polynomial in |V | · |E| · 2k [17]. In this reduction, each
G ∈ 5ir contributes at most O(|S|) sets of G′. Therefore,
|V | · |E| is exponential in |G| · 2|φ|. Recall that k = 2O(|φ|).
Consequently, we have

FIGURE 3. The DPA Aq1Uq2
.

Lemma 7: For the simple ATL∗ formula 〈〈A〉〉φ,
J〈〈A〉〉φKM can be computed in 2EXPTIME.
Example 2: Let us continue with the ACGSMr = (G, π)

and ATL formula ϕr from Example 1. The DPA Aq1Uq2 =

(P, 2{q1,q2}, δ, p0,R) is shown in Figure 3, where R(p0) =
R(p2) = 1 and R(p1) = 0. The parity game Pϕr starting from
s0 is shown in Figure 4, where the circle-shape vertices are
controlled by Player-0, the others are controlled by Player-1,
the ranks of the vertices containing state p1 are 0, and the
ranks of the other vertices are 1. We can see that s0 6∈ WR0.
Hence,Mr , s0 6|H ϕr .

It is known that the model-checking problem of simple
ATL∗IR on CGSs is 2EXPTIME-complete [1]. We have that:
Theorem 4: The model-checking problem for simple ATL∗

is 2EXPTIME-complete.

B. MODEL-CHECKING FOR GENERAL ATL∗

The model-checking algorithm (shown in Algorithm 2) for
general ATL∗ follows Algorithm 1, where the procedure for
simple ATL is replaced by the one for simple ATL∗. We also
extend ATL∗ with the epistemic modalities Kiϕ,EAϕ,DAϕ

and CAϕ, leading to the logic ATLK∗.

Algorithm 2 ATL∗ Model-Checking Algorithm
Input: An ACGS M = (G, π) and an ATL∗ formula ϕ
Output: JϕKM

1 Function MC(M, ϕ)
2 switch ϕ :
3 case q return {s ∈ S | q ∈ λ(s)};
4 case ¬ϕ′ return S \ MC(M, ϕ′);
5 case ϕ1 ∧ ϕ2 return MC(M, ϕ1) ∩ MC(M, ϕ2);
6 case Kiϕ

′ return {s ∈ S | [s]∼i ⊆ MC(M, ϕ′)};
7 case EAϕ′ return {s ∈ S | [s]∼

E
A ⊆ MC(M, ϕ′)};

8 case DAϕ
′ return {s ∈ S | [s]∼

D
A ⊆ MC(M, ϕ′)};

9 case CAϕ
′ return {s ∈ S | [s]∼

C
A ⊆ MC(M, ϕ′)};

10 case 〈〈A〉〉φ
11 foreach sub-state-formula ϕ′ in φ do
12 Replace ϕ′ by a fresh atomic proposition

qϕ′ in ϕ, and let λ(qϕ′ ) := MC(M, ϕ′);
13 J〈〈A〉〉φKM := WR0 ∩ S;
14 return J〈〈A〉〉φKM;

By Lemma 7, the model-checking problem for ATLK∗ on
ACGSs can be solved in 2EXPTIME.
Theorem 5: The model-checking problem for ATL∗

(hence ATLK∗) on ACGSs is 2EXPTIME-complete.
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FIGURE 4. The parity game Pϕr starting from the state s0 with accepting plays highlighted in blue color.

IX. IMPLEMENTATION AND EXPERIMENTS
We implement theATLK/ATLK∗model-checking algorithms
in MCMAS [18] and carry out several experiments. The tool
GOAL [19] is used to transform LTL formulae to DPA and
compute winning regions of parity games. All models in
our experiments are based on the existing benchmarks in the
literature. All experiments were conducted on a desktop with
1.70GHz Intel Core E5-2603 CPU and 32GB of memory.

A. CASTLE GAME
In Castle Game [20], there are several agents modeling work-
ers and an environment agent. Each worker works for the
benefit of a castle, and the environment keeps track of the
Health Points (HP) of castles. Each castle preserves an HP up
to 3, and 0 means it is defeated. Workers are able to attack a
castle which they do not work for, or defend the castle which
they work for, or do nothing. Any agent cannot defend its
castle twice in a row, it must wait 1 step before being able
to defend again. The castle gets damaged if the number of
attackers is greater than the number of defenders, and the
difference influences its HP. In this model, the number of
states is 8000× 4n, the environment agent has 1 local action,

and each worker agent has 4 local actions, where n denotes
the number of workers.

In this experiment, we consider an ACGS consisting of
three worker agents w1,w2,w3 and an environment agent e,
where worker wi works for the castle ci.
• ϕ1 ≡ 〈〈{w1,w2}〉〉F(castle3Defeated): expresses that
workers w1 and w2 can make castle c3 defeated, no mat-
ter which strategies the worker w3 uses.

• ϕ2 ≡ 〈〈{w1,w2}〉〉F(allDefeated): expresses that
workers w1 and w2 can make all the castles defeated,
no matter which strategies the worker w3 uses.

The results are shown in Table 1, where (σ1, σ2, σ3, σ4) in
each row denotes the strategy types of agents e,w1,w2,w3,
N/A denotes timeout (2.5 hours), Y (resp. N) denotes
that the model satisfies (resp. fails) the formula, and
columns 2–4 (resp. 5–7) show total time (in seconds) and
result of verifying ϕ1 (resp. ϕ2) using Algorithm 1 and
Algorithm 2, respectively.

We observe that: (1) the strategy types of agents do affect
the performance and results. In particular, the time signif-
icantly increases when w3 is ir-typed while w1 or w2 is
IR-typed; (2) Algorithm 1 is more efficient when bothw1 and
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TABLE 1. Results of castle game.

TABLE 2. Results of dining cryptographers protocol.

w2 areir-typed; otherwise andAlgorithm 2 ismore efficient.
This is because the number of possible strategies of w1 and
w2 is small (using Lemma 2) if both w1 and w2 are ir-typed.

B. DINING CRYPTOGRAPHERS PROTOCOL
Dining Cryptographers Protocol is one of anonymity proto-
cols aimed at establishing the privacy of principals during
an exchange [13]. The dining cryptographers protocol can
be modeled as a MAS. In this game, n cryptographers share
a meal around a circular table. Either one of them or their
employer paid the bill. They want to know whether it was
sponsored by their employer without revealing the identity
of the payer (if one of them did pay). The protocol works
as follows: each cryptographer 1) tosses a coin and shows
the outcome to his/her right-hand neighbor, 2) announces
whether the two coins agree or not if he/she is not payer,
otherwise announces the opposite of what he/she sees. Their
employer is the payer if an even number of cryptographers
claiming that the two coins are different, otherwise not. For
experimental purpose, we allow the cryptographer who paid
for the meal announces either the two coins agree or not no
matter what he/she saw.

In this experiment, n ranges from 3 to 10, two cryptogra-
phers use ir-strategies, and one of them should be the payer.
The others all use IR-strategies.We verify three formulaeψ1,
ψ2 and ψ3, where ψi expresses that if the number of ‘‘sayd-
ifferent’’ is odd and the i-th cryptographer is not the payer,
then he/she knows that the bill is paid by one of the others,
but cannot tell exactly who is the payer. For instance, in the
three cryptographers case,ψ1 ≡ 〈〈∅〉〉G((odd∧¬c1paid)→
((Kc1(c2paid ∨ c3paid)) ∧ ¬Kc1c2paid ∧ ¬Kc1c3paid)).
The results are shown in Table 2, where column 1 gives

the number of cryptographers, column 2 gives the number of
states, columns 3–5 (resp. columns 6–7) show the total time
of respectively verifying ψ1, ψ2 and ψ3 using Algorithm 1
(resp. Algorithm 2). Both ψ1 and ψ2 are satisfied by all the

TABLE 3. Results of book store scenario.

models, while ψ3 not. We observe that Algorithm 1 is more
efficient thanAlgorithm 2, as the coalitions in all the formulae
are ∅. From this experiment, onemay conclude the reasonable
scalability of our tool.

C. BOOK STORE SCENARIO
The Book Store Scenario depicts a deal between two agents:
a supplier (S) and a purchaser (P) [18]. Initially, S is waiting
for an order from P, and P is ready for initiating a trade.
Upon receiving an order of some e-good from P, S can make
a decision to accept the order or not, and later notifies P. If S
accepts, then P can pay the fee. Once paid, S can either reject
the payment or accept and deliver the good. If P received the
good, then trade is completed. During the trade, P can revoke
the order, both S and P can terminate the trade, after which
the information of the trade should be symmetric at any time.
In this model, S has 15 local states and 13 actions, and P has
12 local states and 7 actions. In this experiment, we verify the
model against the following formulae:
• ϕ1 ≡ 〈〈∅〉〉G((S&P_no_T )→ (KS〈〈{S,P}〉〉Ftrd_end)):
expresses that if neither S nor P terminates the trade
(i.e., S&P_no_T is true), then S knows that they can
cooperatively complete the trade eventually.

• ϕ2 ≡ 〈〈{S,P}〉〉(S&P_no_T U (trd_end ∧¬trd_succ)):
expresses that the trade can end by P’s requiring for
refund.

The results are shown in Table 3. Each row presents the
result of one of strategy type combinations of S and P, for
instance, (IR,ir) denotes that S has an IR-strategy while P
has ir-strategy. Columns 2-4 (resp. columns 5-7) show total
time and results of verifying ϕ1 (resp. ϕ2) using Algorithm 1
(resp. Algorithm 2). The results of ϕ1 confirm that strategy
types affect the truth of formula. Algorithm 1 performs better
than Algorithm 2 both on ϕ1 and ϕ2 in this experiment.

X. RELATED WORK
The family of alternating-time temporal logics (ATL, ATL∗

and AMC [1]) for reasoning about games was introduced
withmotivations partially fromMASs.Model-checking algo-
rithms were also given with IR-strategies. Reference [21]
extended ATL with knowledge operators and proposed
corresponding model-checking algorithms. In their work,
epistemic accessibility relations are considered in the inter-
pretation of knowledge operators, but not for the strategies
and outcomes. This means that agents still use IR strate-
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gies for collation modalities 〈〈A〉〉ψ . This issue was dis-
cussed in [22] which proposed an idea of iR-strategies.
Reference [2] introduced the notion of imperfect recall into
ATL/ATL∗, and systematically investigated the complexity
of model-checking problems for ATL/ATL∗ under four dif-
ferent strategic types. Importantly, with iR-strategies the
model-checking problem becomes undecidable [5]. Authors
in [6] introduced knowledge operators into AMC, studied
its semantics and proposed a model-checking algorithm for
the alternation-free fragment under the imperfect information
setting. Reference [8] further conducted a comprehensive
comparison of variants of ATL/ATL∗ with different strategic
abilities. The study corroborates that the agents’ strategic
abilities play a prominent role in logic semantics.

In the previous work, strategies of agents are revoca-
ble, i.e., when it comes to achieve a goal in the (nested)
subformulae, previously selected strategies are deleted.
Reference [4] introduced a variant of ATL with irrevo-
cable strategies under the imperfect recall setting. It was
generalized into ATL/ATL∗ with strategy contexts [23],
which allowed agents to drop or inherit previously selected
strategies.

Two versions of strategic logics were introduced by [24]
and [25], and the model-checking problems were investi-
gated therein under the IR-setting. Strategic logics extend
LTL with first-order quantifications over strategies which
naturally capture the multi-player game nature in the evo-
lution of MASs. Knowledge operators were introduced in
the strategic logic [25] where a model-checking algorithm
with ir-strategies was given [9]. Here all agents must
take ir-strategies (so the potential inconsistency can be
ruled out), but no other strategic abilities were considered.
To gain decidability under iR-setting, specific restrictions
on the abilities of the agents were proposed in, for instance,
[26]–[32]. Several subsets of the strategic logics [25] such as
BSIL [33], TCL [34] were proposed and studied under the
IR-setting in order to maintain a low complexity.

Our work is orthogonal to the existing work which defines
the strategic abilities at the semantics level, but takes a more
syntactic level by strengthening the model.

XI. CONCLUSION AND FUTURE WORK
In this paper, we discussed the problem of existing semantics
of ATL/ATL∗, and advocated the approach to make agents’
abilities explicit in modeling. For this purpose, we intro-
duced an extension of standard CGS model, named ACGS,
which defines agents’ abilities at the syntactic level of the
system model. We explored the effects of strategy types in
the semantics, in particular model-checking, of ATL/ATL∗

over ACGSs, and provided model-checking algorithms with
identified complexity. The algorithms are implemented in
a tool MCMAS-ACGS, which has been applied to several
applications to demonstrate the feasibility and effectiveness.
This work represents the first systematic study towards differ-
ent agents’ abilities at the syntactic level, which is in contrast
to previous approaches at the semantic level.

Currently we use ATL/ATL∗ as the specification, but the
methodology can be extended to other logics such as Strategy
Logic, and other agents’ abilities such as strategy contexts.
Several questions are left open such as axiomatization and
satisfiability problem. We leave them for future work.
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