
Don’t Complete It! Preventing Unhelpful Code
Completion for Productive and Sustainable Neural

Code Completion Systems

Zhensu Sun∗, Xiaoning Du†, Fu Song∗, Shangwen Wang‡, Mingze Ni§, Li Li†
∗ ShanghaiTech University, Shanghai, China
† Monash University, Melbourne, Australia

‡ National University of Defense Technology, Changsha, China
§ University of Technology Sydney, Sydney, Australia

{sunzhs, songfu}@shanghaitech.edu.cn, {xiaoning.du, li.li}@monash.edu,

wangshangwen13@nudt.edu.cn, Mingze.Ni@student.uts.edu.au

Abstract—Currently, large pre-trained language models are
widely applied in neural code completion systems. Though large
code models significantly outperform their smaller counterparts,
around 70% of displayed code completions from Copilot are
not accepted by developers. Being reviewed but not accepted,
their help to developer productivity is considerably limited. Even
worse, considering the high cost of the large code models, it is
a huge waste of computing resources and energy. To fill this
significant gap, we propose an early-rejection mechanism to turn
down low-return prompts by foretelling the code completion
qualities without sending them to the code completion system.
Furthermore, we propose a lightweight Transformer-based es-
timator to demonstrate the feasibility of the mechanism. The
experimental results show that the proposed estimator helps
save 23.3% of computational cost measured in floating-point
operations for the code completion systems, and 80.2% of rejected
prompts lead to unhelpful completion.

I. INTRODUCTION

Motivated by the unprecedented superior performance, a

large number of commercial applications based on the pre-

trained Large Code Models (LCMs) are recently released.

Aiming for seamless assistance to developers, code completion

systems are designed to automatically and actively issue code

completion requests to the servers when a typing phase is

detected. However, not all the code completions generated by

the state-of-the-art code completion systems are helpful to the

developers. For instance, according to the study of Ziegler et

al. [1] where they surveyed developers’ feedback on Copilot

code completions and 2,631 responses were collected, around

70% of displayed code completions are not accepted by devel-

opers. Undoubtedly, such a large proportion of unhelpful code

completions pose significant threats to the main objective of

code completion systems – to improve developer productivity,

and put relevant operation costs in vain.
To reduce unhelpful code completions, we propose to

equip the LCM-based code completion systems with an early-

rejection mechanism to turn down low-return prompts that

lead to unhelpful completions based on quality estimation

before completion (named QEBC). We estimate the quality of

completions since it is a quantifiable indicator of the abstract

Estimator

Large Code
Model

Yes

Yes

No

Code Prompt 𝑠 Code Completion𝑠 ൐ 𝑡 ?
notify user

No

submit ?
Fig. 1: The workflow of an LCM-based code completion

system with QEBC.

concept—— helpfulness, where low-quality completions are

more likely to be unhelpful. As shown in Figure 1, the core

idea of QEBC is to have a lightweight code completion quality

estimator for the code completion system, which guards the

prompts sent to the LCM. It foretells the completion qualities

of the LCM solely based on prompts. Whenever the estimated

completion quality is lower than a chosen threshold, it blocks

the completion request. Besides, we propose a lightweight

Transformer-based completion quality estimator (TCQE) ,

trained with prompts and their completion quality indicators

from the LCMs. We mainly aim to demonstrate the feasibility

of QEBC, and test how well TCQE can fulfill the goals of

QEBC.

In the experiment, a user study is conducted to investigate

the developer productivity of LCMs with/without TCQE,

where only 5.5% of the potential low-return prompts pred-

icated by TCQE are annotated as accepted in our human

study when 5% of overall prompts are predicated as potential

low-return prompts by TCQE. More importantly, given a

code prompt, it only costs 1.9 Giga Floating-point Operations

(GFLOPs) for TCQE to yield an estimation score, while GPT-

2 and CodeGen take 112.2 and 182.0 GFLOPs respectively to

generate the completion (containing 10 tokens).

To the best of our knowledge, we are the first to propose

a general and effective mechanism to prevent unhelpful code

completions in a cost-friendly manner for LCM-based code

completion systems. This work sheds light on the serious

energy waste problem in neural code completion and opens

a new research direction in this field. The source code are

available on our website [2].

324

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00089

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 C

om
pa

ni
on

 P
ro

ce
ed

in
gs

 (I
CS

E-
Co

m
pa

ni
on

) |
 9

79
-8

-3
50

3-
22

63
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-C
O

M
PA

N
IO

N
58

68
8.

20
23

.0
00

89

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 25,2023 at 09:37:47 UTC from IEEE Xplore. Restrictions apply.

II. PROPOSED METHOD

A. Quality Estimation Before Completion

To address the problem, we propose to have a lightweight

completion quality estimator which foretells how well a

prompt can be completed by an LCM without executing

the actual inference and call the mechanism QEBC (Quality

Estimation Before Completion). Prompts will be turned down

without getting completed if the completion quality is esti-

mated to be lower than a pre-defined threshold. The strictness

of QEBC can be flexibly controlled by adjusting the threshold.

To be specific, we define QEBC as follows:

Definition 1
Given an LCM-based code completion system M and a

code completion prompt p, a completion quality estimator

E will estimate the quality of the completions to be

generated by M for p, i.e., before p is actually processed.

If the estimated score s is lower than a pre-defined

threshold t, p will be blocked from being sent to the

LCM-based code completion system M .

B. Transformer-based Completion Quality Estimator

Considering the outstanding performance of Deep Learning

(DL) in semantic understanding of code, we seek to design

a lightweight DL model to learn the mapping between the

prompts (in the training dataset) and the quality of their

completions from a target LCM, which can be seen as a regres-

sion task. Thus, we propose a Transformer-based completion

quality estimator (TCQE) to fulfill this task. It is a Transformer

backbone with a linear head layer that maps the hidden state of

the backbone to the estimated accuracy score. Considering the

cost of TCQE, we limit the number of trainable parameters in

TCQE to 16 million. The training dataset for TCQE consists

of pairs of a prompt and the accuracy score of its completion

generated by the target LCM. Specifically, we split each code

snippet C of a code dataset at a random position into two

parts, where the former part Cx works as a prompt and the

latter part serves as its ground truth completion Cy . Further,

we run the target LCM M for the prompt Cx to obtain its

completion prediction C ′
y and calculate its accuracy against

the ground truth Cy with respect to an accuracy metric as the

score s, such as BLEU. Finally, by pairing each prompt Cx

with its score s, we obtain a code-score dataset, with which

we train the TCQE model.

III. EXPERIMENTS

The goal of our experiments is to evaluate the quality

of the target LCM with TCQE and the cost-friendliness of

TCQE, which further demonstrates the feasibility of QEBC.

We evaluate TCQE with a popular LCMs from our research

community, GPT-2, on a code dataset, COFIC (Java).

A. Quality of completions

We apply the LCM to generate completions for code

prompts. Specifically, we have five groups of completions un-

der different settings, where each group is generated by GPT-2

TABLE I: The acceptance rate of the completions generated

by the LCM with TCQE and other baseline estimators.

Estimator
Acceptance Rate

Bottom 5% Bottom 25%
Retained Rejected Retained Rejected

RAND 43.6%
COC 45.2% 8.9% 44.6% 35.0%

TCQE 46.7% 5.5% 54.3% 19.8%

TABLE II: Scale and inference cost of TCQE and other

baseline LCMs. m is the number of tokens in a piece of code

completion generated by the LCM.

Models Param. GFLOPs Time (s)
m = 10 m = 20 m = 50 m = 10 m = 20 m = 50

TCQE 16 M 1.9 0.02
GPT-2 124 M 112.2 165.4 238.1 0.30 0.59 1.49

CodeGen 357 M 182.0 194.7 223.0 0.82 1.68 4.24

using the Java testing dataset but filtered by various estimators:

one RAND estimator (give random scores to every prompt),

two TCQE estimators (respectively set to reject 5% and 25%

prompts and trained with the BLEU metric), and two COC

estimators (use the length of the prompt as the estimation score

and respectively reject 5% and 25% prompts). We conduct a

human study to annotate the acceptance of the completions

of both rejected prompts and retained prompts in each group.

The results are reported in Table I, indicating TCQE can

effectively block unhelpful completions for developers, thus

boosting developer productivity in practice.

B. Cost-friendliness of TCQE

In this experiment, we evaluate the cost-friendliness of

TCQE and compare it with the two LCMs, i.e., GPT-2 and

CodeGen. The cost-friendliness is measured by the compu-

tational cost of LCMs and TCQE for handling a prompt

containing 256 tokens in the same environment, where LCMs

generate a piece of code completion (respectively 10, 20,

and 50 new tokens are generated) while TCQE predicts an

estimation score. We record the total number of floating point

operations (represented by GFLOPs) and running time during

the code completion or score prediction as the indicator of

computational cost, using the Flops Profiler of DeepSpeed [3].

The scale and computing cost of TCQE and each LCM are

reported in Table II. Though the figure may not be precise

considering the cost of other factors such as communications,

it suffices to demonstrate the cost-friendliness of TCQE, which

satisfies our expectation for a feasible estimator.

REFERENCES

[1] A. Ziegler, E. Kalliamvakou, S. Simister, G. Sittampalam, A. Li, A. S.
Rice, D. Rifkin, and E. Aftandilian, “Productivity assessment of neural
code completion,” ArXiv, vol. abs/2205.06537, 2022.

[2] (2023) Qebc. [Online]. Available: https://sites.google.com/view/qebc/
[3] (2022) microsoft/deepspeed: Deepspeed is a deep learning optimization

library that makes distributed training and inference easy, efficient, and
effective. [Online]. Available: https://github.com/microsoft/DeepSpeed

325

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 25,2023 at 09:37:47 UTC from IEEE Xplore. Restrictions apply.

