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Abstract. In this paper, we investigate the problem of verifying pushdown multi-
agent systems with imperfect information. As the formal model, we introduce
pushdown epistemic game structures (PEGSs), an extension of pushdown game
structures with epistemic accessibility relations (EARs). For the specification, we
consider extensions of alternating-time temporal logics with epistemic modali-
ties: ATEL, ATEL* and AEMC. We study the model checking problems for A-
TEL, ATEL* and AEMC over PEGSs under various imperfect information set-
tings. For ATEL and ATEL", we show that size-preserving EARs, a common
definition of the accessibility relation in the literature of games over pushdown
systems with imperfect information, will render the model checking problem un-
decidable under imperfect information and imperfect recall setting. We then pro-
pose regular EARs, and provide automata-theoretic model checking algorithms
with matching low bounds, i.e., EXPTIME-complete for ATEL and 2EXPTIME-
complete for ATEL". In contrast, for AEMC, we show that the model checking
problem is EXPTIME-complete even in the presence of size-preserving EARs.

1 Introduction

Model checking, a well-studied method for automatic formal verification of complex
systems, has been successfully applied to verify communication protocols, hardware
designs and software, etc [[15]. The key idea underlying the model checking method
is to represent the system as a mathematical model, to express a desired property by a
logic formula, and then to determine whether the formula is true in the model [[15].
Recently, it has been extended to verify multi-agent systems (MASs), a novel paradig-
m which can be used to solve many complex tasks that might be difficult or ineffi-
cient for an individual agent to tackle. As a model of finite-state MASs, Alur et al.
proposed concurrent game structures (CGSs), whilst alternating-time temporal logics
(ATL, ATL*) and alternating-time u-calculus (AMC) are employed as specification lan-
guages, for which model checking algorithms were also provided [12]. Since then, a
number of model checking algorithms for MASs have been studied for various models
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and logics. For instance, [26] proposed a more expressive logic, called strategy logic
(SL), which allows to express cooperation and enforcement of agents. However, the
model checking problem for strategy logic on CGSs is NonElementarySpace-hard and
the satisfiability problem is undecidable [23]]. As a result, several fragments of strategy
logic were investigated [[10/24125/23]].

CGSs are usually determined by Interpreted Systems which are constructed via a
Mealy-type or Moore-type synchronous composition of local transition systems of a-
gents [1822]. In the literature, local transition systems of each agent are usually finite
(as, e.g., a finite Kripke structure), yielding a finite-state CGS only via the synchronous
composition. However, in practice often there are scenarios of interest where agents
cannot be represented by a finite-state system (e.g., pushdown scheduler [27]), or re-
courses shared between agents are unbounded [8], but can be rightly modeled by a
pushdown system. Hence, it would be of great interest to study verification problems
on the CGS obtained by a synchronous composition of local pushdown systems. Un-
fortunately, the verification of even the simplest property (e.g., reachability) for such a
model is undecidable. To see this, one can easily reduce from the emptiness problem
of the intersection of two pushdown automata which is known to be undecidable. To
gain decidability while still capturing many interesting practical cases, pushdown game
structures (PGSs) were proposed and investigated [27013l14]]. In PGSs, agents do not
posses their own local stacks, but can be seen as sharing a global stack. As the stack
is unbounded, PGSs represent a class of infinite-state MASs, a proper extension of the
finite-state MASs. PGSs allow, among others, modeling of unbounded memory or a
unbound shared resource of agents, which is of particular importance in MASs [8127]].

On the logic side, one considers alternating-time temporal epistemic logics (ATEL,
ATEL") [3311929120128]], alternating-time epistemic p-calculus (AEMC) [7]], and S-
LK [9], which are respectively extensions of ATL, ATL*, AMC and SL with epis-
temic modalities for representing knowledge of individual agents, as well as “every-
one knows” and common knowledge [18]. These logics are usually interpreted over
finite-state concurrent epistemic game structures, which are an extension of CGSs with
epistemic accessibility relations (EARs), giving rise to a model for representing finite-
state MASs with imperfect information. Assuming agents only access imperfect infor-
mation arises naturally in various real-world scenarios, typically in sensor networks,
security, robotics, distributed systems, communication protocols, etc. In addition, the
extension of logics with epistemic modalities allows one to succinctly express a range
of (un)desirable properties of MASs, and has found a wide range of applications in Al,
particularly for reasoning about MASs [[18134].

This paper investigates model checking problems for ATEL, ATEL* and AEMC
over infinite-state MASs under imperfect information setting. To this end, we propose
pushdown epistemic game structures (PEGSs), an extension of PGSs with EARs, as a
mathematical model for infinite-state MASs with imperfect information. To the best of
our knowledge, analogous models have not been considered in literature.

Model checking PEGSs depends crucially on how EARs are defined. A commonly
adopted definition, called size-preserving EARs, was introduced for games over push-
down systems with imperfect information [3]], where two configurations are deemed
to be indistinguishable if the two stack contents are of the same size and, in addition,
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neither the pair of control states nor pairs of stack symbols in the same position of the
two stack contents are distinguishable. While this sounds to be a very natural definition,
we show, unfortunately, that the model checking problems for ATEL and ATEL* over
PEGSs are undecidable in general, even when restricted to imperfect recall (memory-
less) strategies. This result suggests that alternative definitions of EARs are needed.
As a solution, we propose EARSs that are regular and simple. Simple EARs are de-
fined over control states of PEGSs and the top symbol of the stack, while regular EARs
are simple EARs extended with a finite set of deterministic finite-state automata (DFA),
one for each agent, where the states of each DFA divide the set of stack contents into
finitely many equivalence classes. We first provide an automata-theoretic algorithm that
solves the model checking problem for ATEL (resp. ATEL*) over PEGSs with simple
EARs, then present a reduction from the model checking problems over PEGSs with
regular EARSs to the one over PEGSs with simple one. The algorithm runs in EXPTIME
for ATEL and 2EXPTIME for ATEL*, and we show that these algorithms are optimal by
giving matching lower bounds. In contrast, for AEMC, we show that the model check-
ing problem is EXPTIME-complete, even in the presence of size-preserving EARs.

Related work. Model checking over finite-state CGSs under perfect information set-
ting is well-studied in the literature [2110/24125l23]]. The problem becomes undecid-
able for ATL on CGSs under imperfect information and perfect recall setting [16].
Therefore, many works restrict to imperfect information and imperfect recall strategies
[331291120019171289]]. The model checking problem over PGSs under perfect informa-
tion and perfect recall setting was studied in [27013/14], but only with perfect infor-
mation. Furthermore, timed (resp. probabilistic) ATLs and timed (resp. probabilistic)
CGSs were proposed to verify timed (resp. probabilistic) MASs, e.g., [[6/11412]. These
works are, however, orthogonal to the one reported in the current paper.

Structure of the paper. In Section 2] we introduce pushdown epistemic game structures.
In Section 3} we recall the definitions of ATEL, ATEL* and AEMC. In Section [ we
present the undecidable result for ATEL, ATEL* and propose model checking algo-
rithms for decidable setting. The model checking algorithms for AEMC are presented
in Section [ Finally, we conclude in Section[6} Due to space restriction, all proofs are
committed here which can be found in the accompanying technical report.

2 Pushdown Epistemic Game Structures

We fix a countable set AP of atomic propositions (also called observations). Let [k]
denote the set {1, ..., k} for some natural number k € N.

Definition 1. A pushdown epistemic game structure (PEGS) is a tuple P = (Ag, Ac, P, T,
A, 4, {~;| i € Ag}), where

— Ag ={1,...,n} is a finite set of agents (a.k.a. players); we assume that n is bounded;

— Ac s a finite set of actions made by agents; we further define D = AC" to be the set
of decisions d = {ay, ..., a,) such that for all i € [n], d(i) := a; € Ac;

— P is a finite set of control states;

I is a finite stack alphabet;
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— A:PxXT xD — PxTI*isatransition function }

— A: PxTI* = 2A% is a valuation that assigns to each configuration (i.e., an element
of P X I'*) a set of atomic propositions (i.e., observations);

— ~C (PXT™)x (PxT7)is an epistemic accessibility relation (EAR) which is an
equivalence relation.

A concurrent epistemic game structure (CEGS) is a tuple P = (Ag,Ac, P, 4, A, {~
i € Ag}) where 4 : Px D — P, Ag,Ac, P are defined similarly as PEGS, where-
as A and ~; are over P solely. A pushdown game structure (PGS) is a PEGS # =
(Ag,Ac, P, I,4,,{~;| i € Ag}) in which ~; is an identity for every agent i € Ag. Hence,
a PGS P is usually denoted as (Ag,Ac, P, I, 4, 2).

A configuration of the PEGS P is a pair (p, w), where p € P and w € I'*. We write
Cyp to denote the set of configurations of #. For every (p,y,d) € P x I' X D such that

d
A(p,y,d) = (p', w), we write (p,y) —p (p’, w) instead.
The transition relation =p: Cp X D X Cp of the PEGS % is defined as follows:

d d
for every w’ € I'*, if (p,y) —p (p’, w), then (p, yw') =p (p’, ww’). Intuitively, if the
PEGS % is at the configuration (p, yw’), by making the decision d, $ moves from the
control state p to the control state p’, pops y from the stack and then pushes w onto the
stack.

Tracks and Paths. A track (resp. path) in the PEGS P is a finite (resp. infinite) sequence

n of configurations cy...c,, (resp. cocy...) such that for every i : 0 < i < m (resp. i > 0),
d .
¢; = ciy1 for some d. Given a track 7 = c¢y...c,;, (resp. path & = cocy...), let |n| = m

(resp. || = +00), and for every i : 0 < i < m (resp. i > 0), let m; denote the configuration
¢;, m<; denote ¢q...c; and 75; denote c;ciyq . ... Given two tracks m and 7/, 7 and 7’
are indistinguishable for an agent i € Ag, denoted by 7 ~; «’, if |n| = |7’| and for
allk : 0 < k < |n|, m ~; m. Let Trksp C Cj, denote the set of all tracks in P,
[Ip € C% denote the set of all paths in P, Trksp(c) = {r € Trksp | mp = ¢} and
[Ip(c) = {m € [lp | mo = c} respectively denote the set of all the tracks and paths
starting from the configuration c.

Strategies. Intuitively, a strategy of an agent i € Ag specifies what i plans to do in each
situation. In the literature, there are four types of strategies [297] classified by whether
the action chosen by an agent relies on the whole history of past configurations or the
current configuration, and whether the whole information is visible or not. Formally,
the four types of strategies are defined as follows: where i (resp. I) denotes imperfect
(resp. perfect) information and r (resp. R) denotes imperfect (resp. perfect) recall,

— Ir strategy is a function 6; : Cp — Ac, i.e., the action made by the agent i depends
on the current configuration;

— IR strategy is a function 6; : Trksp — Ac, i.e., the action made by the agent i
depends on the history, i.e. the sequence of configurations visited before;

! One may notice that, in the definition of PEGSs, 4 is defined as a complete function P x I" X
D — P x I'*, meaning that all actions are available to each agent. This does not restrict the
expressiveness of PEGSs, as we can easily add transitions to some additional sink state to
simulate the situation where some actions are unavailable to some agents.
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— ir strategy is a function 6; : Cp — Ac such that for all configurations c,c¢’ € Cgp,
if ¢ ~; ¢/, then 6;(c) = 6,(c'), i.e., the agent i has to make the same action at the
configurations that are indistinguishable from each other;

— iR strategy is a function 6; : Trksp — Ac such that for all tracks &, 7’ € Trksp,
if 7 ~; i, then 6;(mr) = 6;(n’), i.e., the agent i has to make the same action on the
tracks that are indistinguishable from each other.

Let ©7 for o € {Ir, IR, ir, iR} denote the set of all o-strategies. Given a set of agents
A C Ag, a collective o-strategy of A is a function vy : A — @7 that assigns to each
agent i € A a o-strategy. We write A = Ag \ A.

Outcomes. Let ¢ be a configuration and v4 be a collective o-strategy for a set of agents
A. A path r is compatible with respect to v, iff for every k > 1, there exists dy € D

such that m;_; gp 7 and d (i) = va(i)(m<x—1) for all i € A. The outcome starting from
¢ with respect to va, denoted by out”(c, v,), is defined as the set of all the paths that
start from ¢ and are compatible with respect to v4, which rules out infeasible paths with
respect to the collective o-strategy v,.

Epistemic accessibility relations (EARs). An EAR ~; for i € Ag over PEGSs is de-
fined as an equivalence relation over configurations. As the set of configurations is
infinite in general, we need to represent each ~; finitely.

A very natural definition of EARs, called size-preserving EARs and considered in
[3], is formulated as follows: for each i € Ag, there is an equivalence relation ~;C
(P x P)U (I" x I'), which captures the indistinguishability of control states and stack
symbols. For two configurations ¢ = {p,y1...ym) and ¢’ = {p’,¥]..v,,), ¢ ~; ¢’ iff
m=m', p =~ p',and for every j € [m] = [m'], y; = y}. It turns out that the model
checking problem for logic ATEL/ATEL" is undecidable under this type of EARs, even
with imperfect recall (cf. Theorem [3)). To gain decidability, in this paper, we introduce
regular EARs and a special case thereof, i.e. simple EARs. We remark that regular EARs
align to the regular valuations (see later in this section) of atomic propositions, can been
seen as approximations of size-preserving EARs, and turn out to be useful in practice.

An EAR ~; is regular if there is an equivalence relation =; over P X I" and a com-
plete deterministic finite-state automatorﬂ (DFA) A; = (S, 1, 4;, sip) such that for all
(P, yw), (p1.v1w1) € Cp, {p,yw) ~;i (pr,y1w1) iff (p,¥) =i (p1,y1) and 4(s;0, ") =
A (si0, W), where 47 denotes the reflexive and transitive closure of 4;, and w®, w® de-
note the reverse of w, w; (recall that the rightmost symbol of w corresponds to the bot-
tom symbol of the stack). Intuitively, two words w, w; which record the stack contents
(excluding the tops), are equivalent with respect to ~; if the two runs of A; on w® and
w’f respectively reach the same state. Note that the purpose of the DFA A; is to parti-
tion I into finitely many equivalence classes, hence we do not introduce the accepting
states. A regular EAR is simple if for all words w, w; € I'*, 43 (s;0, 0®) = 43 (si0, ),
that is, A; contains only one state. Therefore, a simple EAR can be expressed by an
equivalence relation ~; on P X I".

Given a set of agents A C Ag, let ~/’f denote | J;cs ~i»> and ~§ denote the transitive
closure of ~f. We use || to denote |P| + [ + 4] + [Lieaq IS:l-

2 “complete” means that 4(qg, y) is defined for each (q,y) € Q x I'.
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Regular valuations. The model checking problem for pushdown systems (hence for
PEGSs as well) with general valuations A, e.g., defined by a function / which assign-
s to each atomic proposition a context free language, is undecidable [21]. To gain
decidability, we consider valuations specified by a function / which associates each
pair (p,q) € P x AP with a DFA A,, = (5,4, 1,44 Spg0, Fpg)- This is usually
referred to as a regular valuation [17]. The function [/ can be lifted to the valuation
At Px T — 2P for every (p, w) € Cp, 1,({p,w)) = {qg € AP | A;‘,’q(u)R) €F,,}

A simple valuation is a regular valuation [ such that forevery g € AP, pe Py er,
and w € I'*, it holds that A;,q(wRy) = 4, ,(y), i.e., the truth of an atomic proposition
only depends on the control state and the top of the stack. Let |4| denote the number of
states of the product automaton of all the DFA’s that represents A.

Alternating Multi-Automata. In order to represent potentially infinite sets of configu-
rations finitely, we use alternating multi-automata (AMA) as the “data structure” of the
model checking algorithms.

Definition 2. /4] An AMA is a tuple M = (S,1,6,1,S ), where S is a finite set of states,
T is the input alphabet, 6 C S x I x 25 is a transition relation, I C S is a finite set of
initial states, Sy C S is a finite set of final states. An AMA is multi-automaton (MA) if
forall (s,S") €06, |S'|< 1.

If (s, y,{s1, ..., Sm}) € O, we will write s AN {s1,..., s;n} instead. We define the rela-
tion —*C § x I'* x 25 as the least relation such that the following conditions hold:

€
- s —" {5}, forevery s € §;
()

4 . Y @ .
= 5 —" Uiem Si» if s — {51, ..., s} and 5; —* §,; for every i € [m].

w
M accepts a configuration (p, w) if p € I and there exists S’ C S s such that p —"
S’. Let L(M) denote the set of all configurations accepted by M.

Proposition 1. [4|] The membership problem of AMAs can be decided in polynomial
time. AMAs are closed under all Boolean operations.

Example 1. We illustrate our model by a modified example on the departmental travel-
ling budget from [8]]. Consider a department consisting of two professors 1, 2 and three
lecturers 3, 4, and 5. The department’s base budget (say 10 units) is allocated annually
and can be spent to attend conferences or apply for grants, at most twice for each pro-
fessor and at most once for each lecturer. Suppose there are two categories to request
money to attend a conference: 1 unit or 2 units depending on whether it is early or late
registration. Parts of a successful grant application will be credited to the department’s
budget. Suppose 3 units for each successful grant application will be added into the
budget. A successful grant application from a member will immediately decrements 1
of his/her times using the budget. But, there is no a priori bound on the total budget, and
no one can know how much or which way each of others has used budget. Therefore,
all departmental members compete for the budget with imperfect information.

We can model this system as a PEGS % as follows. Each departmental member
i €{l,...,5} is modeled as an agent which has actions {idle, AG, AC}, where AG denotes
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“applying for a grant”, AC denotes “attending a conference”, and idle denotes other
actions without any cost. There is an additional agent 6 denoting the environment which
decides whether the application is granted or not by nondeterministically choosing an
action from {award;, reject; | i € {1, ...,5}}. Each control state of # is a tuple of local
states of all the agents, where the local states of each agent encode the number of times
that the agent has used the budget, namely, the local state p;; denotes that the number
is k for agent i. The submitted grant applications are recorded into the local states of the
environment agent. The available units of budget are encoded into the stack, where the
length of the stack content denotes the number of available units. Each decision made
by the agents determines the stack operation according to the total costs of actions in
the decision. Pushing m symbols onto the stack denotes that m units are added into the
budget. Similarly, popping m symbols from the stack denotes that m units are consumed
from the budget [ﬂ Therefore, the length of stack content restricts the chosen of actions
by agents. This means that we only need one stack symbol for the stack alphabet. The
transition rules of # can be constructed accordingly.

For this system, we can use size-preserving EARs to represent the constraint that
each departmental member chooses the same action at two different scenaria but its
local states and the number of available units are identical. In particular, for each agent
i € {1,...,5} and two configurations ¢, ¢’ of P, ¢ ~; ¢’ iff the local states of i in ¢, ¢/, as
well as lengths of stack contents in c, ¢’, are the same.

On the other hand, it is also natural to assume that each departmental member choos-
es the same action at two different scenaria when its local states are identical, and the
numbers of available units are either equal, or both greater than some bound (e.g., 6
units). This assumption can be described using regular EARs.

3 Specification Logics: ATEL, ATEL* and AEMC

In this section, we recall the definition of alternating-time temporal epistemic logic-
s: ATEL [33]], ATEL* [19]] and AEMC [7], which were introduced for reasoning about
knowledge and cooperation of agents in multi-agent systems. Informally, ATEL, ATLE*
and AEMC can be considered as extensions of ATL, ATL* and AMC respectively with
epistemic modalities for representing knowledge. These include K; for i € Ag (agent i
knows), E4 for A C Ag (every agent in A knows) and C, (group modalities to charac-
terise common knowledge).

3.1 ATEL, and ATEL; (where o € {Ir, IR, ir, iR})
Definition 3 (ATEL}, ). The syntax of ATEL, is defined as follows, where ¢ denotes

state formulae,  denotes path formulae,

$u=q | ~q 1¢Ve | $nd | Kip | Exd | Cad | Kid | Eag | Cad | Ay | [Aly
Y=g lYyVy [ YAy | Xy | Gyl yUy

where g € AP, i € Agand A C Ag.

3 Since normal PEGS only pops one symbol from the stack at one step, in order to pop m
symbols, we need to introduce some additional control states as done in [30].
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We use F ¢ to abbreviate true U . An LTL formula is an ATEL}, path formula
with ¢ being restricted to be atomic propositions and their negations.

The semantics of ATEL, is defined over PEGSs. Let # = (Ag, Ac, P, I, 4, A, {~|l i €
Ag}) be a PEGS, ¢ be an ATEL], state formula, and ¢ € Cp be a configuration of . The
satisfiability relation P, ¢ |z, ¢ is defined inductively on the structure of ¢.

- P.cke qiff g€ Ac); —P,c s qiff g & Ac);

- PcEs 1 Vit P,c ey ¢y or P, ey ¢2;

- P,cEs &1 A @ iff P,c k=, ?1 and P, c E, ?2;

- P,c s (A iff there exists a collective o-strategy v4 : A — 07 s.t. for all paths
meout’(c,va), P, s ¥

- P,c Eo [Aly iff for all collective o-strategies v4 : A — 7, there exists a path
7 € out’(c,vy) such that P, =,

- P, c ks K¢ iff for all configurations ¢’ € Cp such that ¢ ~; ¢/, P, ¢’ Es ¢;

- P,cEs K-cp iff there is a configuration ¢’ € Cp such that ¢ ~; ¢’ and P, ¢’ =, ¢;

- E4¢, E»¢, Ca¢ and Cy ¢ are defined similar to K;¢ and K;¢, but we use the relations
~E and ~€.

The semantics of path formulae y is specified by a relation P,m =, ¥, where & is
a path. Since the definition is essentially the one of LTL and standard, we refer the
readers to, e.g., [15] for details. We denote by [|¢|l7, = {c € Cp | P,c s ¢} the set of
configurations satistying ¢. The model checking problem is to decide whether ¢ € ||4ll7,
for a given configuration c.

ATEL, is a syntactical fragment of ATEL;. with restricted path formulae of the form

y:=X¢ | G| ¢ Ud.

An ATEL,, (resp. ATEL}) formula ¢ is principal if ¢ is in the form of (A)y or [A]y
such that ¢ is a LTL formula. For instance, ({1})F ¢ is a principal formula, while neither
{1HF(g A {2HG ¢') nor {1HF(K; g) is.

Example 2. Recall Example [I} Suppose that there are atomic propositions g3, g4, s
such that for each i € {3,4,5}, ¢; € A(c) iff the configuration ¢ contains the local
state p;;, i.e., the agent i attends a conference. In addition, the atomic propositions
gi for i € {1,2} denote that agent i has applied for some grants. Consider the for-
mula: ¢1 = ({3,4,5D)F(g3 A g4 A gs), ¢2 = ({2,3,4,5DF(g3 A ga A g5) and ¢35 =
Ei453,4,5)((F(g1 V 82)) = F(g3 A qa A g5)). ¢1 expresses that three lecturers
have strategies such that all of them can attend some conferences. Obviously, ¢; does
not hold when both two professors attended conferences twice with late registrations,
which costs 8 units. ¢, expresses that three lecturers together with professor 2 have s-
trategies such that all the lecturers can attend some conferences. ¢3 states that all three
lecturers know that they have strategies such that if some professor applies for some
grants, then all of them can attend some conferences. Obviously, ¢, and ¢3 hold.
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3.2 AEMC, (where o € {Ir,IR,ir,iR})

Definition 4 (Alternating-Time Epistemic u-Calculus). Given a finite set of proposi-
tional variables Z, AEMC, formulae are defined by the following grammar:

du=q g | Z] ¢Vl dng | (AXe | [AIXe |
HZp | vZ.¢ | Kig | Eadp | Cagp | Kip | Eagp | Cap

where g € AP, Z € Z, i€ Agand A C Ag.

The variables Z € Z in the definition of AEMC, are monadic second-order variables
with the intention to represent a set of configurations of PEGSs. An occurrence of a
variable Z € Z is said to be closed in an AEMC,. formula ¢ if the occurrence of Z is
in ¢ for some subformula uZ. ¢, or vZ. ¢; of ¢. Otherwise, the occurrence of Z in ¢
is said to be free. An AEMC,. formula ¢ is closed if it contains no free occurrences of
variables from Z.

The semantics of AEMC,; can be defined in an obvious way, where temporal modal-
ities (A)X¢ and [A]X¢ and epistemic modaliteis can be interpreted as in ATEL;, and the
fixpoint modalities can be interpreted as in alternating mu-calculus [2]]. Given a PEGS
P = (Ag,Ac,P,I,4,4,{~;| i € Ag}), and a closed formula ¢, the denotation function
Il o [I7 maps AEMC,, formulae to sets of configurations. A configuration c satisfies ¢ iff
c € (19l

For closed AEMC,, formula ¢, ||¢||}'>, p is independent of £. Therefore, the superscript
& will be dropped from ||¢||"’f, for closed AEMC,, formula ¢. In addition, the subscript
% is also dropped from ||¢||7‘§’ p and ||¢||;§ when it is clear.

We remark that, for AEMC, (where o € {Ir,IR,ir,iR}), it makes no difference
whether the strategies are perfect recall or not, since each occurrence of the modalities
(A)X¢ and [A]X¢ will “reset” the strategies of agents. Therefore, we will ignore R and
r and use AEMC/AEMC; to denote AEMC under perfect/imperfect information.

Proposition 2. [[7] For any closed AEMC, formula ¢ and a PEGS P, ”¢”g = ||¢||i¢1}
and ||¢llys = IBlIEX.

We mention that, although ATELjg and ATEL[, can be translated into AEMC,
this is not the case for imperfect information. Namely, ATEL;r, ATEL;;, ATEL}g, and
ATEL; cannot be translated into AEMC;. The interested readers are referred to [[7] for
more discussions.

CTL, CTL* and p-calculus are special cases of ATL,, ATL; and AMC in which
all the modalities (A)y and [A]y satisfy A = 0 ﬂ while ATL,, ATL}. and AMC, are
special cases of ATEL,., ATEL’, and AEMC,, in which no epistemic modalities occur.

The following results are known for model checking PEGSs with perfect informa-
tion and perfect recall.

Theorem 1 ([13])). The model checking problem for ATELyx/AEMCg over PEGSs is
EXPTIME-complete, and for ATEL;y SEXPTIME-complete .

4 (@) (resp. [0]) is the universal (resp. existential) path quantification A (resp. E).
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Remark 1. In [7], the outcome of a configuration ¢ with respect to a given collective o-
strategy vy is defined differently from that in this paper. More specifically, the outcome
in [[7]] corresponds to ;s U~ OUt7(c’, v4) in our notation. It is easy to see that for
every ATEL, or ATEL] formula (A)y (resp. [A]y¥) and every configuration ¢ € Cp,
¢ € IKAWIIG (resp. ¢ € TATWIS) in [7]iff ¢ € [EA(AWAS (resp. ¢ € [E4[ATYII%) in our
notation. Similar differences exist for AEMC,. We decide to make the hidden epistemic
modalities E4 explicit in this paper.

4 ATEL and ATEL* Model Checking

We first recall the following undecidability result.

Theorem 2 ([16]). The model checking problem for ATLigr and ATL{y over CEGSs is
undecidable.

In light of Theorem [T and Theorem 2} in this section, we focus on the model checking
problems for ATEL;,/ATEL; .

We observe that, when the stack is available, the histories in CEGSs can be stored
into the stack, so that we can reduce from the model checking problem for ATL;r over
CEGSs to the one for ATL;. over PEGSs. From Theorem [2} we deduce the following
result.

Theorem 3. The model checking problems for ATLi/ATL; over PEGSs with size-preserving
EARs are undecidable.

Theoremrules out model checking algorithms for ATEL;,/ATEL; when the PEGS
is equipped with size-preserving EARs. As mentioned before, we therefore consider
the case with regular/simple EARs. We first consider the model checking problem over
PEGSs with simple EARs. This will be solved by a reduction to the model check-
ing problem for CTL/CTL* over pushdown systems [31117]. We then provide a reduc-
tion from the model checking problem over PEGSs with regular EARSs to the one over
PEGSs with simple EARs. The main idea of the reduction, which is inspired by the
reduction of PDSs with regular valuations to PDSs with simple valuations in [17], is to
store the runs of DFAs representing the regular EARs into the stack.

4.1 Pushdown Systems

Definition 5. A pushdown system (PDS) is a tuple P = (P, I, 4, ), where P, I, A are
defined as for PEGSs, and A C (P X I') X (P X I'") is a finite set of transition rules.

A configuration of P is an element (p, w) of P X I'*. We write (p,y) — (g, w) instead
of (p,),(q,w)) € A.If {(p,y) — (g, w), then for every ' € I'*, {q, ww’) is a successor
of (p,yw). Given a configuration ¢, a path 7 of P starting from c is a sequence of
configurations cycj... such that ¢g = ¢ and for all i > 0, ¢; is a successor of ¢;_;. Let
[1p(c) € Cg denote the set of all paths in £ starting from ¢ onwards.

Given a configuration ¢ and a CTL/CTL* formula ¢, the satisfiability relation P, ¢ |=
¢ is defined in a standard way (cf. [31U17]). For instance, P, ¢ = (Q)y ift Yz € [[p(c), P, 7w
Y, P.c E [0ly iff Ar € []p(c), P, E . LetlIgllp = {c € Cp | P, c E ¢}
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Theorem 4. [I7] Given a PDS P = (P,I,4, ) and a CTL/CTL* formula ¢ such that
all state subformulae in ¢ are atomic propositions, we can effectively compute a MA
M with O(A| - |P| - 4] - k) states in O(|A| - |P* - |4| - k) time such that the MA exactly
recognizes ||lp, where k is 200D (resp. O(p|)) for CTL* (resp. CTL). Moreover, a DFA
A = (8,1, 41, so) with O(|A] - |4| - 2'P%) states and a tuple of sets of accepting states
(Fp)pep can be constructed in O(|A] - 4] - 2IPMKY time such that for every configuration
(p,wy e PXTI™, {p,w) e LIM) iﬂ”zl’l‘(so,wR) €F,.

4.2 Model Checking for PEGSs with Simple EARs

In this subsection, we propose an automatic-theoretic approach for solving the model
checking problems for ATEL;, and ATEL;, over PEGSs with simple EARs.

Let us fix the ATEL;,/ATEL;, formula ¢ and a PEGS # = (Ag,Ac, P, 1,4, A, {~i| i €
Ag}) with a regular valuation [ represented by DFAs (A, ;) pepqgeap and ~; is specified
by an equivalence relation =; on P X I for i € Ag.

The idea of the algorithm is to construct, for each state subformula ¢’ of ¢, an
MA My to represent the set of configurations satisfying ¢’. We will first illustrate the
construction in case that ¢’ = (A) (resp. ¢’ = [A]y) is a principal formula, then extend
the construction to the more general case.

Principal Formulae. Our approach will reduce the model checking problem over PEGSs
to the model checking problem for CTL/CTL* over PDSs. Note that for i € A, =; is de-
fined over P x I'. It follows that the strategy of any agent i € A must respect ~;, namely,
for all (p,yw) and (p’,y'w") with (p,y) = (p',y"), vi(p,yw) = vi(p’,y'w’) for any
ir-strategy v; of i. Therefore, any ir-strategy v; with respect to =~; can be regarded as a
function over P X I' (instead of configurations of P), i.e., v; : P X I' — Ac such that
vi(p,y) = vi(p’,y") for all (p,y) and (p’, ") with (p,y) = (p', 7).

Proposition 3. Given a configuration ¢ € Cp and a set of agents A C Ag, the following
statements hold:

i. for any collective ir-strategy va such that v (i) respects to =; for i € A, there exist
functions v; : P XTI — Ac fori € A such that out*(c,vs) = out(c,Jes v}) and
vi(p,y) = vi(p',y') for all (p,y) and (p’,y") with (p,y) =; (p',¥');

ii. for any function v} : P X I — Acfori € A such that vi(p,y) = vi(p',y’) for all
(p,y) and (p',y") with (p,y) =; (p’,V’), there exists a collective ir-strategy v, such
that va(i) respects to ~; for i € A and out™(c,v,) = out(c, U;ea V),

where out(c, | Jiea U}) denotes the set of all paths © = {po, Yowo){p1,y1w1) -+ such
q
that {po,yowo) = c and for all k > 0, there exists dy € D such that {py, Yiwi) :k>¢>
(P15 Vir1wgr1) and di (D) = vi(pr, vi) for all i € A.
According to Proposition[3] we can check all the possible collective ir-strategies, as
the number of possible functions from P X I" — Ac is finite. Let us now fix a specific
collective ir-strategy vs = (v;)iea for A. For each (p,y) € P x I', after applying a

collective ir-strategy va = (v;)iea for A, we define a PDS P, = (P, I, 4’, 1), where 4’
is defined as follows: for every p,p’ € P,y e and w € I'",

(p,y),(p,w) e iff Ad € D s.t. Vi € A, d(i) = vi(p,y) and A4(p,y,d) = (p, w).
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Lemma 1. ouf(c,v,) = HP,,A (o).

Following from Lemma I} for ¢’ = (A)y, P,c kir ¢’ iff there exists a collective
ir-strategy v, such that for all paths 7 € HP,/A (¢), P, Eir Y. The latter holds iff there
exists a collective ir-strategy v4 such that £,,,c E (O)y. Similarly, for ¢’ = [A]y,
P,c i ¢ iff for all collective ir-strategies vy, there exists a path 7 € H,DUA (c) such
that P, 7 =i . The latter holds iff for all collective ir-strategies va, Py, ¢ = [0]y.

Fix a collective ir-strategy v, with respect to ~; for i € A, by applying Theorem 4]
we can construct a MA M,,, such that L(M,,) = {c € P XTI | Py,,c E (D'} (resp.
LM,,) ={ce PxT*|P,,,cE [0]y)). Since, there are at most |Ac|F Al collective
ir-strategies with respect to =; for i € A and |A| < |Ag|, we can construct a MA M,

such that LMy) = U,,, LM,,) (resp. LMy ) =, LIM,,)).

Lemma 2. For every principal ATEL;, (resp. ATEL;) formula ¢’, we can construct a
MA My with O(Ac|PHHAIL || |P| - |A| - k) states in O(ACIPHTHAG A - | P - 14| - k) time
such that the MA exactly recognizes ||¢’||ir, where k is 200D ( resp. O(|@])). Moreover, a
DFA A = (S, T, 41, so) with O(Ac|PHHAI Al - 4] - 21P%) states and a tuple of sets of
accepting states (F ) ep can be constructed in O(|Ac|PMMAI 4] - |A| - 21P%) time such
that for every configuration {p,w) € P X I'", {p, w) € L(My) iff A47(s0, wh) e F,.

General ATEL;,/ATEL? formulae. We now present a model checking algorithm for
general ATEL;/ATEL; formulae. Given an ATEL;/ATEL; formula ¢, we inductively
compute a MA My from the state subformula ¢’ such that L(My) = |I¢’|I‘¢E. The base
case for atomic propositions is trivial. For the induction step:

— For ¢’ of the form —g, ¢; A¢> or ¢; V¢, My can be computed by applying Boolean
operations on My, /M,.

— For ¢’ of the form (A)y/’, we first compute a principal formula ¢” by replacing each
state subformula ¢’ in ¢’ by a fresh atomic proposition g4~ and then compute a
new regular valuation A" by saturating A which sets g4~ € A(c) for c € L(Myn). To
saturate A, we use the DFA transformed from Mg~ . Similar to the construction in
(170, || = |A] - |Ac|PHTAAL. 2IPIE | where k is 209D (resp. O(|¢|)) for ATEL; (resp.
ATEL;). By Lemma we can construct a MA My~ from ¢” which is the desired
MA My . The construction for May, is similar.

— For ¢’ of the form K;¢” (resp. E4¢” and C,¢”), suppose that the MA My, =
(S1,1,61,11,S ) recognizes ||¢”||i¢§. Let [p1,y1], --s [Pms Ym] € P X I" be the equiv-
alence classes induced by the relation »; (resp. ~4 and ~§). We define the MA
My = (P U {sp}, 1,6, P, {ss}), where for every j € [m], if {{p,yw) | (p,y) €
[pj,yjl,w € I'"} € L(My), then for all (p,y) € [pj,y;landy € I, §(p,y) =
sy and 8(sf,y’) = s;. The MA M, for formulae ¢’ of the form K;¢” (resp.
Ex¢” and EA¢") can be constructed similarly as for K;¢”, using the condition
Up.yw) | (p,y) € [pjyyilw € Iy N L(My) # 0, instead of {{p,yw) | (p,y) €
[pjs il w € T} € LMy,

In the above algorithm, MAs are transformed into DFAs at most |¢| times. Each
transformation only introduces the factor |Ac|PH1AgL. 2IPI% jnto 4] [17]. We then deduce
the following result from Proposition [I|and Lemma 2]
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Theorem 5. The model checking problem for ATEL;, over PEGSs with simple EARs is
2EXPTIME-complete, while the problem for ATEL;, is EXPTIME-complete.

Proof. The lower bound of the model checking problem for ATEL; follows from that
the model checking problem for CTL* over PDSs with simple valuations [5] is 2EXPTIME-
complete. Namely, even for PEGSs with a single agent, and simple valuations, the
model checking problem is already 2EXPTIME-hard. The hardness for ATEL;. fol-
lows from the fact that the model checking problem for CTL over PDSs is EXPTIME-
complete[35432]. a

4.3 Model Checking for PEGSs with Regular EARs

In this subsection, we present a reduction from the model checking problem over PEGSs
with regular EARSs to the problem over PEGSs with simple EARs. Assume a PEGS =
(Ag,Ac, P, I,4,4,{~| i € Ag}) with regular EARs such that, for each i € Ag, ~; is given
as the pair (x;, A;), where ~;C P X I is an equivalence relation and A; = (S, I, J;, sip)
is a DFA.

Let A = (S, 71,0, sg) be the product automaton of A;’s for i € Ag, such that § =
S| X ... XSy, 80 =[50, Snol, and 6(s1,y) = s2 if for every i € [n], 6;(si1,Y) = Si2,
where s; ; denotes the state of A; in s;.

We will construct a new PEGS £’ with simple EARs such that the model checking
problem over P is reduced to the problem over #’. Intuitively, the PEGS #’ with simple
EARs to be constructed stores the state obtained by running A over the reverse of the
partial stack content up to the current position (exclusive) into the stack. Formally, the
PEGS ¥’ is given by (Ag,Ac, P,I",4’, X ,{~/| i € Ag}), where

-I"'=rIxS§;

— for each i € Ag, ~] is specified by an equivalence relation ~; on P X I'"” defined as
follows: (p, [y, s]) = (p', [y, s'D iff (p,y) =; (p’,¥') and s = §';

— A’ is defined as follows: for every state s € S,

d d
1. for every (p,y) = (P, €). (P, [y.5]) =p (P, €),

d
2. for every (p,y) —p (P, ¥r...y1) with k > 1 and 6(s;,y;) = ;41 for every

. . d ,
Jj: 1< j<k—1(wheres; =s), then (p,[y,s]) = (P, [vk, s¢]...Ly1, s1]).

Finally, the valuation A’ is adjusted accordingly to 4, i.e., for every {p’, [¥k, S]---[Y0, So]) €
Cor, P, vk Skl [0, $01)) = AP, Yie--70))-

Lemma 3. The model checking problem for ATEL;. (resp. ATEL; ) over a PEGS P,
with stack alphabet I' and regular EARs ~;= (=i, A;) for i € Ag, can be reduced to the
problem over a PEGS P’ with simple EARs ~, such that the state space of P’ is the
same as that of P, and the stack alphabet of P’ is I' X S, where S is the state space of
the product of A;’s for i € Ag.

Theorem 6. The model checking problem for ATEL;, (resp. ATEL;) over PEGSs with
regular EARs is 2EXPTIME-complete (resp. EXPTIME-complete).
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S AEMC Model Checking

In this section, we propose algorithms for the model checking problems for AEMC;
over PEGSs with size-preserving/regular/simple EARs. At first, we remark that Theo-
rem [3] does not hold for AEMG; (recall that AEMC; = AEMC;, = AEMCir). Indeed,
we will show that the model checking problems for AEMC; over PEGSs with size-
preserving/regular/simple EARs are EXMPTIME-complete.

Fix a closed AEMC; formula ¢ and a PEGS P = (Ag,Ac, P, I,4,4,{~;| i € Ag})
with size-preserving/regular/simple EARs. We will construct an AMA A, to capture
I|¢|IiP by induction on the syntax of AEMC; formulae.

Atomic formulae, Boolean operators, formulae of the form (A)X¢’ and [A]X¢’, and
fixpoint operators can be handled as in [13]], where the model checking problem for
AMC over PGSs was considered, as imperfect information does not play a role for
these operators. In the sequel, we illustrate how to deal with the epistemic modalities.
Regular/simple EARs can be tackled in a very similar way to Section 4] we focus on
the size-preserving one.

Suppose size-preserving EARs ~; for i € Ag are specified by equivalence rela-
tions ~,C (P x P) U (I' X I'). For the formula ¢ = K;¢’, suppose the AMA Ay =
S, r,o,r,s f) recognizing ||¢’ || has been constructed. We construct Ay, = (S',1,6,1,S f)
as follows.

- I={peP|Ap el'.p~p}

— Foreach (p,y) € PXTI, let [p]s, (resp. [y]-,) be the equivalence of p (resp. y) under
~,and §7, 1= { S,y 1 (p,y,S),,) €6’} Then (p,y,S) € ¢ if (1) for all p’ € [pls,
andy’ € [7]~,, p,y, ;t 0; and (2)S Uy elple, Y €y, 87 where ST, € S,/y/

— For every (s,y,5) € ¢’ such that s € §” \ P, let (s, y S) e 5f0reveryy € [" with
Y =iy
For the formula ¢ = K;¢’, suppose the AMA Ay = ', T, 5’,1’,5}) recognizes

||¢'||;2. We construct Ay = (S',1,6,1, S}) as follows.

- I={peP|Ap el'.p~;p'}
— For each (p,y) € Px I, if there is (p’,y’,§]) € ¢’ such that p ~; p” and y =; ’, let

(p,y,S)) €0.
— For every (s,y,S) € 8’ suchthat s € S” \ P, let (s,y',S) € ¢ for every v’ € I with

Y =iy
The AMA A, for ¢ of the form E ¢, Ca¢’, E4¢’ or C4¢’ can be constructed in a

very similar way, in which the relation =; is replaced by the relation | ;4 =; (resp. the
transitive closure of ( J;cq ).

Lemma 4. Given a PEGS P with regular valuations and size-preserving EARs , and a
closed AEMC; formula ¢, we can construct an AMA Ay recognizing ||¢||i¢, in exponential
time with respect to |P|, |4| and ||

From Lemma ] and Proposition[I] we have:

Theorem 7. The model checking problem for AEMC; over PEGSs with regular/simple
valuations and size-preserving/regular/simple EARs is EXPTIME-complete.
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The lower bound follows from fact that the model checking problem for AMC over
PGSs with simple valuations is EXPTIME-complete [13]].

6 Conclusion and Future Work

In this paper, we have shown that the model checking problem is undecidable for
ATL;/ATL; over PEGSs with size-preserving EARs, and provided optimal automata-
theoretic model checking algorithms for ATEL;/ATEL; over PEGSs with regular/simple
EARs. We also have provided optimal model checking algorithms for AEMC; over
PEGSs under size-preserving/regular/simple EARs with matching lower bounds.

The model checking problem for ATELy/ATEL;. or ATLy/ATLj, over PEGSs is
still open. We note that the problem for ATELy,/ATEL; or ATLy/ATLy, over CEGSs
can be solved by nondeterministically choosing a strategy via selecting a subset of the
transition relation, as the strategies only depend on control states yielding a finite set of
possible strategies [29]. However, similar techniques are no longer applicable in PEGSs,
as the strategies depend on stack contents apart from control states, which may yield an
infinite set of possible strategies.
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A Appendix

A.1 Semantics of AEMC,

The semantics of AEMC,, is defined over PEGSs. A valuation & : Z — 2°7 is a function
assigning to each propositional variable a set of configurations. We use £[Z — C] to
denote the valuation which is equal to & except for £[Z — C](Z) = C. Given a PEGS
P = (Ag,Ac,P,I,4,A,{~;| i € Ag}) and a valuation & : Z — 2C7  the denotation
function || o ||g’ p that maps AEMC,, formulae to sets of configurations is inductively
defined as follows:

= llglip; = {c 1 g € Ao}

~ II~glig,, = Cp \llgli5:

= 12z, = £(2);

— 1I1 A Ballg = gl NIl

— 1l61 v $allZ, = b1l Uil -

- [KAXeliz, = {c €Cp | Fug 1 A = 07 5.2. YV € out? (¢, va), 11 € [I9ll5 .}
= l[AIXllp . = {c € Cp [ Yva : A — 07, dm € out?(c,va), 11 € [I9ll5 .}
~ WZ#l5,. = UIC € Cp 1 I8l 170, 2 C:

= IVZ4liz . = NC € Cp 1119117 417,01 € Cs

- IKigllp, = {c €Cp | V¢ € Cp,c ~i " = " €llgllig .}

~ IE4dlif, = {c € Cp | V' € Cp,c ~f ¢/ = ¢ € lgli . );

= ICsgll7, = {c € Cp | V' €Cp,c ~{ ¢ = ¢’ €lldlig b

— IKiglif, = {c € Cp| A’ € Cp,c ~i ¢/ A € NIBlG )i

~ Eadlif, = {c € Cp | Ac’ € Cp,c ~f ' A’ €IBIIF . J:

= ICs8llg, = {c € Cp | A’ € Cp,c ~§ ¢’ A €iglIF ).

A.2 Proof of Thereom[3

Proof. Given a CEGS P = (Ag,Ac, P, 4,A,{~| i € Ag}), we construct a PEGS P’ =
(Ag,Ac, P, F,A’,/l’,{~lf| i € Ag}), where

r=pru{l},
A’ is the least function such that for every A(p,d) = (p’), 4’(p,y,d) = (p’, py) for
everyyelrl,

~!C CpXCyp: such that for every configurations ¢ = {p, p1...pm) and ¢’ = {p’, p}...p},),
c~iciff p~; pand p; ~; p;. for all j € [m].
A’ is defined as: for every configuration (p, yi...ym) € PXI*, ' ({p, ¥1--Ym)) = Ap).

For every ATL;/ATL; ¢, itis easy to see that {(p) |ir ¢ in the CEGS P iff (p, L) kir ¢
in the PEGS #’. a
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A.3  Proof of Proposition[3]

Proof. i. For every i € A, since v4(i) respects to =, i.e., for all (p,yw) and (p’,y' ")
with (p,y) =; (p’,Y), va()(p, yw) = va(D)(p’, ¥’ "), we can construct a unique function
v, : PX I — Ac such that v(p,y) = va()(p, yw) for some w € I'*. It immediately
follows that out™(c, v4) = out(c, Uea V).

ii. Suppose for every i € A, we have a function v} : P X I' — Ac such that v(p,y) =
vi(p’,y’) for all (p,y) and (p’,y") with (p,y) =; (p’,¥"), letv; : Cp — Ac be the ir-
strategy such that for every (p,y) € PX T, w € I'", vi(p, yw) = v;(p,y). Itis easy to see
that out™(c, v4) = out(c, U;ea v}) and for all (p, yw) and (p’, y'w’) with (p,y) =; (p’,7'),
vi(p, yw) = vi(p',y' o). 0

A4 Proof of Lemmal[ll

Proof. (=) Let  be a path which starts from ¢ and 7 is compatible with respect to v,
i.e., m € out™(c,v4). We shall show that 7 € HﬂA (c). For this purpose, it is sufficient to
show that, for all k > 0, m4,; is a successor of m; in the PDS 7,,,.

Since & is compatible with respect to vy, for all k£ > 0, there exists some d; € D

d
such that my, :kp w1 and dig(i) = va(D)(m<) for all i € A. Let m, = (p, wy) for all
k> 0.
For any k > 0, there exist y; € I', uy, ug+1 € I'* such that

- W = Yilg,
= Wi+l = Uk Uk,

d
— Pl V) —p (Prsts i)

Since d (i) = va(i)(m<) for all i € A, according to the construction of P, , we have that
((Pr> Yi)s (Pi+15 uics1)) € A’ Therefore, m1 is a successor of ;. in the PDS P, .

(&=:) Let us consider a path 7 € Hp% (c), we shall show that 7 is compatible with
respect to vy, i.e., T € out™(c, uy). For all k > 0, 74 is a successor of m in the PDS
Py, Let m = (pr, wy) for all k > 0.

For any k > 0, there exist y € I', uy, ug+1 € I'* such that

— Wi = Yilg,
= Wi+l = Uk Uk,
= (P> V) (P, uke1)) €A

d
According to the construction of #,,,, there exists a transition {py, yx) C—k>7> (Pr+1> Uk+1)
in P such that d; (i) = va(i)(m<) for all i € A. Therefore, 7 is compatible with respect
to vy4. O

A.5 Proof of Lemma[3l

Proof. A configuration {p, [Yk, St]...[70, S0]) € Cp is consistent iff for every i : 0 <
i < k, 0(s;,y) = sit1. Suppose the path of £’ reaches the consistent configuration
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(P> V&> Sk]---[70, S01) € Cpr, the path of P is at the configuration (p, yx...vo) € Cp and
for every i € [n], the DFA A, is at the state s; after reading the word ...y, . If there is

a transition rule {p, yx) i>;z> (p’, €), then P moves from the configuration {p, yx...yo) to
the configuration (p’, yx-1...yo) if the agents cooperatively made the decision d. Mean-
while, the DFA A; should go to the state s;;_; after reading the word yy...yx—2, as A;
is deterministic. These are mimicked by the path of £’ which moves from the con-
figuration {p, [ vk, St]-..[v0, So]) to the configuration {p’, [yi-1, Sk-1]---[v0, S0]) (c.f. [tem
1).

d
Analogously, if there is a transition rule {p, 1) ¢ (p’,7;...y;) for some ¢ > k, then
% moves from the configuration {p, y...yo) to the configuration {p’, y;...y, Yi-1...Yo) if

Y
the agents cooperatively made the decision d. Suppose s; 5 s j+1 forevery j: k <
j < t— 1. To encode the computation information of DFAs, we add the transition rule

d
(P> yio Sk1) = (P', 115 8¢]...[7,» si]) which allows the path of #’ moves from the con-
figuration (p, [k, Skl...[v0, So]) to the configuration (p, [y, $¢]...[¥}, Skl [Yi-1, Sk-1]-..[v0, S0 D).
Therefore, for every configurations {p, yi...Yo), {p’,¥i.--¥y) € Cp and i € Ag,
(D> V- ¥0) ~i P57 --¥» ifl there are two consistent configurations (p, [k, s«]..-[v0, S0l
' [Vis 87,1175, 8 1) € Cpr such that (p, [ i, skl-..[v0, So]) ~; {p". [V 87,1 [v5, 5y D)
Since the automata A;s are deterministic, all the reachable configurations starting from
consistent configurations are consistent configurations. The result immediately follows.
O

A.6 Proof of Lemmaf]

Proof. Consider a PEGS # = (Ag,Ac,P,I,4,4,{~;| i € Ag}) and a closed AEMC;
formula ¢, we shall show how to construct an AMA A, such that |I¢|Ii¢, = L(Ay). The
AMA Ay is defined based on the structure of ¢. The main framework follows Procedure
1 of [36].

We only need to give procedures for subformulae of the form (A)X¢’, [A]X¢', K;¢',
Ki¢', Ex¢’, Cad’, Eg¢’ or Cudp'. Suppose the size-preserving EARs ~; for i € Ag are
specified by equivalence relations ~;C (P X P) U (I" X I).

— For ¢ of the form (A)X¢’ (resp. [A]X¢"), we use the approach of [[13]]. Let succ¢(p,y)

denote the set of tuples {(p’, w) | {(p,¥) fi>p (p',w) € Aand Ya € Domain(f) :
d(a) = f(a)}, and succs(p, yw') denote the set of configurations {{p’, ww’) | {p’, w) €
succy(p,y)} for every w’ € I'" which is the set of all the possible successors of
(p,yw’) on the actions f(a) for a € Domain(f) (agents Ag \ A can make any ac-
tion).

Suppose the AMA Ay = (S1,1,61,11,S }) has been constructed using the Dispatch
of [36]]. We construct the AMA Ay, = (S UL T,61 U 6’,[,5}) where I = {[p,y¥] |
p € P}, and

sipuln=\ N N

[:A—Ac (p’.w)esuccy(p,y) SEQP,m



20 Taolue Chen, Fu Song™, Zhilin Wu

(resp.
§p.wl = /\ VoA

f:A—Ac (p’.w)esuccy(p,y) ser/w

where p’ in;] Opw-
The correctness follows from the fact that at a configuration (p, w), each agent in A
only has to select one action and it can forget this selection and select a new action
at next time. Therefore, the selection can be represented by function f : A — Ac.
— For y of the form K;¢’, suppose the AMA Ay = (S', 1,6, 1, S}) has been con-
structed using Dispatch of [36]. We construct A, = (S’, 16,1, S}) where
e [={peP|Ap el . p~p}
e Foreach (p,y) € P XTI, let [p]s, (resp. [yls,) be the equivalence of p (resp. y)
under =;, and S, :={S, | (p,¥,S},,) € ¢'}. Then (p,,S) € 6 if (1) for all

p €lply,andy €lyls, S, #0;and (2) S = UP’E[Plzi’V’EU]a S Where
S/p,'o" € S;)’,V'

e For every (s,y,S) € 6’ such that s € S" \ P, let (s,y’,S) € 6 forevery y’ € I
with ¢’ =; y.

— For ¢ of the form K¢’, suppose the AMA Ay = (S',1,6",1',S }) has been con-

structed using Dispatch of [36]. We construct Ay = (S',1,6,1,S }) where
e [={peP|Apel.p~p}
e Foreach (p,y) € PXT,if thereis (p’,y’,S) € &' such that p =~; p"and y =; ¥/,
let (p, y,S’l) € 9.
e For every (s,y,S) € 8’ such that s € S" \ P, let (s,y’,S) € 6 forevery y’ € I
with ¢/ ~; y.

— For ¢ of the form Ex¢’, Ca¢’, Ex¢’ or Cad’, Ay can be constructed in a very
similar way, in which the relation ~; is replaced by the relation | J;c4 =; (resp. the
transitive closure of | J;c4 =;). The correctness immediately follows from the above
constructions.

Note that in [36], an integer that broadly corresponds to the fixed point depth of y
in ¢ was added into [p, ¢]. For the sake of simplification, we omitted this integer in the
above construction.

O
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