Model Checking Pushdown Epistemic
Game Structures

Taolue Chen'*, Fu Song?®™), and Zhilin Wu?

! Department of Computer Science and Information Systems,
Birkbeck, University of London, London, UK
2 School of Information Science and Technology,
ShanghaiTech University, Shanghai, China
songfu@shanghaitech.edu.cn
3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
4 State Key Laboratory of Novel Software Technology,
Nanjing University, Nanjing, China

Abstract. In this paper, we investigate the problem of verifying push-
down multi-agent systems with imperfect information. As the formal
model, we introduce pushdown epistemic game structures (PEGSs), an
extension of pushdown game structures with epistemic accessibility rela-
tions (EARs). For the specification, we consider extensions of alternating-
time temporal logics with epistemic modalities: ATEL, ATEL* and
AEMC. We study the model checking problems for ATEL, ATEL* and
AEMC over PEGSs under various imperfect information settings. For
ATEL and ATEL*, we show that size-preserving EARs, a common defin-
ition of the accessibility relation in the literature of games over pushdown
systems with imperfect information, will render the model checking prob-
lem undecidable under imperfect information and imperfect recall setting.
We then propose regular EARs, and provide automata-theoretic model
checking algorithms with matching low bounds, i.e., EXPTIME-complete
for ATEL and 2EXPTIME-complete for ATEL”. In contrast, for AEMC,
we show that the model checking problem is EXPTIME-complete even in
the presence of size-preserving EARs.

1 Introduction

Model checking, a well-studied method for automatic formal verification of com-
plex systems, has been successfully applied to verify communication protocols,
hardware designs and software, etc. [15]. The key idea underlying the model
checking method is to represent the system as a mathematical model, to express
a desired property by a logic formula, and then to determine whether the formula
is true in the model [15].

This work was partially supported by NSFC grant (61402179, 61532019, 61662035,
61572478, 61472474, 61100062, and 61272135), UK EPSRC grant (EP/P00430X/1),
and European CHIST-ERA project SUCCESS.

© Springer International Publishing AG 2017

Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 36-53, 2017.
https://doi.org/10.1007/978-3-319-68690-5_3

Model Checking Pushdown Epistemic Game Structures 37

Recently, it has been extended to verify multi-agent systems (MASs), a novel
paradigm which can be used to solve many complex tasks that might be difficult
or inefficient for an individual agent to tackle. As a model of finite-state MASs,
Alur et al. proposed concurrent game structures (CGSs), whilst alternating-
time temporal logics (ATL, ATL*) and alternating-time p-calculus (AMC) are
employed as specification languages, for which model checking algorithms were
also provided [1,2]. Since then, a number of model checking algorithms for MASs
have been studied for various models and logics. For instance, [26] proposed a
more expressive logic, called strategy logic (SL), which allows to express coop-
eration and enforcement of agents. However, the model checking problem for
strategy logic on CGSs is NonElementarySpace-hard and the satisfiability prob-
lem is undecidable [23]. As a result, several fragments of strategy logic were
investigated [10,23-25].

CGSs are usually determined by Interpreted Systems which are constructed
via a Mealy-type or Moore-type synchronous composition of local transition sys-
tems of agents [18,22]. In the literature, local transition systems of each agent are
usually finite (as, e.g., a finite Kripke structure), yielding a finite-state CGS only
via the synchronous composition. However, in practice often there are scenar-
ios of interest where agents cannot be represented by a finite-state system (e.g.,
pushdown scheduler [27]), or recourses shared between agents are unbounded [8],
but can be rightly modeled by a pushdown system. Hence, it would be of great
interest to study verification problems on the CGS obtained by a synchronous
composition of local pushdown systems. Unfortunately, the verification of even
the simplest property (e.g., reachability) for such a model is undecidable. To see
this, one can easily reduce from the emptiness problem of the intersection of
two pushdown automata which is known to be undecidable. To gain decidability
while still capturing many interesting practical cases, pushdown game structures
(PGSs) were proposed and investigated [13,14,27]. In PGSs, agents do not posses
their own local stacks, but can be seen as sharing a global stack. As the stack is
unbounded, PGSs represent a class of infinite-state MASs, a proper extension of
the finite-state MASs. PGSs allow, among others, modeling of unbounded mem-
ory or a unbound shared resource of agents, which is of particular importance
in MASs [8,27].

On the logic side, one considers alternating-time temporal epistemic log-
ics (ATEL, ATEL*) [19,20,28,29,33], alternating-time epistemic p-calculus
(AEMCQ) [7], and SLK [9], which are respectively extensions of ATL, ATL*,
AMC and SL with epistemic modalities for representing knowledge of individual
agents, as well as “everyone knows” and common knowledge [18]. These logics are
usually interpreted over finite-state concurrent epistemic game structures, which
are an extension of CGSs with epistemic accessibility relations (EARs), giv-
ing rise to a model for representing finite-state MASs with imperfect information.
Assuming agents only access imperfect information arises naturally in various
real-world scenarios, typically in sensor networks, security, robotics, distributed
systems, communication protocols, etc. In addition, the extension of logics with
epistemic modalities allows one to succinctly express a range of (un)desirable

38 T. Chen et al.

properties of MASs, and has found a wide range of applications in Al, particu-
larly for reasoning about MASs [18,34].

This paper investigates model checking problems for ATEL, ATEL* and
AEMC over infinite-state MASs under imperfect information setting. To this
end, we propose pushdown epistemic game structures (PEGSs), an extension of
PGSs with EARs, as a mathematical model for infinite-state MASs with imper-
fect information. To the best of our knowledge, analogous models have not been
considered in literature.

Model checking PEGSs depends crucially on how EARs are defined. A com-
monly adopted definition, called size-preserving EARs, was introduced for games
over pushdown systems with imperfect information [3], where two configurations
are deemed to be indistinguishable if the two stack contents are of the same size
and, in addition, neither the pair of control states nor pairs of stack symbols
in the same position of the two stack contents are distinguishable. While this
sounds to be a very natural definition, we show, unfortunately, that the model
checking problems for ATEL and ATEL* over PEGSs are undecidable in gen-
eral, even when restricted to imperfect recall (memoryless) strategies. This result
suggests that alternative definitions of EARs are needed.

As a solution, we propose EARs that are regular and simple. Simple EARs
are defined over control states of PEGSs and the top symbol of the stack, while
regular EARs are simple EARs extended with a finite set of deterministic finite-
state automata (DFA), one for each agent, where the states of each DFA divide
the set of stack contents into finitely many equivalence classes. We first provide
an automata-theoretic algorithm that solves the model checking problem for
ATEL (resp. ATEL*) over PEGSs with simple EARs, then present a reduction
from the model checking problems over PEGSs with regular EARs to the one
over PEGSs with simple one. The algorithm runs in EXPTIME for ATEL and
2EXPTIME for ATEL*, and we show that these algorithms are optimal by giving
matching lower bounds. In contrast, for AEMC, we show that the model checking
problem is EXPTIME-complete, even in the presence of size-preserving EARs.

Related Work. Model checking over finite-state CGSs under perfect information
setting is well-studied in the literature [2,10,23-25]. The problem becomes unde-
cidable for ATL on CGSs under imperfect information and perfect recall set-
ting [16]. Therefore, many works restrict to imperfect information and imperfect
recall strategies [7,9,19,20,28,29,33]. The model checking problem over PGSs
under perfect information and perfect recall setting was studied in [13,14,27],
but only with perfect information. Furthermore, timed (resp. probabilistic) ATLs
and timed (resp. probabilistic) CGSs were proposed to verify timed (resp. prob-
abilistic) MASs, e.g., [6,11,12]. These works are, however, orthogonal to the one
reported in the current paper.

Structure of the Paper. In Sect. 2, we introduce pushdown epistemic game struc-
tures. In Sect. 3, we recall the definitions of ATEL, ATEL* and AEMC. In Sect. 4,
we present the undecidable result for ATEL, ATEL* and propose model check-
ing algorithms for decidable setting. The model checking algorithms for AEMC

Model Checking Pushdown Epistemic Game Structures 39

are presented in Sect. 5. Finally, we conclude in Sect. 6. Due to space restriction,
all proofs are committed here which can be found in the accompanying technical
report.

2 Pushdown Epistemic Game Structures

We fix a countable set AP of atomic propositions (also called observations). Let
[k] denote the set {1, ..., k} for some natural number k € N.

Definition 1. A pushdown epistemic game structure (PEGS) is a tuple P =
(Ag,Ac, P,T", A, A\, {~;| i € Ag}), where

- Ag = {1,...,n} is a finite set of agents (a.k.a. players); we assume that n is
bounded;

— Ac s a finite set of actions made by agents; we further define D = Ac" to be the
set of decisions d = {(aq, ..., an) such that for alli € [n], d() := a; € Ac;

— P is a finite set of control states;

- I' is a finite stack alphabet;

~ A:PxTI xD— PxTI*isatransition function';

~ X : P x I'* — 2AP s q valuation that assigns to each configuration (i.e., an
element of P x I'*) a set of atomic propositions (i.e., observations);

- ~;C (P x I'*) x (P x I'*) is an epistemic accessibility relation (FEAR) which
s an equivalence relation.

A concurrent epistemic game structure (CEGS) is a tuple P = (Ag, Ac, P, A, A,
{~i| i € Ag}) where A : P x D — P, Ag, Ac, P are defined similarly as PEGS,
whereas A and ~; are over P solely. A pushdown game structure (PGS) is a PEGS
P = (Ag,Ac, P,I", A, \,{~;| i € Ag}) in which ~; is an identity for every agent
1 € Ag. Hence, a PGS P is usually denoted as (Ag, Ac, P, I, A, \).

A configuration of the PEGS P is a pair (p,w), where p € P and w € I'*. We
write Cp to denote the set of configurations of P. For every (p,~v,d) € P x I' x D

such that A(p,v,d) = (p',w), we write (p,) (i)'p (p',w) instead.

The transition relation =>p: Cp X D X Cp of the PEGS P is defined as follows:
for every w’ € I'*, if (p,~) ‘ip (p',w), then (p,y') :d>7> (p', ww'). Intuitively, if
the PEGS P is at the configuration (p,yw'), by making the decision d, P moves
from the control state p to the control state p’, pops v from the stack and then
pushes w onto the stack.

Tracks and Paths. A track (resp. path) in the PEGS P is a finite (vesp. infinite)
sequence 7 of configurations cg...c,, (resp. cocy ...) such that for every i : 0 < i <m

(resp. i >0), ¢; :d>p ¢i+1 for some d. Given a track m = ¢g...c,, (resp. path 7 =

! One may notice that, in the definition of PEGSs, A is defined as a complete function
Px I xD — PxI", meaning that all actions are available to each agent. This does
not restrict the expressiveness of PEGSs, as we can easily add transitions to some
additional sink state to simulate the situation where some actions are unavailable to
some agents.

40 T. Chen et al.

cocy...), let |w| = m (resp. |w| = +00), and for every i : 0 < i < m (resp. i > 0),
let 7; denote the configuration c;, m<; denote ¢y ...c; and m>; denote c;ciyq
Given two tracks m and 7/, 7 and «’ are indistinguishable for an agent ¢ € Ag,
denoted by m ~; 7', if |7| = |7'| and for all k : 0 < k < |n|, mp ~; 7. Let
Trksp C C;; denote the set of all tracks in P, [[, C C3 denote the set of all paths in
P, Trksp(c) = {m € Trksp | 7o = c} and [[p(c) = {7 € [[p | mo = c} respectively
denote the set of all the tracks and paths starting from the configuration c.

Strategies. Intuitively, a strategy of an agent i € Ag specifies what i plans to do
in each situation. In the literature, there are four types of strategies [7,29] classi-
fied by whether the action chosen by an agent relies on the whole history of past
configurations or the current configuration, and whether the whole information is
visible or not. Formally, the four types of strategies are defined as follows: where
i (resp. I) denotes imperfect (resp. perfect) information and r (resp. R) denotes
imperfect (resp. perfect) recall,

— Ir strategy is a function 8; : Cp — Ac, i.e., the action made by the agent ¢
depends on the current configuration;

— IR strategy is a function 6; : Trksp — Ac, i.e., the action made by the agent i
depends on the history, i.e. the sequence of configurations visited before;

— ir strategy is a function ; : Cp — Ac such that for all configurations ¢, ¢’ € Cp,
if ¢ ~; ¢, then 0;(c) = 0;(¢), i.e., the agent 7 has to make the same action at
the configurations that are indistinguishable from each other;

— iR strategy is a function 6; : Trksp — Ac such that for all tracks m, 7’ € Trksp,
if m ~; 7', then 6;(7) = 0;(n’), i.e., the agent 7 has to make the same action on
the tracks that are indistinguishable from each other.

Let ©7 for o € {Ir,IR,ir,iR} denote the set of all o-strategies. Given a set of
agents A C Ag, a collective o-strategy of A is a function vy : A — O that assigns
to each agent i € A a o-strategy. We write A = Ag \ A.

Outcomes. Let ¢ be a configuration and v4 be a collective o-strategy for a set
of agents A. A path 7 is compatible with respect to v 4 iff for every k& > 1, there
exists dy € D such that 7m,_ %p 7 and dg () = va(?)(m<g—1) for all i € A.
The outcome starting from ¢ with respect to v4, denoted by out? (¢, v 4), is defined
as the set of all the paths that start from ¢ and are compatible with respect to v 4,
which rules out infeasible paths with respect to the collective o-strategy v .

Epistemic Accessibility Relations (EARs). An EAR ~; for i € Ag over
PEGSs is defined as an equivalence relation over configurations. As the set of con-
figurations is infinite in general, we need to represent each ~; finitely.

A very natural definition of EARs, called size-preserving EARs and considered
in [3], is formulated as follows: for each i € Ag, there is an equivalence relation
~,C (P x P)U(I" x I'), which captures the indistinguishability of control states
and stack symbols. For two configurations ¢ = (p, y1...%m) and ¢ = (p', ¥} .70/),
¢~ ciffm=m',p~; p',and forevery j € [m] = [m'],y; ~; ;. It turns out that
the model checking problem for logic ATEL/ATEL* is undecidable under this type
of EARs, even with imperfect recall (cf. Theorem 3). To gain decidability, in this

Model Checking Pushdown Epistemic Game Structures 41

paper, we introduce reqular EA Rs and a special case thereof, i.e. simple EARs. We
remark that regular EARs align to the regular valuations (see later in this section)
of atomic propositions, can been seen as approximations of size-preserving EARs,
and turn out to be useful in practice.

An EAR ~; is reqular if there is an equivalence relation =z; over P x I" and a
complete deterministic finite-state automaton® (DFA) A; = (S;, I, A, s,,0) such
that for all (p, yw), (p1,11w1) € Cp, (p,yw) ~i (p1,1w1) iff (p,7) ~; (p1,71) and
Af(si0,wT) = Af(s5,0,wf), where Af denotes the reflexive and transitive closure
of A;, and w®, w! denote the reverse of w,w; (recall that the rightmost symbol
of w corresponds to the bottom symbol of the stack). Intuitively, two words w, wq
which record the stack contents (excluding the tops), are equivalent with respect
to ~; if the two runs of A; on w’ and wi® respectively reach the same state. Note
that the purpose of the DFA A; is to partition ™ into finitely many equivalence
classes, hence we do not introduce the accepting states. A regular EAR is simple
if for all words w,w; € I'*, Af(s;.0,w) = Af(s;0,w!), that is, A; contains only
one state. Therefore, a simple EAR can be expressed by an equivalence relation
~;onP x1I.

Given a set of agents A C Ag, let ~% denote Uica ~i, and ~§ denote the

transitive closure of ~%. We use |P| to denote |P| + |I'| + |A] + [Ticag 1Sl

Regular Valuations. The model checking problem for pushdown systems (hence
for PEGSs as well) with general valuations A, e.g., defined by a function ! which
assigns to each atomic proposition a context free language, is undecidable [21]. To
gain decidability, we consider valuations specified by a function [which associates
each pair (p,q) € P x AP witha DFA A, ;, = (Sp.q, I, Ap.q, $p,q,0, Fp,q). This is
usually referred to as a regular valuation [17]. The function [can be lifted to the
valuation \; : P x I'* — 2AF: for every (p,w) € Cp, Ni({p,w)) = {q € AP |
A;q(wR) € Fpaq}'

A simple valuation is a regular valuation [such that for every ¢ € AP, p €
P,y € I'yand w € I'*, it holds that A% (wfy) = A% (7), i.e., the truth of an
atomic proposition only depends on the control state and the top of the stack. Let
|A| denote the number of states of the product automaton of all the DFA’s that
represents \.

Alternating Multi-Automata. In order to represent potentially infinite sets
of configurations finitely, we use alternating multi-automata (AMA) as the “data
structure” of the model checking algorithms.

Definition 2 [4]. An AMA is a tuple M = (S, I,8,1,5¢), where S is a finite set
of states, I' is the input alphabet, 6 C S x I" x 2° is a transition relation, I C S
is a finite set of initial states, Sy C S is a finite set of final states. An AMA is
multi-automaton (MA) if for all (s,S") € §, |S'| < 1.

2 “complete” means that A(q,) is defined for each (q,7) € Q x I

42 T. Chen et al.

If (5,7, {51, ..., Sm}) € 6, we will write s — {5, ..., 5,5, } instead. We define the
relation —*C S x I'* x 25 as the least relation such that the following conditions
hold:

€
— s —™* {s}, for every s € S;
Tw “
= 8 —" Uigm Sir if s L {51,y 8m} and s; —* S; for every i € [m].

M accepts a configuration (p,w) if p € I and there exists S C Sy such that
p —* 5. Let L{M) denote the set of all configurations accepted by M.

Proposition 1 [4]. The membership problem of AMAs can be decided in polyno-
mial time. AMAs are closed under all Boolean operations.

Ezxample 1. We illustrate our model by a modified example on the departmental
travelling budget from [8]. Consider a department consisting of two professors 1,
2 and three lecturers 3, 4, and 5. The department’s base budget (say 10 units) is
allocated annually and can be spent to attend conferences or apply for grants, at
most twice for each professor and at most once for each lecturer. Suppose there are
two categories to request money to attend a conference: 1 unit or 2 units depending
on whether it is early or late registration. Parts of a successful grant application
will be credited to the department’s budget. Suppose 3 units for each successful
grant application will be added into the budget. A successful grant application
from a member will immediately decrements 1 of his/her times using the budget.
But, there is no a priori bound on the total budget, and no one can know how
much or which way each of others has used budget. Therefore, all departmental
members compete for the budget with imperfect information.

We can model this system as a PEGS P as follows. Each departmental mem-
ber i € {1,...,5} is modeled as an agent which has actions {idle, AG, AC}, where
AG denotes “applying for a grant”, AC denotes “attending a conference”, and idle
denotes other actions without any cost. There is an additional agent 6 denoting the
environment which decides whether the application is granted or not by nondeter-
ministically choosing an action from {award,, reject; | ¢ € {1,...,5}}. Each control
state of P is a tuple of local states of all the agents, where the local states of each
agent encode the number of times that the agent has used the budget, namely, the
local state p; ;, denotes that the number is k for agent . The submitted grant appli-
cations are recorded into the local states of the environment agent. The available
units of budget are encoded into the stack, where the length of the stack content
denotes the number of available units. Each decision made by the agents deter-
mines the stack operation according to the total costs of actions in the decision.
Pushing m symbols onto the stack denotes that m units are added into the budget.
Similarly, popping m symbols from the stack denotes that m units are consumed
from the budget®. Therefore, the length of stack content restricts the chosen of
actions by agents. This means that we only need one stack symbol for the stack
alphabet. The transition rules of P can be constructed accordingly.

3 Since normal PEGS only pops one symbol from the stack at one step, in order to pop
m symbols, we need to introduce some additional control states as done in [30].

Model Checking Pushdown Epistemic Game Structures 43

For this system, we can use size-preserving EARs to represent the constraint
that each departmental member chooses the same action at two different scenaria
but its local states and the number of available units are identical. In particular,
for each agent ¢ € {1,...,5} and two configurations ¢, ¢’ of P, ¢ ~; ¢’ iff the local
states of 7 in ¢, ¢/, as well as lengths of stack contents in ¢, ¢/, are the same.

On the other hand, it is also natural to assume that each departmental member
chooses the same action at two different scenaria when its local states are identical,
and the numbers of available units are either equal, or both greater than some
bound (e.g., 6 units). This assumption can be described using regular EARs.

3 Specification Logics: ATEL, ATEL* and AEMC

In this section, we recall the definition of alternating-time temporal epistemic
logics: ATEL [33], ATEL* [19] and AEMC [7], which were introduced for reasoning
about knowledge and cooperation of agents in multi-agent systems. Informally,
ATEL, ATLE* and AEMC can be considered as extensions of ATL, ATL* and
AMC respectively with epistemic modalities for representing knowledge. These
include K; for i € Ag (agent i knows), E4 for A C Ag (every agent in A knows)
and C4 (group modalities to characterise common knowledge).

3.1 ATEL, and ATEL} (where o € {Ir,IR,ir,iR})

Definition 3 (ATEL?). The syntaz of ATEL;, is defined as follows, where ¢
denotes state formulae, 1 denotes path formulae,

pu=q | 7q |oVe | $A¢ | Ki¢ | Ead |Cad |Ki¢ | Eag¢ | Cag | (A)y | [Alp
Yu=¢ | VY [YAy | Xy | Gy | p U

where g € AP, i € Agand A C Ag.

We use F 9 to abbreviate true U ¢. An LTL formula is an ATEL? path formula
1 with ¢ being restricted to be atomic propositions and their negations.

The semantics of ATEL? is defined over PEGSs. Let P = (Ag,Ac, P, I', A,)\,
{~i| i € Ag}) be a PEGS, ¢ be an ATEL? state formula, and ¢ € Cp be a con-
figuration of P. The satisfiability relation P, ¢ =, ¢ is defined inductively on the
structure of ¢.

-~ Picksqiffge Mc); — P,y ~qiff ¢ & Mc);

- P,C ':a' ¢)1 \/gbg iHP,C ':J d)l or P,C ’:J ¢2;

— Picl=s 01 Ao it Poc =y ¢1 and Pc oy ¢o;

— P,c E» (A iff there exists a collective o-strategy vy : A — O s.t. for all
paths ™ € out?(c,va), P, 7 =5 v;

— P,c =, [A]Y iff for all collective o-strategies v4 : A — O, there exists a path
m € out?(c,v4) such that P, =, 9

— P,c =, K;¢ iff for all configurations ¢’ € Cp such that ¢ ~; ¢, P, =, ¢;

44 T. Chen et al.

~ P,c o K¢ iff there is a configuration ¢ € Cp such that ¢ ~; ¢ and
P.d o ¢

— Ea¢, Ea¢, Ca¢ and C4¢ are defined similar to K;¢ and K;¢, but we use the
relations ~% and ~§.

The semantics of path formulae 1 is specified by a relation P, 7 =, 1, where 7 is
a path. Since the definition is essentially the one of LTL and standard, we refer the
readers to, e.g., [15] for details. We denote by ||¢||% = {c € Cp | P, c |=» ¢} the
set of configurations satisfying ¢. The model checking problem is to decide whether
c € ||¢||% for a given configuration c.

ATEL, is a syntactical fragment of ATEL? with restricted path formulae of
the form

Vi=X¢ | Go| pU .

An ATEL, (resp. ATEL?) formula ¢ is principal if ¢ is in the form of (A)1) or
[A]y) such that ¢ is a LTL formula. For instance, ({1})F ¢ is a principal formula,
while neither ({1})F(¢ A ({2})G ¢') nor {1})F(K; ¢q) is.

Ezample 2. Recall Examplel. Suppose that there are atomic propositions
43, q4, g5 such that for each i € {3,4,5}, ¢; € A(c) iff the configuration ¢ contains
the local state p; 1, i.e., the agent ¢ attends a conference. In addition, the atomic
propositions g; for i € {1,2} denote that agent ¢ has applied for some grants. Con-
sider the formula: ¢1 £ ({3,4,5)F (g3 Aqa Ags), d2 = ({2,3,4,5})F (g3 Aqa A gs)
and ¢3 £ Eg3.45({3,4,5})(F(g1 V 92)) = Flgs A q1 A g5)). ¢1 expresses
that three lecturers have strategies such that all of them can attend some confer-
ences. Obviously, ¢; does not hold when both two professors attended conferences
twice with late registrations, which costs 8 units. ¢, expresses that three lectur-
ers together with professor 2 have strategies such that all the lecturers can attend
some conferences. ¢3 states that all three lecturers know that they have strategies
such that if some professor applies for some grants, then all of them can attend
some conferences. Obviously, ¢2 and ¢3 hold.

3.2 AEMC, (where o € {Ir,IR,ir,iR})

Definition 4 (Alternating-Time Epistemic py-Calculus). Given a finite set
of propositional variables Z, AEMC, formulae are defined by the following
grammar:

pu=q |~q | Z | oVo| oA | (A)X¢ | [A]XS | -
pz.¢ | vZ.¢ | Kip | Eagp | Cag | Ki¢d | Eagp | Cag

whereq € AP, Z € Z,i€ Agand A C Ag.

The variables Z € Z in the definition of AEMC, are monadic second-order vari-
ables with the intention to represent a set of configurations of PEGSs. An occur-
rence of a variable Z € Z is said to be closed in an AEMC,, formula ¢ if the
occurrence of Z is in ¢ for some subformula puZ. ¢1 or vZ. ¢1 of ¢. Otherwise,

Model Checking Pushdown Epistemic Game Structures 45

the occurrence of Z in ¢ is said to be free. An AEMC, formula ¢ is closed if it
contains no free occurrences of variables from Z.

The semantics of AEMC, can be defined in an obvious way, where tempo-
ral modalities (4)X¢ and [A]X¢ and epistemic modaliteis can be interpreted
as in ATEL} and the fixpoint modalities can be interpreted as in alternating
mu-calculus [2]. Given a PEGS P = (Ag,Ac, P,I, A, \,{~;| i € Ag}), and a
closed formula ¢, the denotation function || o || maps AEMC, formulae to sets
of configurations. A configuration c satisfies ¢ iff ¢ € ||¢[|%.

For closed AEMC,, formula ¢, [|¢[|% (is independent of §. Therefore, the super-
script £ will be dropped from ||¢[|% ¢, for closed AEMC,, formula ¢. In addition,
the subscript P is also dropped from ||¢[|% . and [|$|% when it is clear.

We remark that, for AEMC, (where o € {Ir,IR,ir,iR}), it makes no dif-
ference whether the strategies are perfect recall or not, since each occurrence of
the modalities (4)X¢ and [A]X¢ will “reset” the strategies of agents. Therefore,
we will ignore R and r and use AEMCy/AEMC; to denote AEMC under per-
fect /imperfect information.

Proposition 2 [7]. For any closed AEMC, formula ¢ and a PEGS P, ||¢|/5 =
¢ and |6l = lIolI5*-

We mention that, although ATELr and ATEL{z can be translated into
AEMC;, this is not the case for imperfect information. Namely, ATEL;r, ATEL;;,
ATEL!R, and ATEL;, cannot be translated into AEMC;. The interested readers
are referred to [7] for more discussions.

CTL, CTL* and p-calculus are special cases of ATL,, ATL? and AMC in which
all the modalities (A)1 and [A]y satisfy A = (%, while ATL,, ATL} and AMC,
are special cases of ATEL,, ATEL? and AEMC, in which no epistemic modalities
occur.

The following results are known for model checking PEGSs with perfect infor-
mation and perfect recall.

Theorem 1 ([13]). The model checking problem for ATELir /AEMCir over
PEGSs is EXPTIME-complete, and for ATELig 3EXPTIME-complete .

Remark 1. In [7], the outcome of a configuration ¢ with respect to a given collec-
tive o-strategy v 4 is defined differently from that in this paper. More specifically,
the outcome in [7] corresponds to ;e 4 U, 0ut?(c’;v4) in our notation. It is
easy to see that for every ATEL, or ATEL? formula (A)1) (resp. [A]y) and every
configuration ¢ € Cp, ¢ € ||[(A)]|% (resp. ¢ € ||[A]Y||%) in [7] iff ¢ € [[EA(A)Y||%
(resp. ¢ € |[Ea[A]]|%) in our notation. Similar differences exist for AEMC,. We
decide to make the hidden epistemic modalities E 4 explicit in this paper.

4 (D) (resp. [@]) is the universal (resp. existential) path quantification A (resp. E).

46 T. Chen et al.

4 ATEL and ATEL* Model Checking

We first recall the following undecidability result.

Theorem 2 ([16]). The model checking problem for ATLir and ATL!g over
CEGSs is undecidable.

In light of Theorems 1 and 2, in this section, we focus on the model checking prob-
lems for ATEL;,./ATEL,.

We observe that, when the stack is available, the histories in CEGSs can be
stored into the stack, so that we can reduce from the model checking problem for
ATL;r over CEGSs to the one for ATL;,. over PEGSs. From Theorem 2, we deduce
the following result.

Theorem 3. The model checking problems for ATLi. /ATL. over PEGSs with
size-preserving EARs are undecidable.

Theorem 3 rules out model checking algorithms for ATEL;, /ATEL;, when the
PEGS is equipped with size-preserving EARs. As mentioned before, we therefore
consider the case with regular/simple EARs. We first consider the model checking
problem over PEGSs with simple EARs. This will be solved by a reduction to the
model checking problem for CTL/CTL* over pushdown systems [17,31]. We then
provide a reduction from the model checking problem over PEGSs with regular
EARs to the one over PEGSs with simple EARs. The main idea of the reduction,
which is inspired by the reduction of PDSs with regular valuations to PDSs with
simple valuations in [17], is to store the runs of DFAs representing the regular
EARs into the stack.

4.1 Pushdown Systems

Definition 5. A pushdown system (PDS) is a tuple P = (P, I, A,\), where
P, I', X are defined as for PEGSs, and A C (P x I') x (P x I'*) is a finite set of
transition rules.

A configuration of P is an element (p,w) of P x I'*. We write (p,7) — (q,w)
instead of ((p,7), (¢,w)) € A. If (p,7) — (q,w), then for every v’ € I'*, (q,ww")
is a successor of (p,yw'). Given a configuration ¢, a path 7w of P starting from ¢
is a sequence of configurations cgcy... such that ¢g = c and for alli > 0, ¢; is a
successor of ¢;_1. Let [[5(c) C Cp denote the set of all paths in P starting from
c onwards.

Given a configuration ¢ and a CTL/CTL* formula ¢, the satisfiability relation
P,c = ¢ is defined in a standard way (cf. [17,31]). For instance, P,c = (0) iff
Vi e [Ip(c), P.m =4, Poel= [0y iff 3r € [[5(c), P,m = 4. Let [[¢]lp = {c e
CP | Pa c): ¢}

Theorem 4 [17]. Given a PDSP = (P,I,A,\) and a CTL/CTL* formula ¢
such that all state subformulae in ¢ are atomic propositions, we can effectively com-
pute a MA M with O(|\| - |P|-|A|- k) states in O(|A] - |P|?-|A| - k) time such that

Model Checking Pushdown Epistemic Game Structures 47

the MA exactly recognizes ||@|p, where k is 220D (resp. O(|¢|)) for CTL* (resp.
CTL). Moreover, a DFA A = (S, T, Ay, so) with O(|\|-|A|-2171'F) states and a tuple
of sets of accepting states (F,)pe p can be constructed in O(|\|-| A|-2!P1'*) time such
that for every configuration (p,w) € P x I'*, (p,w) € L(M) iff Aj(so,wh) € F,.

4.2 Model Checking for PEGSs with Simple EARs

In this subsection, we propose an automatic-theoretic approach for solving the
model checking problems for ATEL;, and ATEL;, over PEGSs with simple EARs.

Let us fix the ATEL;,/ATEL]. formula ¢ and a PEGS P = (Ag,Ac,
P, I AN {~;| i € Ag}) with a regular valuation [represented by DFAs
(Ap q)perqgeap and ~; is specified by an equivalence relation ~; on P x I" for
i € Ag.

The idea of the algorithm is to construct, for each state subformula ¢’ of ¢, an
MA M to represent the set of configurations satisfying ¢’. We will first illustrate
the construction in case that ¢’ = (A)v (resp. ¢’ = [A]Y) is a principal formula,
then extend the construction to the more general case.

Principal Formulae. Our approach will reduce the model checking problem over
PEGSs to the model checking problem for CTL/CTL* over PDSs. Note that for
i € A, =, is defined over P x I'. It follows that the strategy of any agent i € A must
respect =2;, namely, for all (p,yw) and (p', v'w’) with (p,v) = (p', "), vi(p,yw) =
v;i(p’,y'w’) for any ir-strategy v; of i. Therefore, any ir-strategy v; with respect
to ~2; can be regarded as a function over P x I" (instead of configurations of P),
ie., v; : P x I' — Ac such that v;(p,7y) = v(p’,7") for all (p,~) and (p’,~") with
(7)) =i (P,

Proposition 3. Given a configuration ¢ € Cp and a set of agents A C Ag, the
following statements hold:

i. for any collective ir-strategy va such that va(i) respects to m; for i € A,
there exist functions vl : P x I' — Ac fori € A such that out™(c,v4) =
?u/t(c;)UieA ’Ui) and ’U'Z(p’ ’Y) = ’Ué(p/7 '7/) fOT’ all (pa ’7) and (pla 7/) with (pa ’7) i
p ’fy 7‘

ii. for any function v, : P x I' — Ac fori € A such that vi(p,~y) = vi(p',7') for
all (p,7) and (p',~") with (p,v) =~; (p',7'), there exists a collective ir-strategy
va such that va(i) respects to ~; fori € A and out™ (c,va) = out(c, ;e 4 V});

!/
K3

where out(c,|J;c 4 v;) denotes the set of all paths ™ = (po, Yowo){p1, 1w1) - - - such

that (po, yowo) = ¢ and for allk > 0, there existsdy, € D such that (pr, Yewk) %p
(Pr+1, Vet1wi1) and dg (i) = v;(pk, &) for alli € A.

According to Proposition3, we can check all the possible collective ir-
strategies, as the number of possible functions from P x I' — Ac is finite. Let us
now fix a specific collective ir-strategy va = (v;)ica for A. For each (p,v) € PxI,
after applying a collective ir-strategy va = (vi)ica for A, we define a PDS

48 T. Chen et al.

Po, = (P, I, A" X), where A’ is defined as follows: for every p,p’ € P,y € I
and w € I'*,

((p,7), (', w)) € A"iff 3d € Ds.t. Vi € A, d(i) = vi(p,7) and A(p,7,d) = (¢, w).
Lemma 1. out™(c,v4) = HPUA (¢).

Following from Lemma 1, for ¢' = (A)y), P, ¢ i, ¢’ iff there exists a collective
ir-strategy va such that for all paths = € HPUA (¢), P,m Eir ¥. The latter holds
iff there exists a collective ir-strategy v4 such that P, ,,c = (#)t. Similarly, for
¢' = [AJY, P, c =i ¢ iff for all collective ir-strategies v 4, there exists a path 7 €
HPUA (c) such that P, 7 |=i 1. The latter holds iff for all collective ir-strategies
va, Po,c = (0]

Fix a collective ir-strategy v4 with respect to =z; for i € A, by applying
Theorem 4, we can construct a MA M,,, such that £L(M,,) = {c € P x I'*" |
Poa,c = (D)} (resp. LIMy,) = {c € P x I"* | Py,,c = [0]¢'}). Since, there
are at most |Ac|IFI1TT1Al collective ir-strategies with respect to ~; for i € A and
|A| < |Ag|, we can construct a MA M such that L(My) = U, , L(M,,) (resp.
LMy) =y, £LMu,)).

Lemma 2. For every principal ATEL?, (resp. ATEL;,) formula ¢, we can con-
struct a MA Mg with O(|Ac[IPHITI1Al)| | P|-| Al - k) states in O(|Ac|| P11 148l
I\l - [P - |A| - k) time such that the MA ezactly recognizes ||¢' |5, where k is
20020 (resp. O(|¢])). Moreover, a DFA A = (S, I, Ay, s0) with O(|Ac|IFI'1F1 14l .
IA| - |4] - 2IP1%) states and a tuple of sets of accepting states (F),)pep can be con-
structed in O(|Ac|IPIIT1 A8l X[.| A| - 21P1F) time such that for every configuration
(p,w) € Px I'*, (p,w) € LIMy) iff A% (s0,w!) € F),.

General ATEL;,/ATEL;, Formulae. We now present a model checking algo-
rithm for general ATEL;./ATEL{, formulae. Given an ATEL;, /ATEL;, formula
¢, we inductively compute a MA My from the state subformula ¢’ such that
L(My) = ||¢/||’5. The base case for atomic propositions is trivial. For the induc-
tion step:

— For ¢’ of the form —q, ¢1 A ¢3 or ¢1 V ¢a, My can be computed by applying
Boolean operations on M, /My, .

— For ¢’ of the form (A)v)’, we first compute a principal formula ¢” by replacing
each state subformula ¢" in ¢’ by a fresh atomic proposition gy~ and then
compute a new regular valuation A\’ by saturating A which sets g4~ € A(c) for
¢ € L(My). To saturate A, we use the DFA transformed from M g . Similar
to the construction in [17], |N| = || - |Ac|/PI1TT1Ael . 2IPIE where K is 209D
(resp. O(|¢])) for ATEL}, (resp. ATEL;). By Lemma2, we can construct a
MA Mg from ¢" which is the desired MA M. The construction for M4y
is similar.

— For ¢’ of the form K;¢" (resp. E4¢” and C 4¢"), suppose that the MA My =
(S1,T,61,11,Sy) recognizes ||¢”||%5. Let [p1,71], s [P, ¥m] € P x I be the
equivalence classes induced by the relation ~; (resp. ~% and ~§). We define

Model Checking Pushdown Epistemic Game Structures 49

the MA My = (PU{ss}, I, ¢, P, {ss}), where for every j € [m], if {(p,yw) |
(p,7) € [pj,v;l,w € I} © L(Myr), then for all (p,7) € [p;,7;] and v" € I,
8 (p,v) = sy and ¢'(sf,7") = sy. The MA M, for formulae ¢ of the form
K;¢" (resp. Ea¢” and C4¢") can be constructed similarly as for K;¢", using
the condition {(p,vw) | (p,7) € [pj,vjl,w € I'*} N L(Mgyr) # 0, instead of
{(p,w) [(p,7) € [pj vl w € I} C L(Mgr).

In the above algorithm, MAs are transformed into DFAs at most |¢| times.
Each transformation only introduces the factor |Ac|!FI'171-1Ael . 21P1F into |\| [17].
We then deduce the following result from Proposition 1 and Lemma 2.

Theorem 5. The model checking problem for ATEL]. over PEGSs with sim-
ple EARs is 2EXPTIME-complete, while the problem for ATEL;. is EXPTIME-
complete.

Proof. The lower bound of the model checking problem for ATEL;, follows from
that the model checking problem for CTL* over PDSs with simple valuations [5]
is 2EXPTIME-complete. Namely, even for PEGSs with a single agent, and simple
valuations, the model checking problem is already 2EXPTIME-hard. The hard-
ness for ATEL;, follows from the fact that the model checking problem for CTL
over PDSs is EXPTIME-complete [32,35]. O

4.3 Model Checking for PEGSs with Regular EARs

In this subsection, we present a reduction from the model checking problem over
PEGSs with regular EARs to the problem over PEGSs with simple EARs. Assume
a PEGS P = (Ag,Ac, P, I, A, \,{~;| i € Ag}) with regular EARs such that, for
each i € Ag, ~; is given as the pair (=2, A;), where ~;C P x I is an equivalence
relation and A; = (S;, I, §;, 8i,0) is a DFA.

Let A = (S, T4, s0) be the product automaton of A;’s for i € Ag, such that
S =51 X ... x Sp, S0 = [S1,05--, Sn,0], and 6(s1,7) = sg if for every i € [n],
0i(8:,1,7) = Si,2, where s; ; denotes the state of A; in s;.

We will construct a new PEGS P’ with simple EARs such that the model
checking problem over P is reduced to the problem over P’. Intuitively, the PEGS
P’ with simple EARs to be constructed stores the state obtained by running A
over the reverse of the partial stack content up to the current position (exclusive)
into the stack. Formally, the PEGS P’ is given by (Ag,Ac, P,I", A", N {~}| i €
Ag}l), where

- I"=TIxS§8;
— for each ¢ € Ag, ~/ is specified by an equivalence relation =, on P x I'" defined

as follows: (p, [, s]) ~; (p', [v', 8']) iff (p,7) =i (¢',7) and s = s;
— A’ is defined as follows: for every state s € S,

d d
1. for every <p’ ’7> —p <p/76>7 <p7 [77S]> —pr <p/36>a
2. for every (p,~) <i>7: @, vk...m1) with k > 1 and d(s;, ;) = s;41 for every
. . d
j: 1< j<k—1(wheres; = s),then (p,[y,s]) —=p @&, [k, Skl...[71, 81])-

50 T. Chen et al.

Finally, the valuation) is adjusted accordingly to A, i.e., for every
<p/a [’Ykask}"'[rYOvSOD € C'P/v)‘/(<p/a [’Yka Sk]"'[VOszD) = >\(<p/a’Yk’YO>>

Lemma 3. The model checking problem for ATEL;, (resp. ATEL;,) over a PEGS
P, with stack alphabet I' and reqular EARs ~;= (=;, A;) fori € Ag, can be reduced
to the problem over a PEGS P’ with simple EARs ~, such that the state space of
P’ is the same as that of P, and the stack alphabet of P’ is I’ x S, where S is the
state space of the product of A;’s fori € Ag.

Theorem 6. The model checking problem for ATEL}. (resp. ATEL;) over
PEGSs with reqular EARs is 2EXPTIME-complete (resp. EXPTIME-complete).

5 AEMC Model Checking

In this section, we propose algorithms for the model checking problems for AEMC;
over PEGSs with size-preserving/regular /simple EARs. At first, we remark that
Theorem 3 does not hold for AEMC; (recall that AEMC; = AEMC;,, = AEMCiR).
Indeed, we will show that the model checking problems for AEMC; over PEGSs
with size-preserving/regular/simple EARs are EXMPTIME-complete.

Fix a closed AEMC; formula ¢ and a PEGS P = (Ag,Ac, P, I, A, A\ {~;] i €
Ag}) with size-preserving/regular/simple EARs. We will construct an AMA A,
to capture |||, by induction on the syntax of AEMC; formulae.

Atomic formulae, Boolean operators, formulae of the form (A)X¢' and [4]X ¢,
and fixpoint operators can be handled as in [13], where the model checking prob-
lem for AMC over PGSs was considered, as imperfect information does not play a
role for these operators. In the sequel, we illustrate how to deal with the epistemic
modalities. Regular/simple EARs can be tackled in a very similar way to Sect. 4,
we focus on the size-preserving one.

Suppose size-preserving EARs ~; for ¢ € Ag are specified by equivalence rela-
tions ~;C (P x P) U (I" x I'). For the formula ¢ = K;¢’, suppose the AMA
Ay = (5,16, 1I', S}) recognizing [|¢' &= has been constructed. We construct
Ay = (5,16,1,5%) as follows.

- I={peP|Wp el p~p}

— For each (p,y) € P x I, let [p]~, (resp. [y]~,) be the equivalence of p
(resp. v) under ~;, and S, . = {S, ., | (p,7,5,,) € &'}. Then (p,,5) €
6 if (1) for all p’ € [pl~, and v € [yl~,, S, # 0; and (2) S =
Up/e[p]:i,'y’E['y]:i S;:,I/ﬁ/, where 5;1/7,)// € S;/’,y/.

— For every (s,7,S) € & such that s € S"\ P, let (s,+/,5) € § for every v/ € I
with v/ ~; 4.

For the formula ¢ = K;¢', suppose the AMA Ay = (5, 1,6, I',S}) recog-
nizes ||¢'[|’%5. We construct Ay = (5,16, 1, S’%) as follows.
- I={peP |} el p~p}
— Foreach (p,v) € PxT,ifthereis (p’,+',S7) € § such that p ~; p’ and vy ~; 7/,
let (p,v,57) € 4.

Model Checking Pushdown Epistemic Game Structures 51

— For every (s,7v,S5) € §' such that s € S’ \ P, let (s,7/,5) € 0 for every v’ € I
with v/ ~; v.

The AMA Ay for ¢ of the form Ex¢’, Ca¢’, Ea¢’ or C4¢’ can be constructed
in a very similar way, in which the relation ~; is replaced by the relation (J;c 4, ~;
(resp. the transitive closure of | J;c 4 ~).

Lemma 4. Given a PEGS P with reqular valuations and size-preserving FARs |
and a closed AEMC; formula ¢, we can construct an AMA Ay recognizing ||¢||%
in exponential time with respect to |P|, |\| and |¢].

From Lemma 4 and Proposition 1, we have:

Theorem 7. The model checking problem for AEMC; over PEGSs with regqu-
lar/simple valuations and size-preserving/reqular/simple EARs is EXPTIME-
complete.

The lower bound follows from fact that the model checking problem for AMC
over PGSs with simple valuations is EXPTIME-complete [13].

6 Conclusion and Future Work

In this paper, we have shown that the model checking problem is undecidable
for ATL;,/ATL{. over PEGSs with size-preserving EARs, and provided optimal
automata-theoretic model checking algorithms for ATEL;,/ATEL;. over PEGSs
with regular/simple EARs. We also have provided optimal model checking algo-
rithms for AEMC; over PEGSs under size-preserving/regular/simple EARs with
matching lower bounds.

The model checking problem for ATELy/ATEL;]. or ATLy./ATL]. over
PEGSs is still open. We note that the problem for ATELy./ATEL;. or
ATLy, /ATL;, over CEGSs can be solved by nondeterministically choosing a strat-
egy via selecting a subset of the transition relation, as the strategies only depend
on control states yielding a finite set of possible strategies [29]. However, simi-
lar techniques are no longer applicable in PEGSs, as the strategies depend on
stack contents apart from control states, which may yield an infinite set of possible
strategies.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In:
FOCS 1997, pp. 100-109 (1997)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672-713 (2002)

3. Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module check-
ing with imperfect information. Inf. Comput. 223, 1-17 (2013)

52

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

T. Chen et al.

Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135-150. Springer, Heidelberg (1997). doi:10.1007/
3-540-63141-0_10

Bozzelli, L.: Complexity results on branching-time pushdown model checking. The-
oret. Comput. Sci. 379(1-2), 286-297 (2007)

Brihaye, T., Laroussinie, F., Markey, N., Oreiby, G.: Timed concurrent game struc-
tures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
445-459. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8_30

Bulling, N., Jamroga, W.: Alternating epistemic mu-calculus. In: IJCATI 2011, pp.
109-114 (2011)

Bulling, N., Nguyen, H.N.: Model checking resource bounded systems with shared
resources via alternating biichi pushdown systems. In: Chen, Q., Torroni, P., Villata,
S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 640—649.
Springer, Cham (2015). doi:10.1007/978-3-319-25524-8_47

Cermadk, Petr: A model checker for strategy logic. Meng individual project, Depart-
ment of Computing, Imperial College, London (2015)

Cermék, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent sys-
tems against one-goal strategy logic specifications. In: AAAT 2015, pp. 2038-2044
(2015)

Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61-92
(2013)

Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N.,; Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185-191. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36742-7_13

Chen, T., Song, F., Wu, Z.: Global model checking on pushdown multi-agent sys-
tems. In: AAAT 2016, pp. 2459-2465 (2016)

Chen, T., Song, F., Wu, Z.: Verifying pushdown multi-agent systems against strat-
egy logics. In: IJCAI 2016, pp. 180-186 (2016)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and per-
fect recall semantics is undecidable. CoRR, abs/1102.4225 (2011)

Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Inf. Comput. 186(2), 355-376 (2003)

Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

Jamroga, W.: Some remarks on alternating temporal epistemic logic. In: FAMAS
2003, pp. 133-140 (2003)

Jamroga, W., Dix, J.: Model checking abilities under incomplete information is
indeed Delta2-complete. In: EUMAS 2006 (2006)

Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In: Baaz, M.,
Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 262-277. Springer,
Heidelberg (2002). doi:10.1007/3-540-36078-6_18

Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in
multi-agent systems. In: AAMAS 2006, pp. 161-168 (2006)

Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: on
the model-checking problem. ACM Trans. Comput. Logic 15(4), 34:1-34:47 (2014)

http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-540-74407-8_30
http://dx.doi.org/10.1007/978-3-319-25524-8_47
http://dx.doi.org/10.1007/978-3-642-36742-7_13
http://dx.doi.org/10.1007/3-540-36078-6_18

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Model Checking Pushdown Epistemic Game Structures 53

Mogavero, F., Murano, A., Sauro, L.: On the boundary of behavioral strategies. In:
LICS 2013, pp. 263-272 (2013)

Mogavero, F., Murano, A., Sauro, L.: A behavioral hierarchy of strategy logic. In:
Bulling, N., Torre, L., Villata, S., Jamroga, W., Vasconcelos, W. (eds.) CLIMA
2014. LNCS (LNAI), vol. 8624, pp. 148-165. Springer, Cham (2014). doi:10.1007/
978-3-319-09764-0-10

Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: FSTTCS
2010, pp. 133-144 (2010)

Murano, A., Perelli, G.: Pushdown multi-agent system verification. In: IJCAI 2015,
pp. 1090-1097 (2015)

Pilecki, J., Bednarczyk, M.A., Jamroga, W.: Model checking properties of multi-
agent systems with imperfect information and imperfect recall. In: IS 2014, pp. 415—
426 (2014)

Schobbens, P.-Y.: Alternating-time logic with imperfect recall. Electron. Notes The-
oret. Comput. Sci. 85(2), 82-93 (2004)

Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical University
Munich, Germany (2002)

Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. In:
Katoen, J.-P., Konig, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 434-449.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6_29

Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theoret.
Comput. Sci. 549, 127-145 (2014)

van der Hoek, W.; Wooldridge, M.: Tractable multiagent planning for epistemic
goals. In: AAMAS 2002, pp. 1167-1174 (2002)

van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: alternating-
time temporal epistemic logic and its applications. Stud. Logica 75(1), 125-157
(2003)

Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor,
S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 127-138. Springer,
Heidelberg (2000). doi:10.1007/3-540-44450-5_10

Hague, M., Ong, C.-H.L.: A saturation method for the modal p-calculus over push-
down systems. Inf. Comput. 209(5), 799-821 (2011)

http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.1007/978-3-642-23217-6_29
http://dx.doi.org/10.1007/3-540-44450-5_10

	Model Checking Pushdown Epistemic Game Structures
	1 Introduction
	2 Pushdown Epistemic Game Structures
	3 Specification Logics: ATEL, ATEL and AEMC
	3.1 ATEL and ATEL (where {Ir, IR, ir, iR })
	3.2 AEMC (where {Ir, IR, ir, iR })

	4 ATEL and ATEL Model Checking
	4.1 Pushdown Systems
	4.2 Model Checking for PEGSs with Simple EARs
	4.3 Model Checking for PEGSs with Regular EARs

	5 AEMC Model Checking
	6 Conclusion and Future Work
	References

