
Modeling and Verifying Google File System

Bo Li∗, Mengdi Wang∗, Yongxin Zhao†, Geguang Pu†‡, Huibiao Zhu† and Fu Song†
Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
∗email: {tmacback,wangmengdi}@gmail.com

†email: {yxzhao,ggpu,hbzhu,fsong}@sei.ecnu.edu.cn

Abstract—Google File System (GFS) is a distributed file system
developed by Google for massive data-intensive applications.
Its high aggregate performance of delivering massive data to
many clients but the inexpensiveness of commodity hardware
facilitate GFS to successfully meet the massive storage needs
and be widely used in industries. In this paper, we first present a
formal model of Google File System in terms of Communicating
Sequential Processes (CSP#), which precisely describes the un-
derlying read/write behaviors of GFS. On that basis, both relaxed
consistency and eventually consistency guaranteed by GFS may
be revealed in our framework. Furthermore, the suggested CSP#
model is encoded in Process Analysis Toolkit (PAT), thus several
properties such as starvation-free and deadlock-free could be
automatically checked and verified in the framework of formal
methods.

I. INTRODUCTION

In recent years, the cloud computing has become an issue

of vital importance in engineering field [1], [3], [19]. In order

to achieve the high performance for massive data-intensive

applications in clouding computing, companies like Google,

Amazon, Yahoo have proposed various framework to meet

their massive storage needs [8], [6], [5], [13]. Google File

System (GFS) is a distributed file system designed and imple-

mented by Google to cater for the rapid growing demands of

massive data storage as well as concurrent client access. It is a

typical distributed file system which shares many of the same

goals as previous distributed file systems such as performance

and scalability [8]. Besides, GFS is regarded as an impactful

file system for the sake of its fault tolerance and high aggregate

performance of delivering massive data to many clients.

Google File System is built from large clusters of many

inexpensive commodity hardware and of highly insensitive to

failures since its framework leverages the multiple replicas,

which is to distribute the replica chunks across the cluster.

However, due to the complexity of the network, delay of

communication and concurrent user access, the maintenance of

data consistency grows sophisticated and unpredictable. As a

result, the demands of formalization of GFS, especially the

read/write behaviors and the consistency model guaranteed

by GFS, are of pretty important and highly urgent. Thus the

formal modeling and verification of GFS become the focus of

attention in both academic circles and engineering fields.

Many research efforts have been addressed to analyze and

improve cloud computing architectures. Reddy et al. [14]

provides a holistic way to evaluate the correctness of Hadoop

‡Corresponding author

system. Ono et al. [12] presents two methods based on Coq

and JML to formalize the MapReduce framework and verify

the running program of the selected Hadoop application. Yang

et al. [21] models MapReduce framework using CSP method.

All the efforts mainly focus on the high-level correctness of

the whole system behaviors of the distributed architecture, but

they do not investigate the underlying read/write mechanism

along with the consistency model of GFS.

In this paper, we explore the underlying read/write behaviors

of GFS and present a formal model based on CSP# [7]

with respect to GFS architecture. Roughly speaking, Google

File system consists of multiple GFS clusters deployed for

different application purposes. As the main parts of GFS

cluster, both master and chunkservers are described as CSP#

processes, which capture their corresponding behaviors. The

clients from distinct machines which could heavily access

massive data from a cluster and the interactions with the cluster

are also formally modeled. Consequently, our CSP# model

could precisely describes the behaviors of GFS. Furthermore,

the whole suggested CSP# model could be encoded in PAT,

which is a self-contained framework to support composing,

simulating and reasoning of concurrent, real-time systems and

other possible domains.

On that basis, we could analyze several properties of the

GFS such as divergence-free, non-termination and starvation-

free properties, which are described as LTL formulas [11],

[2] and automatically checked and verified using PAT, which

indicate the high reliability of the system. More importantly,

the relaxed consistency [9] model guarantees by GFS may be

revealed in our framework. Our experiment shows that not

strong consistency [10] but relaxed consistency is guaranteed

by GFS since simultaneous read operations of the same posi-

tion may return different results. Our model also demonstrates

that GFS ensures eventually consistency [20], i.e., all accesses

eventually return the same last updated value which provide

that no new updates occurs.

The remainders of the paper are organized as follows. Sec-

tion 2 briefly introduces the preliminaries of CSP#, PAT and

also presents a overview of GFS. The CSP# model of Google

File System is formalized in Section 3. Section 4 encodes

the achieved model in PAT and verifies several important

properties automatically. At last, Section 5 concludes the paper

and presents the future work.

2015 IEEE 16th International Symposium on High Assurance Systems Engineering

978-1-4799-8111-3/15 $31.00 © 2015 IEEE

DOI 10.1109/HASE.2015.38

207

II. PRELIMINARIES

In this section, we firstly introduce the preliminaries of

CSP# and PAT respectively, by covering their most important

and distinct features used in this paper. And then, we give a

brief description of GFS.

A. The CSP# language

CSP# is a modeling and specification language designed

for specifying concurrent system, which offers great model-

ing flexibility and efficient system verification by integrating

high level CSP-like [4] operators with low level sequential

programs constructs such as assignments and while loops.

The syntax of a subset of CSP# processes is shown below

with short descriptions. More details about CSP# could be

found in [7], [22], [15].

P,Q ::= stop | skip – primitives

| a → P – event prefixing

| ch!exp → P – channel output

| ch?m → P – channel input

| e{prog} → P – operation prefixing

| [b]P – state guard

| P�Q – external choice

| ifa(b){P}else{Q} – conditional choice

| P; Q – sequential composition

| P‖Q – parallel

| P ||| Q – interleaving

Where P and Q are processes, a is an event, e is a non-

communicating event, ch is a channel, exp is an arithmetic

expression, m is a bounded variable, prog is a sequential

program updating global shared variables, b is a Boolean

expression. For every program P, we denote α(P) to stand

for its alphabet, which denotes the events that the process can

be performed.

The process stop never actually engages in any events.

The process skip terminates and does nothing. The next three

processes first engage event a, input ch!exp and output ch?m
respectively, and then behave like P. In process e{prog} → P,

prog is executed atomically with the occurrence of event e.

Process [b]P waits until condition b becomes true and then

behaves as P. In process P�Q, it behaves like a choice P and

Q. Conditional choice ifa(b){P}else{Q} behaves as P if b is

evaluated to be true, and behaves as Q otherwise. For process

P; Q, Q starts only when P has finished. Process P‖Q executes

in parallel and synchronizes with common events while P ||| Q
runs all processes independently.

B. Process Analysis Toolkit

PAT is designed as an extensible and modularized frame-

work for modeling and verifying a variety of systems such

as concurrent systems, real-time systems [18], [16], [17]. It

offers featured model editor, animated simulator and various

verifiers. The editor provides a user friendly editing environ-

ment to develop system models. The simulator enables users

to interactively and visually simulate system behaviors using

facilities such as random simulation, user-guided step-by-step

simulation, complete state graph generation, trace playback,

counterexample visualization, etc. The verifiers implement

various model checking techniques catering for different prop-

erties such as deadlock-freeness, divergence-freeness, reacha-

bility, LTL properties with fairness assumptions, refinement

checking and probabilistic model checking. Furthermore, to

achieve good performance, advanced optimization techniques

are implemented in PAT, e.g. partial order reduction, symmetry

reduction, process counter abstraction, parallel model check-

ing.

PAT supports a number of different assertions to query about

system behaviors or properties, denoted by keyword #assert.

- Atomic{P}: the keyword atomic ensures the atomic

execution of process P.

- Deadlock: given P as a process, the assertion #assert P
deadlockfree checks whether P is deadlock-free or not.

Nonterminating and divergence-free properties verifica-

tion can also be applied correspondingly.

- Reachability: the assertion #assert P reach cond asks

whether P can reach a state at which some given condi-

tion cond is satisfied.

- Linear Temporal Logic (LTL): PAT supports the full set

of LTL syntax, such as � (always) and � (eventually). In

general, the assertion P |= F checks whether P satisfies

the LTL formula F.

C. Google File System

Google File System is a scalable distributed file system

for large distributed data-intensive applications designed and

implemented by Google Inc. in 2003. Benefiting from the

usage of multiple replications for every file chunk, GFS can

provide strong availability and high reliability though the

whole system is built from inexpensive commodity hardware.

Besides, its high aggregate performance of delivering massive

data to many clients meets the demand for massive storage. As

a result, GFS became an influential paradigm for distributed

file system nowadays.

Google File System typically consists of three main parts:

masters, clients and chunkservers. Here one master and the

chunkservers in its domain are considered as a cluster, either

one cluster or multiple Cluster constitute a system. The Master
maintains all file system metadata. As the store units of GFS,

chunks are managed by chunkservers . The clients interact with

the master for metadata operations, and directly communicate

with chunkservers to read and write content.

Compared with traditional distributed file system, the GFS

offers a new method to write files, which is appending new

data rather than overwriting existing data. Additionally, the

file system API has deep coherent with the application design

which improves the flexibility of the entire system. GFS does

not guarantee strong consistency, it adopts a type of relaxed

consistency called eventually consistency, which means if no

new updates are made to the file system, all accesses will

return the last updated values eventually.

208

Fig. 1: Structure and channel of the system

III. MODELING GFS IN CSP#

In this section, we present a formal CSP# model of the

Google File System. Firstly, we list some notations and

definitions which are used in the rest of the paper.

Notations
• I: the total number of clients.

• J: the total number of chunkservers.

• T: the replica number of each file block, presetted by the

master.

• i: the identity of client.

• j: the identity of chunkserver.

Messages and Channels
We define several sorts of messages and the details are listed

and explained as follows:

• KeyReq � fn#idx
KeyReq stands for the request of file location sent by

channel clim from clients to the master. Here fn is the

file name that applications need, and idx is the chunk

index calculated and translated by the applications. To

simplify the modeling, we treat read request and write

request as the same one as they both exactly expect the

handle and location of the data.

• KeyMsg � #tε[0,T−1](ChSvrIdt#ChIdt#ChOfst)
KeyMsg represents the reply to the request KeyReq.

The notation ChSvrIdt indicates the location of the t-
th replica which stores the requested file block, ChIdt

means the chunk id on the corresponding chunkserver

and ChOfst stands for the offset within a certain chunk.

These location information are stored and mapped with

the requested fname and index by the master.

• RReq � read#ChHdl#BRange
RReq stands for read request sent from the client to

the chunkservers. Here read denotes the read operation.

ChHdl and BRange stands for the chunkserver handle and

byte range respectively which are the essential messages

for the chunkkervers to locate the data.

• Data stands for the data sent by channel clichj from the

client to chunkservers.

• WReq � write#Data
WReq stands for write request sent by channel clichj from

the client to the chunkservers. Here write stands for the

write operation. Data stands for the data send from the

client to chunkservers.

• WAck stands for the ready writing state. It is sent from

the chunkservers that store the replicas to the client after

receiving the data indicating that the servers have received

the write operator and cached the corresponding data

successfully.

• Exec stands for an execution command. It is sent from the

client to the primary chunkserver informing it to execute

the write operation on each chunkservers that stores the

replicas.

• RRslt stands for the result for a particular read request.

• WRslt stands for the completion message sent from the

primary chunkserver to the client after all the executions.

• Fwd stands for the message sent from the primary

chunkserver to the secondary replica chunkservers in-

forming the start of storage process

• Rpl stands for the message sent from the secondary

replica chunkservers to the primary chunkserver replying

as a result of the storage process.

Next, we use the following channels to model the commu-

nications in the system:

• The channel clichj will represent the read or write data

requests sent from Clienti to Chunkserverj.

• The channel chjcli will represent the replies sent from

ChunkServerj to Clienti.
• The channel clim will represent the key requests sent from

Clienti to Master.

• The channel mcli will represent the key information sent

from Master to Clienti.
• The channel chpchj will represent the communication

information sent from ChunkServerp to ChunkServerj.

209

A. SYSTEM
As stated in the Google File System, a single master and

multiple chunkservers compose a cluster. To brief the model,

we use single cluster in the system. For the whole system,

there are three crucial processes running in parallel, they are

CLIENTS, MASTER and CHUNKSERVERS. We formalize the

whole system as below.

SYSTEM � MASTER ‖ CLIENTS ‖ CHUNKSERVERS

During the process, some CLIENT issues the read/write

request, the MASTER manages the file location meta data

and the CHUNKSERVERS execute the actual read and write

operation. There are some interactions between or within

these processes. The CLIENT will query the file metadata

from the MASTER. It can deliver read/write request to the

CHUNKSERVER and get the replies. The CHUNKSERVERS
themselves have some inner communications to implement the

complete write operation.

B. CLIENTS
To clarify the CLIENTS process clearly, some supplemen-

tary functions are firstly introduced as follows,

• HasKeyi() checks whether the client contains the key

message of the file, if not, it will request the master and

get one.

• StoreKeyi(KeyReq,KeyMsg) stores the requested key for

further use.

• GetN(hdl) returns the id of the nearest chunkserver which

stores the replica.

• GetRepl(hdl) returns all the chunkserver ids as an array

according to the handle.

Besides, we propose a variable R stands for the id array of

the chunkserver which stores the replica. R[0] stands for the

primary chunkserver and remains are the secondary replica

chunkservers.
Clients could simultaneously access to the GFS, each of

which may generate a unique application id marked as i
and corresponds to a client progress. Under that condition,

CLIENTS can be formalized as follows.

CLIENTS � ‖ iε[0,I−1] Clienti

The Clienti process represents the application to fetch chunk

information from the master and do read/write operations on

the chunkservers. It can be formally defined as follows:

Clienti � ifa(!HasKeyi(fn, idx))

{GetKey(fn, idx)}
→ {hdl = GetHdl(fn, idx)}
→ (Readi(hdl,R)�Writei(hdl,BRange,Data)

→ Clienti
GetKeyi(fn, idx) �

clim!KeyReq → mcli?KeyMsg

→ StoreKey(KeyReq,KeyMsg) → Skip

The whole process of Clienti can be described as three main

parts, the key request operation, read operation and the write

operation.

The key request operation is an auxiliary process. In the

request operation, a client will call the HasKey function with

the file name fn and chunk index idx to check whether the

corresponding KeyMsg is stored or not. If it does not hold the

KeyMsg, it will send KeyReq message to the Master through

the channel clim. When the KeyMsg is received on channel

mcli, it will be stored by function StoreKey for further use.

As defined in the GFS, the read/write sequence is illustrated

in Figure 2 and Figure 3. The entire read/write flow can be

interpreted as follows:

In Figure 2, the three nodes represent the CLIENT , MASTER
and CHUNKSERVERS. When an application is proposed to

read data from the GFS, the following sequence of action

occurs:

1) The client requires the chunk data of certain file from

the master.

2) The master replies the chunk data information, and the

client will cache these information for further use.

3) The client sends a read request to the closest

chunkserver.

4) The client reads the data from the chunkserver.

Fig. 2: Read Process

Figure 3 depicts the overall flow of a write operation related

to our formalized model. In the figure, there are five nodes they

are client, master, one primary chunkserver and two secondary
chunkservers. The MASTER designate a primary server to con-

trol the write process while other CHUNKSERVERS contain

the replica is called secondary replica server. The detailed

write steps are listed as follows:

1) The client requests key from the master

2) The master returns the file location information

3) The client sends write requests and pushes the data to

all the replicas. The chunkservers will store the data in

cache.

4) The chunkservers reply acknowledge to the client.

5) After receiving the acknowledge of all the replica, the

client sends a write execution request to the primary
chunkserver.

210

6) The primary chunkserver forwards the write request. All

the replicas will execute the operation in the same serial

order assigned by the primary chunkserver.

7) When the operation completed, all the secondary replica

chunkservers reply to the primary which indicate the

completion.

8) The primay chunkserver replies to the client to report

the errors during the executions.

Fig. 3: Write Process

To reflect the characteristic of the read/write sequence, the

formalized read and write is given as follows:

Readi(hdl,BRange) � {j = GetN(hdl)}
→ (clichj!RReq → chjcli?RRslt → Skip)

Writei(hdl,BRange,Data) � {R = GetRepl(hdl)}
→ ‖|tε[0,T−1] (clichR[t]!WReq

→ chR[t]cli?WAck) → clichR[0]!Exec

→ chR[0]cli?WRslt → Clienti

For the read operation, firstly, the Clienti will first get the id

j of the closest chunkserver which stores the replica through

function GetN. Secondly, it sends the ChunkServerj a RReq
through channel clichj. Thirdly, the ChunkServerj will return

the Data to the Clienti through channel clichj. Finally, the

Clienti operates some inner process to handle data, while this

part is not taken into our consideration.

Similar to the read operation, in the process of write

operation, Firstly, the Clienti will send the WReq messages

to every ChunkServerR[t] through channels clichR[t] which

contain write instruction and data Data to write. Secondly,

Clienti will receive all the WAck messages through channels

chR[t]cli. Lastly the Clienti will issue the Exec operation to the

ChunkServerR[0] through channel clichR[0] and wait to receive

WRslt through channel chR[0]cli after the primary server has

finished all the actions.

C. MASTER

A cluster can be classified into two main parallel

components: maintaining the file location and storing the file

data cross multiple chunkservers. In our model, the master

has only one duty, which is to maintain the directory system

and file location. When the client sends a file key request, the

master replies with the specific file information. Since we put

the focus on the read/write process of the system, there exists

some minor differences between our formal model and GFS.

In the GFS architecture, the master offers some other services

like heartbeat communication, logger and so on. These

procedures are designed to maintain the status in the whole

system. To simplify the model as well as clarify the process,

we do not consider these actions essential for our purpose

because read/write operations can still function correctly

without them. The behavior of MASTER is formalized as

follows:

Master � ‖|iε[0,I−1] (clim?KeyReq → mcli!KeyMsg)

The whole process of MASTER could be described as

follows. The master receives the request keys KeyReq from

the client through channel clim. After some inner processing,

it replies to the client the KeyMsg on channel mcli.

D. CHUNKSERVERS

The process CHUNKSERVERS is composed by many

chunkservers, each of which can be set a unique id marked

as j and corresponds to a chunkserver progress. Under such

condition, CHUNKSERVERS could be formalized as follows.

CHUNKSERVERS � ‖jε[0,J−1]ChunkServerj

The CHUNKSERVERS receives the read/write request from

the client, executes actual operation and replies to the client

the results. A single chunkserver process Chunkseverj can be

formalized as below:

ChunkServerj �
(clichj?RReq → chjcli!Data → ChunkServerj)

�(clichj?WReq → chjcli!WAck

→ (PriWritej�RplWritej) → ChunkServerj)

PriWritej �
clichj?Exec → {R = GetRepl(hdl)}
→ ‖|tε[1,T−1] (chjchR[t]!Fwd → chR[t]chj?Rpl);

→ chjcli!WRslt → ChunkServerj;

211

RplWritej �
(chjchR[0]?Fwd → chR[0]chj!Rpl)

→ ChunkServerj;

Some functions used in the ChunkServerj process are de-

fined as follows,

• GetRepl(hdl) returns all the chunkserver ids as an array

according to the handle.

The whole process of ChunkServerj can be described as

follows. Firstly, ChunkServerj receives a request from Clienti
on channel clichj. Secondly, if this request is a read operation,

the chunkserver will return the Data on channel chjcli directly

and stop the process. Otherwise some steps remain. Since data

is replicated on multiple chunkservers, its consistency needs

to be assured. To fulfill this requirement, several interaction

between all the replica chunkservers are required. According

to the GFS design, we separately define two Chunksever write

process: PriWritej for the primary process and RplWritej for

the secondary process.

PriWritej is the storing process for a primary chunkserver,

the detailed is illustrated as below:

Firstly, the process receives the Exec message on the chan-

nel clichj. Secondly, it obtains the array R of all the replica

chunkservers by the means of function GetRepl. Thirdly, the

process send a Fwd to each secondary replica chunkservers

on channel chjchR[t] and receives Rpl on channel chR[t]chj

simultaneously. Finally, the primary chunkserver sends the

WRslt to the client through channel chjcli.
RplWritej is the process for secondary chunkserver, the

precise steps are depicted as follows:

When the secondary replica chunkserver receives the Fwd
instruction on channel chjchR[0]. It will store the data through

inner process and return a Rpl information on channel chR[0]chj .

IV. CHECKING MODEL WITH PAT

In this section we first encode the CSP# model formalized

in previous section through PAT platform which supports

composing, simulating and reasoning of concurrent systems,

in which the read and write behaviors are simulated in terms

of the PAT simulator. On that basis, we then show that

our suggested CSP# model follows these properties such as

deadlock-free, divergence-free, nonterminating and would not

lead to starvation. At last, by observing and investigating the

data consistency, we demonstrate that both relaxed consistency

and eventually consistency are guaranteed by Google File

System.

A. Model Implementation

According to the suggested formal CSP# model, we respec-

tively encode four processes, which are SYSTEM, CLIENTS,

MASTER, CHUNKSERVERS. In fact, the implementations of

processes are straightforward. All the channels and messages

also follow the aforementioned definitions.

However, the initialization is not trivial since the deploy

of the initial storage state which is involved with many

chunkservers is much complicated. For this reason, we intro-

duce multi-dimension array mem[J][chunkNum][chunkSize] to

describe the storage model, the values of which represent the

stored data. Thus all read operations may return the expected

data and write operations could modify the designed data as

well. By this method, we could discuss the data consistency by

observing and comparing the mutation of data. Besides, all the

read/write operations are randomly provided in the simulation

process by CLIENT . At last, similar to the initialization of

the storage model, we also set the default meta-data for

the distributed system GFS which are stored into another

array filePos[FileNum][FileLength][T], which are initialized by

random data.

Note that the whole system are parameterized by sev-

eral configurable parameters, such as J, T which stand for

ChunkServer number and replica number respectively. Without

loss of generality, here we set I, J, T to 2, 3, 3 and chunkNum
to 6 as default. Obviously, the actual values may vary with the

practical case.

B. Properties Checking

In this subsection we investigate several properties of GFS

based on the suggested model. The interesting properties

deadlock-free, nonterminating and divergence-free are auto-

matically checked in PAT. Meanwhile, the starvation-free
property described as LTL formula is also verified and every

client may eventually execute its operation as long as its

operation is available. The left in Figure 4 shows the result of

the verification in PAT.

• Deadlock-free Property the property guarantees that

the model would not progress into a deadlock situation,

which means there is no state such that the model has no

further movement except for the terminated state.

• Nonterminating Property the property guarantees that

the model will not run into a terminating situation.

• Divergence-free Property a divergence of a process is

defined as any trace of the process after which the process

behaves chaotically. This divergence-free property assures

out model is well-defined without ambiguousness.

• Starvation-free Property: SF � StartW ⇒ �EndW
the LTL formula above means the CLIENT will eventu-

ally complete write operation after it sent out requests

using Global and Future operations, where formulas

StartW and EndW describe the start point and the end

point respectively.

C. Relaxed Consistency

In this subsection we focus on the storage model adopted by

GFS by observing the data consistency. Generally, we investi-

gate several situations including replicas conflict to judge what

model consistency guaranteed by our achieved formal model.

In detail, both the positions and the contents of read operations

are recorded into additional arrays which could be used to

check the identity of two replicas. Besides, we check whether

the expected states are reachable in terms of the keyword

reaches. Note that PAT’s model checker usually performs a

212

Fig. 4: Verification Results on PAT

depth-first-search algorithm to repeatedly explore unvisited

states until a state at which the condition is true is found or all

states have been visited. By this method, we demonstrate that

not strong consistency but relaxed consistency is guaranteed by

GFS, in particularly, the eventually consistency is also ensured

in our model.

• Replicas Conflict: different replicas of the same file

block may be different due to the nondeterminism of

multiple updates to different replicas. For simplification,

we just randomly select two replicas of the same file

block to illustrate this properties, which are described by

the following assertions:

#define conflict content1! = content2;
#assert SYSTEM reaches conflict;
where the variables content1 and content2 define different

replicas of the same file.

• Strong Consistency: guarantees that shared state be-

haviors like centralized system will not occur any ex-

ceptions caused by concurrent execution. In terms of

distributed file system, this property indicates simulta-

neously read requests should obtain identical results. We

check whether the results from two read operations are

equal by observing the additional arrays, an emergence

of inequality reveals the violation of strong consistency

during the read process. The formulas are implemented

by the assertions as below:

#define SConsist (SamePos → SameCon);
#assert SYSTEM |= �SConsist;
where the variable SamePos and SameCon indicates

whether relative read operation regards to the same posi-

tion and obtain the same contents.

• Eventually Consistency: All accesses eventually return

the same last updated value provided that no new updates

occurs, which is described as a LTL formula and this

property can be naturally expressed as follows:

#assert SYSTEM |= �(��!StartW ⇒ �!conflict);
where “Start” describes the start point of write operations.

The verification results of the three properties are shown in

the right in Figure 4. Note that the strong consistency is not

guaranteed by our model since two read operations at the same

time may obtain different contents, i.e., the relaxed consistency

model is adopted by GFS because eventually consistency is

ensured by the experiment result.

213

V. CONCLUSION AND FUTURE WORK

In this work, we have presented a CSP# model of

Google File System which precisely describes the under-

lying read/write behaviors of GFS. The suggested model

is divided into three parts, i.e., MASTER, CLIENTS and

CHUNKSERVERS which actually capture the actual behaviors

respectively. And then we encode the formal model into

PAT, which facilitates to check and verify the properties such

as non-determinism, starvation-free and deadlock-free in our

formal framework. Beside, we also demonstrate that both

relaxed consistency and eventually consistency are guaranteed

by GFS.
In future work, we will improve our formal model by

introducing component failures and time behaviors. More

interesting and novel properties will also be investigated.

Ultimately, we can provide a comprehensive understanding of

GFS and give a formal approach to verifying GFS to enhance

the reliability of the system.

ACKNOWLEDGMENT

Geguang Pu and Yongxin Zhao are partially supported by

NSFC Project No. 61021004 and No. 61402176. Mengdi

Wang is partially funded by Shanghai Knowledge Service

Platform No. ZF1213. Huibiao Zhu is partially supported by

SHEITC Project 130407 and Bo Li is partially supported

by National High Technology Research and Development

Program of China (2012AA011205).

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, et al. A view of cloud computing. Communications
of the ACM, 53(4):50–58, 2010.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[3] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud computing and emerging it platforms: Vision,
hype, and reality for delivering computing as the 5th utility. Future
Generation computer systems, 25(6):599–616, 2009.

[4] C.A.R.Hoare. Communication Sequential Processes. Prentice Hall
International, 1985.

[5] Brian F Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J Kistler,
PPS Narayan, Chuck Neerdaels, Toby Negrin, Raghu Ramakrishnan,
Adam Silberstein, Utkarsh Srivastava, et al. Building a cloud for yahoo!
IEEE Data Eng. Bull., 32(1):36–43, 2009.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data
processing tool. Communications of the ACM, 53(1):72–77, 2010.

[7] Jin Song Dong and Jun Sun. Towards expressive specification and
efficient model checking. In TASE, page 9, 2009.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. ACM SIGOPS Operating Systems Review, 37(5):29, 2003.

[9] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002.

[10] M.D. Hill. Multiprocessors should support simple memory consistency
models. Computer, 31(8):28–34, Aug 1998.

[11] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and Reasoning About Systems. Cambridge University Press, New York,
NY, USA, 2004.

[12] Kosuke Ono, Yoichi Hirai, Yoshinori Tanabe, Natsuko Noda, and
Masami Hagiya. Using coq in specification and program extraction of
hadoop mapreduce applications. In Software Engineering and Formal
Methods, pages 350–365. Springer, 2011.

[13] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan,
Thomas Fahringer, and Dick Epema. A performance analysis of ec2
cloud computing services for scientific computing. In Cloud Computing,
pages 115–131. Springer, 2010.

[14] G Satya Reddy, Yuzhang Feng, Yang Liu, Jin Song Dong, Sun Jun, and
Rajaraman Kanagasabai. Towards formal modeling and verification of
cloud architectures: A case study on hadoop. In Services (SERVICES),
203 IEEE Ninth World Congress on, pages 306–311. IEEE, 2013.

[15] Ling Shi, Yongxin Zhao, Yang Liu, Jun Sun, Jin Song Dong, and
Shengchao Qin. A utp semantics for communicating processes with
shared variables. In ICFEM, pages 215–230, 2013.

[16] Jun Sun, Yang Liu, and Jin Song Dong. Model checking csp revisited:
Introducing a process analysis toolkit. In Leveraging Applications of
Formal Methods, Verification and Validation, pages 307–322. Springer,
2009.

[17] Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne
André. Modeling and verifying hierarchical real-time systems using
stateful timed csp. ACM Trans. Softw. Eng. Methodol., 22(1):3:1–3:29,
March 2013.

[18] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flexible
verification under fairness. volume 5643 of Lecture Notes in Computer
Science, pages 709–714. Springer, 2009.

[19] B T OGRAPH and Y RICHARD MORGENS. Cloud computing.
Communications of the ACM, 51(7), 2008.

[20] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44,
2009.

[21] Fan Yang, Wen Su, Huibiao Zhu, and Qin Li. Formalizing mapreduce
with csp. In Engineering of Computer Based Systems (ECBS), 2010
17th IEEE International Conference and Workshops on, pages 358–367.
IEEE, 2010.

[22] Yongxin Zhao, Jin Song Dong, Yang Liu, and Jun Sun. Towards a
combination of cafeobj and pat. In Specification, Algebra, and Software,
pages 151–170, 2014.

214

