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Fuzzy Pushdown Termination Games
Haiyu Pan, Fu Song, Yongzhi Cao , Senior Member, IEEE, and Junyan Qian

Abstract—The computational study on finite/infinite-state sys-
tems, probabilistic systems, and finite-state fuzzy systems, has re-
ceived much attention recently. In contrast, there are very few
results for algorithmic analysis of infinite-state fuzzy systems.
In this paper, we introduce fuzzy pushdown termination games
(FPDTGs), which are an extension of fuzzy pushdown automata
with a game feature and can serve as a formal model of infinite-
state fuzzy systems. We investigate some computational issues of
the games under termination objectives for two players: the goal of
player-1 is to maximize the truth value of eventually terminating
at some given configurations with the empty stack, while player-2
aims at the opposite. Some interesting results are obtained. For ex-
ample, we show that both players have optimal memoryless strate-
gies and the same value. The problem of computing the value can
be solved in exponential time when the triangular norm is chosen
as the minimum one. Furthermore, we present efficient algorithms
for computing the values of two special subclasses of FPDTGs. The
potential for practical use of our model is demonstrated by a case
study on a manufacturing system.

Index Terms—Fuzzy automata, pushdown automata (PDAs),
pushdown game, reachability problem, triangular norm.

I. INTRODUCTION

F INITE-STATE transition systems and more general mod-
els, such as game graphs [4], play a crucial role in the

modeling and analysing of finite-state systems in various ar-
eas. In this paper, many different types of transition systems
and game graphs have been adopted for infinite-state systems.
For instance, pushdown automata (PDAs) [24] (i.e., pushdown
systems) have been proposed as an adequate formalism to se-
quential programs with (recursive) procedural calls, and have
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been extensively studied in software verification community
[8], [19], [22], [37]. Games over PDA, called pushdown games,
are an appropriate model for the verification and synthesis of
infinite-state open systems. The reachability and other proper-
ties of pushdown games have been studied in [10], [35], and
[38].

Recently, transition systems and game graphs have been ex-
tended to model and analyze fuzzy systems. For finite-state
fuzzy transition systems (FTSs), algorithms for various fuzzy
temporal logics, such as fuzzy versions of LTL, CTL, and μ-
calculus, have been presented in [27], [28], [30], [31], and [36],
and algorithms for fuzzy (bi)simulations have been proposed in
[13], [15], and [40]. More recently, Pan et al. [32] generalized
(two-player) games on finite transition systems with reachabil-
ity objectives to the fuzzy setting, called FRGs. They showed
that FRGs are determined in the sense that for every state, the
two players have the same value, there exist optimal memo-
ryless strategies for both players, and there exists an effective
algorithm for computing the values of FRGs.

On the other hand, a number of works have been done on
the modeling and analyzing of infinite-state fuzzy systems. Cao
et al. [11] considered bisimulation for infinite-state fuzzy sys-
tems by modeled them as FTSs. Wu and Deng [39] provided
a logical characterization of fuzzy (bi)simulation for (infinite-
state) FTSs. In [18], Du et al. proposed fuzzy hybrid machines
to model fuzzy hybrid systems. Ding et al. [16] used differential
Petri nets as a unified model to represent switched fuzzy sys-
tems, which are also infinite-state fuzzy systems. Fuzzy PDAs
(FPDAs) are obtained by associating each transition rule with
a value from some domain of weights, such as the unit inter-
val [0, 1] [43], complete residuated lattices [42], orthomodular
lattices [34], and type-00 lattices [41]. The relation between
FPDAs and fuzzy context-free grammars [5], [6] has been es-
tablished in [41] and [42]. Although the underlying semantics
of these models are defined in infinite-state FTSs, the compu-
tational problems on these models are largely restricted to the
finite-state cases.

In this paper, we investigate a game version of FPDAs under
termination objectives, which is a continuation of [32]. There
are a large number of results on termination problems for PDAs,
pushdown games, and their probabilistic extensions, but the
fuzzy extension has so far not been considered. Recall that a
PDA consists of a finite set of control states, a finite set of
stack alphabet, a finite set of input alphabet, and a finite set of
transition rules of the form pX

a→ qα, where p, q are control
states, X is a stack symbol, a is an input symbol, and α is a finite
sequence of stack symbols. In general, a PDA gives rise to an
infinite-state transition system having configurations of the form
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(control state, stack content). In the verification community, one
is not interested in the languages recognized by PDAs, but in
the infinite-state transition systems they generate.

To define two-player games with termination objectives on
infinite-state FTSs generated by FPDAs, we partition the config-
urations into player-1 set and player-2 set such that a player gets
to choose the move when the current configuration belongs to
its own partition. The obtained games are called fuzzy pushdown
termination games (FPDTGs). Each FPDTG induces an asso-
ciated infinite-state FRG, where the states are configurations of
FPDTGs and the transition rules are determined in the natural
way. A subclass of FPDTGs, called fuzzy basic process alge-
bra termination games (FBPATGs), is obtained by considering
singleton control state set.

We are interested in FPDTGs due to two reasons. First, it is
impossible to computationally treat arbitrary infinite-state mod-
els, because in general one cannot handle infinite-state models
as input. This is possible only if the infinite-state model has a
finite representation, that is, each finite instance represents an
underlying infinite-state system. Second, FPDTGs are of inter-
est in themselves as a basic model that combines three very
common modeling primitives: fuzziness, recursion, and game.

This paper focuses on studying the computational complexity
of FPDTGs and their special cases mentioned above. Termina-
tion objectives are central to all of the more general analysis
one might wish to perform on such models, such as games on
FPDAs with winning conditions expressed in fuzzy temporal
logics. More specifically, we consider FPDTGs and FBPATGs
with a target set R consisting of some selected configurations
with the empty stack where the goal of player 1 is to maxi-
mize the truth value of eventually terminating at R, while the
goal of player 2 is to minimize this truth value. An FPDTG is
called maximizing FPDTG (Max-FPDTG) if no configurations
are assigned to player 2, while it is called minimizing FPDTG
(Min-FPDTG) if no configurations are assigned to player 1. We
also consider Max-FPDTGs and Min-FPDTGs with the target
set R, where the objective of player 1 (player 2) is to maximize
(minimize) the truth value of eventually terminating at R. In this
paper, we try to generalize all the results on finite-state FRGs to
the setting of FPDTGs and their special cases. Surprisingly, it
turns out to be non-trivial to extend the results from finite-state
FRGs to FPDTGs which are a kind of infinite-state FRGs.

We start by resolving the determinacy issue. We prove that
FPDTGs are determined and have optimal memoryless strate-
gies for two players. We show that the values of FPDTGs can
be computed in exponential time when triangular norm [33] (t-
norm) is chosen as the minimum one. It remains open whether
there exists an algorithm for computing the values of FPDTGs
for any other t-norms. As a compromise, we show that FPDTGs
and Min-FPDTGs are linear-time reducible to each other. Then,
for FBPATGs, we first give a fixed-parameter polynomial time
(FPT) (w.r.t. the computational time of t-norms) algorithm for
computing the values of FBPATGs. We prove that both players
have optimal stackless and memoryless strategies for FBPATGs
(see Section III for the detailed definition), which does not hold
in general for FPDTGs. Finally, we provide an efficient algo-
rithm for computing the values of Max-FPDTGs.

Related work: We give a summary of the existing results
about algorithmic analysis of reachability/termination problems
for some variants of PDAs.

Bouajjani et al. [8] and Finkel et al. [22] independently intro-
duced a polynomial-time algorithm for reachability problem for
PDAs. In [38], Walukiewicz showed that the reachability prob-
lem for pushdown games is EXPTIME-complete. By the way,
Alur et al. in [2] presented recursive state machines (RSMs)
to model sequential programs with recursive procedure calls.
They showed that RSMs and PDAs are essentially equivalent,
and can be translated in linear time to each other. Moreover, they
investigated the reachability problem for RSMs in a somewhat
different way.

Probabilistic extension of PDAs, probabilistic PDAs (PP-
DAs), are obtained by associating probabilities to transition rules
of PDAs so that the total probabilities of all rules applicable to
a given configuration is one. Esparza et al. [20] proved that the
quantitative reachability problem for PPDAs can be solved in
PSPACE. Etessami and Yannakakis in [21] examined the PPDA
and probabilistic BPA (PBPA) games with termination objec-
tives. For PBPA termination games, two players have optimal
stackless and memoryless strategies. The quantitative termina-
tion problem for PBPA games can be decidable in PSPACE.
However, for PPDA games, there do not necessarily exist opti-
mal strategies for two players, and the quantitative termination
problem is undecidable, even for maximizing or minimizing
PPDA games.

For the convenience of the reader, we summarize the results
for PDA and BPA games with termination objectives and their
variants in Table I, where “–” denotes no, “?” denotes unknown,
and “SM” denotes “stackless and memoryless.”

Organization: After reviewing some basic facts on fuzzy sets
and FRGs in Section II, we introduce the concept of FPDTGs
in Section III and study the termination problem for FPDTGs
in Section IV. Sections V and VI are devoted to efficient al-
gorithms for computing the values of FBPATGs and Max-
FPDTGs, respectively. We further discuss the potential appli-
cations of our results in Section VII and conclude the paper in
Section VIII.

II. FUZZY REACHABILITY GAMES

In this section, we recap some basic notions of fuzzy sets and
FRGs.

We denote by N the set of nonnegative integers and by |S| the
cardinality of a set S. Let Σ be a finite alphabet. The symbols
Σ∗ and Σω denote the sets of all finite words and infinite words
over Σ, respectively. Given a finite word σ = a0 , . . . , an ∈ Σ∗,
let |σ| denote the length n + 1 of σ and σ(i) denote ai for all
i : 0 ≤ i ≤ n. The empty word is denoted by ε. Σ+ stands for
Σ∗\{ε}.

Let S be a universal set. A fuzzy set A in S is a function
from S to [0, 1] [33]. The fuzzy set A is crisp if A(s) ∈ {0, 1}
for all s ∈ S. The support supp(A) of A is the set {s ∈ S :
A(s) > 0}. We denote F(S) as the set of all fuzzy sets in
S, Ff (S) as the set of all fuzzy sets with finite-support, and
P(S) as the power set of S. A fuzzy set A with finite-support
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TABLE I
SUMMARY OF QUANTITATIVE TERMINATION PROBLEMS IN PDA AND BPA GAMES AND THEIR VARIANTS

supp(A) = {s1 , . . . , sn} can be written in Zadeh’s notation as
follows: A = A(s1)/s1 + · · · + A(sn )/sn .

Given a set I of indices, the union
⋃

i∈I Ai of an arbitrary
family {Ai : i ∈ I} of fuzzy sets in S is a mapping from S
into [0, 1] defined by (

⋃
i∈I Ai)(s) = supi∈I Ai(s), for all s ∈

S. For any A, B ∈ F(S), A is contained in B, denoted by
A ⊆ B, if A(s) ≤ B(s) for all s ∈ S. Moreover, A = B if both
A ⊆ B and B ⊆ A. We use ∅ to denote the empty fuzzy set with
∅(s) = 0 for all s ∈ S. For any s ∈ S, we write ŝ for the fuzzy
set satisfying ŝ(s′) = 1 if s′ = s, and 0 otherwise.

A binary operation ⊗ on [0, 1] is called a triangular norm (t-
norm) [25] if ⊗ is commutative, associative, monotone, and has
1 as its identity. A t-norm ⊗ is continuous if for all convergent
sequences (xn )n∈N , (yn )n∈N , we have

lim
n→∞xn ⊗ lim

n→∞ yn = lim
n→∞(xn ⊗ yn ). (1)

A t-norm ⊗ is left-continuous if for each y ∈ [0, 1] and for all
nondecreasing sequences (xn )n∈N , we have

lim
n→∞xn ⊗ y = lim

n→∞(xn ⊗ y).

Example 1: The four commonly used t-norms are: Minimum
t-norm (also known as Gödel t-norm): x ⊗ y = min{x, y};
Łukasiewicz t-norm: x ⊗ y = max{x + y − 1, 0}; product t-
norm: x ⊗ y = xy; and nilpotent minimum t-norm [23]: x ⊗
y = min{x, y} if x + y > 1 and 0 otherwise. The first three
are all continuous, while the fourth is left-continuous.

Let ⊗ be a t-norm. For any x ∈ [0, 1], we can inductively
define the power operation of x as follows: x0 = 1; xn+1 =
xn ⊗ x. Then, for any subset D of [0, 1], the subalgebra of
([0, 1], ⊗) generated by D is defined as follows:

〈D〉={xn1
1 ⊗ · · · ⊗ xnk

k : x1 , . . . , xk ∈ D, n1 , . . . , nk ∈ N}.
We say that a t-norm ⊗ satisfies the finite generated condition,
if for any finite subset D of [0, 1], 〈D〉 is finite. For example,
minimum, Łukasiewicz, and nilpotent minimum t-norms satisfy
the finite generated condition, while product t-norm does not
satisfy the condition [26].

Proposition 1 collects some properties of t-norms, which will
be used in this paper.

Proposition 1: Let x, y, z ∈ [0, 1], I be an index set, and
{xi}i∈I , {yi}i∈I be two sets of numbers in [0, 1]. The following
properties hold for any t-norm:

1) If ⊗ is left-continuous, then x ⊗ supi∈I yi = supi∈I (x ⊗
yi);

2) x ⊗ min{y, z} = min{x ⊗ y, x ⊗ z};

3) supi∈I (xi ⊗ yi) ≤ supi∈I xi ⊗ supi∈I yi ;
4) inf i∈I xi ⊗ inf i∈I yi ≤ inf i∈I (xi ⊗ yi).
We now review the concept of FRGs [32] and related notions.
Let i = 1, 2. A (two-player) FRG is a tuple G =

(S, S1 , S2 , Σ, Δ1 , Δ2 , δ1 , δ2 , R), where:

S is a countable nonempty set of states partitioned into player-1
states S1 and player-2 states S2 ;

Σ is a finite set of moves;
Δi : Si → P(Σ) is a move assignment, which associates with

each state s ∈ Si the nonempty set Δi(s) ⊆ Σ of moves avail-
able to player i at state s;

δi : Si × Σ → F(S) is a partial transition function, where for
any s ∈ Si , δi(s, a)(t) is the truth value of the transition from
s to t when player i chooses the move a from Δi(s); and

R ⊆ S is a set of target states.

We assume that for any s ∈ Si and a ∈ Δi(s),
supp(δi(s, a)) = ∅. An FRG is finitely branching if for any
state s ∈ Si and a ∈ Δi(s), supp(δi(s, a)) is finite. An FRG is
finite if S is finite. Clearly, a finite FRG is finitely branching.

An FRG G is played by two players, 1 and 2, who select the
moves in the states of S1 and S2 , respectively. A strategy for
player i in G is a function π : S∗ · Si → Σ, such that π(σs) ∈
Δi(s) for any σ ∈ S∗ and s ∈ Si . The strategy π for player i
is memoryless if π(σs) = π(s) for any σ ∈ S∗ and s ∈ Si . As
a result, a memoryless strategy π for player i is equivalent to
a function Si → Σ, and thus, we usually express a memoryless
strategy as such a function. We denote by Πi the set of all
strategies for player i and by Π′

i the set of all memoryless
strategies for player i.

Given a starting state s, two strategies π1 and π2 for the
players of the game G yield a play, denoted by Gπ1 ,π2

s , which
is also an FRG such that there is exactly one available move for
each player at any state.

A path in Gπ1 ,π2
s is an infinite sequence σ = s0

a0 |x0−→ s1
a1 |x1−→

· · · where s0 = s, and for i = 1, 2 and k ∈ N, if sk ∈ Si , then
πi(s0s1 · · · sk ) = ak and δi(sk , ak )(sk+1) = xk . We denote by
Paths(Gπ1 ,π2

s ) the set of all infinite paths in Gπ1 ,π2
s . The value

of a path σ (reaching some target states in R), denoted by
Gπ1 ,π2

s (σ), is defined as follows:

Gπ1 ,π2
s (σ)=

{
1, if s0 ∈ R

sup{x0 ⊗ · · · ⊗ xn−1 : sn ∈ R}, otherwise.

The value of the play Gπ1 ,π2
s , denoted by T (Gπ1 ,π2

s ), is the
supremum of the values of all the paths in Gπ1 ,π2

s , namely,
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sup{Gπ1 ,π2
s (σ) : σ ∈ Paths(Gπ1 , π2

s )}. The goal of player 1 is
to maximize the value of plays, while the goal of player 2 is to
minimize the value of plays.

Value functions V G
1 , V G

2 : S → [0, 1] for players 1 and 2,
respectively, are defined as follows: for every state s ∈ S

V G
1 (s) = sup

π1 ∈Π1

inf
π2 ∈Π2

T (Gπ1 ,π2
s )

V G
2 (s) = inf

π2 ∈Π2
sup

π1 ∈Π1

T (Gπ1 ,π2
s ).

The FRG G is called determined if V G
1 (s) = V G

2 (s) for every
state s ∈ S. In this case, the value V G

1 (also V G
2 ) is referred

to as the value of G, denoted by V G . In the following, if the
FRG in question is understood, G is dropped from the functions
V G

1 , V G
2 , and V G . We say that the strategies π1 ∈ Π1 and π2 ∈

Π2 are optimal for the respective player, if for all s ∈ S

V1(s) = inf
π ′

2 ∈Π2

T (Gπ1 ,π ′
2

s ), V2(s) = sup
π ′

1 ∈Π1

T (Gπ ′
1 ,π2

s ).

Given a state s ∈ S and a number n ∈ N, let Tn (Gπ1 , π2
s )

denote the value T (Gπ1 , π2
s ) in Gπ1 , π2

s where only paths

σ = s0
a0 |x0−→ s1

a1 |x1−→ · · · sk
ak |xk−→ sk+1 with k < n are con-

sidered. We write V n
1 (s) for supπ1 ∈Π1

infπ2 ∈Π2 Tn (Gπ1 ,π2
s ).

Hence, T (Gπ1 , π2
s ) = supn∈N Tn (Gπ1 , π2

s ) and V1(s) =
supn∈N V n

1 (s). V n
2 (s) and V n (s) are defined in a similar way.

The following gives the main result on finite FRGs.
Proposition 2 ([32]): Let G be a finite FRG. Then, G is

determined and there exist optimal memoryless strategies for
two players.

III. DETERMINACY OF FPDTGSS

In this section, we first introduce FPDTGs, then general-
ize Proposition 2 to the setting of FPDTGs. From now on,
the t-norms ⊗ considered are required to satisfy the following
two conditions: continuous and finite generated conditions. We
start by recalling fuzzy pushdown automata (FPDAs) without
ε-transition, and the details are referred to [34], [41]–[43].

An FPDA without ε-transition (that accepts a language by the
empty stack) is a tuple P = (Q, Σ, Γ, δ, q0 , Z0), where:

Q is a finite nonempty set of control states;
Σ and Γ are two finite sets called the input and stack alphabets,

respectively;
q0 ∈ Q is the initial state;
Z0 ∈ Γ is a special stack symbol called the start symbol; and
δ : Q × Σ × Γ → Ff (Q × Γ∗) is a set of transition rules.

In the rest of this paper, we shall use the following:
1) X, Y, Z or Xi, Yi, Zi for elements of Γ;
2) α or αi for a word in Γ∗;
3) Γ≤n for {α : α ∈ Γ∗, |α| ≤ n} and Γn for {α : α ∈ Γ∗,

|α| = n};
4) Γε for Γ ∪ {ε}; (5) pα for the tuple (p, α) of Q × Γ∗.
We sometimes write p instead of pε when the context is clear.
A configuration of P is an element of Q × Γ∗. The head of

a configuration pXα is pX . For every α′ ∈ Γ∗, the value of
a transition from the configuration pZα′ to the configuration
qαα′ is δ(p, a, Z)(q, α). The degree to which P accepts an

input string is the truth of the proposition “P can consume the
input string and at the same time empty its stack.”

Now we give the definition of FPDTGs, which is a fuzzy
correspondence of probabilistic pushdown termination games
(PDTGs) [9]. Intuitively, the configuration graph of an FPDA
is an infinite-state fuzzy transition system (FTS), by assigning
each configuration of the graph to one of two players, we obtain
a finitely branching FRG.

Definition 1: An FPDTG is a tuple P = (Q, Σ, Γ, H1 ,
H2 , Δ1 , Δ2 , δ1 , δ2 , R), where Q, Σ, Γ are the same as in
FPDA defined above, and the other components are defined
as follows:

1) H1 and H2 are a partition of Q × Γ;
2) for i = 1, 2, Δi : Hi → P(Σ) is a move assignment;
3) for i = 1, 2, δi : Hi × Σ → Ff (Q × Γ∗) is a partial tran-

sition function;
4) R ⊆ Q is a set of target control states, called termination

objective.
For i = 1, 2, we assume that for all pX ∈ Hi , Δi(pX) = ∅,

and if a ∈ Δi(pX), then supp(δi(pX, a)) = ∅. An FPDTG is
called PDTG if for every pX ∈ Hi , a ∈ Δi(pX), δi(pX, a) is
crisp. An FPDTG is simple if for every pX ∈ Hi , a ∈ Δi(pX),
|supp(δi(pX, a))| = 1. We say that an FPDTG is a simple
PDTG if it is both a PDTG and simple. A FBPATG is an FPDTG
with |Q| = 1. In this case, we sometimes omit the control state
from the representation of a configuration (for example, we write
just α instead of pα). An FPDTG where H2 = ∅ (resp. H1 = ∅)
is called a maximizing (resp. minimizing) FPDTG. We denote by
Max-FPDTGs (resp. Min-FPDTGs) the maximizing (resp. min-
imizing) FPDTGs. We also denote by Max-FBPATGs the maxi-
mizing FPDTGs, which are also FBPATGs. We often omit (Q),
(H1 , H2 , Δ2 , δ2) and (H1 , H2 , Δ1 , δ1) in the descriptions of
FBPATGs, Max-FPDTGs, and Min-FPDTGs, respectively. For
the sake of simplicity, we also write Δ, δ instead of Δ1 , δ1
(resp. Δ2 , δ2) in the Max-FPDTGs (resp. Min-FPDTGs).

Given an FPDTG P = (Q, Σ, Γ, H1 , H2 , Δ1 , Δ2 , δ1 , δ2 ,
R), the finitely-branching FRG yielded by P is GP = (QΓ∗,
H1Γ∗ ∪ Q{ε}, H2Γ∗, Σ, ΔP

1 , ΔP
2 , δP

1 , δP
2 , R{ε}), where for

i = 1, 2, and α ∈ Γ∗,
1) ΔP

i (pXα) = Δi(pX) if pX ∈ Hi ; and ΔP
1 (pε) = {a} if

p ∈ Q and a ∈ Σ;
2) δP

i (pXα, a)(qβα) = δi(pX, a)(qβ) if pX ∈ Hi , a ∈
Δi(pX), and qβ ∈ QΓ∗;

3) δP
1 (pε, a) = p̂ε.

Let us illustrate the above-mentioned notions by the following
example.

Example 2: Consider the FPDTG P = (Q, Σ, Γ, H1 , H2 ,
Δ1 , Δ2 , δ1 , δ2 , R), where Q ={p, q}, Σ ={a, b}, Γ = {Z},
H1 = {pZ}, H2 = {qZ}, Δ1(pZ) = Δ2(qZ) = {a, b}, R =
{q}, and δ1 and δ2 are defined as follows:

δ1(pZ, a) = 0.8/pZZ + 0.6/pZ, δ1(pZ, b) = 0.9/qZ

δ2(qZ, a) = 0.8/pZZ + 0.8/q, δ2(qZ, b) = 0.9/q.

The fragment of the finitely-branching FRG GP generated by
P is shown in Fig. 1, where the vertices shaped as circles are
player-1 states and the vertices shaped as boxes are player-
2 states. For any s ∈ H1Γ∗ ∪ Q × {ε} (resp. s ∈ H2Γ∗), a ∈
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Fig. 1. Fragment of GP .

Γi(s), and t ∈ supp(δP
i (s, a)), we draw an edge from s to t

labeled by a|δP
i (s, a)(t), where i = 1, 2. When δP

i (s, a)(t) = 1,
we simply label the edge by a instead of a|1.

Based on FPDTG P , we can construct a PDTG P1 =
(Q1 , Σ1 , Γ1 , H1, 1 , H1, 2 , Δ1, 1 , Δ1, 2 , δ1, 1 , δ1, 2 , R1) where
Q1 = Q, Σ1 = Σ, Γ1 = Γ, H1, 1 = H1 , H1, 2 = H2 , Δ1, 1 =
Δ1 , Δ1, 2 = Δ2 , R1 = R, and δ1, 1 and δ1, 2 are defined as fol-
lows:

δ1, 1(pZ, a) = 1/pZZ + 1/pZ, δ1, 1(pZ, b) = 1/qZ

δ1, 2(qZ, a) = 1/pZZ + 1/q, δ1, 2(qZ, b) = 1/q.

Consider FPDTG P2 = (Q2 , Σ2 , Γ2 , H2, 1 , H2, 2 , Δ2, 1 ,
Δ2, 2 , δ2, 1 , δ2, 2 , R2), where Q2 = Q, Σ2 = Σ, Γ2 = Γ,
H2, 1 = H1 , H2, 2 = H2 , Δ2, 1 = Δ1 , Δ2, 2 = Δ2 , R2 = R,
and δ2, 1 and δ2, 2 are defined as follows:

δ2, 1(pZ, a) = 0.8/pZZ, δ2, 1(pZ, b) = 0.9/qZ

δ2, 2(qZ, a) = 0.8/pZZ, δ2, 2(qZ, b) = 0.9/q.

By definition, FPDTG P2 is simple.
Consider FPDTG P3 = (Q3 , Σ3 , Γ3 , H3, 1 , H3, 2 , Δ3, 1 ,

Δ3, 2 , δ3, 1 , δ3, 2 , R3), where Q3 ={p}, Σ3 =Σ, Γ3 ={Y, Z},
H3, 1 = {pY }, H3, 2 = {pZ}, Δ3, 1(pY ) = Δ3, 2(pZ) = Γ3 ,
R3 = {p}, and δ3, 1 and δ3, 2 are defined as follows:

δ3, 1(pY, a) = 0.8/pZZ, δ3, 1(pY, b) = 0.9/pZ

δ3, 2(pZ, a) = 0.8/pZZ, δ3, 2(pZ, b) = 0.9/p.

By definition, FPDTG P3 is an FBPATG.
Consider FPDTG P4 = (Q4 , Σ4 , Γ4 , H4, 1 , H4, 2 , Δ4, 1 ,

Δ4, 2 , δ4, 1 , δ4, 2 , R4), where Q4 = Q, Σ4 = Σ, Γ4 = Γ,
H4, 1 = H1 ∪ H2 , H4, 2 = ∅, Δ4, 1 = Δ1 , Δ4, 2 = ∅, δ4, 2 =
∅, R4 = R, and δ4, 1 is defined as follows:

δ4, 1(pZ, a) = 0.8/pZZ + 0.6/pZ, δ4, 1(pZ, b) = 0.9/qZ

δ4, 1(qZ, a) = 0.8/pZZ + 0.8/q, δ4, 1(qZ, b) = 0.9/q.

Clearly, P4 is a Max-FPDTG. Similarly, we can also define
a min-FPDTG P5 = (Q5 , Σ5 , Γ5 , H5, 1 , H5, 2 , Δ5, 1 , Δ5, 2 ,
δ5, 1 , δ5, 2 , R5), where Q5 = Q, Σ5 = Σ, Γ5 = Γ, H5, 1 =
∅, H5, 2 = H1 ∪ H2 , Δ5, 1 = ∅, Δ5, 2 = Δ1 , δ5, 5 = ∅, R5 =

R, and δ5, 1 is defined as follows:

δ5, 1(pZ, a) = 0.8/pZZ + 0.6/pZ, δ5, 1(pZ, b) = 0.9/qZ

δ5, 1(qZ, a) = 0.8/pZZ + 0.8/q, δ5, 1(qZ, b) = 0.9/q.

Realize that all of the previously introduced game-theoretic
notions (strategies, values, etc.) apply to GP , not directly to
P . For finitely-branching FRGs generated from FPDTGs, we
can define a special type of memoryless strategies: A strat-
egy π is a stackless and memoryless strategy (SM-strategy) of
player i if π is a memoryless strategy of player i such that
π(pXα) = π(pX) for every pX ∈ Hi and α ∈ Γ∗. It follows
from the following theorem that FPDTGs are determined and
there exist memoryless strategies for two players. In the fol-
lowing, we denote Im(P ) by {δi(pX, a)(qα) : pX ∈ Hi, a ∈
Δi(pX), qα ∈ QΓ∗, i = 1, 2.}.

Theorem 1: Let G = (S, S1 , S2 , Σ, Δ1 , Δ2 , δ1 , δ2 , R) be
a finitely-branching FRG. Define a mapping F : F(S) −→
F(S) by

F (A)(s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if s ∈ R

sup
a∈Δ1 (s)

sup
t∈S

(δ1(s, a)(t) ⊗ A(t)), if s ∈ S1\R
inf

b∈Δ2 (s)
sup
t∈S

(δ2(s, b)(t) ⊗ A(t)), otherwise

for any A ∈ F(S). Then, the following properties hold.
1) G is determined, i.e., for all states s ∈ S, V1(s) = V2(s).
2) There exists an optimal memoryless strategy for player 2

in every state.
3) An optimal strategy for player 1 does not necessarily exist.
4) If G is generated by some FPDTG P , then there exists an

optimal memoryless strategy for player 1 in every state.
5) V = F (V ).
Proof: See the Appendix. �
Remark 1:
1) Recall that we have assumed that the t-norm in Theo-

rem 1 satisfies the following two conditions: continuous
and finite generated conditions. In fact, we can obtain
some more general results from the proof of the above-
mentioned theorem: The assertions (1)–(3) hold for any
t-norm, (4) holds for any t-norm satisfying the finite gen-
erated condition, and (5) holds for any left-continuous
t-norm.

2) Given an FRG G and r ∈ [0, 1], we say that player 1 in
state s has a r-winning strategy if there exists π1 ∈ Π1
such that for all π2 ∈ Π2 , T (Gπ1 ,π2

s ) ≥ r; and player 2
in state s has a r-winning strategy if there exists π2 ∈ Π2
such that for all π1 ∈ Π1 , T (Gπ1 ,π2

s ) < r. It follows from
Theorem 1 that for FPDTG P , either player 1 has a r-
winning strategy, or player 2 has a r-winning strategy.

With a slight abuse of notation, we write V P instead of V GP .
In the following, we often just write V , if the underlying system
P is clear. Given an FPDTG, FBPATG, or Max/Min-FPDTG
P , a configuration pα ∈ QΓ+ , in this paper, we consider the
following questions.

1) The quantitative termination problem: Given r ∈ [0, 1],
is V (pα) ≥ r?

2) The termination problem: How to compute V (pα)?
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Without loss of generality, we assume, henceforth, that for
every δi(pX, a)(qα) = x and x > 0, |α| ≤ 2. Note that this
condition does not restrict the expressiveness of the model, as
every FPDTG can be transformed into an equivalent one in
linear time such that the above-mentioned condition holds. The
similar transformation method can be found in [20].

IV. TERMINATION VALUES IN FPDTGS

In this section, we show that there exists an effective algorithm
to compute the value of a given FPDTG over the minimum t-
norm.

For complexity analysis, we assume that operations on [0, 1]
(comparison, addition, and multiplication) can be performed in
constant time; moreover, T⊗ denotes the worst computational
cost of ⊗. We make the assumption that the computation time
of ⊗ is bounded and that T⊗ corresponds to an upper bound.
Based on the assumption, the computation costs of the min-
imum, nilpotent minimum, and Łukasiewicz t-norms can be
both performed in constant time.

In the rest of this section, let us fix an FPDTG P = (Q, Σ,
Γ, H1 , H2 , Δ1 , Δ2 , δ1 , δ2 , R). We define the size of FPDTG
P as |P | =

∑2
i=1

∑
pX∈Hi

∑
a∈Δ i (pX ) |supp(δi(pX, a))|. For

the complexity of results in this paper, we assume that all ele-
ments in Im(P ) are all rational.

We first study the (quantitative) termination problem for
FPDTGs and variants thereof. We start with the quantitative
termination problem for simple PDTGs, which has a close rela-
tion with the reachability problem for pushdown game systems
studied by Walukiewicz [38].

Lemma 1: The quantitative termination problem for simple
PDTGs is EXPTIME-complete.

Proof: Recall that in [38], a pushdown game is defined as a
tuple (Q, Q1 , Q2 ,Γ, δ), where Q = Q1 � Q2 is a finite set of
control states, Qi indicates the game position of player i (i =
1, 2), Γ is a finite stack alphabet, and δ ⊆ Q × Γ × Q × Γ≤2

is a finite set of (unlabelled) transition rules. The reachability
problem for pushdown games is EXPTIME-complete. Hence,
the quantitative termination problem for pushdown games is
EXPTIME-complete, since the termination objective is a kind
of reachability objective.

Clearly, pushdown games with termination objectives are a
special kind of simple PDTGs. Hence, the quantitative termina-
tion problem for simple PDTGs is EXPTIME-hard. By apply-
ing the saturation procedure of [10], the termination problem
of simple PDTGs can be solved in exponential time. The result
immediately follows. �

The following lemma shows that FPDTGs can be transformed
into simple FPDTGs, which preserve the expected property:

Lemma 2: There is a linear-time reduction from an FPDTG
P to a simple FPDTG P ′ such that for all pα ∈ QΓ∗, V P (pα) =
V P ′

(pα).
Proof: Suppose i = 1, 2. For simplicity, we assume that

|Σ| ≥ ∑
a∈Δ i (pX ) |supp(δi(pX, a))| for all pX ∈ Hi . We de-

fine an FPDTG P ′ = (Q′, Σ, Γ, H ′
1 , H ′

2 , Δ′
1 , Δ′

2 , δ′1 , δ′2 , R),
where:

Q′ = Q ∪ {q[pX a ] : pX ∈ Hi, a ∈ Δi(pX), i = 1, 2};

H ′
1 = H1 ∪ (Q′\Q)Γ;

H ′
2 = H2 ;

Δ′
i(pX) = Δi(pX) for every pX ∈ Hi . If a ∈ Δi(pX) and
supp(δi(pX, a)) = {q1α1 , . . . , qnαn}, then δ′i(pX, a) =
̂q[pX a ]X, Δ′

1(q[pX a ]X) = {aj : aj ∈ Σ, 1 ≤ j ≤ n}, and
δ′1(q[pX a ]X, aj ) = δi(pX, a)(qjαj )/qjαj , 1 ≤ j ≤ n.

Clearly, P ′ is a simple FPDTG and it takes linear time
to construct P ′ from P . By Theorem 1, we conclude that
for any pα ∈ QΓ∗, V P (pα) = V P ′

(pα). Hence, this reduction
works. �

A consequence of the above-mentioned lemmas is the fol-
lowing.

Corollary 1: The quantitative termination problem for
PDTGs is EXPTIME-complete.

Example 3: Consider the FPDTG P in Example 2. Using
the construction method in the proof of Lemma 2, we obtain a
simple FPDTG P ′ = (Q′, Σ, Γ, H ′

1 , H ′
2 , Δ′

1 , Δ′
2 , δ′1 , δ′2 , R),

where δ′1 and δ′2 are defined as follows:

δ′1(pZ, a) = ̂q[pZa ]Z, δ′1(q[pZa ]Z, a) = 0.8/pZZ

δ′1(q[pZa ]Z, b) = 0.6/pZ, δ′1(pZ, b) = ̂q[pZ b]Z

δ′1(q[pZ b]Z, a) = 0.9/qZ, δ′2(qZ, a) = ̂q[qZ a ]Z

δ′1(q[qZ a ]Z, a) = 0.8/pZZ, δ′1(q[pZa ]Z, b) = 0.8/q

δ′2(qZ, b) = ̂q[qZ b]Z, δ′1(q[qZ b]Z, b) = 0.9/q.

We now address the termination problem for FPDTGs where
the t-norm is chosen as the minimum t-norm.

Theorem 2: The termination problem for FPDTGs with t-
norm chosen as the minimum t-norm can be solved in exponen-
tial time.

Proof: See the Appendix. �
Following Corollary 1 and Theorem 2, we have:
Corollary 2: The quantitative termination problem for

FPDTGs with t-norm chosen as the minimum t-norm is
EXPTIME-complete.

Remark 2: Notice that Corollary 2 only works for FPDTGs
with t-norm chosen as the minimum t-norm. It is open whether
the quantitative termination problem for FPDTGs with other
t-norms is decidable or not. So far, we can show that FPDTGs
can be reduced to Min-FPDTGs. Moreover, all the considered
problems of FBPATGs and Max-FPDTGs can be solved (cf.
Sections V and VI).

Proposition 3: There is a linear-time reduction from an
FPDTG P to a Min-FPDTG P ′ such that for all pα ∈ QΓ∗,
V P (pα) = V P ′

(pα).
Proof: Consider Min-FPDTG P ′ = (Q, Σ, Γ, Δ′, δ′, R),

where Δ′ and δ′ are defined by:
1) If pX ∈ H1 , then Δ′(pX) = {a}(a ∈ Σ), and δ′(pX, a)

=
⋃

b∈Δ1 (pX ) δ1(pX, b);
2) If pX ∈ H2 and a ∈ Δ2(pX), then a ∈ Δ′(pX), and

δ′(pX, a) = δ2(pX, a).
By Theorem 1, we derive that for any pα ∈ QΓ∗, V P (pα) =

V P ′
(pα). �
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Example 4: Let us illustrate the reduction by considering
the FPDTG P in Example 2. We obtain the corresponding Min-
FPDTG P ′ = (Q, Σ, Γ, Δ′, δ′, R), where δ′ is defined as fol-
lows:

δ′(pZ, a) = 0.8/pZZ + 0.6/pZ + 0.9/qZ

δ′(qZ, a) = 0.8/pZZ + 0.8/q, δ′(qZ, b) = 0.9/q.

Remark 3: It should be pointed out that Theorem 2 and
Corollary 1 also hold for the nilpotent minimum t-norm, and
the other results obtained in this section are applicable to any
left-continuous t-norm.

V. TERMINATION VALUES IN FBPATGS

In this section, we investigate the termination problem for
FBPATGs, an important subclass of FPDTGs. We present an
algorithm for solving the termination problem, and then show
that there exist optimal SM-strategies for two players.

Let us fix an FBPATG Pb = (Σ, Γ, H1 , H2 , Δ1 , Δ2 , δ1 ,
δ2 , R). Recall that there is only one control state in FB-
PATGs, we, therefore, omit the control state for simplicity. Then,

R = {ε}. We will write X
a |x−→ α to indicate δi(X, a)(α) = x

in the rest of this section when it is clear from the context.
First, we give the following lemma, which will be used later.
Lemma 3: Let Pb be an FBPATG and X ∈ Γ, α ∈ Γ+ . Then,
1) For every n ∈ N, V n+1(Xα) ≤ V n (X) ⊗ V n (α) ≤

V 2n (Xα).
2) V (α) = V (α(0)) ⊗ · · · ⊗ V (α(|α| − 1)) if |α| ≥ 2.
Proof: See the Appendix. �
We present a reduction of computing the above-mentioned

V (α(i)) to compute the least fixed point of a monotone system
EPb

of equations. Let V |Γε
denote the restriction of V to Γε .

Let us use a variable μ(X) for each unknown V (X), where
μ ∈ F(Γε). The system of equations EPb

has one equation of
the form μ(X) = FX (μ) for every X ∈ Γε . For simplicity, we
denote the system of equations EPb

by μ = F (μ). We now
identify a particular solution to μ = F (μ), called the least fixed
point solution, which gives precisely V |Γε

of an FBPATG.
Lemma 4: Define F 0(μ) = μ, and Fn (μ) = F (Fn−1(μ)),

for n ≥ 1. Suppose Pb is an FBPATG and μ = F (μ) is the
system of equations EPb

associated with Pb , which is defined
as follows:

μ(X)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if X = ε

sup
a∈Δ1 (X )

max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
X

a |x−→ε

x,

sup
X

a |x−→Y

(x ⊗ μ(Y )),

sup
X

a |x−→Y Z

(x ⊗ μ(Y ) ⊗ μ(Z))

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, if X ∈ H1

inf
a∈Δ2 (X )

max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
X

a |x−→ε

x,

sup
X

a |x−→Y

(x ⊗ μ(Y )),

sup
X

a |x−→Y Z

(x ⊗ μ(Y ) ⊗ μ(Z))

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, otherwise.

Then, V |Γε
is the least fixed point of the system of equations

EPb
. Moreover, there exists some m ∈ N such that V |Γε

=
Fm (∅).

Proof: See the Appendix. �
Lemma 4 suggests that we can compute V |Γε

by value itera-
tions, which can be done in O(|Γ| · |〈Im(Pb)〉| · |Pb | · T⊗) time.
Hence, by Lemma 3, we can compute the value V (α) of the
FBPATG Pb in O((|Γ| · |〈Im(Pb)〉| · |Pb | + |α| − 1)T⊗) time.

Based on Lemmas 3 and 4, we provide a more efficient al-
gorithm to compute V rather than using value iterations. Our
algorithm consists of two steps. Taking an FBPATG Pb and
α ∈ Γ+ as inputs, the first step transforms Pb into another FB-
PATG P ′ such that V Pb (α) = V P ′

(α). In the second step, we
use Algorithm 1 to compute V P ′

(α).
Step 1: For the given FBPATG Pb , we construct an FB-

PATG P ′ = (Σ, Γ′, H ′
1 , H ′

2 , Δ′
1 , Δ′

2 ,δ
′
1 , δ′2 , R) such that the

following:
1) Γ′ = H ′

1 ∪ H ′
2 , H ′

1 = H1 ∪ HΣ , and H ′
2 = H2 , where

HΣ = {Xa : X ∈ H2 , a ∈ Δ2(X)};
2) Δ′

1(X) = Δ1(X) for all X ∈ H1 , Δ′
1(Xa) = {a} for all

Xa ∈ HΣ ; and Δ′
2 = Δ2 ;

3) for all X ∈ H1 , a ∈ Δ1(X), supp(δ′1(X, a)) =
supp(δ1(X, a)), and δ′1(X, a)(α) = δ1(X, a)(α) for any
α ∈ supp(δ′1(X, a)); for all Xa ∈ HΣ , δ′1(Xa, a)(α) =
δ2(X, a)(α) for any α ∈ supp(δ′1(Xa, a)) with
supp(δ′1(Xa, a)) = supp(δ2(X, a));

4) for all X ∈ H ′
2 and a ∈ Δ′

2(X), δ′2(X, a) = X̂a .
Step 2: Inspired by [1], [30], and [32], we use a max-priority

queue data structure [14] to compute V P ′
(α) by Algorithm 1.
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Suppose i = 1, 2 and X ∈ H ′
i . Let Succ(X) = {Y ∈

Γ′
ε : there exist a ∈ Δ′

i(X) and Z ∈ Γ′
ε such that ZY ∈ supp

(δ′i(X, a)) or Y Z ∈ supp(δ′i(X, a))}. Recall that Y ε=εY =Y
for any Y ∈ Γ′

ε . We say that Y is a successor of X if
Y ∈ Succ(X).

Algorithm 1 uses three data structures that are: an array of
counters c[X] for each X ∈ H ′

2 , an array of values v[X] for
X ∈ Γ′

ε , and a max-priority queue Q ordered by the value of
v[X]. The counter c[X] records the number processed moves
of X (X ∈ H ′

2) during the algorithm. v[X] stores the value of
X . The max-priority queue Q stores the stack elements whose
values still need to be computed. Lines 1–7 initialize these three
data structures.

Line 1 removes an element Y with the maximal priority in
queue Q. For each X ∈ Q such that Y is a successor of X ,
if X ∈ H ′

1 , the value v[X] is increased to x ⊗ v[Y ] ⊗ V [Z] at
line 1 if v[X] < x ⊗ v[Y ] ⊗ V [Z]. Otherwise, if X ∈ H ′

2 , the
number of moves a : X

a−→ Y is added onto the counter c[X]
at line 1. If c[X] equals to |Δ′

2(X)| (i.e., all the successors of
X have been dequeued from Q), then assigns the value v[Y ] to
v[X] at line 1 if v[Y ] > v[X].

Lemma 5: Algorithm 1 computes V (α).
Proof: See the Appendix. �
The time complexity of the above-mentioned algorithm for

computing the value of a given FBPATG is as follows.
Theorem 3: Given an FBPATG Pb and a configuration α ∈

Γ+ , the value V (α) can be computed in time O
(
(|Pb | + |Γ| ·

|Σ| + |α| − 1)T⊗ + (|Pb | + |Γ| · |Σ|) log(|Γ| · |Σ|)) and space
O(|Γ| · |Σ|).

Proof: See the Appendix. �
Since Step 1 only handles H2 , Δ2 , and δ2 , then for Max-

FBPATGs, we get the following result:
Corollary 3: Given a Max-FBPATG Pb and a configuration

α ∈ Γ+ , the value V (α) can be computed in time O((|Pb | +
|α| − 1)T⊗ + |Pb | log |Γ|) and space O(|Γ|).

We identify a very restricted kind of strategy that suffices as
an optimal strategy for FBPATGs.

Theorem 4: For every FBPATG, both players 1 and 2 have
optimal SM-strategies.

Proof: See the Appendix. �
Note that Theorem 4 cannot be extended to FPDTGs. We

illustrate this by an example.
Example 5: Consider FPDTG P = (Q, Σ, Γ, H1 , H2 ,

Δ1 , Δ2 , δ1 , δ2 , R), where Q = {p1 , p2 , p3 , q1 , q2 , q3}; Σ =
{a, b}; Γ = {X, Y }; H1 = {p1 , p2 , p3}Γ; H2 =
{q1 , q2 , q3}Γ; R = {p3 , q3}; Δ1 and Δ2 are defined as
Δ1(p1X) = Δ2(q1X) = {a, b}, Δ1(pjX) = Δ2(qjX) =
Δ1(pjY ) = Δ2(qjY ) = {a}, for j = 2, 3; and δ1 and δ2 are
defined as

δ1(p1X, a) = δ1(p2X, a) = p̂3 , δ1(p1X, b) = p̂2Y

δ1(p2Y, a) = p̂2 , δ1(p3X, a) = p̂3X, δ1(p3Y, a) = p̂3Y

δ2(q1X, a) = δ2(q2X, a) = q̂3 , δ2(q1X, b) = q̂2Y

δ2(q2Y, a) = q̂2 , δ2(q3X, a) = q̂3X, δ2(q3Y, a) = q̂3Y .

Consider a memoryless strategy π ∈ Π1 satisfying

π(p1X) = a, π(p1XX) = b.

Hence, V (p1X) = 1 and V (p1XX) = 1. Note that there exist
exactly two SM-strategies for player 1, say π1 , π

′
1 . Let

π1(p1X) = π1(p1XX) = a, π′
1(p1X) = π′

1(p1XX) = b.

It is easy to compute that for any strategy π2 ∈ Π2

T (Pπ1 , π2
p1 X ) = 1, T (Pπ1 , π2

p1 X X ) = 0

T (Pπ ′
1 , π2

p1 X ) = 0, T (Pπ ′
1 , π2

p1 X X ) = 1.

Hence, there does not exist any optimal SM-strategy for player
1. Similarly, it is easy to show that there does not exist any
optimal SM-strategy for player 2.

VI. TERMINATION VALUES IN MAX-FPDTGS

In this section, we show how to solve the termination
problem for Max-FPDTGs. Let us fix the Max-FPDTG P =
(Q, Σ, Γ, Δ, δ, R) for the rest of this section.

We first show how to compute V (pα), pα ∈ QΓ. Inspired
by the transformation from an FPDA into an equivalent fuzzy
context-free grammar [41], we transform every Max-FPDTG
P into a Max-FBPATG Pb , so that we can obtain V (pα) by
running Algorithm 1. Let us denote V (pα, q) the value of player
1 reaching the target set {q} from the configuration pα in the
underlying FRG GP .

We define the Max-FBPATG Pb = (Σ, Γ′, Δ′, δ′, {ε}),
where Γ′ = {[pXq] : p, q ∈ Q, X ∈ Γ}, Δ′ and δ′ are defined
as follows: for any [pXq] ∈ Γ′

1) a ∈ Δ′([pXq]) and [pXq]
a |x−→ ε, if δ(pX, a)(qε) = x;

2) a ∈ Δ′([pXq]) and [pXq]
a |x−→ [q′Y q], if δ(pX, a)

(q′Y ) = x;

3) a ∈ Δ′([pXq]) and [pXq]
a |x−→ [q′Y q′′][q′′Zq] for every

q′′ ∈ Q, if δ(pX, a)(q′Y Z) = x.
Lemma 6: For every p ∈ Q and X ∈ Γ, it holds that

V P (pX) = supq∈R V Pb ([pXq]) for any t-norm.
Proof: See the Appendix. �
We will show how to compute V (pα) (|α| ≥ 2) in P by reduc-

ing to the single-destination longest-path problem of weighted
digraphs.

A weighted digraph G over [0, 1] is a tuple (U, E, w), where
U is the set of vertices of G, E is the set of edges, and w : E →
[0, 1] is the weight function mapping edges to elements of [0, 1].
The length w(σ) of a path σ = u0u1 · · ·uk is the ⊗-product of
the weights of its constituent edges:

w(σ) = w(u0 , u1) ⊗ · · · ⊗ w(uk−1 , uk ).

Given a set of paths, the path whose length is the largest one is
called the longest-path. Given two vertices u and t, let d(u, t)
denote the length of the longest-path from u to t.

Let t ∈ U be a fixed vertex of G called the destination. The
single-destination longest-path problem (about t-norm ⊗) is to
compute d(u, t) for a given vertex u. The problem can be solved
in O(|U | log |U | + |E|T⊗) time by using a modified Dijkstra’s
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algorithm in [29] and [30]. In the classical single-destination
longest-path problem, for a given weighted digraph, the weight
of each edge is an element of real numbers, and the weight
of a path is the sum of the weights of its constituent edges.
The classical single-destination longest-path problem is NP-
hard, meaning that it cannot be solved in polynomial time for
arbitrary graphs unless P = NP. However, it has a linear time
solution for directed acyclic graphs (DAGs).

As mentioned previously, we will compute V (pα) by a re-
duction to the single-destination longest-path problem. We will
see that the resulting weighted digraph is a DAG, for which
we will first give a more efficient algorithm to solve the single-
destination longest-path problem of weighted DAGs.

Suppose that G is a weighted DAG. Then, the following al-
gorithm solves the single-destination longest-path problem of
G.

1) Initially, for every u ∈ U\{t}, let d(u, t) = w(u, t) if
(u, t) ∈ E, and 0 otherwise.

2) Create a reverse topological order of all vertices.
3) Repeat following rule for every vertex u in reverse topo-

logical order until no update: if (u, v) ∈ E and d(u, t) <
d(v, t) ⊗ w(u, v), then d(u, t) = d(v, t) ⊗ w(u, v).

Indeed, the above-mentioned algorithm is an adaption of the
algorithm for classical single-source shortest paths in weighted
DAGs [14].

Proposition 4: Given a weighted DAG G = (U, E, w),
the above-mentioned algorithm correctly solves its single-
destination longest-path problem in O(|U | + |E|T⊗) time.

The proof is trivial (cf. [14, Th. 24.5]), hence, omitted here.
Now we show how the algorithm for the single-destination

longest-path problem in weighted DAGs can be used to com-
pute V (pα) (|α| ≥ 2) of the Max-FPDTG. For the given
Max-FPDTG P and pα, we define the weighted digraph
G = (U, E, w), where

U = {s, t} ∪
{

s0
[pα(0)q ] : q ∈ Q

}
∪

{
s
|α |−1
[qα(|α |−1)] : q ∈ Q

}

∪
{

si
[qα(i)q ′] : q, q′ ∈ Q, 1 ≤ i < |α| − 1

}

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
s, s0

[pα(0)q ]

)
: q ∈ Q

}
∪

{
(s1

[qα(1)], t) : q ∈ Q
}
∪

{(
s0

[pα(0)q ], s1
[qα(1)]

)
: q ∈ Q

}
, if |α| = 2

{(
s, s0

[pα(0)q ]

)
: q ∈ Q

}
∪

{(
s
|α |−1
[qα(|α |−1)], t

)
: q ∈ Q

}
∪

{(
si

[qα(i)q ′], si+1
[q ′α(i+1)q ′′]

)

1 ≤ i < |α| − 2, q, q′, q′′ ∈ Q
}
∪

{(
s
|α |−2
[qα(|α |−2)q ′], s

|α |−1
[q ′α(|α |−1)]

)
: q, q′ ∈ Q

}
∪

{(
s0

[pα(0)q ], s1
[qα(1)q ′]

)
: q, q′ ∈ Q

}
, otherwise

and w is defined as

w
(
s, s0

[pα(0)q ]

)
= 1

w
(
s
|α |−1
[qα(|α |−1)], t

)
= V (qα(|α| − 1)) , for all q ∈ Q

if |α| = 2, then

w
(
s0

[pα(0)q ], s1
[qα(1)]

)
= V (pα(0), q), for all q ∈ Q

if |α| > 2, then

w
(
s0

[pα(0)q ], s1
[qα(1)q ′]

)
= V (pα(0), q)

w
(
s
|α |−2
[qα(|α |−2)q ′], s

|α |−1
[q ′α(|α |−1)]

)
= V (qα(|α| − 2), q′)

and for all 1 ≤ i < |α| − 2, q, q′, q′′ ∈ Q

w
(
si

[qα(i)q ′], si+1
[q ′α(i+1)q ′′]

)
= V (qα(i), q′).

Clearly, the weighted digraph G is acyclic.
Lemma 7: V (pα) = d(s, t).
Proof: We first make a simple observation

V (pα) = sup{V (pα(0), q0) ⊗ V (q0α(1), q1) ⊗ · · ·⊗
V (q|α |−2α(|α| − 1)) : q0 , . . . , q|α |−2 ∈ Q}.

It is easy to check the above-mentioned equation holds by in-
duction on the length of α and the proof is omitted here. We,
thus, see that V (pα) = d(s, t). �

The following theorem gives the time complexity of our al-
gorithm for computing V (pα).

Theorem 5: Let P be a Max-FPDTG and pα ∈ QΓ+ . Then
1) If |α| = 1, 2, then the value V (pα) can be com-

puted in O(|Q|2 |P |T⊗ + |Q|2 |P | log(|Q|2 |Γ|)) time and
O(|Q|2 |P |) space.

2) If |α| > 2, then the value V (pα) can be computed
in O(|Q|2 |P |T⊗ + |Q|2 |P | log(|Q|2 |Γ|) + |Q|2(|α| −
2)T⊗) time and O(|Q|2 |P | + |Q|2(|α| − 2)) space.

Proof: According to the construction of Pb , |Γ′| = |Q|2 |Γ|
and |Pb | = O(|Q|2 |P |). Hence, by Corollary 3, the value
V |QΓ of Max-FPDTG P can be computed in O(|Q|2 |P |T⊗ +
|Q|2 |P | log(|Q|2 |Γ|)) time and O(|Q|2 |P |) space.

To compute V (pα), |α| ≥ 2, we need to construct the
weighted digraph G: |U | = 2(|Q| + 1) + |Q|2(|α| − 2) and
|E| = 3|Q| + |Q|2(|α| − 2). We see by Proposition 4 that the
value d(s, t) can be computed in O((|Q| + |Q|2(|α| − 2)) · T⊗)
time and O(|Q| + |Q|2(|α| − 2)) space. Hence, the theorem
holds. �

Let us illustrate the above-mentioned algorithm by an
example.

Example 6: Consider Max-FPDTG P =(Q, Σ, Γ,Δ, δ,
R), where Q = {p, q}, Σ = {a, b}, Γ = {Z}, Δ(pZ) =
Δ(qZ)= {a, b}, R = {p}, and the transition rules are as fol-
lows:

δ(pZ, a) = 0.8/qZZ, δ(pZ, b) = 0.4/p + 0.5/q

δ(qZ, a) = 0.9/pZZ, δ(qZ, b) = 0.8/p + 0.4/q.

Then, the stack alphabet of the associating Max-FBPATG Pb

is {[pZp], [pZq], [qZp], [qZq]}, the move assignment of each
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Fig. 2. Weighted DAG G.

stack element is all {a, b}, the transitions are the following:

δ′([pZp], a) = 0.8/[qZp][pZp] + 0.8/[qZq][qZp]

δ′([pZq], a) = 0.8/[qZp][pZq] + 0.8/[qZq][qZq]

δ′([qZp], a) = 0.9/[pZp][pZp] + 0.9/[pZq][qZp]

δ′([qZq], a) = 0.9/[pZp][pZq] + 0.9/[pZq][qZq]

δ′([pZp], b) = 0.4/ε, δ′([pZq], b) = 0.5/ε

δ′([qZp], b) = 0.8/ε, δ′([qZq], b) = 0.4/ε.

We want to know the value of V (pZZ). Using Algorithm 1, we
get that

V ([pZp]) = V ([pZq]) = V ([qZq]) = 0.5, V ([qZp]) = 0.8

when we choose the minimum t-norm as the t-norm. Hence

V (pZ) = 0.5, V (qZ) = 0.8.

Now we construct a weighted DAG G shown in Fig. 2 . We get
by Lemma 7 that V (pZZ) = 0.5.

VII. ILLUSTRATING EXAMPLE

In this section, we apply the previous results to an example
arising from manufacturing systems [17].

A manufacturing system consists of three components: the
customer component for order placing and product acceptance,
the manufacturing factory component for product production,
and the transportation component for delivering products.

The manufacturing factory may have several branch facto-
ries to fulfill the orders. Every branch factory may have many
suppliers to provide the required raw material, and may have
many production lines to select to produce. In this paper, we
assume that there are two branch factories, denoted by B1 and
B2 , can be selected. We also assume that there are two suppli-
ers, denoted by Si, 1 and Si, 2 , and two production lines, denoted
by Li, 1 and Li, 2 , can be selected for the branch factories Bi ,
i = 1, 2. When a branch factory is selected to fulfill the order, it
should select one appropriate supplier and one production line.
In practice, many factors can affect the selections of suppliers
and production lines. To simplify the problem, we only consider
the following two factors to analyze the selection of suppliers:
1) the quality of the raw material, and 2) the price of the ma-
terial; and the following two factors to analyze the selection of
production lines: 1) production quality, and 2) the equipment
maintenance and replacement cost. Assume that the quality of
the raw material provided by Si, 1 is better than that provided

Fig. 3. Flow graphs.

by Si, 2 , while the price of the raw material provided by Si, 1 is
higher than that provided by Si, 2 ; and the quality of the products
produced by Li, 1 is better than that produced by Li, 2 , while the
equipment maintenance and replacement cost of Li, 1 is more
expressive than that of Li, 2 , i = 1, 2.

The objective of the manufacturing system is to select a
branch factory such that the possibility that the branch fac-
tory can fulfill the order is as “large” as possible. To solve
this problem, we use the FBPATGs to model the manufactur-
ing system and its branch factories, suppliers, and production
lines. To construct the associated FBPATGs, we proceed in two
steps.

In the first step, we represent the manufacturing system by
a set of flow graphs shown in Fig. 3, where the flow graphs
X , Yi , Zi, j , and Z ′

i, j correspond to the manufacturing system,
the branch factory Bi , the supplier Si, j , and the production
line Li, j , i, j = 1, 2, respectively. Each flow graph has a distin-
guished start node and an end node with a return action. xi, j in
the flow graph Zi, j in Fig. 3 is the truth value that the supplier
Si, j provides the raw material satisfying the requirements of
the order if Si, j is chosen as a supplier by the branch factory
Bi , while yi, j in the flow graph Z ′

i, j is the truth value that the
production line Li, j completes the orders on time and with high
quality if the production line Li, j is chosen to produce by the
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branch factory Bi , i, j = 1, 2. Their values are as follows:

x11 = 0.9, x12 = 0.7, x21 = 0.9, x22 = 0.8

y11 = 0.8, y12 = 0.7, y21 = 0.9, y22 = 0.8.

The branch factories and suppliers form the environment of
the manufacturing system, which cannot be controlled by the
manufacturing system. Hence, we model the control points in
flow graph X in Fig. 3 as the stack elements of player 1, while
the control points in other flow graphs are modeled as the stack
elements of player 2.

In the second step, we apply a straightforward transformation
to obtain its FBPATG model Pb . The transition rules generated
by the flow graph X are as follows:

δ1(X0 , receiving orders) = X̂1

δ1(X1 , selecting B1) = ̂Y1,0X2

δ1(X2 , delivering products) = X̂3

δ1(X1 , selecting B2) = ̂Y2,0X2

δ1(X3 , return) = ε̂.

Intuitively, the transition rule δ1(X0 , receiving orders) =
X̂1 represents that control passes from X0 to X1 when
the action receiving orders is activated in control point X0 ;
δ1(X1 , selecting B1) = ̂Y1, 0X2 (resp. δ1(X1 , selecting B2) =
̂Y2, 0X2) represents an edge between control points X1 and X2

containing a call to flow graph Y1 (resp. Y2) by action select-
ing B1 (resp. selecting B2), X2 can be seen as the return address
of that call; and δ1(X3 , return) = ε̂ represents an edge leaving
X3 containing a return statement.

The transition rules generated by flow graph Yi , i = 1, 2, are
as follows:

δ2(Yi, 0 , selecting Si, 1) = ̂Zi, 1, 0Yi, 1

δ2(Yi, 0 , selecting Si, 2) = ̂Zi, 2, 0Yi, 1

δ2(Yi, 1 , selecting Li, 1) = ̂Z ′
i, 1, 0Yi, 2

δ2(Yi, 1 , selecting Li, 2) = ̂Z ′
i, 2, 0Yi, 2

δ2(Yi, 2 , return) = ε̂.

The transition rules generated by flow graphs Zi, j and Z ′
i, j ,

i, j = 1, 2, are as follows:

δ2(Zi, j, 0 , return) = xi, j /ε, δ2(Z ′
i, j, 0 , return) = yi, j /ε.

We see that the objective of the manufacturing system is
equivalent to looking for the optimal strategies for player 1.
Using our previous theoretical results, we can get that V (X0) =
0.8 when we choose the minimum t-norm as the t-norm. The
value 0.8 expresses the maximal possibility of completing the
order of the manufacturing system. The manufacturing system
can choose branch factory B2 to produce the production, which
ensures that the truth value of completing the order is 0.8.

VIII. CONCLUSION

In this paper, we introduced FPDTGs that are a natural model
for studying the termination problem for infinite-state systems
involving fuzzy, recursion, and game features. We showed that
the computational complexity of the termination problems for
FPDTGs and subclasses thereof: FBPATGs and Max-FPDTGs.
We proved that the termination problems are exponential time
for FPDTGs over the minimum t-norm and FPT with respect
to the computational time of t-norms for FBPATGs and Max-
FPDTGs. We also studied the optimal strategies for termina-
tion problems, and showed that there exist optimal memory-
less strategies for two players in FPDTGs, and there exist SM-
strategies for two players in FBPATGs. A simple example illus-
trated that optimal SM-strategies do not exist for FPDTGs, even
for Max-FPDTGs and Min-FPDTGs.

There are two problems that are worth further study in our
framework. First, we plan to consider model checking fuzzy
temporal logics against the transition systems generated by
FPDTGs. In addition, we are going to extend FPDTGs to the
concurrent game structure setting [3] and investigate their ter-
mination problem.

APPENDIX

Proof of Theorem 1:
1) Observe that V n

1 (s) and V n
2 (s) can be seen as the

values of players 1 and 2 of a finite FRG in state s,
respectively, since G is finitely branching. It follows
from Proposition 2 that V n

1 (s) = V n
2 (s). We, there-

fore, see by definition that V1(s) = V2(s). Hence, G
is determined.

2) We define a sequence A0 , A1 , . . . of fuzzy sets of S as
follows: For any state s ∈ S

A0(s) =

{
1, if s ∈ R

0, otherwise

An+1(s) = F (An )(s).

By the proof of [32, Th. 2], we get that V n (s) = An (s)
for any state s ∈ S and n ∈ N. Let s ∈ S2\R. By
finitely branching property of G, there must be some
b ∈ Δ2(s) such that for infinitely many n ∈ N

An+1(s) = sup
t∈S

(δ2(s, b)(t) ⊗ An (t)).

We define the memoryless strategy π ∈ Π2 by setting
π(s) = b.
We shall prove that for any s ∈ S, π1 ∈ Π1 , and n ∈
N, there exists some m such that

Tn (Gπ1 , π
s ) ≤ An+m (s). (2)

This implies that assertion (2) holds.
If s ∈ R, (2) obviously holds. We prove (2) holds
for s ∈ S\R by induction on n. For n = 0, (2)
holds trivially. Assume that for n = n1 , (2) holds.
In other words, if n = n1 , then for every s ∈ S and
π1 ∈ Π1 , there exists m′ ∈ N such that Tn1 (G

π1 , π
s ) ≤
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Fig. 4. Finitely-branching FRG G with the target set R = {t}.

An1 +m ′(s). For n = n1 + 1, there are two cases
needed to be considered
Case 1: s ∈ S1\R. By definition, we have that

Tn (Gπ1 , π
s ) = Tn1 +1(Gπ1 , π

s )

= sup
t∈S

(
δ1(s, π1(s))(t) ⊗ Tn1 (G

π1 , s , π
t )

)

≤ sup
t∈S

(
δ1(s, π1(s))(t) ⊗ An1 +m ′(t)

)

≤ sup
a∈Δ1 (s)

sup
t∈S

(δ1(s, a)(t) ⊗ An1 +m ′(t))

= An1 +m ′+1(s) = An+m ′(s)

where π1, s is the strategy satisfying
π1, s(tσ) = π1(stσ) for any σ ∈ S∗.

Case 2: s ∈ S2\R. By definition, we have that

Tn (Gπ1 , π
s ) = Tn1 +1(Gπ1 , π

s )

= sup
t∈S

(
δ2(s, π(s))(t) ⊗ Tn1 (G

π1 , s , π
t )

)

≤ sup
t∈S

(
δ2(s, π(s))(t) ⊗ An1 +m ′(t)

)

where π1, s is the strategy satisfying
π1, s(tσ) = π1(stσ) for any σ ∈ S∗.
By definition, there must be some m, m >
m′, such that

An1 +m (s) = sup
t∈S

(
δ2(s, π(s))(t)

⊗ An1 +m−1(t)
)
.

By the monotonicity of An , we have that

Tn1 +1(Gπ1 , π
s ) ≤ sup

t∈S

(
δ2(s, π(s))(t)

⊗ An1 +m−1(t)
)

= An1 +m (s).

Based on the above-mentioned analysis, we conclude
that if n = n1 + 1, (2) holds.

3) We give an example to show that the assertion holds.
Consider a finitely-branching FRG G depicted as in
Fig. 4. It is easy to see that V (s0) = 1, but for any
strategy π, T (Gπ

s0
) < 1.

4) Suppose that pα ∈ QΓ+ . Recall that V (pα) =
supn∈N V n (pα). Hence, for any ε > 0, there

exists some n ∈ N such that V n (pα) > V (pα) − ε.
We then can see by Proposition 2 that for every
ε > 0, player 1 has a memoryless strategy π1 ∈ Π′

1
such that for any strategy π2 ∈ Π2 , T (Gπ1 ,π2

pα ) >
V (pα) − ε. Consequently, the value of pα can be writ-
ten as V (pα) = supπ1 ∈Π ′

1
infπ2 ∈Π2 T (Gπ1 ,π2

pα ). Note
that Im(P ) is a finite set and the t-norm ⊗ con-
sidered in this paper satisfies the finite generated
condition. Hence, V (pα) can be further written as
V (pα) = maxπ1 ∈Π ′

1
minπ2 ∈Π2 T (Gπ1 ,π2

pα ), which im-
plies that there exists an optimal memoryless strategy
for player 1.

5) It is obvious that V ⊆ F (V ), since V (s) =
supn∈N An (s) and An (s) ≤ F (V )(s) for any s ∈ S,
n ∈ N. We next show that F (V )(s) ≤ V (s). We only
consider the case for s ∈ S2\R, the others are sim-
ilar. If s ∈ S2\R, then for every b ∈ Δ2(s), there
exists tb ∈ S such that F (V )(s) ≤ δ2(s, b, tb) ⊗
V (tb). Hence, by Proposition 1(1), we have that
F (V )(s) ≤ supn∈N(δ2(s, b, tb) ⊗ V n (tb)). This im-
plies that for any ε > 0, there exists ntb

∈ N such that
F (V )(s) − ε < δ2(s, b, tb) ⊗ V nt b (tb). Notice that
δ2(s, b, tb) ⊗ V nt b (tb) ≤ δ2(s, b, tb) ⊗ V (tb). As a
consequence, F (V )(s) < V (s) + ε. Now we can see
that F (V )(s) ≤ V (s). �

Proof of Theorem 2: Due to Lemma 2, it is sufficient to show
that the theorem holds for any simple FPDTG P with the prop-
erty that if pX ∈ H2 , a ∈ Δ2(pX), and δ2(pX, a)(qα) > 0,
then δ2(pX, a)(qα) = 1. For every x ∈ [0, 1], we define a
PDTG Px = (Q, Σ, Γ, H1 , H2 , Δ1 , Δ2 , δx

1 , δx
2 , R), where

δx
1 and δx

2 are defined as: For i = 1, 2, pX ∈ Hi , a ∈ Δi(pX),
qα ∈ QΓ≤2 , if δi(pX, a)(qα) ≥ x, then δx

i (pX, a)(qα) = 1,
otherwise δx

i (pX, a)(qα) = 0.
Similarly to the proof of [26, Th. 2.1], it is easy to check

that if the t-norm is chosen as the minimum t-norm, then for
pα ∈ QΓ+ , V (pα) ≥ x if and only if player 1 in Px has a 1-
winning strategy from pα. Note that |〈Im(P )〉| = |Im(P )| for
the minimum t-norm. Hence

V (pα) = max{x : player 1 in Px has a 1-winning strategy

from pα, x ∈ Im(P )}

which implies that the termination problem for the simple
FPDTG P can be reducible to the termination problem for sim-
ple PDTGs. It directly follows from Lemma 1 that the termi-
nation problem for simple FPDTGs with t-norm chosen as the
minimum t-norm can be solved in exponential time. �

Proof of Lemma 3:
1) We prove assertion (1) in two parts. First, we show that

V n+1(Xα) ≤ V n (X) ⊗ V n (α) holds. By Proposition 2,
there exist two strategies π′

2 , π′′
2 ∈ Π2 such that

V n (X) = max
π1 ∈Π1

T
π1 , π ′

2
n (X), V n (α) = max

π1 ∈Π1
T

π1 , π ′′
2

n (α).
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Hence, by Proposition 1(3), we conclude that

V n (X) ⊗ V n (α)= max
π1 ∈Π1

T
π1 , π ′

2
n (X)⊗ max

π1 ∈Π1
T

π1 , π ′′
2

n (α)

≥ max
π1 ∈Π1

(Tπ1 , π ′
2

n (X) ⊗ T
π1 , π ′′

2
n (α))

≥ max
π1 ∈Π1

min
π2 ∈Π2

(Tπ1 , π2
n (X) ⊗ Tπ1 , π2

n (α))

≥ max
π1 ∈Π1

min
π2 ∈Π2

Tπ1 , π2
n+1 (Xα) = V n+1(Xα).

Next, we show that V n (X) ⊗ V n (α) ≤ V 2n (Xα). By
Proposition 2, there exist two strategies π′

1 , π′′
1 ∈ Π1 such

that

V n (X) = min
π2 ∈Π2

T
π ′

1 , π2
n (X), V n (α) = min

π2 ∈Π2
T

π ′′
1 , π2

n (α).

By Proposition 1(4), we see that

V n (X) ⊗ V n (α)= min
π2 ∈Π2

T
π ′

1 , π2
n (X)⊗ min

π2 ∈Π2
T

π ′′
1 , π2

n (α)

≤ min
π2 ∈Π2

(Tπ ′
1 , π2

n (X) ⊗ T
π ′′

1 , π2
n (α))

≤ max
π1 ∈Π1

min
π2 ∈Π2

(Tπ1 , π2
n (X) ⊗ Tπ1 , π2

n (α))

≤ max
π1 ∈Π1

min
π2 ∈Π2

Tπ1 , π2
2n (Xα) = V 2n (Xα).

2) Notice that supn∈N V n (α) = limn→∞ V n (α), since for
any n ∈ N, V n (α) ∈ [0, 1], and V n (α) ≤ V n+1(α).
Hence, by assertion 1) and (1), we see that

V (α(0)) ⊗ · · · ⊗ V (α(|α| − 1))

= supn∈N V n (α(0)) ⊗ · · · ⊗ sup
n∈N

V n (α(|α| − 1))

= lim
n→∞V n (α(0)) ⊗ · · · ⊗ lim

n→∞V n (α(|α| − 1))

= lim
n→∞

(
V n (α(0)) ⊗ · · · ⊗ V n (α(|α| − 1))

)

= lim
n→∞V n (α) = sup

n∈N
V n (α) = V (α)

which finishes the proof of the assertion. �
Proof of Lemma 4: By the monotonicity properties of ⊗,

sup, and inf operators, it is easy to check that for all n ≥ 0,
Fn (∅) ⊆ Fn+1(∅). Note that the t-norms we consider satisfy
finite generated condition and Γ is a finite set. Hence, there ex-
ists some m ∈ N such that for all n ≥ m, Fn (∅) = Fm (∅). By
Kleene’s theorem,

⋃
n∈N Fn (∅) is the least fixed point of EPb

.
By Theorem 1(5) and Lemma 3(2), we see that V |Γε

is the fixed point of the system of equations EPb
. Thus,⋃

n∈N Fn (∅) ⊆ V |Γε
. To show that V |Γε

⊆ ⋃
n∈N Fn (∅), it

suffices to show that for any X ∈ Γε and n ∈ N

V n (X) ≤ Fn+1(∅)(X). (3)

We prove (3) holds by induction on n. For the base case,
namely, n = 0, it is trivial. The induction hypothesis is that
(3) holds for n. We now prove the same for n + 1. For n + 1,
we only consider the case for X ∈ H1 ∩ Γ, all other cases can
be easily proved along similar lines. Using Lemma 3(1) and

induction hypothesis, we have the following:

V n+1(X) = sup
a∈Δ1 (X )

max

⎧
⎪⎨

⎪⎩

sup
X

a |x−→ε

x, sup
X

a |x−→Y

(x ⊗ V n (Y )),

sup
X

a |x−→Y Z

(x ⊗ V n (Y Z))

⎫
⎪⎬

⎪⎭

≤ sup
a∈Δ1 (X )

max

⎧
⎪⎨

⎪⎩

sup
X

a |x−→ε

x, sup
X

a |x−→Y

(x ⊗ V n (Y )),

sup
X

a |x−→Y Z

(x ⊗ V n−1(Y ) ⊗ V n−1(Z))

⎫
⎪⎬

⎪⎭

≤ sup
a∈Δ1 (X )

max

⎧
⎪⎨

⎪⎩

sup
X

a |x−→ε

x, sup
X

a |x−→Y

(x ⊗ V n (Y )),

sup
X

a |x−→Y Z

(x ⊗ V n (Y ) ⊗ V n (Z))

⎫
⎪⎬

⎪⎭

≤ sup
a∈Δ1 (X )

max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sup
X

a |x−→ε

x, sup
X

a |x−→Y

(x ⊗ Fn+1(∅)(Y )),

sup
X

a |x−→Y Z

(x ⊗ Fn+1(∅)(Y )

⊗Fn+1(∅)(Z))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= Fn+2(∅)(X)

which proves the claim. �
Proof of Lemma 5: By Theorem 1, V Pb (α′) = V P ′

(α′) for
any α′ ∈ Γ+ . By Lemma 3, it is enough to prove that upon
termination of Algorithm 1, v[X] = V (X) for any X ∈ Γ′. We
give the sketch of its proof, the similar proof was given in that
of [32, Th. 4]. First, we can see that during the execution of
Algorithm 1, if the stack element X does not belong to Q,
then v[X] is greater than or equal to the maximum priority in
Q. Next, we show that during the execution of Algorithm 1, a
stack element X is never assigned a priority greater than V (X).
The property holds after initialization because then v[X] = 0 ≤
V (X). Assume that the property is true and that the function
INCREASE is called. Then, there exists a stack element Y with
Y ∈ Succ(X) and which was just removed from Q. We only
consider the case X ∈ H ′

1 , the other is the similar. By Lemma 4
and induction hypothesis, we get that

V (X) ≥ x ⊗ V (Y ) ⊗ V (Z) ≥ x ⊗ v[Y ] ⊗ v[Z] = v[X].

Finally, we show that when Algorithm 1 terminates, V (X) ≤
v[X] holds for any X ∈ Γ′. Let Fn (∅), n ∈ N, be the fuzzy set
of Γε defined in the proof of Lemma 4. It follows from Lemma 4
that the assertion holds if we can show that Fn (∅)(X) ≤ v[X]
holds for any X ∈ Γ′. We prove it by induction on n. The
detailed proof is omitted, and similar proof can be found in that
of [32, Lemma 7]. �

Proof of Theorem 3: We use aggregate analysis to discuss
the time complexity of the algorithm above. The time spent
in Step 1 is O(|Pb |), which results in an FBPATG P ′ of size
O(|Pb | + |Γ| · |Σ|), moreover, |Γ′| = O(|Γ| · |Σ|).

We continue to analyze the time spent in Step 2, i.e.,
Algorithm 1. In Algorithm 1, lines 1–7 take O(|Γ′|) time. The
loop at lines 8–17 takes O(|P ′|T⊗ + |P ′| log |Γ′|) time, since
INCREAS is executed at most |P ′| times and each time takes
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O(log |Γ′|) time; moreover, the ⊗ operation is executed O(|P ′|)
times. Lines 18 and 19 take O((|α| − 1)T⊗) time. In total,
the time of executing Algorithm 1 is O((|P ′| + |α| − 1)T⊗ +
|P ′| log |Γ′|). Thus the time complexity of computing V (α) is
dominated by Step 2. In other words, the problem of computing
V (α) can be solved in time O

(
(|Pb | + |Γ| · |Σ| + |α| − 1)T⊗ +

(|Pb | + |Γ| · |Σ|) log(|Γ| · |Σ|)).
Memory is needed for δ′2 and the three data structures: an

array of counters, an array of values, and a max-priority queue.
Hence the algorithm takes O(|Γ| · |Σ|) space. �

Proof of Theorem 4: Consider the SM-strategy π for player
2 such that for all X ∈ H2 , α ∈ Γ∗, π(Xα) = a if a ∈ Δ2(X)
and

V (X) = max

⎧
⎪⎨

⎪⎩

sup
X

a |x−→ε

x, sup
X

a |x−→Y

(x ⊗ V (Y )),

sup
X

a |x−→Y Z

(x ⊗ V (Y ) ⊗ V (Z))

⎫
⎪⎬

⎪⎭

We show by induction on n that for all α ∈ Γ+ ,
supπ1 ∈Π1

Tn (Pπ1 , π
α ) ≤ V (α). This implies that π is an opti-

mal strategy for player 2. For n = 0, the result is immediate.
For n > 0 , we only consider the case for α ∈ H2Γ∗, the proof
of the other case is analogous to that of Theorem 1(2).

Assume that n = k + 1. For the case α ∈ H2Γ∗, we need
to consider two subcases of α: α = X ∈ H2 and α = Xα′ ∈
H2Γ+ .

Subcase 1. α ∈ H2: By induction hypothesis and Proposition
1(1), we have that

sup
π1 ∈Π1

Tn+1(Pπ1 , π
α )

= max

⎧
⎪⎨

⎪⎩

sup
α

π 2 (α ) |x−→ ε

x, sup
α

π 2 (α ) |x−→ Y

sup
π1 ∈Π1

(x ⊗ Tn (Pπ1 , π
Y ))

sup
α

π 2 (α ) |x−→ Y Z

sup
π1 ∈Π1

(x ⊗ Tn (Pπ1 , π
Y Z ))

⎫
⎪⎬

⎪⎭

= max

⎧
⎪⎨

⎪⎩

sup
α

π 2 (α ) |x−→ ε

x, sup
α

π 2 (α ) |x−→ Y

(x ⊗ sup
π1 ∈Π1

Tn (Pπ1 , π
Y ))

sup
α

π 2 (α ) |x−→ Y Z

(x ⊗ sup
π1 ∈Π1

Tn (Pπ1 , π
Y Z ))

⎫
⎪⎬

⎪⎭

≤ max

⎧
⎪⎨

⎪⎩

sup
α

π 2 (α ) |x−→ ε

x, sup
α

π 2 (α ) |x−→ Y

(x ⊗ V (Y ))

sup
α

π 2 (α ) |x−→ Y Z

(x ⊗ V (Y Z))

⎫
⎪⎬

⎪⎭

= V (α).

Subcase 2. α = Xα′ ∈ H2Γ+ : Using Lemma 3(2) and the
induction hypothesis, we have the following:

sup
π1 ∈Π1

Tn+1(P
π1 , π
X α ′ ) ≤ sup

π1 ∈Π1

Tn (Pπ1 , π
X ) ⊗ sup

π1 ∈Π1

Tn (Pπ1 , π
α ′ )

≤ V (X) ⊗ V (α′) = V (Xα′).

Observe that for an FBPATG P and an SM-strategy π2 ∈ Π2 ,
the result is a Max-FBPATG. To show that player 1 has an
optimal SM-strategy for every FBPATG, it is sufficient to show

that there is an optimal SM-strategy for player 1 in every Max-
FBPATG. Given a Max-FBPATG, let π1 be a strategy for player
1 defined as follows: For all X ∈ H1 , α ∈ Γ∗, π1(Xα) takes the

move of X
a |x→ Y Z or X

a |x→ ZY at line 1 of Algorithm 1 such
that v[X] is the latest value. Then, by the idea of Algorithm 1,
we get that π1 is an optimal SM-strategy for player 1 in the
Max-FBPATG. �

Proof of Lemma 6: We first show that for any pX ∈ QΓ and
q ∈ Q, V P (pX, q) ≤ V Pb ([pXq]). To show this, it is sufficient
to check the following property holds.

Claim 1: Let pX
β |x
−→∗ q denote that there exists a se-

quence of transitions pX
a1 |x1−→ q1α1 · · ·

a |β ||x |β |−→ q such that β =
a1 · · · a|β |, x = x1 ⊗ · · · ⊗ x|β |, and q1α1 ∈ QΓ≤2 . If σ1 =

pX
β |x
−→∗ q for some β ∈ Σ+ , p, q ∈ Q, and X ∈ Γ, is a fi-

nite path in P , then there exists a finite path σ2 = [pXq]
β |x
−→∗ ε

in Pb .
Claim 1 can be proved by induction on the length |β|. For

the case of |β| = 1, it is obvious. Assume that Claim 1 holds
for any β with length k ≥ 1. Let β with length k + 1. Then,
we can write β as aβ′, where a ∈ Σ and β′ ∈ Σ∗ with length k.

Hence, by definition, σ1 can be written as pX
a |x ′
−→ p1α

β ′|x ′′

−→∗ q
with x = x′ ⊗ x′′ and p1α ∈ QΓ≤2 . We only consider the case
α = Y Z, the others being simpler. By definition, there exist

β′
1 , β′

2 ∈ Σ∗ and q′ ∈ Q such that p1Y Z
β ′

1 |x ′′
1−→∗ q′Z

β ′
2 |x ′′

2−→∗ q with
x′′ = x′′

1 ⊗ x′′
2 and β′ = β′

1β
′
2 . Hence, we have by assumption

that

[p1Y q′]
β ′

1 |x ′′
1−→∗ ε (4)

[q′Zq]
β ′

2 |x ′′
2−→∗ ε. (5)

Moreover, by construction of Pb , we have

[pXq]
a |x ′
−→ [p1Y q′][q′Zq]. (6)

Combining (4), (5), and (6), we obtain a finite path in Pb such

that σ2 = [pXq]
β |x
−→∗ ε.

Likewise, we may show that for any pX ∈ QΓ and q ∈ Q,
V P (pX, q) ≥ V Pb ([pXq]). Then, V P (pX, q) = V Pb ([pXq]),
and so V P (pX) = supq∈R V Pb ([pXq]). �
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