
Towards Efficient Verification of Constant-Time
Cryptographic Implementations

LUWEI CAI, ShanghaiTech University, China
FU SONG∗, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
China, University of Chinese Academy of Sciences, China, and Nanjing Institute of Software Technology,
China
TAOLUE CHEN, Birkbeck, University of London, UK

Timing side-channel attacks exploit secret-dependent execution time to fully or partially recover secrets of
cryptographic implementations, posing a severe threat to software security. Constant-time programming
discipline is an effective software-based countermeasure against timing side-channel attacks, but developing
constant-time implementations turns out to be challenging and error-prone. Current verification approach-
es/tools suffer from scalability and precision issues when applied to production software in practice. In this
paper, we put forward practical verification approaches based on a novel synergy of taint analysis and safety
verification of self-composed programs. Specifically, we first use an IFDS-based lightweight taint analysis to
prove that a large number of potential (timing) side-channel sources do not actually leak secrets. We then
resort to a precise taint analysis and a safety verification approach to determine whether the remaining
potential side-channel sources can actually leak secrets. These include novel constructions of taint-directed
semi-cross-product of the original program and its Boolean abstraction, and a taint-directed self-composition
of the program. Our approach is implemented as a cross-platform and fully automated tool CT-Prover.
The experiments confirm its efficiency and effectiveness in verifying real-world benchmarks from modern
cryptographic and SSL/TLS libraries. In particular, CT-Prover identify new, confirmed vulnerabilities of
open-source SSL libraries (e.g., Mbed SSL, BearSSL) and significantly outperforms the state-of-the-art tools.

CCS Concepts: • Software and its engineering→ Formal software verification; • Theory of computa-
tion→ Program analysis; • Security and privacy→ Formal security models; Logic and verification.

Additional Key Words and Phrases: Timing side-channel, constant-time cryptographic implementation, formal
verification, taint analysis

ACM Reference Format:
Luwei Cai, Fu Song, and Taolue Chen. 2024. Towards Efficient Verification of Constant-Time Cryptographic
Implementations. Proc. ACM Softw. Eng. 1, FSE, Article 46 (July 2024), 24 pages. https://doi.org/10.1145/3643772

1 INTRODUCTION
The security of contemporary software systems and communication heavily depends upon cryp-
tographic implementations, which are the main focus of the current paper. Timing side-channel
attacks [30, 54] can exploit secret-dependent execution time to fully or partially recover secrets
∗Corresponding author

Authors’ addresses: Luwei Cai, ShanghaiTech University, Shanghai, China, cailw@shanghaitech.edu.cn; Fu Song, State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China and University of
Chinese Academy of Sciences, Beijing, China and Nanjing Institute of Software Technology, Nanjing, China, songfu@ios.ac.
cn; Taolue Chen, Birkbeck, University of London, London, UK, t.chen@bbk.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART46
https://doi.org/10.1145/3643772

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0003-3148-7926
HTTPS://ORCID.ORG/0000-0002-0581-2679
HTTPS://ORCID.ORG/0000-0002-5993-1665
https://doi.org/10.1145/3643772
https://orcid.org/0000-0003-3148-7926
https://orcid.org/0000-0002-0581-2679
https://orcid.org/0000-0002-5993-1665
https://doi.org/10.1145/3643772

46:2 Luwei Cai, Fu Song, and Taolue Chen

even remotely, thus posing a severe threat to software security. Over the past few years, numerous
timing side-channel vulnerabilities have been discovered, allowing adversaries to deduce secrets
with very few trials. Notorious examples include the Lucky 13 attack that can remotely recover
plaintext from the CBC-mode encryption in TLS and DTLS (due to an unbalanced branching
statement [9]), and Brumley and Boneh’s remote private key recovery attack against the sliding
window exponentiation of the RSA decryption in OpenSSL [30, 31]. It is vital to implement effective
countermeasures to protect cryptographic implementations.

There are different means to mitigate the risk of timing side-channels, for instance, via security-
aware system (e.g., [56]) and architecture (e.g., [39]). A more effective approach is to come up with
better software implementation to eliminate the root cause. Currently, there are two prevailing
countermeasures, i.e., constant-time and time-balancing programming disciplines. The former
requires that control flow and memory-access patterns of an implementation are independent of
the secrets; the latter requires the execution time to be negligibly influenced by secrets which can
be considered as a tradeoff between security and enforceability. Both countermeasures have been
adopted in open-source cryptographic and SSL/TLS libraries such as NaCl [24], BearSSL [61], Mbed
TLS [72], s2n-tls [16], and OpenSSL [4]. Writing constant-time or time-balancing implementations
requires the use of low-level programming languages or compiler knowledge, and developers
usually need to deviate from standard programming practices. Furthermore, their correctness
depends on global properties across pairs of executions, hence is difficult to reason about. For
instance, even though two protections against Lucky 13 were implemented in s2n-tls, the Lucky
microseconds attack, a variant of Lucky 13, can remotely and completely recover plaintext from
the CBC-mode cipher suites in s2n-tls, resulting in a complete recovery of HTTP session cookies
and user credentials such as BasicAuth passwords [8]. Alas, timing side-channel attacks remain a
live threat for cryptographic libraries after their discovery over 25 years ago [83], and it is essential
to develop automated reasoning tools for formally verifying these countermeasures.
In this paper, we focus on the constant-time programming discipline as it represents a more

fundamental solution and is more challenging to tackle. Numerous verification approaches have
been proposed (cf. Section 6). A majority of them leverage (lightweight) static analysis, e.g., abstract
interpretation, type system, taint analysis and (relational) symbolic execution which are sound
(and usually efficient) but incomplete (i.e., false positives may occur or depth of explored paths is
bound). Different from them, the self-composition [11] approach reduces constant-time verification
to safety verification by building a program consisting of two copies of the given program and
verifying whether the values of the low-security (public) variables in the two copies are identical
provided that the public inputs are identical. Self-composition based approaches are sound and
complete in theory, although in practice, the completeness may depend on verification tools to
carry out challenging safety property checking on self-composed programs (cf. Section 5.1 for
concrete examples).

Self-composition based approaches are normally considered as a heavyweight approach which
is not scalable. The primary reason is that they need to deal with a self-composed program of
quadratic sizes. As a result, many efforts have been made to ease safety verification of self-composed
programs, including self-composition with lockstep execution of loops [68] for 𝑘-safety properties;
self-composition with lockstep execution of both loops and branches (called cross-product) [11]
for constant-time properties; type-directed self-composition [71] and lazy self-composition [81]
for proving information flow properties. The commonality of these approaches is to simplify self-
composed programs, reduce the number of safety checks, and/or keep variables from the two copies
near each other.
Despite these efforts, a noticeable gap exists in verifying constant-time countermeasures in

software engineering practice. To the best of our knowledge, ct-verif [11] is the only publicly

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:3

available self-composition based tool that is being actively deployed in the continuous integration
of Amazon’s s2n-tls library [67], but is significantly less efficient than lightweight static analysis
approaches (e.g., taint analysis and type system), and often fails to prove constant-time implemen-
tations (cf. Section 5). In summary, the current status is that the user either chooses an incomplete
approach but needs to tackle false positives, or chooses a (relatively) complete approach which is
costly and may fail on a number of occasions.

The main purpose of the current paper is to make the self-composition based approaches scalable
so they can be used to handle the verification of constant-time cryptographic implementations at
the industry level. Our strategy towards both completeness and scalability is to take a stratified
approach. Technically, starting from potential timing side-channel sources which can be identified
straightforwardly (cf. Section 2.2), we devise two different taint analyses and a taint-directed cross-
product, and gradually integrate them to resolve these potential sources, i.e., to determine whether
they can actually cause information leakage.

The first taint analysis (cf. Section 4.1) leverages the inter-procedural, finite, distributive, subset
framework (IFDS [64]), which is accelerated by propagating the data-flow facts sparsely [60]. This
taint analysis is flow-, field- and context-sensitive, but path- and index-insensitive. It is often able
to efficiently prove that a large number of potential (timing) side-channel sources do not actually
leak secrets, leaving a relatively small number of them unresolved to the next step.
The second taint analysis (cf. Section 4.2) uses a novel taint-directed semi-cross-product, which

reduces the flow-, context-, path-, field- and index-sensitive taint analysis problem to checking
safety properties of the cross-product of the given program and its Boolean abstraction. The
Boolean abstraction is used to track the required information flow from the secrets. This precise
taint analysis would be able to further resolve many remaining potential side-channel sources. It is
worth noting that our cross-product is taint-directed, namely, it is based on the taint information
from the first taint analysis, which greatly reduces the number of safety checks and simplifies the
product program, hence improving the verification efficiency.
Finally, to resolve the remaining (usually few) potential side-channel sources, we propose a

taint-directed cross-product (cf. Section 4.3), which reduces the constant-time security problem to
the safety problem of the cross-product of the program where taint information is also used to
reduce the number of safety checks and simplify the cross-product program.

We implement our approaches as a fully automated, cross-platform tool CT-Prover for verifying
(optimized) LLVM IR implementations. To evaluate CT-Prover, we collect 87 real-world implemen-
tations from modern cryptographic and SSL/TLS libraries, as well as fixed-point arithmetic libraries.
These benchmarks include cryptographic utilities, arithmetic operations, public and private key
cryptography, and algorithms for encryption, decryption, message authentication code, and dig-
ital signature. The experiment results confirm the effectiveness and efficiency of our approach.
In particular, CT-Prover (dis)proves all the (non-)constant-time implementations and find new
vulnerabilities in open-source libraries Mbed SSL and BearSSL, and is typically significantly faster
than state-of-the-art tools.

In summary, we make the following main contributions:

• We provide a novel synergy of taint analysis and self-composition, improving the efficiency
and scalability of verification of constant-time cryptographic implementations;

• We develop a fully automated tool to support the verification for production software at the
industrial level;

• We conduct an extensive evaluation on a large set of real-world programs, and identify new,
confirmed timing side-channel vulnerabilities of open-source SSL libraries.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:4 Luwei Cai, Fu Song, and Taolue Chen

Expressions: 𝑒 ::= 𝑛 | 𝑥 | 𝑒1 ⊙ 𝑒2 | 𝑥 [𝑦]
Statements: 𝑝 ::= skip | 𝑥 := 𝑒 | 𝑥 [𝑦] := 𝑧 | assert 𝑒 | assume 𝑒 | 𝑝; 𝑝 | while 𝑥 do 𝑝 od

| if 𝑥 then 𝑝1 else 𝑝2 fi | 𝑥1, · · · , 𝑥𝑚 := 𝑓 (𝑦1, · · · , 𝑦𝑛)
Procedures: 𝑓 𝑛 ::= def 𝑓 (𝑥1, · · · , 𝑥𝑛){𝑝; return 𝑦1, · · · , 𝑦𝑚 ; }
Programs: 𝑃 ::= 𝑓 𝑛+

Fig. 1. The syntax ofWhile.

Outline. Section 2 presents the background of the work, including the While language and basics
of constant-time security. Section 3 gives motivating examples and an overview of our approach.
Section 4 presents the details of our approaches. Section 5 reports the experiment results. Section 6
discusses the related work. The paper is concluded in Section 7.

2 PRELIMINARIES
Our constant-time verification tool works over programs in LLVM intermediate representation (IR).
There are three main reasons: (1) LLVM IR is a low-level architecture-independent language so
verification can be performed on optimized LLVM IR programs, (2) it is more convenient to verify
and debug LLVM IR programs than binary executables, and (3) the verified compiler CompCert offers
constant-time preserving compilation [22] and Binsec/Rel [36, 38] offers bug-finding and bounded
verification for binary executables. However, for clarity, we use the While language enriched with
arrays, assert/assume statements and procedures, to define the notion of constant-time security
and formalize our verification approach.

2.1 The While Language
Syntax. The syntax of the While language is given in Figure 1. A While program consists of
a sequence of procedures, one of which is the main procedure as the entry of the program. A
procedure contains a sequence of formal arguments and a sequence of statements followed by a
return statement. Note that in ourWhile language, the return statement can return a tuple of
values which is required for constructing cross-products. For each procedure 𝑓 , we denote by X𝑓

the set of variables used by 𝑓 , including its formal arguments.
Statements include skip statements, assert and assume statements, sequential statements,

if-then-else and while-do statements, assignments, and procedure calls. As in ct-verif [11], we
include the assert and assume statements to simplify the reduction to safety checking. We assume
that each statement is annotated by a distinct label ℓ . Expressions include constants, variables,
arithmetic operations and array accesses. We use ⊙ to range over binary operators which are
deterministic and side-effect free. (Unary operators can be defined similarly and are not presented
here.) W.l.o.g., We assume that While programs are given in the single-static assignment (SSA)
form, array-read 𝑥 [𝑦] cannot be used as sub-expressions and all identifies in a program are distinct.

Semantics. Fix a While program P. Let X be the set of variables of P, L ⊆ X ∪ (X × N) be the set
of locations comprising scalar variables and pairs (𝑥, 𝑖) of array variables 𝑥 and indices 𝑖 , and V be
the set of possible values of variables. A state 𝑠 : L→ V is a mapping from locations 𝑙 to values
𝑠 (𝑙), namely, it maps variables 𝑥 (resp. array elements 𝑥 [𝑖]) to values 𝑠 (𝑥) (resp. 𝑠 (𝑥, 𝑖)). An initial
state 𝑠0 is a mapping that only gives the values of the input variables of P, i.e., the parameters of
the main procedure. The update of a state 𝑠 is written as 𝑠 [𝑙 ↦→ 𝑛]. We define ⊥ as a distinguished
error state at which the execution of the program is disabled. We denote by 𝑠 (𝑒) the value of the
expression 𝑒 in the state 𝑠 , i.e., 𝑠 (𝑛) = 𝑛, 𝑠 (𝑒1 ⊙ 𝑒2) = 𝑠 (𝑒1) ⊙ 𝑠 (𝑒2), and 𝑠 (𝑥 [𝑦]) = 𝑠 (𝑥, 𝑠 (𝑦)).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:5

𝑠 ′ = 𝑠 [𝑥 ↦→ 𝑠 (𝑒)]
⟨𝑠, 𝑥 := 𝑒⟩ → ⟨𝑠 ′, skip⟩

Assign1
𝑠 ′ = 𝑠 [(𝑥, 𝑠 (𝑦)) ↦→ 𝑠 (𝑧)]
⟨𝑠, 𝑥 [𝑦] := 𝑧⟩ → ⟨𝑠 ′, skip⟩

Assign2

⟨𝑠, skip;𝑝⟩ → ⟨𝑠, 𝑝⟩
Skip

⟨𝑠, 𝑝1⟩ → ⟨𝑠 ′, 𝑝 ′
1⟩

⟨𝑠, 𝑝1;𝑝2⟩ → ⟨𝑠 ′, 𝑝 ′
1;𝑝2⟩

Seq

𝑠 ′ = (𝑠 (𝑒) = true ? 𝑠 : ⊥)
⟨𝑠, assert 𝑒⟩ → ⟨𝑠 ′, skip⟩

Assert
𝑠 (𝑒) = true

⟨𝑠, assume 𝑒⟩ → ⟨𝑠, skip⟩
Assume

𝑠 (𝑥) = false

⟨𝑠, while 𝑥 do 𝑝 od⟩ → ⟨𝑠, skip⟩
While𝑓

𝑠 (𝑥) = true

⟨𝑠, while 𝑥 do 𝑝 od⟩ → ⟨𝑠, 𝑝; while 𝑥 do 𝑝 od⟩
While𝑡

𝑠 (𝑥) = false

⟨𝑠, if 𝑥 then 𝑝1 else 𝑝2 fi⟩ → ⟨𝑠, 𝑝2⟩
If𝑓

𝑠 (𝑥) = true

⟨𝑠, if 𝑥 then 𝑝1 else 𝑝2 fi⟩ → ⟨𝑠, 𝑝1⟩
If𝑡

def 𝑓 (𝑥 ′
1, · · · , 𝑥 ′

𝑛){𝑝; return 𝑦1, · · · , 𝑦𝑚 ; } 𝑠in = 𝑠 [𝑥 ′
1 ↦→ 𝑠 (𝑧1)] · · · [𝑥 ′

𝑛 ↦→ 𝑠 (𝑧𝑛)]
⟨𝑠in, 𝑝⟩→★⟨𝑠out, skip⟩ 𝑠ret = 𝑠 [𝑥1 ↦→ 𝑠out (𝑦1)] · · · 𝑠 [𝑥𝑚 ↦→ 𝑠out (𝑦𝑚)]

⟨𝑠, 𝑥1, · · · , 𝑥𝑚 := 𝑓 (𝑧1, · · · , 𝑧𝑛)⟩ → ⟨𝑠in, 𝑝⟩ and ⟨𝑠out, return 𝑦1, · · · , 𝑦𝑚 ; ⟩ → ⟨𝑠ret, skip⟩
Call-Ret

Fig. 2. The operational semantics of theWhile program.

A configuration 𝑐 is a pair ⟨𝑠, 𝑝⟩ consisting of a state 𝑠 and a statement 𝑝 to be executed. An
initial configuration 𝑐0 is a pair ⟨𝑠0, 𝑝⟩ such that 𝑠0 is an initial state and 𝑝 is the statement of the
main procedure excluding the ending return statement. The semantics of the program P is defined
as a transition relation 𝑐→𝑐 ′ between two configurations. We denote by →★ the reflexive and
transitive closure of the relation →. The transition relation 𝑐→𝑐 ′ is given in Figure 2. For the sake
of simplicity, array bounds are not checked in our semantics, and we assume that they are checked
by using assert statements, thus executions are stuck on the error state when indices are out of
the range of the array.
An execution 𝜌 of the program P is a sequence of configurations 𝑐0𝑐1 · · · 𝑐𝑛 such that 𝑐0 is an

initial configuration and 𝑐𝑖→𝑐𝑖+1 for every 0 ≤ 𝑖 < 𝑛. An execution 𝜌 is safe if it does not stick on a
configuration ⟨⊥, ·⟩ with the error state ⊥, and is complete if it ends with a configuration ⟨·, skip⟩.
The program P is safe if all the executions are safe. We remark that in this work, we assume that
programs always terminate (i.e., either complete or stick on), because we focus on cryptographic
implementations. Termination can be checked by tools, e.g., CPAchecker [25] and T2 [29].

2.2 Constant-Time Security
In practice, execution time variations can create timing side-channel in various forms: (1) unbalanced
branching statementsmay expose the information of the branching condition, (2) non-constant loops
may expose the information of the loop condition, (3) memory access patterns (cache hits andmisses)
may expose the information of the memory address (i.e., indices of arrays in the While programs)
accessed in load and store instructions, (4) time-variant instructions (e.g., integer divisions) in some
architectures may expose the information of operands, and (5) micro-architectural features (e.g.,
Spectre [53] andMeltdown [57]) may break conventional constant-time guarantees. In this work, we
consider the first three timing side-channels and use the common leakage model [11, 26, 36, 83] to
characterize constant-time security. (The last two timing side-channels are not considered because
they are architecture-dependent while we consider LLVM IR which is architecture-independent.)
Note that our methodology is generic and could be adapted to handle the fourth timing side-
channel by listing all the timing-sensitive operations [11]. Detection, verification and mitigation
techniques of the fifth type of timing side-channels have been studied (cf. [33] for a survey), most
of which assume that programs are constant-time without micro-architectural features, and thus
are orthogonal to our work.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:6 Luwei Cai, Fu Song, and Taolue Chen

Definition 2.1 (Constant-time Leakage Model). Given a configuration 𝑐 = ⟨𝑠, 𝑝⟩ such that 𝑠 ≠ ⊥,
the observation O(𝑐) is defined as follows.
(1) if 𝑝 is a branching statement if 𝑥 then 𝑝1 else 𝑝2 fi, then O(𝑐) = 𝑠 (𝑥), namely, the value

of the branching condition 𝑥 is observable to the adversary;
(2) if 𝑝 is a loop statement while 𝑥 do 𝑝 ′ od, then O(𝑐) = 𝑠 (𝑥), namely, the value of the loop

condition 𝑥 is observable to the adversary;
(3) if 𝑝 is an assignment 𝑧 := 𝑦 [𝑥], then O(𝑐) = 𝑠 (𝑥), namely, the value of the index 𝑥 in the load

instruction is observable to the adversary;
(4) if 𝑝 is an assignment 𝑦 [𝑥] := 𝑧, then O(𝑐) = 𝑠 (𝑥), namely, the value of the index 𝑥 in the

store instruction is observable to the adversary,
(5) if 𝑝 is an sequential statement 𝑝1; 𝑝2, then O(𝑐) = O(⟨𝑠, 𝑝1⟩), namely, only the executing

instruction 𝑝1 is considered (Note that 𝑝2 will be considered in a subsequent configuration);
(6) otherwise O(𝑐) = 𝜖 , where 𝜖 denotes an empty observation.

For each statement 𝑝 with label ℓ (denoted by ℓ : 𝑝) as per Definition 2.1(1)-(4) where 𝑥 is the
operand or condition, (ℓ, 𝑥) is called a potential (timing) side-channel source. Intuitively, the value
of 𝑥 at label ℓ is observable to the adversary.

An execution 𝜌 = 𝑐0 · · · 𝑐𝑛 yields the observation O(𝜌) = O(𝑐0) · · · O(𝑐𝑛). Two executions 𝜌1 and
𝜌2 are indistinguishable (to the adversary with respect to the leakage model O) if O(𝜌1) = O(𝜌2). It
is easy to see that two indistinguishable executions 𝜌1 and 𝜌2 must have the same control flow,
i.e., they execute the same conditional branches and iterations of loops, thus the sequences of
executed statements are the same. This observation is utilized to define cross-product [11], i.e.,
self-composition with lockstep execution of both loops and branches, namely, the copies share the
same control flow.
Given a program P, we assume that the input variables X𝑖𝑛 ⊆ Xmain are partitioned into public

input variables X𝑖𝑛
𝑙
and secret input variables X𝑖𝑛

ℎ
. These sets are to be annotated by users. (For

the sake of presentation, an input array variable should be annotated by either public or secret,
meaning that all the elements of the array are public or secret.) In our implementation, we provide
API wrappers to precisely annotate elements of input arrays and fields of input structures. The
adversary knows the implementation details of the program and has access to the values of public
input variables at runtime, but does not have any direct access to the values of other variables. The
goal of the adversary is to infer the information of secret input variables by analyzing observations
from executions.
Given a set of variables 𝑋 ⊆ X, two states 𝑠1 and 𝑠2 are 𝑋 -equivalent, written as 𝑠1 ≃𝑋 𝑠2, if for

every scale variable 𝑥 ∈ 𝑋 , 𝑠1 (𝑥) = 𝑠2 (𝑥) and for every array variable 𝑥 ∈ 𝑋 and possible index
𝑖 ∈ N, 𝑠1 (𝑥, 𝑖) = 𝑠2 (𝑥, 𝑖). Two configurations 𝑐1 and 𝑐2 are 𝑋 -equivalent, written as 𝑐1 ≃𝑋 𝑐2, if
their states are 𝑋 -equivalent. For a pair of executions 𝜌 = 𝑐0𝑐1 · · · 𝑐𝑛 and 𝜌 ′ = 𝑐 ′0𝑐

′
1 · · · 𝑐 ′𝑛′ , 𝜌 ≃𝑋 𝜌 ′

denotes that for every 0 ≤ 𝑖 ≤ min(𝑛, 𝑛′), 𝑐𝑖 ≃𝑋 𝑐 ′𝑖 .

Definition 2.2 (Constant-time Security [11]). A safe program P is (constant-time) secure if for any
pair of complete executions 𝜌 = 𝑐0𝑐1 · · · 𝑐𝑛 and 𝜌 ′ = 𝑐 ′0𝑐

′
1 · · · 𝑐 ′𝑛′ ,

(𝑐0 ≃X𝑖𝑛
𝑙
𝑐 ′0) ⇒ O(𝜌) = O(𝜌 ′).

Intuitively, the safe program P is secure if, for any pair of complete executions that have the
same public input values (i.e., the values of public input variables), their observations are the same,
meaning that secret inputs are not distinguishable from the observations. Otherwise, there must
exist a side-channel source (ℓ, 𝑥), namely, the values of the variable 𝑥 at label ℓ differ between
two configurations 𝑐𝑖 and 𝑐 ′𝑖 for some 𝑖 . Thus, a potential timing side-channel source (ℓ, 𝑥) does
not necessarily leak the secrets (i.e., 𝑥 is secret-independent), but leaks the secrets when 𝑥 is

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:7

1 uint64_t fixfrac(char* frac) {
2 uint64_t pow10_LUT [20] = {0 x1999999999999999 , ...,0 x0000000000000000 };
3 uint64_t pow10_LUT_extra [20] = {0x99 , ..., 0x2f};
4 uint64_t result = 0; uint64_t extra = 0;
5 for(int i = 0; i < 20; i++) {
6 if(frac[i] == '\0') { break; }
7 uint8_t digit = (frac[i] - (uint8_t) '0');
8 result += ((uint64_t) digit) * pow10_LUT[i];
9 extra += ((uint64_t) digit) * pow10_LUT_extra[i];
10 }
11 ... }

Fig. 3. Fragment of the function fixfrac taken from the libfixedtimefixedpoint library.

secret-dependent. The security of unsafe programs is undefined, because they are stuck in the error
state. (Note that the safety of a program can be verified using standard verification techniques and
tools, e.g., SMACK [63].)
Standard library functions malloc, free, memcpy and memset may be used in cryptographic

implementations. To handle them, following [11], we assume that the address and the length used
in those functions are observable to the adversary, and the return of free is secret-independent.

3 MOTIVATION AND OVERVIEW
In this section, we present two motivating examples and an overview of our approach.

3.1 Motivating Examples

Example 1. Figure 3 shows a fragment of the function fixfrac, a fixed-point numeric operation
provided by the library libfixedtimefixedpoint [13]. Given a digit string frac whose length is no
more than 20, it computes a 64-bit number which corresponds to

atoi(frac + padding)/1020) ∗ 264

where frac+padding is a digit string obtained from frac by padding some 0’s such that the length
is 20, and atoi coverts a digit string into the corresponding integer. The function fixfrac is
invoked by the function fix_pow(𝑥,𝑦) which computes 𝑥𝑦 over the fixed-point numbers 𝑥 and 𝑦.

There are five potential side-channel sources in this code snippet, i.e., (6, frac[i] ==‘\0’), (6, i),
(7, i), (8, i) and (9, i). We can observe that i is secret-independent, thus the last four pairs are not
side-channel sources. However, it is non-trivial to determine the first potential side-channel source
(6, frac[i] ==‘\0’) . If it is, the information of the secret inputs 𝑥 and 𝑦 can be inferred by the
adversary via timing side-channels.

This example cannot be proved by the self-composition based approach ct-verif [11] unless the
loop is unrolled or the following loop invariant is added:

∃𝑖max · 0 ≤ 𝑖 < 𝑖max ≤ 20 ∧ frac [𝑖max] == 0 ∧ ∀𝑗 .0 ≤ 𝑗 ≤ 𝑖max ⇒ public(frac[𝑗]) .
However, loops may be not statically bounded and providing such loop invariants manually is
non-trivial, which means that in practice, the self-composition based approach is not fully automatic.
In contrast, taint analysis is useful here. Indeed, frac is secret-independent.
Example 2. Figure 4 shows a simplified fragment of the function crypto_stream_chacha20_ref
taken from the libsodium library, a portable, cross-compilable and installable fork of NaCl with an
extended API to improve usability. This function implements the ChaCha20 stream cipher [23].
In the fragment of crypto_stream_chacha20_ref, variable c points to a plaintext to be en-

crypted, clen is the length of the plaintext, n points to an initialization vector, and k points to a

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:8 Luwei Cai, Fu Song, and Taolue Chen

1 int crypto_stream_chacha20_ref(unsigned char *c, unsigned long long clen ,
2 const unsigned char *n, const unsigned char *k){
3 uint32_t ctx [16];
4 chacha_keysetup(ctx , k); // store k from ctx[0] to ctx [11];
5 chacha_ivsetup(ctx , n, NULL); // store IV and counter into the rest;
6 chacha_encrypt_bytes(ctx , c, c, clen);
7 }
8 static void chacha_encrypt_bytes(uint32_t *x, const u8 *m, u8 *c,
9 unsigned long long bytes){
10 j12 = x[12];
11 if (!j12) {...}
12 }

Fig. 4. Simplified fragment of the function crypto_stream_chacha20_ref taken from the libsodium library.

Clang Pre-analysis

Lightweight taint analysis

Pointer analysis

Value-flow analysis

IFDS-based taint analysis

Precise taint analysis

Taint-directed semi-cross-
product construction

Precise taint analysis

Taint-directed
cross-product construction

Lightweight
taint analysis

Precise
taint analysis

Taint-directed
self-composition

verificationAnnotated
C program Result

Fig. 5. Overview of our approach

private key. The key k is stored at the first 12 positions of the buffer ctx, the initialization vector
and a counter (initialized as NULL) are stored at the rest 4 positions of the buffer ctx.
There is one potential side-channel sources in this simplified fragment, i.e., (11, !j12). It is

non-trivial to determine this potential side-channel source, as the value of j12 is x[12] while the
buffer x contains the secret key k. If it is, the information of the secret key k can be inferred by the
adversary via timing side-channels.
This example cannot be proved by an index-insensitive taint analysis, because ctx contains

both secret-dependent and secret-independent contents, namely, ctx[0–11] and ctx[12–15].
Any index-insensitive taint analysis will conservatively taint the whole buffer. In contrast, an
index-sensitive taint analysis (e.g., our precise taint analysis) would work in this example.
These examples reveal that static analysis (e.g., taint analysis) and self-composition based ap-

proaches may have complementary strengths even without efficiency considerations. Our method
precisely takes advantage of their respective strength for which we provide an overview below.

3.2 Approach Overview
An overview of our approach is shown in Figure 5. In general, for a given annotated C program, the
tool either outputs proved, suggesting that the program is secure, or outputs (potential) side-channel
sources and corresponding execution traces for vulnerability localization and repair.
Our approach works as follows. First, the input program is translated into LLVM intermediate

representation (IR) with annotations using Clang, the front-end of LLVM. Second, we compute the
call graph, interprocedural control-flow graph, points-to information and definition-use chains
required by the subsequent steps via a pre-analysis. Third, a lightweight taint analysis (cf. Section 4.1)
is performed by leveraging the inter-procedural, finite, distributive, subset (IFDS) framework [64].
Often it is able to determine a large number of potential side-channel sources, leaving few potential
side-channel sources unresolved. Finally, we resort to a precise taint analysis (cf. Section 4.2) and
a taint-directed self-composition verification (cf. Section 4.3) to resolve the left-over potential
side-channel sources. The precise taint analysis reduces the flow-, context-, path-, field- and index-
sensitive taint analysis problem to checking safety properties of a cross-product of the given
program and its Boolean abstraction which tracks the required information flow from the secrets.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:9

𝑇 ′ =
(
𝑦 ∈ 𝑇 ? 𝑇 ∪ {𝑥} : 𝑇 \ {𝑥}

)
𝑥 := 𝑦 [𝑧] ⊢ 𝑇 ↩→ 𝑇 ′ T-Assign1

𝑇 ′ =
(
var(𝑒) ∩𝑇 ≠ ∅ ? 𝑇 ∪ {𝑥} : 𝑇 \ {𝑥}

)
𝑥 := 𝑒 ⊢ 𝑇 ↩→ 𝑇 ′ T-Assign3

𝑇 ′ =
(
𝑧 ∈ 𝑇 ? 𝑇 ∪ {𝑥} : 𝑇

)
𝑥 [𝑦] := 𝑧 ⊢ 𝑇 ↩→ 𝑇 ′ T-Assign2

𝑝 is skip or assert 𝑒 or assume 𝑒
𝑝 ⊢ 𝑇 ↩→ 𝑇

T-Identity

𝑝1 ⊢ 𝑇 ↩→ 𝑇1 𝑝2 ⊢ 𝑇1 ↩→ 𝑇 ′

𝑝1; 𝑝2 ⊢ 𝑇 ↩→ 𝑇 ′ T-Seq
𝑇 ′ = lfp(𝑝,𝑇)

while 𝑥 do 𝑝 od ⊢ 𝑇 ↩→ 𝑇 ′ T-While

𝑝1 ⊢ 𝑇 ↩→ 𝑇1 𝑝2 ⊢ 𝑇 ↩→ 𝑇2

if 𝑥 then 𝑝1 else 𝑝2 fi ⊢ 𝑇 ↩→ 𝑇1 ∪𝑇2
T-If

def 𝑓 (𝑥 ′
1, · · · , 𝑥 ′

𝑛){𝑝; return 𝑦1, · · · , 𝑦𝑚 ; } 𝑇in = (𝑇 \ X𝑔) ∪ {𝑥 ′
𝑖 | 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑧𝑖 ∈ 𝑇 }

caller = 𝑔 𝑝 ⊢ 𝑇in ↩→ 𝑇out 𝑇 ′ = (𝑇 \ {𝑥1, · · · , 𝑥𝑚} ∪𝑇out \ X𝑓 ∪ {𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑚 ∧ 𝑦𝑖 ∈ 𝑇out}
𝑥1, · · · , 𝑥𝑚 := 𝑓 (𝑧1, · · · , 𝑧𝑛) ⊢ 𝑇 ↩→ 𝑇 ′ T-Call-Ret

Fig. 6. Taint inference rules for theWhile language.

The taint-directed self-composition consists of two copies of the original program which is a new
variant of self-composition. Remarkably, the taint information is utilized in both cross-product
constructions to simplify the resulting program and reduce the cost of safety checks. By combining
lightweight taint analysis and heavyweight safety verification, the overall approach brings the best
of three worlds: efficiency, soundness and theoretical completeness.
Consider the motivating examples. The lightweight taint analysis is able to prove that all the

five potential side-channel sources in Example 1 actually do not leak secrets, so the next two
steps are not needed. In Example 2, the lightweight taint analysis fails to determine the potential
side-channel source (11, !j12), thus the subsequent analyses have to check (11, !j12), which can
be resolved by the precise taint analysis. (The final step is thus not needed.) We remark that the
precise taint analysis may fail to prove some constant-time implementations meaning that it is
sound but incomplete. For instance, when the secret 𝑘 is involved in the computation of a potential
timing side-channel source 𝑥 (e.g., 𝑥 = 𝑘 ⊕ 𝑝 ⊕ 𝑘 where ⊕ is Exclusive-OR), and the value of 𝑥 is
independent upon the secret 𝑘 , the precise taint analysis will raise a false positive.

4 METHODOLOGY
In this section, we present the details of the three key components, i.e., lightweight taint analysis,
precise taint analysis and taint-directed self-composition.

4.1 Lightweight Taint Analysis
In this subsection, we present a lightweight taint analysis which is designed to be flow-, field- and
context-sensitive, but path-and index-insensitive, for a balance of efficiency and precision. Often it
is able to prove that a large number of potential side-channel sources do not leak secrets, leaving
few potential side-channel sources unresolved.
Taint source. Fix a safe program P. The taint source is the set X𝑖𝑛

ℎ
of its secret input variables, each

of which is a taint fact. We remark that although our implementation supports the element-wise
annotation of input array variables, this taint analysis is index-insensitive. Thus, if any element of
an input array variable is annotated by secret, the array variable is regarded as secret, i.e., all the
elements of the array are tainted.
Taint inference rule. The taint inference rule is given by the transfer function of the form

𝑝 ⊢ 𝑇 ↩→ 𝑇 ′,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:10 Luwei Cai, Fu Song, and Taolue Chen

where 𝑝 is a statement, 𝑇 and 𝑇 ′ are sets of taint facts. The transfer function 𝑝 ⊢ 𝑇 ↩→ 𝑇 ′ means
that the execution of the statement 𝑝 with the set of taint facts 𝑇 results in the set of taint facts 𝑇 ′.

The taint inference rules of the While language are given in Figure 6, where var(𝑒) denotes the
set of variables involved in the expression 𝑒 , and lfp(𝑝,𝑇) is recursively defined as follows:

lfp(𝑝,𝑇) =
{

𝑇, if 𝑝 ⊢ 𝑇 ↩→ 𝑇 ;
𝑇 ∪ lfp(𝑝,𝑇 ′), otherwise, where 𝑝 ⊢ 𝑇 ↩→ 𝑇 ′.

These rules are standard, which, intuitively, propagate taints from the right-hand side variables
to the left-hand side variable. For example, rule [T-Assign1] expresses that if the array 𝑦 is tainted,
then the loaded array element is tainted. Rule [T-Assign2] expresses that if a tainted value is stored
in an array, then the array is tainted. (Recall that our taint analysis is index-insensitive.) Rule
[T-Assign3] expresses that if any involved variable of an expression 𝑒 is tainted, then the result
of the expression 𝑒 is also tainted. Note that if the left-hand side is a scalar variable (i.e., rules
[T-Assign1] and [T-Assign3]), we perform a strong update. Rule [T-While] computes the least
fixed point by applying the operator lfp which always terminates, because the sequence of sets of
taint facts during lfp(𝑝,𝑇) is ascending w.r.t. the order ⊆. Rule [T-Call-Ret] is much involved.
The set 𝑇in of input taint facts at the call-site is obtained by passing actual arguments of the caller
𝑔 to the formal parameters of the callee 𝑓 after filtering out the taint facts of the local variables X𝑔
of the caller 𝑔. The body 𝑝 of the callee is analyzed using the set 𝑇in of input taint facts, leading to
the set 𝑇out of output taint facts. The set 𝑇out of output taint facts is merged with the set 𝑇 of taint
facts at return-site after filtering out the taint facts of the local variables X𝑓 of the callee 𝑓 and the
actual return variables are updated accordingly.

IFDS-based taint analysis. We leverage the inter-procedural, finite, distributive, subset (IFDS)
framework to implement the lightweight taint analysis. The time complexity and space complexity
of the vanilla IFDS algorithm areO(|𝐸 | · |𝐷 |3) andO(|𝐸 | · |𝐷 |), respectively, where |𝐸 | is the number
of edges in the interprocedural control-flow graph and the size |𝐷 | of the domain is the number of
all possible taint facts, i.e., |X|. The time complexity will increase sharply with |X| in practice [55]
which is significant for some cryptographic implementations due to the following reasons.

On the one hand, typically, the input of a cryptographic algorithm consists of a key and plaintext;
the key is secret and thus tainted, and the key and plaintext are tightly coupled in the computation.
For instance, the AES algorithm has multiple modes, with the smallest key size being 128 bits (an
array with 16 elements) and the smallest encryption process being 10 rounds each of which has
four transformations. On the other hand, the SSA form introduces a number of temporary variables.
Consequently, a large number of taint facts are propagated during the taint analysis. To mitigate
this issue, inspired by the sparse data-flow analysis [60], we improve the classic IFDS framework
by directly propagating taint facts of scalar variables via data flow instead of control flow. More
specifically, if a scalar variable 𝑥 is tainted, this taint fact is directly propagated to the statements
where 𝑥 is used, using the def-use chains. It avoids the propagation of taint facts of scalar variables
for many statements, hence improving efficiency in practice.

Hereafter, for every label ℓ of a statement 𝑝 , we denote by 𝑇ℓ the set of taint facts at label ℓ (i.e.,
before the execution of the statement 𝑝), obtained by applying the IFDS-based taint analysis. Since
the IFDS-based taint analysis is sound, it is straightforward to have that

Lemma 4.1. For any potential side-channel source (ℓ, 𝑥) and pair (𝑐0, 𝑐 ′0) of initial configurations
such that (𝑐0 ≃X𝑖𝑛

𝑙
𝑐 ′0), if 𝑥 is not tainted at the label ℓ , i.e., 𝑥 ∉ 𝑇ℓ , then the values of 𝑥 are the same at

the label ℓ in any pair of complete executions 𝜌 = 𝑐0𝑐1 · · · 𝑐𝑛 and 𝜌 ′ = 𝑐 ′0𝑐
′
1 · · · 𝑐 ′𝑛′ .

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:11

Proof sketch. For a pair of complete executions 𝜌 = 𝑐0𝑐1 · · · 𝑐𝑛 and 𝜌 ′ = 𝑐 ′0𝑐
′
1 · · · 𝑐 ′𝑛′ with

𝑐0 ≃X𝑖𝑛
𝑙
𝑐 ′0, suppose that the values of 𝑥 are different at the label ℓ . It suffices to show that 𝑥 ∈ 𝑇ℓ ,

i.e., 𝑥 is tainted at ℓ .
Note that the values of public input variables are the same in the initial configurations 𝑐0 and 𝑐 ′0.

We then can deduce that the value of the variable 𝑥 at the label ℓ depends upon some secret input
variables from X𝑖𝑛

ℎ
. By the soundness of the IFDS framework [64] and sparse static analysis [60], 𝑥

must be tainted at ℓ . □

Obviously, if for each potential side-channel source (ℓ, 𝑥), the variable 𝑥 is not tainted at the
label ℓ , we can deduce that the safe program is constant-time secure.

4.2 Precise Taint Analysis via Taint-directed Semi-cross-product
While the lightweight taint analysis is often effective in ruling out a large number of potential
side-channel sources to be genuinely vulnerable, some can still not be determined due to the
over-approximation nature of the static analysis, e.g., index-insensitive. In this subsection, we
propose a precise taint analysis, which reduces the flow-, context-, path-, field- and index-sensitive
taint analysis problem to checking safety properties of a novel cross-product, called taint-directed
semi-cross-product. We shall first explain the intuition and then present the formal construction.

Intuition. Given a program P, we construct a semi-cross-product P′ of the program P and its Boolean
abstraction. Here, ‘semi’ means that one copy in the cross-product P′ is a Boolean abstraction of P
instead of the original one; ‘cross’ means that P′ shares the same control flow of P and executes
statements of two copies in a lockstep manner.

The Boolean abstraction has

• a Boolean variable 𝑏𝑥 for each scalar variable 𝑥 in P such that 𝑏𝑥 = 1 iff 𝑥 is tainted.
• a Boolean array 𝑏𝑥 for each array variable 𝑥 in P such that 𝑏𝑥 [𝑖] = 1 iff 𝑥 [𝑖] is tainted.

The precise taint analysis is to determine whether a scalar variable 𝑥 (resp. an array element
𝑥 [𝑖]) is tainted or not. For this purpose, it suffices to check whether there exist inputs to P′ such
that 𝑏𝑥 (resp. 𝑏𝑥 [𝑖]) is 1, which is a standard safety verification problem.
To reduce the cost of safety verification, we incorporate the results from the lightweight taint

analysis into the semi-cross-product P′ based on the following observation. The lightweight taint
analysis is conservative (i.e., intuitively it may overly taint), consequently, a more precise taint
analysis would not taint the variables that have not been tainted by the lightweight taint analysis.
Hence if a variable 𝑥 has not been tainted by the lightweight taint analysis, its Boolean abstraction
𝑏𝑥 in the semi-cross-product P′ will always be 0. As a result, when verifying P′, it suffices to
focus exclusively on the variables that have been tainted by the lightweight taint analysis. For the
variables that have not been tainted by the lightweight taint analysis, we can simply assign 0 to
them, which can further improve the efficiency of safety verification.

Product construction. The semi-cross-product P′ for a given program P is constructed by iter-
atively applying the function 𝜋 (·) (given in Fig. 7) to each procedure of P. For each procedure,
formal parameters and return variables are duplicated by the function 𝜋 (·) using their Boolean
abstractions, and the procedure body 𝑝 is replaced by 𝜋 (𝑝). Moreover, the Boolean abstractions
of public and secret inputs are respectively initialized by 0 and 1 at the beginning of the main
procedure.
During the construction, b (𝑒) is used to generate the Boolean abstraction of the expression 𝑒

that computes the taint value of the result of the expression 𝑒 . Specifically, if 𝑒 is a constant 𝑛, b (𝑒)
is the Boolean constant 0; if 𝑒 a variable 𝑥 , b (𝑒) is the Boolean abstraction of 𝑥 (i.e., 𝑏𝑥); and if 𝑒 is a

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:12 Luwei Cai, Fu Song, and Taolue Chen

b (𝑛) ≜ 0 b (𝑥) ≜ 𝑏𝑥 b (𝑒1 ⊙ 𝑒2) ≜ b (𝑒1) ∨ b (𝑒2)
𝜋 (𝑝) ≜ 𝑝 if 𝑝 is skip or assert 𝑒 or assume 𝑒 𝜋 (𝑝1; 𝑝2) ≜ 𝜋 (𝑝1); 𝜋 (𝑝2)

𝜋 (ℓ : 𝑥 := 𝑒) ≜
{

𝑥 := 𝑒; 𝑏𝑥 := 0 if var(𝑒) ∩𝑇ℓ = ∅
𝑥 := 𝑒; 𝑏𝑥 := b (𝑒) otherwise

𝜋 (ℓ : 𝑥 := 𝑦 [𝑧]) ≜
{

Guardℓ (𝑧); 𝑥 := 𝑦 [𝑧]; 𝑏𝑥 := 0 if 𝑦 ∉ 𝑇ℓ

Guardℓ (𝑧); 𝑥 := 𝑦 [𝑧]; 𝑏𝑥 := 𝑏𝑦 [𝑧] otherwise

𝜋 (ℓ : 𝑥 [𝑦] := 𝑧) ≜
{

Guardℓ (𝑦); 𝑥 [𝑦] := 𝑧; 𝑏𝑥 [𝑦] := 0 if 𝑧 ∉ 𝑇ℓ

Guardℓ (𝑦); 𝑥 [𝑦] := 𝑧; 𝑏𝑥 [𝑦] := 𝑏𝑧 otherwise
𝜋 (ℓ : while 𝑥 do 𝑝 od) ≜ while 𝑥@INV do Guardbegin(ℓ) (𝑥); 𝜋 (𝑝) od; Guardexit(ℓ) (𝑥)
𝜋 (ℓ : if 𝑥 then 𝑝1 else 𝑝2 fi) ≜ Guardℓ (𝑥); if 𝑥 then 𝜋 (𝑝1) else 𝜋 (𝑝2) fi
𝜋 (𝑥1, · · · , 𝑥𝑚 := 𝑓 (𝑦1, · · · , 𝑦𝑛)) ≜ 𝑥1, 𝑏𝑥1 , · · · , 𝑥𝑚, 𝑏𝑥𝑚 := 𝑓 (𝑦1, 𝑏𝑦1 , · · · , 𝑦𝑛, 𝑏𝑦𝑛)
𝜋 (def 𝑓 (𝑥1, · · · , 𝑥𝑛){𝑝; return 𝑦1, · · · , 𝑦𝑚 ; }) = def 𝑓 (𝑥1, 𝑏𝑥1 · · · , 𝑥𝑛, 𝑏𝑥𝑛){𝜋 (𝑝); return 𝑦1, 𝑏𝑦1 , · · · , 𝑦𝑚, 𝑏𝑦𝑚 ; }
Guardℓ (𝑥) ≜ (𝑥 ∈ 𝑇ℓ ? assert ¬𝑏𝑥 : skip)

Fig. 7. The taint-directed semi-cross-product of theWhile programs, where begin(ℓ) and exit(ℓ) denote
the labels of the beginning and exit of the loop body of the loop at the label ℓ .

compound expression 𝑒1 ⊙ 𝑒2, b (𝑒) is the disjunction b (𝑒1) ∨ b (𝑒2) of taint values of sub-expressions,
namely, the value of 𝑒 is tainted if some variable used in 𝑒 is tainted.
For each statement 𝑝 with label ℓ , 𝜋 (𝑝) produces a new statement. If 𝑝 is a skip or assert

or assume statement, 𝜋 (𝑝) gives 𝑝 itself, namely, it does not have a Boolean abstraction. If 𝑝 is
a sequential statement 𝑝1; 𝑝2, 𝜋 (𝑝) gives the sequential statement 𝜋 (𝑝1); 𝜋 (𝑝2) by recursively
applying the function 𝜋 (·). If 𝑝 is a standard assignment 𝑥 := 𝑒 , 𝜋 (𝑝) is defined to track the
information flow from the operands of the expression 𝑒 to the Boolean abstraction 𝑏𝑥 of 𝑥 if some
operand of 𝑒 has been tainted by the lightweight taint analysis, otherwise 0.

If 𝑝 is a load statement 𝑥 := 𝑦 [𝑧], 𝜋 (𝑝) gives a sequential statement Guardℓ (𝑧); 𝑥 := 𝑦 [𝑧]; 𝑏𝑥 := 0
if 𝑦 has not been tainted (i.e., 𝑦 ∉ 𝑇ℓ). Otherwise, Guardℓ (𝑧); 𝑥 := 𝑦 [𝑧]; 𝑏𝑥 := 𝑏𝑦 [𝑧] is generated
meaning that 𝑏𝑥 is the same as 𝑏𝑦 [𝑧]. The auxiliary function Guardℓ (𝑧) is used to generate an
assert statement to resolve the taint status of the variable 𝑧 if 𝑧 has been tainted, because (ℓ, 𝑧)
is a potential side-channel source. If 𝑧 has not been tainted, the assertion is avoided by replacing
it with a skip statement which can be further removed from the program P′. A store statement
𝑥 [𝑦] := 𝑧 is handled similarly, except that 𝑏𝑦 = 0 is checked by inserting an assert statement if 𝑦
has been tainted (i.e., 𝑦 ∈ 𝑇ℓ) and 𝑏𝑥 [𝑦] is updated accordingly.

If 𝑝 is a while-do statement while 𝑥 do 𝑝 od, 𝜋 (𝑝) inserts an assert statement at the beginning
(resp. exit) of the loop body to ensure that 𝑏𝑥 = 0 if 𝑥 has been tainted at the beginning (resp. exit)
of the loop body. Furthermore, to facilitate safety verification, loop invariants INV are inserted. Cur-
rently, we use the following heuristic strategy to generate loop invariants and leave the generation
of more effective loop invariants as future work. For each variable 𝑦 defined in the loop body, if it is
required to determine some assert statement, then the predicate ¬𝑏𝑦 is added as a loop invariant.
However, such loop invariants may be invalid in practice. Loop invariants are checked and invalid
ones are removed during safety verification.
If 𝑝 is an if-then-else statement if 𝑥 then 𝑝1 else 𝑝2 fi, similarly, 𝜋 (𝑝) inserts an assert

statement to resolve the taint status of the branching condition 𝑥 if it has been tainted.
For every potential side-channel source (ℓ, 𝑥) such that 𝑥 ∈ 𝑇ℓ , the program P′ must have one or

two assert statements introduced by Guard which checks if 𝑏𝑥 = 0. By applying a sound safety
verifier, we can check if such assert statements are valid or not. If they are valid, we can deduce

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:13

that (ℓ, 𝑥) is not a side-channel source, thus the variable 𝑥 can be removed from the set of taint
facts𝑇ℓ . We denote by𝑇 ′

ℓ the resulting set of taint facts. It is trivial to see that Lemma 4.1 still holds
when 𝑇ℓ is updated by 𝑇 ′

ℓ for every potential side-channel source (ℓ, 𝑥).

Lemma 4.2. For any potential side-channel source (ℓ, 𝑥) and pair (𝑐0, 𝑐 ′0) of initial configurations
such that (𝑐0 ≃X𝑖𝑛

𝑙
𝑐 ′0), if 𝑥 ∉ 𝑇 ′

ℓ , then the values of 𝑥 are the same at the label ℓ in any pair of complete
executions 𝜌 = 𝑐0𝑐1 · · · 𝑐𝑛 and 𝜌 ′ = 𝑐 ′0𝑐

′
1 · · · 𝑐 ′𝑛′ .

Proof sketch. Suppose the values of 𝑥 are different at the label ℓ in a pair of complete executions
𝜌 = 𝑐0𝑐1 · · · 𝑐𝑛 and 𝜌 ′ = 𝑐 ′0𝑐

′
1 · · · 𝑐 ′𝑛′ with 𝑐0 ≃X𝑖𝑛𝑙 𝑐 ′0. Let 𝑏𝑥 be the Boolean abstraction of 𝑥 . We show

that the assert statement assert ¬𝑏𝑥 for the potential side-channel source (ℓ, 𝑥) is not valid.
As the values of 𝑥 are different at ℓ in 𝜌 and 𝜌 ′, and the values of public input variables are the

same in the initial configurations 𝑐0 and 𝑐 ′0, we can deduce that the value of 𝑥 at ℓ depends upon
some secret input variables from X𝑖𝑛

ℎ
. Since the Boolean abstractions of all the secret input variables

are initialized by 1, the Boolean abstraction of each internal variable is set to 0 only if the internal
variable is independent of secret input variables, and Boolean abstractions can only be disjunction,
we conclude that 𝑏𝑥 is 1 when the semi-cross-product P′ takes the inputs from 𝑐0 or 𝑐 ′0. □

4.3 Taint-directed Self-composition
The precise taint analysis can resolve potential side-channel sources that were left by the lightweight
taint analysis, but may still fail on some potential side-channel sources. Indeed, it cannot determine
genuine side-channel sources that would leak secrets. Thus, in this subsection, we propose a taint-
directed self-composition which improves the original construction [11] by incorporating the taint
information. Our construction simplifies the self-composed programs and reduces the number of
safety checks. We first describe the intuition and then present the formal construction.

Intuition. Given a program P, we construct a cross-product P̂ of the program P comprising two
copies of P which share the same control flow. One copy is the original program, and the other copy
is referred to as the shadow one which has a shadow variable 𝑥 for each variable 𝑥 in P. Typically
we check whether the variable 𝑥 and its shadow 𝑥 have the same values when the original and
shadow counterparts of P̂ are provided with the same public inputs but different secret inputs.

To reduce the cost of safety verification, we also incorporate the results from two taint analyses
into P̂ based on the following observation. If a variable 𝑥 has not been tainted, 𝑥 and its shadow 𝑥

in the product P̂ must have the same values when the public inputs of the two copies are the same.
Therefore, when verifying P̂, it suffices to focus exclusively on the variables that are still tainted
after two taint analyses. Moreover, for those variables that have not been tainted, we can simply
assign the value of the original variable to the shadow one instead of copying the computation,
which can further improve the efficiency of safety verification.

Product construction. The cross-product P̂ for a given program P is constructed by iteratively
applying the function Π(·) (given in Fig. 8) to each procedure of P. Moreover, the shadow counter-
parts of public inputs are initialized by their original ones at the beginning of the main procedure.
For each procedure, Π(·) is defined similar to the function 𝜋 (·) in semi-cross-product, where the
Boolean abstractions are replaced by the shadow counterparts.
More specifically, the auxiliary function Ξ(𝑒) used in defining Π(ℓ : 𝑥 := 𝑒) now generates a

shadow expression that computes the value of expression 𝑒 over shadow variables. Concretely, if 𝑒
is a constant 𝑛, Ξ(𝑒) is the constant 𝑛; if 𝑒 is a variable 𝑥 , Ξ(𝑒) is the shadow variable 𝑥 of 𝑥 ; and if
𝑒 is a compound expression 𝑒1 ⊙ 𝑒2, Ξ(𝑒) is Ξ(𝑒1) ⊙ Ξ(𝑒2).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:14 Luwei Cai, Fu Song, and Taolue Chen

Ξ(𝑛) ≜ 𝑛 Ξ(𝑥) ≜ 𝑥 Ξ(𝑒1 ⊙ 𝑒2) ≜ Ξ(𝑒1) ∨ Ξ(𝑒2)
Π(𝑝) ≜ 𝑝 if 𝑝 is skip or assert 𝑒 or assume 𝑒 Π(𝑝1; 𝑝2) ≜ Π(𝑝1); Π(𝑝2)

Π(ℓ : 𝑥 := 𝑦 [𝑧]) ≜
{

Guard′ℓ (𝑧); 𝑥 := 𝑦 [𝑧]; 𝑥 := 𝑥 if 𝑦 ∉ 𝑇 ′
ℓ

Guard′ℓ (𝑧); 𝑥 := 𝑦 [𝑧]; 𝑥 := 𝑦 [𝑧] otherwise

Π(ℓ : 𝑥 [𝑦] := 𝑧) ≜
{

Guard′ℓ (𝑦); 𝑥 [𝑦] := 𝑧; 𝑥 [𝑦] := 𝑥 [𝑦] if 𝑧 ∉ 𝑇 ′
ℓ

Guard′ℓ (𝑦); 𝑥 [𝑦] := 𝑧; 𝑥 [𝑦] := 𝑧 otherwise

Π(ℓ : 𝑥 := 𝑒) ≜
{

𝑥 := 𝑒; 𝑥 := 𝑥 if var(𝑒) ∩𝑇 ′
ℓ = ∅

𝑥 := 𝑒; 𝑥 := Ξ(𝑒) otherwise
Π(ℓ : while 𝑥 do 𝑝 od) ≜ while 𝑥@INV′ do Guard′

begin(ℓ) (𝑥); Π(𝑝) od; Guard
′
exit(ℓ) (𝑥)

Π(ℓ : if 𝑥 then 𝑝1 else 𝑝2 fi) ≜ Guard′ℓ (𝑥); if 𝑥 then Π(𝑝1) else Π(𝑝2) fi
Π(𝑥1, · · · , 𝑥𝑚 := 𝑓 (𝑦1, · · · , 𝑦𝑛)) ≜ 𝑥1, 𝑥1, · · · , 𝑥𝑚, 𝑥𝑚 := 𝑓 (𝑦1, 𝑦1, · · · , 𝑦𝑛, 𝑦𝑛)
Π(def 𝑓 (𝑥1, · · · , 𝑥𝑛){𝑝; return 𝑦1, · · · , 𝑦𝑚 ; }) = def 𝑓 (𝑥1, 𝑥1 · · · , 𝑥𝑛, 𝑥𝑛){Π(𝑝); return 𝑦1, 𝑦1, · · · , 𝑦𝑚, 𝑦𝑚 ; }
Guard′ℓ (𝑥) ≜ (𝑥 ∈ 𝑇 ′

ℓ ? assert 𝑥 = 𝑥 : skip)

Fig. 8. The taint-directed cross-product of theWhile programs.

The auxiliary function Guard′ℓ (𝑥) for each left potential side-channel source (ℓ, 𝑥) generates an
assert statement to ensure that the variable 𝑥 and its shadow counterpart have the same value
(i.e., 𝑥 = 𝑥) if 𝑥 has been tainted. It allows us to resolve the taint status of 𝑥 .

The duplicated Boolean counterpart 𝑏𝑥 := 0 (resp. 𝑏𝑥 [𝑦] := 0) is replaced by 𝑥 := 𝑥 (resp.
𝑥 [𝑦] := 𝑥 [𝑦]) in Π(ℓ : 𝑥 := 𝑦 [𝑧]) (resp. Π(ℓ : 𝑥 [𝑦] := 𝑧)) if 𝑥 was untainted, otherwise the
right-hand side is copied using the corresponding shadow counterparts.
For each while 𝑥 do 𝑝 od, Π(𝑝) inserts loop invariants INV. Following [11], for each variable 𝑦

defined in the loop body, if it is required to determine some assert statement, then the predicate
𝑦 = 𝑦 is added as a loop invariant. Similar to the precise taint analysis, such loop invariants are
checked and invalid ones are removed during safety verification.

For every potential side-channel source (ℓ, 𝑥) such that 𝑥 ∈ 𝑇 ′
ℓ , the program P̂ must have one or

two assert statements introduced by Guard′ which checks if 𝑥 = 𝑥 . By invoking safety verifiers,
we can check if such assert statements are valid or not. If they are valid, we can deduce that (ℓ, 𝑥)
is not a side-channel source, thus the variable 𝑥 can be removed from the set of taint facts 𝑇 ′

ℓ . We
denote by 𝑇ℓ the resulting set of taint facts. It is trivial to see that Lemma 4.1 still holds when 𝑇ℓ is
updated by 𝑇ℓ for every potential side-channel source (ℓ, 𝑥).

Lemma 4.3. For any potential side-channel source (ℓ, 𝑥) and pairs (𝑐0, 𝑐 ′0) of initial configurations
such that (𝑐0 ≃X𝑖𝑛

𝑙
𝑐 ′0), if 𝑥 ∉ 𝑇ℓ , then the values of 𝑥 are the same at the label ℓ in any pair of complete

executions 𝜌 = 𝑐0𝑐1 · · · 𝑐𝑛 and 𝜌 ′ = 𝑐 ′0𝑐
′
1 · · · 𝑐 ′𝑛′ .

Proof sketch. The correctness of the lemma follows directly from the correctness of the product
construction [11] and Lemmas 4.1—4.2. □

By Lemmas 4.1—4.3, we obtain

Theorem 4.4. Given a safe program P, if 𝑇ℓ = ∅ for any potential side-channel source (ℓ, 𝑥), P is
constant-time secure.

5 IMPLEMENTATION AND EVALUATION
We implement our approach in a fully automated prototype tool, named CT-Prover. CT-Prover
leverages the static value-flow analysis framework SVF [69] for pre-analysis (i.e., computing call-
graph, interprocedural-control-flow graph, points-to information and definition-use chains) and

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:15

Phasar [66] for building our lightweight taint analysis. In particular, CT-Prover leverages points-to
information from SVF to cope with dynamic memory accesses and the recursive implementation of
the IFDS framework in Phasar is rewritten as a worklist-based loop implementation for efficiency
consideration. CT-Prover utilizes the SMACK toolchain [63] to translate LLVM IR with taint
information into Boogie IR [19] and Bam-Bam-Boogieman [58] to construct product programs
on Boogie IR. The Boogie verifier is used as the underlying safety verification engine. Dynamic
memory accesses in product programs are handled by SMACK and Boogie.
Research questions. We investigate the following research questions:
RQ1. How effective and efficient is CT-Prover in proving constant-time security?
RQ2. How efficient is CT-Prover for finding side-channel sources?
RQ3. What are the respective contributions of the three main steps in CT-Prover?

Benchmark. We collect 87 real-world examples which are implementations from widely used
modern cryptographic and SSL/TLS libraries (e.g., Tongsuo [5], BearSSL [61], Mbed TLS [72],
HACL* [2], FourQlib [59], libsodium [3] and OpenSSL [4]) and (constant-time) implementations
from fixed-point arithmetic library (e.g., libfixedtimefixedpoint [13], curve25519-donna [1], and
MEE-CBC implementations [10]). These benchmarks include cryptographic utilities, arithmetic
operations, public and private key cryptography, and algorithms for encryption, decryption,message
authentication code (MAC), and digital signature. Among 87 examples, 58 are explicitly claimed to
be constant-time by developers.
The statistics of the benchmarks are shown in Table 1, where benchmarks with constant-time

claims are marked by†, #Loc shows the number of lines of the analyzed Boogie IR code (similar to
LLVM bitcode [11]), and #Src shows the number of all potential side-channel sources. #Loc ranges
from 28 to 68,502 (667,518 in total) and #Src ranges from 0 to 7,840 (55,060 in total). Interestingly,
we found that 7 (out of 87) benchmarks have no potential side-channel source after being translated
into Boogie IR, indicating that they avoid the use of branching and load/store-related statements.
We include them because they can be used to validate the tool implementation and measure the
verification efficiency, and also because some of them were verified in ct-verif [11].

The experiments were conducted on a machine with Intel Xeon Gold 6342 2.80GHz CPU, 1T
RAM, and Ubuntu 20.04.1. All the benchmarks were compiled with clang-12 -c -emit-llvm -O0
-g -Xclang -disable-O0-optnone and opt -mem2reg, the same as ct-verif [11]. In particular,
O0 disables optimizations to avoid compiler-introduced leakage, disable-O0-optnone disables
the ‘optnone’ pass which affects ‘-mem2reg’ and mem2reg is used to reduce redundant load/store
instructions.

5.1 Verifying Constant-time Implementations (RQ1, RQ3)
To answer RQ1, we verify all 87 programs. CT-Prover returns "proved" for 72 benchmarks. (One
will see later that the other 15 programs are indeed not constant-time and the constant-time claim
made by the developer may be incorrect.) We mainly compare CT-Prover with ct-verif which is
the only available tool at the LLVM IR level.

The results are reported in Table 2, where verification time is given in seconds and TO denotes
time out (1 hour). ct-verif fails to prove 16 constant-time programs: it runs out of time on 14
programs without outputting any potential side-channel sources (highlighted in red color) and
outputs inconclusive verification results on 2 programs within 1 hour (highlighted in blue color).
The latter is because of the loop in P7_1 (cf. Example 1) and the type-casting of pointers in P9_4.
This indicates that the theoretical completeness of self-composition based approaches may be
compromised by the limitation of safety verification. On the other 56 constant-time programs that
can be proved by ct-verif and CT-Prover, CT-Prover is about 50 times faster.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:16 Luwei Cai, Fu Song, and Taolue Chen

Table 1. Statistics of 87 Benchmarks, where #Loc and #Src show the numbers of lines and potential side-
channel sources of the program in Boogie IR, respectively; † indicates that the benchmark is claimed to be
constant-time by developers.

Name Lib/Algorithm/Function #Loc #Src Name Lib/Algorithm/Function #Loc #Src
P1_1 OpenSSL_tls1_cbc_remove_padding 1042 71 P6_1 BearSSL_AES_small_decrypt 1395 310
P1_2 OpenSSL_ssl3_cbc_digest_record 13089 198 P6_2 BearSSL_AES_small_encrypt 945 54
P1_3 OpenSSL_ssl3_cbc_remove_padding 351 14 P6_3† BearSSL_ChaCha20_ct_run 2655 316
P1_4 OpenSSL_ssl3_cbc_copy_mac 452 15 P6_4† BearSSL_GHASH_ctmul32_br_ghash_ctmul 2588 202
p2_1† MAC-then-Encode-then-CBC-Encrypt 22036 396 P6_5† BearSSL_RSA_i15_decrypt 5928 229
P3_1† Hacl_HMAC_compute_sha2_256 27404 1673 P6_6† BearSSL_EC_p256_m15_api_mul 19535 1895
P3_2† Hacl_HMAC_compute_blake2b_32 68502 5289 P6_7† BearSSL_EC_p256_m31_api_mul 9560 796
P3_3† Hacl_HMAC_legacy_compute_sha1 2149 111 P6_8† BearSSL_EC_p256_m64_api_mul 6450 380
P3_4† Hacl_HMAC_compute_blake2s_32 56465 4309 P6_9† BearSSL_GHASH_ctmul64 1060 10
P3_5† Hacl_HMAC_compute_sha2_384 34620 2183 P6_10† BearSSL_AES_ct_bitslice_encrypt 1345 60
P3_6† Hacl_HMAC_compute_sha2_512 34565 2177 P6_11† BearSSL_AES_ct_bitslice_decrypt 1788 72
P3_7† Hacl_Chacha20_chacha20_decrypt 3303 180 P6_12† BearSSL_AES_ct_key_sched 2161 100
P3_8† Hacl_Chacha20_chacha20_encrypt 3285 180 P6_13 BearSSL_AES_big_cbc_key_schedule 836 290
P3_9† Hacl_Curve25519_64_ecdh 1813 70 P6_14 BearSSL_AES_big_cbc_decrypt 1813 565
P3_10† Hacl_Curve25519_64_scalarmult 1619 67 P6_15 BearSSL_AES_big_cbc_encrypt 1806 565
P3_11† Hacl_Curve25519_64_secret_to_public 1701 102 P6_16† BearSSL_RSA_i15_pkcs1_sign 6464 264
P3_12† Hacl_Poly1305_32_poly1305_mac 2240 121 P6_17 BearSSL_DES_table_cbc_decrypt 1514 555
P3_13† Hacl_Poly1305_128_poly1305_mac 72 0 P6_18 BearSSL_DES_table_cbc_encrypt 1501 555
P3_14† Hacl_Poly1305_256_poly1305_mac 72 0 P6_19† BearSSL_RSA_i31_pkcs1_sign 5423 235
P3_15† Hacl_Curve25519_51_ecdh 21158 2313 P6_20 BearSSL_Poly1305_i15_ChaCha20_run 3409 347
P3_16† Hacl_Curve25519_51_scalarmult 20964 2310 P6_21† BearSSL_Poly1305_ctmul32_ChaCha20_run 4802 425
P3_17† Hacl_Curve25519_51_secret_to_public 21046 2345 P6_22† BearSSL_EC_p256_m62_api_mul 6617 472
P4_1 Tongsuo_curve448_ossl_x448 6674 446 P6_23† BearSSL_GHASH_ctmul_br_ghash_ctmul 1947 125
P4_2 Tongsuo_curve448_derive_pub_key 8994 575 P6_24† BearSSL_AES_ct64_bitslice_encrypt 1348 60
P4_3 Tongsuo_AES_decrypt 3274 1382 P6_25† BearSSL_AES_ct64_bitslice_decrypt 1791 72
P4_4 Tongsuo_AES_encrypt 2982 1126 P6_26† BearSSL_AES_ct64_key_sched 2069 119
P4_5 Tongsuo_constant_time_lookup 339 5 P6_27† BearSSL_RSA_i32_decrypt 4170 179
P4_6 Tongsuo_curve25519_derive_pub_key 14744 7840 P6_28† BearSSL_Poly1305_ctmul_ChaCha20_run 4318 363
P4_7 Tongsuo_curve25519_ossl_x25519 3561 163 P6_29† BearSSL_Poly1305_ctmulq_ChaCha20_run 6761 415
P5_1 Mbed TLS_rsa_decrypt 13797 788 P6_30† BearSSL_DES_ct_cbc_decrypt 1670 49
P5_2† Mbed TLS_mpi_lt_mpi_ct 411 26 P6_31† BearSSL_DES_ct_cbc_encrypt 1658 49
P5_3† Mbed TLS_ct_rsaes_pkcs1_v15_unpadding 629 19 P8_1† FourQlib_ECC_double_eccdouble 28 0
P5_4† Mbed TLS_mpi_safe_cond_assign 729 43 P8_2† FourQlib_ECC_madd_eccmadd 1632 58
P5_5† Mbed TLS_mpi_core_lt_ct 214 5 P8_3† FourQlib_ECC_norm_eccnorm 2390 79
P5_6† Mbed TLS_mpi_safe_cond_swap 765 46 P9_1 libsodium_core_salsa208 1126 9
P5_7† Mbed TLS_ct_memcmp 145 7 P9_2 libsodium_aead_chacha20poly1305_decrypt 9311 397
P5_8† Mbed TLS_ct_mpi_uint_cond_assign 140 4 P9_3 libsodium_core_salsa20 1094 9
P5_9† Mbed TLS_ct_memcpy_offset 290 5 P9_4 libsodium_stream_chacha20 6620 259
P5_10† Mbed TLS_ct_base64_dec_value 309 0 P9_5 libsodium_onetimeauth_poly1305_block 778 25
P5_11 Mbed TLS_DES_crypt_cbc 1991 546 P9_6 libsodium_hash_sha512_Transformer 29713 2508
P7_1† libfixedtimefixedpoint_fix_pow_fix_pow 24538 80 P9_7 libsodium_hash_sha256_Transformer 23806 2008
P7_2† libfixedtimefixedpoint_fix_cmp_fix_cmp 591 0 P10_1 curve25519-donna portable implementation 11737 722
P7_3† libfixedtimefixedpoint_fix_ln_fix_ln 15200 0 P10_2† curve25519-donna c64 implementation 23936 1599
P7_4† libfixedtimefixedpoint_fix_eq_fix_eq 153 0

To partially answer RQ3, we inspect at which step a program can be proved in the verification
process of CT-Prover. We found that all these programs (except for P1_1 and P9_4) can be proved
using the lightweight taint analysis solely. The lightweight taint analysis cannot determine 4 (resp.
2) potential side-channel sources of P1_1 (resp. P9_4) due to an infeasible branch condition (resp.
index-insensitive), which were resolved by the precise taint analysis. While the individual cost of
the two taint analyses is lower than ct-verif, the accumulated cost is slightly higher.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:17

Table 2. Results of verifying constant-time implementations, where TO denotes time out (1 hour).

Name CT-Prover ct-verif Name CT-Prover ct-verif Name CT-Prover ct-verif Name CT-Prover ct-verif
P1_1 7.55 7.53 P3_14 † 0.04 6.93 P6_3 † 0.10 9.25 P6_30 † 0.07 8.26
P1_2 1.12 26.74 P3_15 † 0.70 TO P6_4 † 0.20 9.04 P6_31 † 0.07 8.51
P1_3 0.04 7.25 P3_16 † 0.67 TO P6_6 † 23.24 TO P7_1 † 0.64 TO
P1_4 0.05 7.89 P3_17 † 0.63 TO P6_7 † 0.45 TO P7_2 † 0.51 7.42
p2_1 † 1.44 134.72 P4_1 0.53 TO P6_8 † 0.21 794.79 P7_3 † 0.59 21.36
P3_1 † 108.80 TO P4_2 0.57 TO P6_9 † 0.05 7.65 P7_4 † 0.52 7.37
P3_2 † 177.48 TO P4_5 0.04 7.42 P6_10 † 0.07 7.79 P8_1 † 0.20 6.87
P3_3 † 104.40 TO P4_6 0.35 177.25 P6_11 † 0.08 8.22 P8_2 † 0.40 21.69
P3_4 † 169.71 TO P4_7 0.34 14.16 P6_12 † 0.07 8.66 P8_3 † 0.39 37.73
P3_5 † 109.19 TO P5_2 † 0.08 7.27 P6_20 0.11 12.38 P9_1 0.14 7.86
P3_6 † 122.85 TO P5_3 † 0.08 7.36 P6_21 † 0.14 14.49 P9_2 25.69 23.02
P3_7 † 0.12 30.51 P5_4 † 1.78 7.49 P6_22 † 0.24 977.27 P9_3 0.13 7.97
P3_8 † 0.13 30.65 P5_5 † 0.07 7.05 P6_23 † 0.11 8.40 P9_4 16.05 11.91
P3_9 † 0.10 8.94 P5_6 † 1.86 7.57 P6_24 † 0.06 7.93 P9_5 0.06 7.25
P3_10 † 0.09 8.91 P5_7 † 0.08 6.91 P6_25 † 0.08 8.41 P9_6 4.25 44.12
P3_11 † 0.09 9.26 P5_8 † 0.08 6.46 P6_26 † 0.06 8.94 P9_7 3.34 32.98
P3_12 † 0.09 9.28 P5_9 † 0.07 6.63 P6_28 † 0.12 12.23 P10_1 0.55 TO
P3_13 † 0.04 7.05 P5_10 † 0.08 7.00 P6_29 † 0.17 13.86 P10_2 † 10.89 33.18

In summary, CT-Prover can return conclusive results for these benchmarks. Most constant-time
implementations can be proved by the lightweight taint analysis solely, whereas the remaining ones
can be proved by the precise taint analysis. CT-Prover significantly outperforms the state-of-the-art
tool ct-verif for real-world constant-time implementations.

5.2 Verifying Non-constant-time Implementations (RQ2, RQ3)
To answer RQ2, we check the remaining 15 cases which are deemed to be vulnerable. The results
are shown in Table 3, where CT-Prover− refers to CT-Prover without the precise taint analysis (i.e.,
the 2nd main step), a:b in Time (s) respectively denote the execution time after the 2nd and 3rd main
step (note: the 1st step is very efficient whose time is negligible), TO denotes time out (6 hours),
x:y:z (resp. x:z) in #Src respectively denote the numbers of side-channel sources reported after the
1st, 2nd and 3rd (resp. 1st and 3rd) main step, and ★ indicates that some invalid loop invariants are
added by ct-verif and thus may miss side-channel sources. We have manually checked all these final
potential side-channel sources with their corresponding execution traces produced by CT-Prover,
and found that all of them are genuine timing side-channel vulnerabilities (i.e., not false positives).
In particular, P6_5, P6_16, P6_19 and P6_27 (from BearSSL) were claimed to be of constant-time.1

Both CT-Prover and ct-verif ran out of time on 4 programs (P5_1, P6_5, P6_16 and P6_19). We
note that on P5_1 our lightweight taint analysis is still able to find 48 potential side-channel sources
based on which we manually confirm that P5_1 is not constant-time. CT-Prover finally found
more side-channel sources than ct-verif on 9 (out of 15) programs (marked by ★ in Table 3), because
ct-verif misses side-channel sources when some additional loop invariants cannot be proved, while
CT-Prover still works after automatically removing such loop invariants. On the other programs,
CT-Prover and ct-verif report the same side-channel sources. In terms of efficiency, CT-Prover is
slightly slower than ct-verif. It is not surprising as CT-Prover involves three main steps while the
last two main steps have to perform safety checking. We remark that ct-verif may miss potential
side-channel sources since it skips part of the program (e.g., the loop body) when additional loop
invariants cannot be proved, which explains its reduced execution time.

1We have reported all the potential vulnerabilities in Table 3 to the respective developer(s), and received confirmations for
Mbed TLS and BearSSL.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:18 Luwei Cai, Fu Song, and Taolue Chen

Table 3. Results of verifying non-constant-time implementations, where CT-Prover− refers to CT-Prover
without the precise taint analysis (i.e., the 2nd main step), a:b in Time (s) respectively denote the execution
time after the 2nd and 3rd main step (note: the 1st step is very efficient whose time is negligible), TO denotes
time out (6 hours), x:y:z (resp. x:z) in #Src respectively denote the numbers of side-channel sources reported
after the 1st, 2nd and 3rd (resp. 1st and 3rd) main step, and ★ indicates that some invalid loop invariants are
added by ct-verif and thus may miss side-channel sources.

Name CT-Prover ct-verif CT-Prover− Name CT-Prover ct-verif CT-Prover−

Time (s) #Src Time (s) #Src Time (s) #Src Time (s) #Src Time (s) #Src Time (s) #Src
P4_3 24.05:50.84 49:48:48 17.69 32★ 24.77 49:48 P6_14 13.06:26.57 32:32:32 10.58 0★ 12.64 32:32
P4_4 21.03:44.76 49:48:48 16.73 32★ 21.96 49:48 P6_15 13.06:26.35 32:32:32 10.37 0★ 12.42 32:32
P5_1 TO:TO 48:–:– TO – TO 48:– P6_16† 2561.81:TO 107:71:53 TO 21★ TO 107:55
P5_11 14.10:30.68 26:16:16 11.81 16 15.20 26:16 P6_17 9.75:20.31 11:8:8 9.29 8 9.48 11:8
P6_1 9.36:19.27 12:1:1 8.46 1 9.13 12:1 P6_18 9.77:20.12 13:8:8 9.26 8 9.63 13:8
P6_2 8.48:17.24 12:1:1 7.45 1 8.46 12:1 P6_19† 3515.77:TO 142:70:39 TO 21★ TO 142:46
P6_5† 983.86:TO 107:71:50 TO 21★ TO 107:49 P6_27† 131.34:503.23 177:45:45 450.57 22★ 580.50 177:45
P6_13 8.85:17.87 6:4:4 8.45 4 8.51 6:4

To partially answer RQ3, we analyze the respective number of (potential) side-channel sources
reported by the three main steps of CT-Prover and two main steps of CT-Prover− (in the form of
x:y:z and x:z in Table 3). We find that the lightweight taint analysis can determine a large number
of potential side-channel sources, the precise taint analysis can resolve the remaining few unsolved
ones (i.e., P4_3, P4_4, P5_11, P6_1, P6_2, P6_5, P6_13, P6_16, P6_17, P6_18, P6_19, and P6_27),
and the left-over ones are often vulnerabilities (i.e., P4_3, P4_4, P5_11, P6_1, P6_2, P6_13, P6_17,
P6_18 and P6_27). By comparing with CT-Prover−, we can observe that disabling the precise taint
analysis in CT-Prover (i.e., the 2nd main step) may both improve (i.e., P6_5) and degrade (i.e.,
P6_16 and P6_19) the capability of finding side-channel sources while reducing the verification time.
Nevertheless, the precise taint analyses are still useful for finding all the potential side-channel
sources when the 3rd main step runs out of time (i.e., P6_5, P6_16, and P6_19), and the first two
main steps (i.e., the lightweight and precise taint analysis) are often able to find all the side-channel
sources (i.e., P4_3, P4_4, P5_11, P6_1, P6_2, P6_13, P6_14, P6_15, P6_17, P6_18 and P6_27) with
comparable or less execution time than CT-Prover−.

1 uint32_t br_rsa_i15_private(const br_rsa_private_key *sk){
2 const unsigned char *p = sk->p; size_t plen = sk->plen;
3 while (plen > 0 && *p == 0) { p++; plen --;} }

Fig. 9. Simplified fragment of P6_5 taken from the BearSSL library.

Case study. Fig. 9 shows one side-channel source (4, ∗𝑝 == 0) of P6_5 from BearSSL. Variable p
points to a buffer storing a large prime (for RSA) which is secret but the loop condition *p == 0
depends upon the content of the buffer. It leaks the number of leading zero of the large prime.

In summary,CT-Prover is efficient and effective for finding side-channel sources and significantly
outperforms ct-verif. Both taint analyses can determine potential side-channel sources, reducing
the cost of the subsequent safety verification and manual validation.
Further comparison. We also compare CT-Prover with two sound but incomplete tools Ve-
rasco [26] and BINSEC (the latest version of Binsec/Rel [38]). Verasco performs taint analysis by
abstract interpretation with bounded loops, while BINSEC uses relational symbolic execution with
bounded paths. We use relatively large benchmarks provided by the respective tools with security
annotations to reduce the engineering efforts of modifying benchmarks, and compile benchmarks
using the constant-time preserving compiler [22].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:19

We observe that CT-Prover is significantly more efficient than Verasco on almost all the bench-
marks (80.63 seconds vs. 1,127.63 seconds in total). Moreover, Verasco cannot output traces and
values of scalar input variables leading to potential violations, and misses some timing side-channel
sources on the DES implementation. Compared with BINSEC, CT-Prover is about 2 times faster
than BINSEC when BINSEC’s execution time is independent of input size (e.g., curve25519-donna),
and the speedup becomes more significant when BINSEC’s execution time increases with input size,
e.g., BINSEC takes 0.36, 10.28 and 102.48 seconds on the libsodium_chacha20_xor implementation
when the input size is 256, 256×512 and 256×5120 bits while CT-Prover takes 11.21 seconds without
limiting the input size.

5.3 Threats to Validity
Internal threats. The major internal threat to our evaluation is the correctness of the imple-
mentation of CT-Prover which relies on various open-source frameworks and tools. To mitigate
this threat, we compared the results of CT-Prover and ct-verif, and manually analyzed all the
side-channel sources discovered by both tools to confirm the correctness of CT-Prover. Moreover,
we note that these open-source frameworks and tools have been widely used for years so we would
have reasonable confidence in their quality. A more scientific way is to build a verified toolchain,
which however requires more resources and thus is left as interesting future work.
External threats. The major external threat to our evaluation is the benchmarks, as the per-
formance of CT-Prover may vary with benchmarks. To mitigate this threat, we consider both
constant-time and non-constant-time implementations from widely used modern cryptographic
and SSL/TLS libraries, as well as benchmarks used in prior work, e.g., [11, 26, 38]. Furthermore, the
benchmarks are selected to be diverse in terms of both types and sizes. Another external threat is
the translation from source code to LLVM IR which may introduce violations of constant-time, as
demonstrated by [38]. To mitigate this threat, benchmarks are only optimized by -mem2reg which
reduces redundant address-taken variables in LLVM IR.

6 RELATEDWORK
Timing side-channels have received considerable attention (cf. [48] for a survey).We roughly classify
the current approaches into three categories. The first class does not rely on verification; the second
class mostly leverages program analysis; the third class is largely based on verification. There
are verification approaches for other side-channels (e.g., [20, 41, 43–47, 62, 84]) and time-balance
(e.g., [14, 15, 28]), which are orthogonal to this work.
Approaches based on concrete execution. A large number of approaches have been proposed
for detecting and/or quantifying timing side-channel leakages in terms of e.g., channel capacity and
Shannon entropy. To this end, for instance, DATA [78], ct-fuzz [51] and CacheQL [83] make use
of concrete execution. CANAL [70], Abacus [18], and ENCIDER [82] leverage dynamic symbolic
execution, symbolic execution on individual concrete execution traces, and concolic execution.
CaType [52] detects timing side-channel vulnerabilities by applying type inference on individual
concrete execution traces. In general, this class of approaches are often effective in bug-finding,
but cannot prove the absence of timing side-channel leakages.
Approaches based on program analysis. This class of work is more formal which often is
able to prove the absence of timing side-channel leakage. CacheAudit [40] bounds timing side-
channel leakages by over-approximating side-channel observations using abstract interpretation.
CacheS [76] applies abstract interpretation, but its implementation is unsound due to its imprecise
treatment of memory. Taint analysis and security type systems have also been applied to detect side-
channel leakage by tracking information flow of the secrets [21, 26, 77], varying in accuracy and

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

46:20 Luwei Cai, Fu Song, and Taolue Chen

efficiency. Moreover, the work [17, 32, 65] bounds the information leakage via symbolic execution
and model-counting. While these approaches are often sound, they may raise false positives.
Program transformations have been proposed to eliminate potential side-channel sources [7, 35, 79].
Precise detection approaches can reduce the number of potential side-channel sources but the
adopted program transformations may bloat the program, making them less efficient to run.

Approaches based on verification. There are mainly two approaches in this class, i.e., self-
composition [12] and relational symbolic execution [42]. ct-verif [11] uses a variant of self-
composition (i.e., cross-product) to improve the efficiency of safety verification. ct-verif is complete
assuming the completeness of the underlying safety checker. Binsec/Rel [36, 38] uses relational
symbolic execution enhanced with secret-dependency tracking, untainting and fault-packing to
improve the efficiency. Due to the path explosion problem and unsupported dynamic memory
allocation, it is only complete up to a given depth of paths, and the size of the symbolic input
(keys, plaintext) has to be fixed. ct-verif targets LLVM IR, a target-independent low-level language,
while Binsec/Rel targets binary executables. (Note that the compilation from LLVM IR to binary
executable may introduce vulnerabilities.)

Our work generally falls into the third category. Similar to ct-verif, we focus on LLVM IR instead
of binary executable or source code. Compared with the existing verification approaches, we
extensively leverage taint analysis to facilitate self-composition, especially for reducing safety
checks and simplifying the self-composed program. A similar idea was adopted in Binsec/Rel, but
in a different way. Our new methodology significantly improves both efficiency and effectiveness.

Consideration ofmicro-architecture. The above approaches did not address micro-architectural
features which have also been studied in literature. For instance, Constantine [27] uses dynamic
taint analysis; Oo7 [75] uses static taint analysis; Binsec/Haunted [37] uses relational symbolic
execution; Pitchfork [34], Spectector [49], SpecuSym [50] and KleeSpectre [74] leverage (dynamic)
symbolic execution; Blade [73] uses type system; [80] uses abstract interpretation.

Our work is orthogonal to these investigations, as they usually tackle the vulnerabilities brought
by micro-architectural features with the assumption that the program itself is of constant-time.

7 CONCLUSION
In this paper, we have provided practical verification approaches for constant-time implementations
of cryptographic libraries. Our methods are based on a novel synergy of taint analysis and safety
verification of self-composed programs. We have implemented a cross-platform and fully automated
tool CT-Proverworking on LLVM IR. The tool has been extensively evaluated on a large set of real-
world benchmarks from modern cryptographic and SSL/TLS and fixed-point arithmetic libraries.
The experimental results have confirmed the efficacy of our approaches. In particular, compared
to the state-of-the-art tool ct-verif, CT-Prover typically demonstrates 2-3 orders of magnitude of
improvement, proving more programs and finding new timing leaks.
At the methodology level, we showcase that a combination of lightweight approaches (taint

analysis) and heavyweight approaches (self-composition and safety checking) can yield efficiency
and completeness. In particular, we demonstrate that self-composition based approaches, which are
normally considered to be powerful but costly, can be made scalable with the aid of static analysis.

DATA AVAILABILITY
To foster further research, source code and benchmarks are available at [6].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:21

ACKNOWLEDGEMENT
This work is supported by the Amazon Research Award from Amazon Web Services, National
Natural Science Foundation of China under grants No. 62072309 and 61872340, CAS Project for
Young Scientists in Basic Research (YSBR-040), ISCAS New Cultivation Project (ISCAS-PYFX-
202201), ISCAS Fundamental Research Project (ISCAS-JCZD-202302), Overseas grants from the State
Key Laboratory of Novel Software Technology, Nanjing University (KFKT2022A03, KFKT2023A04),
and Birkbeck BEI School Project (EFFECT).

REFERENCES
[1] 2023. curve25519-donna. https://github.com/agl/curve25519-donna.
[2] 2023. HACL*. https://github.com/hacl-star/hacl-star.
[3] 2023. libsodium. https://doc.libsodium.org/.
[4] 2023. OpenSSL. https://www.openssl.org.
[5] 2023. Tongsuo. https://github.com/Tongsuo-Project/Tongsuo.
[6] 2024. CT-Prover. https://doi.org/10.5281/zenodo.10683405
[7] Johan Agat. 2000. Transforming Out Timing Leaks. In Proc. of the 27th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL). 40–53.
[8] Martin R. Albrecht and Kenneth G. Paterson. 2016. Lucky Microseconds: A Timing Attack on Amazon’s s2n Imple-

mentation of TLS. In Proc. of the 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. 622–643. https://doi.org/10.1007/978-3-662-49890-3_24

[9] Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. In
Proc. of the 2013 IEEE Symposium on Security and Privacy. 526–540. https://doi.org/10.1109/SP.2013.42

[10] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. 2016. Verifiable side-channel security of
cryptographic implementations: constant-time MEE-CBC. In Proc. of the 23rd International Conference on Fast Software
Encryption. 163–184.

[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016. Verifying
Constant-Time Implementations. In Proc. of the 25th USENIX Security Symposium. 53–70.

[12] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira. 2013. Formal verification of side-channel
countermeasures using self-composition. Sci. Comput. Program. 78, 7 (2013), 796–812. https://doi.org/10.1016/J.SCICO.
2011.10.008

[13] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. 2015. On
Subnormal Floating Point and Abnormal Timing. In Proc. of the IEEE Symposium on Security and Privacy. 623–639.
https://doi.org/10.1109/SP.2015.44

[14] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and ShiyiWei. 2017. Decomposition
instead of self-composition for proving the absence of timing channels. In Proc. of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 362–375. https://doi.org/10.1145/3062341.3062378

[15] Konstantinos Athanasiou, Byron Cook, Michael Emmi, Colm MacCárthaigh, Daniel Schwartz-Narbonne, and Serdar
Tasiran. 2018. SideTrail: Verifying Time-Balancing of Cryptosystems. In Proc. of the 10th International Conference on
Verified Software. Theories, Tools, and Experiments. 215–228.

[16] AWS. 2023. s2n-tls. https://github.com/aws/s2n-tls.
[17] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik Bultan. 2016. String analysis for

side channels with segmented oracles. In Proc. of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 193–204. https://doi.org/10.1145/2950290.2950362

[18] Qinkun Bao, Zihao Wang, Xiaoting Li, James R. Larus, and Dinghao Wu. 2021. Abacus: Precise Side-Channel Analysis.
In Proc. of the 43rd IEEE/ACM International Conference on Software Engineering. 797–809. https://doi.org/10.1109/
ICSE43902.2021.00078

[19] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In Proc. of the 4th International Symposium on Formal Methods for
Components and Objects. 364–387. https://doi.org/10.1007/11804192_17

[20] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub.
2015. Verified Proofs of Higher-Order Masking. In Proc. of the 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. 457–485. https://doi.org/10.1007/978-3-662-46800-5_18

[21] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David Pichardie. 2014. System-level
Non-interference for Constant-time Cryptography. In Proc. of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. 1267–1279.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

https://github.com/agl/curve25519-donna
https://github.com/hacl-star/hacl-star
https://doc.libsodium.org/
https://www.openssl.org
https://github.com/Tongsuo-Project/Tongsuo
https://doi.org/10.5281/zenodo.10683405
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1016/J.SCICO.2011.10.008
https://doi.org/10.1016/J.SCICO.2011.10.008
https://doi.org/10.1109/SP.2015.44
https://doi.org/10.1145/3062341.3062378
 https://github.com/aws/s2n-tls
https://doi.org/10.1145/2950290.2950362
https://doi.org/10.1109/ICSE43902.2021.00078
https://doi.org/10.1109/ICSE43902.2021.00078
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-662-46800-5_18

46:22 Luwei Cai, Fu Song, and Taolue Chen

[22] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2020.
Formal verification of a constant-time preserving C compiler. Proc. ACM Program. Lang. 4, POPL (2020), 7:1–7:30.
https://doi.org/10.1145/3371075

[23] Daniel J Bernstein et al. 2008. ChaCha, a variant of Salsa20. In Workshop record of SASC, Vol. 8. 3–5.
[24] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. 2012. The Security Impact of a New Cryptographic Library. In

Proc. of the 2nd International Conference on Cryptology and Information Security in Latin America, Vol. 7533. 159–176.
https://doi.org/10.1007/978-3-642-33481-8_9

[25] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable Software Verification. In Proc. of the
23rd International Conference on Computer Aided Verification. 184–190. https://doi.org/10.1007/978-3-642-22110-1_16

[26] Sandrine Blazy, David Pichardie, and Alix Trieu. 2019. Verifying constant-time implementations by abstract interpreta-
tion. Journal of Computer Security 27, 1 (2019), 137–163. https://doi.org/10.3233/JCS-181136

[27] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida. 2021. Constantine: Automatic Side-
Channel Resistance Using Efficient Control and Data Flow Linearization. In Proc. of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. 715–733. https://doi.org/10.1145/3460120.3484583

[28] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2018. Symbolic Path Cost Analysis for Side-channel Detection. In
Proc. of the 40th International Conference on Software Engineering: Companion Proceeedings. 424–425.

[29] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piterman. 2016. T2: Temporal Property
Verification. In Proc. of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Vol. 9636. 387–393. https://doi.org/10.1007/978-3-662-49674-9_22

[30] Billy Bob Brumley and Nicola Tuveri. 2011. Remote Timing Attacks Are Still Practical. In Proc. of the 16th European
Symposium on Research in Computer Security. 355–371.

[31] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are Practical. In Proc. of the 12th USENIX Security
Symposium.

[32] Tevfik Bultan. 2019. Quantifying Information Leakage Using Model Counting Constraint Solvers. In Proc. of the 11th
International Conference on Verified Software: Theories, Tools, and Experiments, Vol. 12031. 30–35. https://doi.org/10.
1007/978-3-030-41600-3_3

[33] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian Stefan. 2022. SoK: Practical Foundations
for Software Spectre Defenses. In Proc. of the 43rd IEEE Symposium on Security and Privacy. 666–680.

[34] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M. Tullsen, Deian Stefan, Tamara Rezk, and Gilles
Barthe. 2020. Constant-time foundations for the new spectre era. In Proc. of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 913–926. https://doi.org/10.1145/3385412.3385970

[35] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Renner, Benjamin Grégoire,
Gilles Barthe, Ranjit Jhala, and Deian Stefan. 2019. FaCT: a DSL for Timing-Sensitive Computation. In Proc. of
the 40th ACM SIGPLAN International Conference on Programming Language Design and Implementation. 174–189.
https://doi.org/10.1145/3314221.3314605

[36] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2020. Binsec/Rel: Efficient Relational Symbolic Execution for
Constant-Time at Binary-Level. In Proc. of the 2020 IEEE Symposium on Security and Privacy. 1021–1038.

[37] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the Haunter - Efficient Relational Symbolic
Execution for Spectre with Haunted RelSE. In Proc. of the 28th Annual Network and Distributed System Security
Symposium.

[38] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2023. Binsec/Rel: Symbolic Binary Analyzer for Security
with Applications to Constant-Time and Secret-Erasure. ACM Trans. Priv. Secur. 26, 2 (2023), 11:1–11:42. https:
//doi.org/10.1145/3563037

[39] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara Rezk, and Frank Piessens. 2023. ProSpeCT:
Provably Secure Speculation for the Constant-Time Policy. In Proc. of the 32nd USENIX Security Symposium.

[40] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2013. CacheAudit: A Tool for the
Static Analysis of Cache Side Channels. In Proc. of the 22th USENIX Security Symposium. 431–446.

[41] Yuxin Fan, Fu Song, Taolue Chen, Liangfeng Zhang, and Wanwei Liu. 2022. PoS4MPC: Automated Security Policy
Synthesis for Secure Multi-party Computation. In Proc. of the 34th International Conference on Computer Aided
Verification, Sharon Shoham and Yakir Vizel (Eds.), Vol. 13371. 385–406. https://doi.org/10.1007/978-3-031-13185-1_19

[42] Gian Pietro Farina, Stephen Chong, and Marco Gaboardi. 2019. Relational Symbolic Execution. In Proc. of the 21st
International Symposium on Principles and Practice of Programming Languages. 10:1–10:14. https://doi.org/10.1145/
3354166.3354175

[43] Pengfei Gao, Hongyi Xie, Fu Song, and Taolue Chen. 2021. A Hybrid Approach to Formal Verification of Higher-Order
Masked Arithmetic Programs. ACMTrans. Softw. Eng. Methodol. 30, 3 (2021), 26:1–26:42. https://doi.org/10.1145/3428015

[44] Pengfei Gao, Hongyi Xie, Pu Sun, Jun Zhang, Fu Song, and Taolue Chen. 2022. Formal Verification of Masking
Countermeasures for Arithmetic Programs. IEEE Trans. Software Eng. 48, 3 (2022), 973–1000. https://doi.org/10.1109/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

https://doi.org/10.1145/3371075
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.3233/JCS-181136
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-030-41600-3_3
https://doi.org/10.1007/978-3-030-41600-3_3
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3563037
https://doi.org/10.1145/3563037
https://doi.org/10.1007/978-3-031-13185-1_19
https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1145/3428015
https://doi.org/10.1109/TSE.2020.3008852
https://doi.org/10.1109/TSE.2020.3008852

Towards Efficient Verification of Constant-Time Cryptographic Implementations 46:23

TSE.2020.3008852
[45] Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. 2019. Quantitative Verification of Masked Arithmetic

Programs Against Side-Channel Attacks. In Proc. of the 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. 155–173. https://doi.org/10.1007/978-3-030-17462-0_9

[46] Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. 2019. Verifying and Quantifying Side-channel Resistance of Masked
Software Implementations. ACM Trans. Softw. Eng. Methodol. 28, 3 (2019), 16:1–16:32. https://doi.org/10.1145/3330392

[47] Pengfei Gao, Yedi Zhang, Fu Song, Taolue Chen, and François-Xavier Standaert. 2023. Compositional Verification
of Efficient Masking Countermeasures against Side-Channel Attacks. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),
1817–1847. https://doi.org/10.1145/3622862

[48] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel, Sébastien Bardin, and Clémentine Maurice.
2023. A Systematic Evaluation of Automated Tools for Side-Channel Vulnerabilities Detection in Cryptographic
Libraries. In Proc. of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Weizhi Meng,
Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda (Eds.). ACM, 1690–1704. https://doi.org/10.1145/3576915.
3623112

[49] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. 2020. Spectector: Principled Detection
of Speculative Information Flows. In Proc. of the IEEE Symposium on Security and Privacy. 1–19. https://doi.org/10.
1109/SP40000.2020.00011

[50] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu, and Zhiqiang Zuo. 2020. SpecuSym:
speculative symbolic execution for cache timing leak detection. In Proc. of the 42nd International Conference on Software
Engineering. 1235–1247. https://doi.org/10.1145/3377811.3380428

[51] Shaobo He, Michael Emmi, and Gabriela F. Ciocarlie. 2020. ct-fuzz: Fuzzing for Timing Leaks. In Proc. of the 13th IEEE
International Conference on Software Testing, Validation and Verification. 466–471. https://doi.org/10.1109/ICST46399.
2020.00063

[52] Ke Jiang, Yuyan Bao, Shuai Wang, Zhibo Liu, and Tianwei Zhang. 2022. Cache Refinement Type for Side-Channel
Detection of Cryptographic Software. In Proc. of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 1583–1597. https://doi.org/10.1145/3548606.3560672

[53] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative
Execution. In Proc. of IEEE Symposium on Security and Privacy. 1–19.

[54] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Proc. of
the 16th Annual International Cryptology Conference on Advances in Cryptology. 104–113.

[55] Haofeng Li, Haining Meng, Hengjie Zheng, Liqing Cao, Jie Lu, Lian Li, and Lin Gao. 2021. Scaling up the IFDS algorithm
with efficient disk-assisted computing. In Proc. of the IEEE/ACM International Symposium on Code Generation and
Optimization. 236–247.

[56] Peng Li, Debin Gao, and Michael K. Reiter. 2014. StopWatch: A Cloud Architecture for Timing Channel Mitigation.
ACM Trans. Inf. Syst. Secur. 17, 2 (2014), 8:1–8:28.

[57] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In Proc. of the 27th USENIX Security Symposium. 973–990.

[58] Michael Emmi. 2023. bam-bam-boogieman. https://github.com/michael-emmi/bam-bam-boogieman.
[59] Microsoft. 2023. FourQlib. https://github.com/microsoft/FourQlib.
[60] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012. Design and implementation of sparse

global analyses for C-like languages. In Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 229–238.

[61] Thomas Pornin. 2023. BearSSL. https://bearssl.org.
[62] Qi Qin, JulianAndres JiYang, Fu Song, Taolue Chen, and Xinyu Xing. 2022. DeJITLeak: eliminating JIT-induced timing

side-channel leaks. In Proc. of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 872–884. https://doi.org/10.1145/3540250.3549150

[63] Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling source language details from verifier implementa-
tions. In Proc. of the 26th International Conference on Computer Aided Verification. 106–113. https://doi.org/10.1007/978-
3-319-08867-9_7

[64] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph
Reachability. In Proc. of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 49–61.

[65] Seemanta Saha, Surendra Ghentiyala, Shihua Lu, Lucas Bang, and Tevfik Bultan. 2023. Obtaining Information
Leakage Bounds via Approximate Model Counting. Proc. ACM Program. Lang. 7, PLDI (2023), 1488–1509. https:
//doi.org/10.1145/3591281

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

https://doi.org/10.1109/TSE.2020.3008852
https://doi.org/10.1109/TSE.2020.3008852
https://doi.org/10.1007/978-3-030-17462-0_9
https://doi.org/10.1145/3330392
https://doi.org/10.1145/3622862
https://doi.org/10.1145/3576915.3623112
https://doi.org/10.1145/3576915.3623112
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/3377811.3380428
https://doi.org/10.1109/ICST46399.2020.00063
https://doi.org/10.1109/ICST46399.2020.00063
https://doi.org/10.1145/3548606.3560672
https://github.com/michael-emmi/bam-bam-boogieman
https://github.com/microsoft/FourQlib
https://bearssl.org
https://doi.org/10.1145/3540250.3549150
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1145/3591281
https://doi.org/10.1145/3591281

46:24 Luwei Cai, Fu Song, and Taolue Chen

[66] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019. PhASAR: An Inter-procedural Static Analysis
Framework for C/C++. In Proc. of the 25th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 393–410. https://doi.org/10.1007/978-3-030-17465-1_22

[67] Amazon Web Services. 2023. ct-verif for s2n. https://github.com/aws/s2n-tls/tree/main/tests/ctverif .
[68] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proc. of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation. 57–69.
[69] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proc. of the 25th

international conference on compiler construction. 265–266. https://doi.org/10.1145/2892208.2892235
[70] Chungha Sung, Brandon Paulsen, and Chao Wang. 2018. CANAL: a cache timing analysis framework via LLVM

transformation. In Proc. of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 904–907.
https://doi.org/10.1145/3238147.3240485

[71] Tachio Terauchi and Alexander Aiken. 2005. Secure Information Flow as a Safety Problem. In Proc. of the 12th
International Symposium on Static Analysis. 352–367. https://doi.org/10.1007/11547662_24

[72] Trusted Firmware Project. 2023. Mbed TLS. https://github.com/Mbed-TLS/mbedtls.
[73] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gökhan Kici, Ranjit Jhala, Dean M.

Tullsen, and Deian Stefan. 2021. Automatically eliminating speculative leaks from cryptographic code with blade. Proc.
ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434330

[74] GuanhuaWang, Sudipta Chattopadhyay, Arnab Kumar Biswas, TulikaMitra, andAbhik Roychoudhury. 2020. KLEESpec-
tre: Detecting Information Leakage through Speculative Cache Attacks via Symbolic Execution. ACM Trans. Softw.
Eng. Methodol. 29, 3 (2020), 14:1–14:31. https://doi.org/10.1145/3385897

[75] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik Roychoudhury. 2021. oo7: Low-
Overhead Defense Against Spectre Attacks via Program Analysis. IEEE Trans. Software Eng. 47, 11 (2021), 2504–2519.
https://doi.org/10.1109/TSE.2019.2953709

[76] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao Wu. 2019. Identifying Cache-Based Side
Channels through Secret-Augmented Abstract Interpretation. In Proc. of the 28th USENIX Security Symposium. 657–674.

[77] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. 2019. CT-Wasm: Type-Driven Secure
Cryptography for the Web Ecosystem. Proc. of the ACM on Programming Languages 3, POPL (2019), 77:1–77:29.
https://doi.org/10.1145/3290390

[78] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Mangard, and Georg Sigl. 2018. DATA -
Differential Address Trace Analysis: Finding Address-based Side-Channels in Binaries. In Proc. of the 27th USENIX
Security Symposium. 603–620.

[79] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminating Timing Side-Channel Leaks using
Program Repair. In Proc. of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis. 15–26.
https://doi.org/10.1145/3213846.3213851

[80] MengWu and ChaoWang. 2019. Abstract interpretation under speculative execution. In Proc. of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 802–815. https://doi.org/10.1145/3314221.3314647

[81] Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta, and Sharad Malik. 2018. Lazy Self-composition for
Security Verification. In Proc. of the 30th International Conference on Computer Aided Verification. 136–156. https:
//doi.org/10.1007/978-3-319-96142-2_11

[82] Tuba Yavuz, Farhaan Fowze, Grant Hernandez, Ken Yihang Bai, Kevin R. B. Butler, and Dave Jing Tian. 2023. ENCIDER:
Detecting Timing and Cache Side Channels in SGX Enclaves and Cryptographic APIs. IEEE Trans. Dependable Secur.
Comput. 20, 2 (2023), 1577–1595. https://doi.org/10.1109/TDSC.2022.3160346

[83] Yuanyuan Yuan, Zhibo Liu, and Shuai Wang. 2023. CacheQL: Quantifying and Localizing Cache Side-Channel
Vulnerabilities in Production Software. In Proc. of the 32nd USENIX Security Symposium.

[84] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-Based Verification of Software Counter-
measures Against Side-Channel Attacks. In Proc. of the 30th International Conference on Computer Aided Verification.
157–177. https://doi.org/10.1007/978-3-319-96142-2_12

Received 2023-09-28; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 46. Publication date: July 2024.

https://doi.org/10.1007/978-3-030-17465-1_22
https://github.com/aws/s2n-tls/tree/main/tests/ctverif
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/3238147.3240485
https://doi.org/10.1007/11547662_24
https://github.com/Mbed-TLS/mbedtls
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3385897
https://doi.org/10.1109/TSE.2019.2953709
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3314221.3314647
https://doi.org/10.1007/978-3-319-96142-2_11
https://doi.org/10.1007/978-3-319-96142-2_11
https://doi.org/10.1109/TDSC.2022.3160346
https://doi.org/10.1007/978-3-319-96142-2_12

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The While Language
	2.2 Constant-Time Security

	3 Motivation and Overview
	3.1 Motivating Examples
	3.2 Approach Overview

	4 Methodology
	4.1 Lightweight Taint Analysis
	4.2 Precise Taint Analysis via Taint-directed Semi-cross-product
	4.3 Taint-directed Self-composition

	5 Implementation and Evaluation
	5.1 Verifying Constant-time Implementations (RQ1, RQ3)
	5.2 Verifying Non-constant-time Implementations (RQ2, RQ3)
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

