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Abstract. Quantization plays an important role in deploying neural
networks on embedded, real-time systems with limited computing and
storage resources (e.g., edge devices). It significantly reduces the model
storage cost and improves inference efficiency by using fewer bits to repre-
sent the parameters. However, it was recently shown that critical proper-
ties may be broken after quantization, such as robustness and backdoor-
freeness. In this work, we introduce the first method for synthesizing
quantization strategies that verifiably maintain desired properties after
quantization, leveraging a key insight that quantization leads to a data
distribution shift in each layer. We propose to compute the preimage for
each layer based on which the preceding layer is quantized, ensuring that
the quantized reachable region of the preceding layer remains within the
preimage. To tackle the challenge of computing the exact preimage, we
propose an MILP-based method to compute its under-approximation.
We implement our method into a tool Quadapter and demonstrate its
effectiveness and efficiency by providing certified quantization that suc-
cessfully preserves model robustness and backdoor-freeness.

1 Introduction

While deep neural networks (DNNs) have achieved notable success in various ap-
plication domains [5, 31], their deployment on resource-constrained, embedded,
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Fig. 1. Visualized data distribution shift using 400 random samples centered around an
input image. These inputs are processed through both a DNN (trained on MNIST [20])
and its counterparts quantized with bit-width Q ∈ {4, 6, 8, 10}. The resulting high-
dimensional convex shapes are visualized in 2D. The blue and brown scatters demon-
strate the distribution of output values of each affine layer of the DNN and QNNs.

real-time systems is currently impeded by their substantial demand for com-
puting and storage resources [27]. Quantization is one of the most popular and
promising techniques to address this issue [8, 39]. By storing the full-precision
values in a DNN (such as parameters and/or activation values) into low bit-width
fixed-point numbers, quantization facilitates the compression of a DNN and leads
to a quantized neural network (QNN), making the network more efficient.

While a lot of techniques have been proposed to minimize the loss of accu-
racy induced by quantization [8, 15, 21, 22, 32, 33, 42, 44, 48], an important side-
effect of quantization is overlooked, that is the risk of breaking desired critical
properties, e.g., robustness [24,41] and backdoor-freeness [13,26,34,55], thereby
raising great concerns, especially when they are deployed in safety-critical ap-
plications. While quantization-aware training techniques have been proposed to
improve the robustness for a given fixed quantization strategy [23, 24, 41, 43],
they fail to provide robustness guarantees. Therefore, it becomes imperative to
devise a quantization strategy synthesis technique, ensuring that the resulting
QNNs retain specific desired properties. Noting that although various verifica-
tion methods for QNNs have been proposed [3, 9, 12, 52–54], they exclusively
focus on post-hoc analyses rather than synthesis, namely, these methods merely
verify or falsify the properties but offer no solutions for those that are falsified.
Contributions. In this work, we propose the first quantization strategy syn-
thesis method, named Quadapter, such that the desired properties are verifiably
maintained by the quantization. Given a DNN N and a property ⟨I,O⟩ where I
and O are the pre- and post-condition for the input and output, our general idea
is first to compute the preimage of each layer w.r.t. the output region formed by
O. Then, considering the typical data distribution shift caused by quantization
in each layer (cf. Fig. 1), we identify the minimal bit-width for each layer such
that the shifted quantized reachable region w.r.t. I always remains within the
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corresponding preimage. This method allows us to derive a quantization strategy
for the entire network, preserving the desired property ⟨I,O⟩ after quantization.

A key technical question is how to represent and compute the preimage for
each layer effectively and efficiently. In this work, we propose to compute an
under-approximation of the preimage for each layer and represent it by adapting
the abstract domain of DeepPoly [40]. Specifically, we devise a novel Mixed Inte-
ger Linear Programming (MILP) based method to propagate the (approximate)
preimage layer-by-layer in a backward fashion, where we encode the affine trans-
formation and activation function precisely as linear constraints and compute
under-approximate preimage via MILP solving.

We implement our methods as an end-to-end tool Quadapter and extensively
evaluate our tool on a large set of synthesis tasks for DNNs trained using two
widely used datasets MNIST [20] and Fashion-MNIST [46], where the number
of hidden layers varies from 2 to 6 and the number of neurons in each hid-
den layer varies from 100 to 512. The experimental results demonstrate the
effectiveness and efficiency of Quadapter in synthesizing certified quantization
strategies to preserve robustness and backdoor-freeness. The quantization strat-
egy synthesized by Quadapter generally preserves the accuracy of the original
DNNs (with only minor degradation). We also show that by slightly relaxing
the under-approximate preimages of the hidden layers (without sacrificing the
overall soundness), Quadapter can synthesize quantization strategies with much
smaller bit-widths while preserving the desired properties and accuracy.

The remainder of this paper is organized as follows. Section 2 gives the prelim-
inaries and formulates the problem. Section 3 presents the details of our approach
and Section 4 demonstrates its applications. Section 5 reports our experimental
results. We discuss related work in Section 6 and finally, Section 7 concludes.
The source code for our tool, along with the benchmarks, is available in [50],
which also includes a long version of the paper containing all missing proofs,
design choices, implementation details, and additional experimental results.

2 Preliminaries

We denote by R the set of real numbers. Given an integer n, let [n] := {1, . . . , n}
and Rn be the set of the n-tuples of real numbers. We use bold lowercase
letters (e.g., x) and BOLD UPPERCASE (e.g., W) to denote vectors and
matrices. We denote by Wi,: (resp. W:,i) the i-th row (resp. column) vector of
the matrix W, and by xj (resp. Wi,j) the j-th entry of the vector x (resp. Wi,:).
M denotes an extremely large number.

A Deep Neural Network (DNN) with 2d layers is a function N : Rn0 → Rn2d

such that N = f2d ◦ · · · ◦ f1, where f1 : Rn0 → Rn1 is the input layer, f2d :
Rn2d−1 → Rn2d is the output layer, and the others are hidden layers. The hidden
layers alternate between affine layers f2i : Rn2i−1 → Rn2i and activation layers
f2i+1 : Rn2i → Rn2i+1 for i ∈ [d − 1]. The semantics of each layer is defined as
follows: x1 = f1(x) = x, x2i = f2i(x

2i−1) = W2ix2i−1 + b2i for i ∈ [d] and
x2i+1 = f2i+1(x

2i) = ReLU(x2i) for i ∈ [d − 1], where W2i and b2i are the
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weight matrix and the bias vector of the 2i-th layer, n0 = n1 and n2i = n2i+1 for
i ∈ [d−1]. Note that for the sake of presentation, we regard affine and activation
layers separately as hidden layers, some prior work regards the composition of
an affine layer and an activation layer as one hidden layer, e.g., [4,25,38]. Given
a DNN N with 2d layers, we use N[i:j] : Rni−1 → Rnj to denote the composed
function fj ◦ · · · ◦ fi. By N (I) (resp. N (I)g), we refer to the output region of
the network N (resp. neuron x2d

g ) w.r.t. the input region I.
A Quantized Neural Network (QNN) is structurally identical to a DNN but

uses fixed-point values for its parameters and/or layer outputs. In this work, we
focus on QNNs where only parameters are quantized using the most hardware-
efficient quantization scheme, i.e., signed power-of-two quantization [33].

A quantization configuration ξ is a pair ⟨Q,F ⟩, where Q denotes the total
bit-width and F denotes the bit-width for the fractional part of the value. Given
a quantization configuration ξ and a real-valued number u, its fixed-point coun-
terpart û is defined as û = min(max( ⌊u·2

F ⌉
2F

,−2Q−1), 2Q−1 − 1), where ⌊·⌉ is the
round-to-nearest operator. Given a DNN N : Rn0 → Rn2d with 2d layers and a
set of quantization configurations for affine and output layers Ξ = {ξ1, . . . , ξd},
its quantized version N̂ : Rn0 → Rn2d is a composed function as N̂ = f̂2d◦· · ·◦f̂1,
where each layer is defined the same as that in the DNN N except that the pa-
rameters W2i and b2i for i ∈ [d] from the DNN N are quantized into fixed-point
values Ŵ2i and b̂2i in the QNN N̂ according to the quantization configuration
ξi. In this work, we call the set Ξ a quantization strategy of the DNN N .

Definition 1. Given a DNN N : Rn0 → Rn2d , a property of N is a pair ⟨ϕ, ψ⟩
where ϕ is a pre-condition over the input x ∈ Rn0 and ψ is a post-condition
over the output y = N (x) ∈ Rn2d . N satisfies the property ⟨ϕ, ψ⟩, denoted by
N |= ⟨ϕ, ψ⟩, if ϕ(x) ⇒ ψ(N (x)) holds for any input x ∈ Rn0 .

Following prior work [49], we assume that the pre-condition ϕ and post-
condition ψ are expressible by polyhedra, namely, I and O, respectively. It is
reasonable since, for typical properties such as robustness, both conditions can
be effectively represented by a set of linear constraints. For simplicity, we will use
⟨I,O⟩ to denote the property directly. We are now ready to define our problem.

Definition 2. Given a DNN N and a property ⟨I,O⟩ such that N |= ⟨I,O⟩,
the problem of certified quantization strategy synthesis is to find a quantization
strategy Ξ such that N̂ |= ⟨I,O⟩, where N̂ is the QNN obtained from N under
the quantization strategy Ξ.

Review of DeepPoly. The core idea of DeepPoly is to (approximately) represent
the transformation of each layer using an abstract transformer, and compute
lower/upper bounds for the output of each neuron. Fix a neuron xi

j , its abstract
element Ai,♯

j is given by a tuple ⟨ai,≤j ,ai,≥j , lij , u
i
j⟩, where ai,≤j (resp. ai,≥j ) is a

symbolic lower (resp. upper) bound in the form of a linear combination of vari-
ables from its preceding layers, lij (resp. uij) is the concrete lower (resp. upper)
bound of xi

j . We denote by ai,≤ (resp. ai,≥) the vector of symbolic bounds ai,≤j
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(resp. ai,≥j ) of the neurons xi
j ’s in the i-th layer. The concretization of Ai,♯

j is
defined as γ(Ai,♯

j ) = {xi
j ∈ R | ai,≤j ≤ xi

j ≤ ai,≥j }. By repeatedly substituting

each variable xi
′

j′ in ai,≤j (resp. ai,≥j ) using ai
′,≤
j′ or ai

′,≥
j′ according to the coef-

ficient of xi
′

j′ , until no further substitution is possible, ai,≤j (resp. ai,≥j ) will be
a linear combination over the input variables of the DNN. We denote by f i,≤j

and f i,≥j the resulting linear combinations of ai,≤j and ai,≥j . Then, the concrete
lower bound lij (resp. concrete upper bound uij) of the neuron xi

j can be derived
using the input region I and f i,≤j (resp. f i,≥j ). All the abstract elements Ai,♯

j

are required to satisfy the domain invariant: γ(Ai,♯
j ) ⊆ [lij , u

i
j ]. We denote by Ai

j

the abstract element ⟨f i,≤j , f i,≥j , lij , u
i
j⟩. For an affine function xi = Wixi−1+bi,

the abstract affine transformer sets ai,≤ = ai,≥ = Wixi−1 + bi. Given the ab-
stract element Ai,♯

j = ⟨ai,≤j ,ai,≥j , lij , u
i
j⟩ of the neuron xi

j , Ai+1,♯
j of the neu-

ron xi+1
j = ReLU(xi

j) have three cases as follows, where λij =
ui
j

ui
j−lij

: i) if

lij ≥ 0, then ai+1,≤
j = ai+1,≥

j = xi
j , l

i+1
j = lij , u

i+1
j = uij ; ii) if uij ≤ 0, then

ai+1,≤
j = ai+1,≥

j = li+1
j = ui+1

j = 0; iii) if lijuij < 0, then ai+1,≥
j = λij(x

i
j − lij),

ai+1,≤
j = κ · xi

j where κ ∈ {0, 1} such that the area of resulting shape by ai+1,≤
j

and ai+1,≥
j is minimal, li+1

j = κ · lij and ui+1
j = uij .

3 Our Approach

In the following, we fix a DNN N with 2d layers and a property ⟨I,O⟩.

3.1 Foundation of Quadapter

Consider a function f and an output set Y , the preimage f−1(Y ) of the output
set Y for f is the set {x | f(x) ∈ Y }. An under-approximation of f−1(Y ) is a
set P such that P ⊆ f−1(Y ).

Definition 3. A set P = {P2i | i ∈ [d−1]} is an under-approximate preimage of
the output region O for the DNN N if for every i ∈ [d− 1], P2i ⊆ N−1

[2i+1:2d](O).

Intuitively, P2i (resp. P2i
j ) is the preimage of the activation layer f2i+1 (resp.

neuron x2i+1
j ) w.r.t. the output region O. Since it suffices to consider preimages

of the activation layers in the set P for computing bit-widths of affine layers,
the preimages of the affine layers are excluded.

Proposition 1. Let N̂ 2i be a network obtained from N by quantizing the first
2i layers. If P = {P2i | i ∈ [d − 1]} is an under-approximate preimage of the
output region O for the DNN N , then N̂ 2i

[1:2i](I) ⊆ P2i ⇒ N̂ 2i |= ⟨I,O⟩. ⊓⊔

Intuitively, Proposition 1 states that regardless of the quantization configura-
tions of the first 2i layers, the property ⟨I,O⟩ is always preserved in the resulting
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Fig. 2. An overview of our method.

QNN, as long as the reachable region of the quantized layer f̂2i w.r.t. the input
region I remains within the preimage P2i. This proposition allows us to repeat-
edly compute a quantization configuration ξi for each layer f2i (i ∈ [d]), from
the first affine layer to the output layer, that guarantees the reachable region of
each quantized layer f̂2i remains within its respective preimage P2i. Putting all
the quantization configurations of the affine layers and the output layer together
yields a quantization strategy Ξ that preserves the desired property ⟨I,O⟩.

However, it is non-trivial to compute the preimages N−1
[2i+1:2d](O) from the

functions N−1
[2i+1:2d] for i ∈ [d−1]. To resolve this issue, we propose to repeatedly

compute a preimage P2i of each activation layer f2i+1 starting from the output
layer to the first activation layer by analyzing the function N−1

[2i+1:2i+2] instead
of the function N−1

[2i+1:2d], according to the following proposition.

Proposition 2. Let P = {P2i | i ∈ [d−1]} be a set such that for every i ∈ [d−1],
i) if i = d− 1, P2i ⊆ N−1

[2i+1:2i+2](O); ii) if i ≤ d− 2, P2i ⊆ N−1
[2i+1:2i+2](P

2i+2).
P is an under-approximate preimage of the output region O for the DNN N . ⊓⊔

3.2 Overview of Quadapter

Let P2d = O. The overall workflow of Quadapter is depicted in Fig. 2 which
consists of the following two steps:

– Step 1: Preimage Computation. We first compute an under-approximate
preimage P2d−2 for the output layer s.t. P2d−2 ⊆ N−1

[2d−1:2d](O), and then
propagate it through the network until reaching the first affine layer. Finally,
we obtain the under-approximate preimage P = {P2i | i ∈ [d − 1]} for the
DNN N (the yellow part);

– Step 2: Forward Quantization. We then conduct a forward quantization
procedure layer-by-layer to find a quantization configuration ξi = ⟨Qi, Fi⟩
with minimal bit-width Qi for each layer f2i, ensuring that the reachable
region characterized by the quantized abstract element Â2i (the blue part)
is included in the preimage P2i, i.e., γ(Â2i) ⊆ P2i for 1 ≤ i ≤ d.

The overall algorithm is given in Alg. 1. Given a DNN N , a property ⟨I,O⟩,
and the minimum (resp. maximum) fractional bit-width Bl (resp. Bu) for each
layer, we first apply DeepPoly on the DNN N w.r.t. input region I to obtain the
abstract elements A2i for i ∈ [d]. Then, the first for-loop computes the preimage
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Algorithm 1: Certified_Quantization(N , I,O,Bl,Bu)

1 Apply DeepPoly on the DNN N w.r.t. I to obtain abstract elements {A2i | 1 ≤ i ≤ d};
2 Let P2d = O and N̂ = N ;
3 for i = d − 1 to 1 do
4 P2i = UnderPreImage(N ,A2i,P2i+2); //get P2i s.t. P2i ⊆ N−1

[2i+1:2i+2]
(P2i+2)

5 for i = 1 to d do
6 ξi = ⊥;
7 I = the minimal bit-width to encode integer parts of W2i and b2i without overflow;
8 for F = Bl to Bu do
9 Quantize W2i, b2i w.r.t. ξ̌i = ⟨F + I, F ⟩ on N̂ to obtain N̂ 2i;

10 Apply DeepPoly on N̂ 2i
[1:2i] w.r.t. I to obtain Â2i;

11 if γ(Â2i) ⊆ P2i then
12 ξi = ξ̌i; N̂ = N̂ 2i; //accept ξ̌i and update quantized parameters
13 break

14 if ξi == ⊥ then return UNKNOWN;

15 return Ξ = {ξ1, . . . , ξd};

by invoking the function UnderPreImage(N ,A2i,P2i+2) which propagates P2i+2

to the preceding activation layer and returns the approximate preimage P2i with
P2i ⊆ N−1

[2i+1:2i+2](P
2i+2). The second for-loop performs a forward quantization

procedure, where the i-th iteration is used to compute the quantization config-
uration ξi for layer f2i. First, we obtain the minimal bit-width I for the integer
part of weights and biases to prevent overflow. Then, we iterate through all the
possible configurations ξ̌i = ⟨F + I, F ⟩ by varying the fractional bit-width F
from the smallest one Bl to the largest one Bu. For each F ∈ [Bl,Bu], we
compute a partially quantized DNN N̂ 2i, where only the first i affine layers (and
the output layer) are quantized using ξ1, · · · , ξi−1, ξ̌i. Next, we apply DeepPoly
on N̂ 2i

[1:2i] w.r.t. the input region I to obtain the abstract element Â2i of the
quantized layer f̂2i, resulting in reachable region as the blue part in Fig. 2. We
then check whether this reachable region is strictly contained in the preimage
P2i, i.e., γ(Â2i) ⊆ P2i. If this is the case, we update ξi as ξ̌i, stop the iteration,
and proceed to find the quantization configuration ξi+1 for the next layer f2i+2.
If there is no such quantization configuration, we return UNKNOWN.

Below, we present the details of function UnderPreImage(N ,A2i,P2i+2) and
the method of checking the condition γ(Â2i) ⊆ P2i. We first introduce the
template of preimage P2i utilized in this work.

3.3 Template T 2i of Preimage P2i

Given the abstract elements A2i = {A2i
j | j ∈ [n2i]} of the neurons in the

layer f2i, where A2i
j = ⟨f2i,≤j , f2i,≥j , l2ij , u

2i
j ⟩, we define the template T 2i of the

preimage P2i as
∧

j∈[n2i]
T 2i
j , where T 2i

j = {x2i
j ∈ R | f2i,≤j − α2i

j ≤ x2i
j ≤

f2i,≥j + β2i
j }, α2i

j = β2i
j = (

u2i
j −l2ij
2 )χ2i, and χ2i is an additional variable over

the domain R. Intuitively, T 2i
j is a scaling of A2i

j using the scaling variable χ2i

and step u2i
j −l2ij
2 . Thus, T 2i

j is A2i
j when χ2i = 0, and is super-region (resp.

sub-region) of A2i
j when χ2i > 0 (resp. χ2i < 0).
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3.4 Details of Function UnderPreImage

We present an MILP-based method to implement UnderPreImage(N ,A2i,P2i+2).
Given the abstract element A2i and preimage P2i+2, we construct a maxi-
mization problem with objective function χ2i subject to the constraints T 2i ⊆
N−1

[2i+1:2i+2](P
2i+2), where T 2i is the template of P2i with the scaling variable

χ2i. The solution, i.e., the value of χ2i, yields the tightest under-approximate
preimage P2i such that P2i ⊆ N−1

[2i+1:2i+2](P
2i+2). Hence, the key is addressing

T 2i ⊆ N−1
[2i+1:2i+2](P

2i+2), for which we present an MILP-based method. We
first express T 2i ⊆ N−1

[2i+1:2i+2](P
2i+2) as the following maximization problem:

maximize χ2i s.t. N[2i+1:2i+2](T 2i) ⊆ P2i+2. (1)

However, Problem (1) is not an MILP, due to the “forall”-type of constraints.
To address this issue, we construct the following minimization problem:

minimize χ2i s.t. x2i+2 ∈ N[2i+1:2i+2](T 2i) ∧ x2i+2 /∈ P2i+2. (2)

Intuitively, given the solution to Problem (2), e.g., χ2i,∗
min, we can always get a

value for χ2i by subtracting an extremely small value from χ2i,∗
min. The resulting

value of χ2i is close to the optimal solution of Problem (1), within a negligible
margin of error. Such a transformation to an “existential” constraint provides an
alternative way for handling T 2i ⊆ N−1

[2i+1:2i+2](P
2i+2), allowing the problem to

be effectively tackled within the MILP framework.
Suppose T 2i

j = {x2i
j ∈ R | f2i,≤j − α2i

j ≤ x2i
j ≤ f2i,≥j + β2i

j } for j ∈ [n2i] and
P2i+2
k = {x2i+2

k ∈ R | f2i+2,≤
k − a2i+2

k ≤ x2i+2
k ≤ f2i+2,≥

k + b2i+2
k } for k ∈ [n2i+2]

and i ≤ d− 2. We reformulate Problem (2) as the following MILP problem:

minimize χ2i s.t. Ψ∈I ∪ ΨT 2i ∪ ΨT 2i+1 ∪ ΨT 2i+2 ∪ Ψ/∈P2i+2 , (3)

where Ψ∈I and Ψ/∈P2d will be given in Section 4 which entail x ∈ I and x2d /∈ P2d

respectively, as they depend on the property ⟨I,O⟩. ΨT 2i , ΨT 2i+1 , ΨT 2i+2 , and
Ψ/∈P2i+2 are defined as follows ({η2i+1

j , η2i+2
j , ζ2i+2

j } are Boolean variables):

– ΨT 2i = {f2i,≤j −α2i
j ≤ x2i

j ≤ f2i,≥j +β2i
j | j ∈ [n2i]} expressing template T 2i;

– ΨT 2i+1 = {x2i+1 ≥ 0,x2i+1 ≥ x2i,x2i+1 ≤ M · η2i+1
j ,x2i+1 ≤ x2i + M · (1−

η2i+1
j ) | j ∈ [n2i+1]} encoding the activation layer f2i+1 (cf. [54]);

– ΨT 2i+2 = {x2i+2
j = W2i+2

j,: x2i+1 + b2i+2
j | j ∈ [n2i+2]} encoding the affine

layer f2i+2 (cf. [54]). Note that ΨT 2i , ΨT 2i+1 and ΨT 2i+2 together express the
condition x2i+2 ∈ N[2i+1:2i+2](T 2i).

– Ψ/∈P2i+2 =



x2i+2
j > f2i+2,≥

j + b2i+2
j + M · (η2i+2

j − 1),

x2i+2
j ≤ f2i+2,≥

j + b2i+2
j + M · η2i+2

j ,

x2i+2
j ≥ f2i+2,≤

j − a2i+2
j − M · ζ2i+2

j ,

x2i+2
j < f2i+2,≤

j − a2i+2
j − M · (ζ2i+2

j − 1),

j ∈ [n2i+2] ∧
∑n2i+2

k=1

(
η2i+2
k + ζ2i+2

k

)
≥ 1


expressing the con-

dition x2i+2 /∈ P2i+2.

Theorem 1. Problems (2) and (3) are equivalent. ⊓⊔
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3.5 Checking γ(Â2i) ⊆ P2i

Fix the abstract elements Â2i = {Â2i
j | j ∈ [n2i]} for the quantized layer f̂2i with

Â2i
j = ⟨f̂2i,≤j , f̂2i,≥j , l̂2ij , û

2i
j ⟩, we have γ(Â2i

j ) = {x2i
j ∈ R | f̂2i,≤j ≤ x2i

j ≤ f̂2i,≥j }.
Let P2i

j = {x2i
j ∈ R | f2i,≤j − a2ij ≤ x2i

j ≤ f2i,≥j + b2ij } for j ∈ [n2i] be the
preimage obtained by the function UnderPreImage for i ≤ d− 1, where a2ij and
b2ij are real-valued numbers.

Since reformulating the problem of checking γ(Â2i) ⊆ P2i into an MILP
problem directly is infeasible due to its inherent nature of “forall”-type constraint,
we instead check the negation of this statement.

Let Φ/∈P2i be the following set of the linear constraints:

Φ/∈P2i = Ψ∈I ∪


f2i,≥j + b2ij + M · (η2ij − 1) < f̂2i,≥j ≤ f2i,≥ + b2ij + M · η2ij ,
f2i,≤ − a2ij − M · ζ2ij ≤ f̂2i,≤j < f2i,≤ − a2ij − M · (ζ2ij − 1),

j ∈ [n2i],
∑n2i

k=1

(
η2ik + ζ2ik

)
≥ 1


where η2ij and ζ2ij are two additional Boolean variables, and Ψ∈I and Φ/∈P2d

will be given in Section 4 such that Ψ∈I entails x ∈ I and ¬Φ/∈P2d entails
γ(Â2d) ⊆ P2d respectively, as they depend on the property ⟨I,O⟩.

Theorem 2. If Φ/∈P2i does not hold, then γ(Â2i) ⊆ P2i. ⊓⊔

4 Applications: Robustness and Backdoor-freeness

4.1 Certified Quantization for Robustness

We use Alg. 1 to synthesize quantization strategies for preserving robustness.

Definition 4. Let N : Rn0 → Rn2d be a DNN, Ir
u = {x ∈ Rn0 | ||x−u||∞ ≤ r}

be a perturbation region around an input u ∈ Rn0 , and Og = {x2d ∈ Rn2d |
argmax(x2d) = g} be the output region corresponding to a specific class g. Then,
⟨Ir

u,Og⟩ is a (local) robustness property of the DNN N .

We now give the encoding details that are not covered in Section 3, i.e., Ψ∈I
and Ψ/∈P2d in Problem (3), and Φ/∈P2d in Section 3.5 for the property ⟨Ir

u,Og⟩6:

– Ψ∈I = {max(uj − r, 0) ≤ xj ≤ min(uj + r, 1) | j ∈ [n0]} specifying the
feasible input range Ir

u;

– Ψ/∈P2d =

{
x2d
g + M · (η2dj − 1) ≤ x2d

j ≤ x2d
g + M · η2dj ,

j ∈ [n2d] \ g,
∑

k∈[n2d]\g η
2d
k ≥ 1

}
stating x2d /∈ Og,

i.e., argmax(x2d) ̸= g, where η2dj is a Boolean variable;

– Φ/∈P2d =

{
f̂2d,≤g + M · (η2dj − 1) ≤ f̂2d,≥j ≤ f̂2d,≤g + M · η2dj ,

j ∈ [n2d]\g,
∑

k∈[n2d]\g η
2d
k ≥ 1

}
whose unsat-

isfiability ensuring γ(Â2d) ⊆ Og, where η2dj is a Boolean variable.

6 For simplicity, we assume that the output layer of N has a unique maximum value
for any given input. This assumption can be avoided by adapting Ψ/∈P2d and Φ/∈P2d .
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The soundness of the algorithm is captured by the theorem below.

Theorem 3. Ψ∈I ⇔ x ∈ Ir
u, Ψ/∈P2d ⇔ x2d /∈ Og, ¬Φ/∈P2d ⇒ γ(Â2d) ⊆ Og. ⊓⊔

4.2 Certified Quantization for Backdoor-freeness

Given a DNN N : Rn0 → Rn2d and an input u ∈ Rn0 , assume that the 2D-
shape of u is a rectangle (hu, wu) (i.e., n0 = hu × wu). A backdoor trigger is
any 2D input s ∈ Rhs×ws with a shape of rectangle (hs, ws) such that hs ≤ hu
and ws ≤ wu. We use u[x, y] to denote the element located in the x-th row and
y-th column within the 2D-input u. Let (hp, wp) denote the position of (i.e., the
top-left corner of) the trigger s such that hp + hs ≤ hu and wp + ws ≤ wu.
Then, us is the stamped input where us[x, y] = s[x − hp, y − wp] if hp ≤ x ≤
hp + hs ∧ wp ≤ y ≤ wp + ws, and us[x, y] = u[x, y] otherwise.

Definition 5. Let N : Rn0 → Rn2d be a DNN, (hs, ws), (hp, wp), t, and θ
be the shape, position, target class, and attack success rate of potential triggers.
Then, the DNN N satisfies the backdoor-freeness property if there does not exist a
backdoor trigger s which has an attack success rate of at least θ, i.e, the probability
of N (us) = t for any u ∈ Rn0 is at least θ [37].

Given an input u ∈ Rn0 , let ⟨IB
u ,OB

t ⟩ be a property such that IB
u = {us ∈

Rn0 | s ∈ Rhs×ws is any trigger at position (hp, wp)} and OB
t = {x2d ∈ Rn2d |

argmax(x2d) ̸= t}. Intuitively, ⟨IB
u ,OB

t ⟩ entails that no trigger exists whereby
the input u, once stamped, would be classified as class t.

The overall algorithm is given in Alg. 2 by applying a hypothesis testing (a
type I/II error σ/ϱ and a half-width of the indifference region δ), i.e., the SPRT
algorithm [1]. The while loop first keeps randomly selecting a set of K properties
and collects the preimage with the highest value of the scaling variable of the
first affine layer, along with the property, until one of the hypotheses is accepted.
When the null hypothesis H0 is accepted (line 9), we try to find a shared quanti-
zation strategy for all the properties collected before, following Alg. 1, with the
innermost for-loop to traverse all properties. Due to space limitations, details of
the hypothesis testing and input parameters are explained in [50].

We now give the encoding details that are not covered in Section 3, i.e., Ψ∈I
and Ψ/∈P2d in Problem (3), and Φ/∈P2d in Section 3.5 for the property ⟨IB

u ,OB
t ⟩:

– Ψ∈I =

{
0 ≤ x[a, b] ≤ 1 if hp ≤ a ≤ hp + hs ∧ wp ≤ b ≤ wp + ws,

x[a, b] = u[a, b] otherwise

}
;

– Ψ/∈P2d = {x2d
t ≥ x2d

j | j ∈ [n2d]};
– Φ/∈P2d = {f̂2d,≤j ≤ f̂2d,≥t | j ∈ [n2d] \ t}.

Theorem 4. (1) Ψ∈I ⇔ x ∈ IB
u , Ψ/∈P2d ⇔ x2d /∈ OB

t , ¬Φ/∈P2d ⇒ γ(Â2d) ⊆
OB

t , and (2) there is sufficient evidence (subject to type I error σ and type II
error ϱ) that there are no backdoor attacks with the featured triggers within the
QNN obtained by Alg. 2. ⊓⊔
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Algorithm 2: CQ_Backdoor(N ,Bl,Bu, (hs, ws), (hp, wp), t, θ,K, ϵ, σ, ϱ, δ)

1 Let P2d = OB
t , N̂ = N , AllI = ∅, AllP = ∅, n = z = 0;

2 Let p0 = 1 − θK + δ, p1 = 1 − θK − δ;
3 while true do
4 n = n + 1;
5 Randomly select a set of K properties X = {⟨NB

u1
,OB

t ⟩, . . . , ⟨NB
uK

,OB
t ⟩};

6 Compute under-approximate preimage for each property in X (cf. Alg. 1), and let
⟨IB

u∗ ,OB
t ⟩ be the property with the highest value of the scaling variable χ2∗ for

layer f2 and P∗ be the corresponding under-approximate preimage;
7 if χ2∗ ≥ ϵ then
8 z = z + 1; AllI .append(IB

u∗ ); AllP.append(P∗);

9 if pz1
pz0

× (1−p1)n−z

(1−p0)n−z ≤ ϱ
1−σ then

10 for i = 1 to d do
11 ξi = ⊥;
12 Let I be the minimal bit-width to encode integer parts of W2i and b2i

without overflow;
13 for F = Bl to Bu do
14 Quantize W2i, b2i w.r.t. ξ̌i = (F + I, F ) on N̂ and obtain N̂ 2i;
15 for k = 1 to z do
16 Apply DeepPoly on N̂ 2i

[1:2i] w.r.t. AllI [k] and obtain Â2i,k;

17 if γ(Â2i,k) ⊆ AllP[k][i] is UNSAT then
18 break //jump to line 13 for next iteration of F

19 ξi = ξ̌i; N̂ = N̂ 2i; //accept ξ̌i and update quantized parameters
20 break //jump to line 10 to quantize next layer f2i+2

21 if ξi == ⊥ then return UNKNOWN;

22 return Ξ = {ξ1, . . . , ξd}

23 else if pz1
pz0

× (1−p1)n−z

(1−p0)n−z ≤ 1−ϱ
σ then

24 return UNKNOWN;

Table 1. Benchmarks of DNNs on MNIST and Fashion-MNIST.

Accuracy P1: 2× 100 P2: 4× 100 P3: 6× 100 P4: 4× 512

MNIST 97.79% 97.63% 97.39% 98.17%
Fashion-MNIST 87.86% 88.45% 87.22% 88.7%

5 Evaluation

We have implemented our methods as a tool Quadapter with Gurobi [11] as
the back-end MILP solver. To address the numerical stability problem using
big-M, we use alternative formulations for the ReLU activation function and
tighter bounds for other big-M. Details refer to [50]. All experiments are run
on a machine with Intel(R) Xeon(R) Platinum 8375C CPU@2.90GHz, using 30
threads in total. The time limit for each task is 2 hours.

Benchmarks. We train 8 DNNs using the MNIST [20] and Fashion-MNIST [46]
datasets based on their popularity in previous verification studies with compara-
ble size [9,12,19,36,37]. To evaluate the performance of Quadapter, these DNNs
vary in architectures, whose details are given in Table 1, where x × y means
that the network has x hidden layers and y neurons per each hidden layer. Here-
after, we use MPx (resp. FPx) with x ∈ {1, 2, 3, 4} to denote the network of
architecture Px trained using MNIST (resp. Fashion-MNIST).
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5.1 Performance of UnderPreImage Function

We evaluate the effectiveness and efficiency of the MILP-based method intro-
duced in Section 3.4 for computing the under-approximate preimage of DNNs
MPx with x ∈ {1, 2, 3, 4} for robustness properties. Specifically, we randomly
select 50 inputs from the test set of MNIST and set the perturbation radius as
r ∈ {2, 4}, resulting in a total of 400 robustness properties, each of which can be
certified using DeepPoly. The time limit for each computation task is 2 hours. We
also implement an abstraction-based method (ABS) to compute the preimages
for comparative analysis. Details refer to [50].
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MP1 MP2 MP3 MP4Perturbation
Radius ABS MILP ABS MILP ABS MILP ABS MILP

r = 2 4.80 7.18 10.89 24.86 15.47 38.00 54.98 565.0

r = 4 4.80 9.13 11.52 35.73 16.33 49.86 58.48 1,763(5)

Fig. 3. Results of preimage computation.

The results are depicted in
Fig. 3. The boxplot shows the
distribution of the values of
the scaling variables obtained by
the two methods for each layer,
where Ax and Mx denote the re-
sults of layer fx obtained by the
ABS and MILP methods, respec-
tively. (Note that some Ax and
Mx may be missing because the
DNN has no fx layer.) The table
reports the average computation
time in seconds, where (i) indi-
cates the number of tasks that
run out of time in 2 hours. We
find that compared to the MILP
method, the ABS method tends
to obtain significantly smaller
values for scaling variables in earlier layers, albeit requiring less time. It is mainly
attributed to the inherent over-approximation in the abstract transformers. Note
that the scaling variable for the last affine layer returned by the ABS method
is typically larger than that obtained via the MILP method. However, we argue
that the scaling variables of preceding layers are more significant, with larger val-
ues being preferable for a successful forward quantization process subsequently.
Therefore, we opt for the MILP method to implement UnderPreImage, despite
its longer execution time. Integrating both methods is an interesting direction
for future work.

Unsurprisingly, we also observe the decrease of scaling variables as r increases
or the layer index decreases. The former is attributed to the enlargement of the
reachable region of each neuron with an increasing r, leading to a diminution in
the theoretical range of the amplification. The latter is because we propagate the
preimage towards the input layer and the preimage returned by UnderPreImage
increasingly under-approximates the ground truth. Additionally, we find a more
pronounced impact of the number of layers in a DNN on the scaling, as opposed
to the impact of the number of neurons per each layer. For example, when r = 4,
while the scaling of the last affine layer is similar across MP2, MP3, and MP4,
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Table 2. Certified quantization strategy synthesis results for robustness.

Quadapter with (Bl,Bl) = (1, 16) Quadapter∗ with (Bl,Bl) = (2, 16)Network #S #F Bit-width Acc. PTime(s) QTime(s) #S #F Bit-width Acc. PTime(s) QTime(s)

MP1 250 0 (6,3) 95.57% 8.17 10.80 250 0 (4,4) 96.59% 8.75 3.96
MP2 248 2 (8,6,3) 94.11% 30.49 29.18 249 1 (5,4,4) 96.35% 31.60 13.38
MP3 175 75 (11,9,6,3) 95.47% 39.55 58.63 208 32 (8,5,4,4) 96.08% 42.37 78.22
MP4 228 0 (8,6,3) 94.48% 1,066 160.2 227 0 (4,4,4) 96.97% 1,066 32.99

FP1 250 0 (6,4) 78.54% 6.93 10.48 250 0 (4,4) 83.89% 7.80 3.63
FP2 249 1 (8,6,3) 79.43% 29.82 28.86 248 2 (5,4,4) 84.56% 33.13 11.39
FP3 180 70 (11,9,6,3) 74.23% 36.90 59.45 222 26 (7,5,4,4) 85.74% 39.71 39.44
FP4 221 2 (8,7,3) 75.98% 564.0 160.7 220 2 (4,4,4) 83.07% 565.3 64.23

a notable divergence is observed as the preimage computation progresses to the
preceding layer, i.e., the scaling of f4 in MP3 largely diminishes compared to
that of f2 in MP2 and MP4, and even approaches zero in some tasks. We con-
jecture that as the DNN gets deeper and r gets larger, DeepPoly shows enhanced
efficacy in its symbolic propagation such that the region delineated by A2i+2 be-
comes significantly tighter compared to the region confined by N[2i+1:2i+2](A2i).
Finally, we find that the preimage computation time is predominantly impacted
by the number of neurons per each layer (e.g., MP2 vs MP4).

5.2 Certified Quantization for Robustness

We evaluate Quadapter in terms of robustness properties on all the networks
listed in Table 1 with the fractional bit-width range [Bl,Bu] = [1, 16]. For each
network, we randomly select 50 inputs from the test set of the respective dataset
and set the perturbation radius as r ∈ {1, 2, 3, 4, 5}. It results in a total of 250
synthesis tasks for each network, each of which can be certified by DeepPoly.

The results are reported in Columns 2 to 7 in Table 2. Columns (#S) and
(#F) list the number of quantization successes and quantization failures due
to small values of scaling variables. Column (Bit-width) lists the average bit-
width for each layer within the quantization strategies synthesized by Quadapter
and Column (Acc.) lists the average accuracy of the resulting QNNs. Columns
(PTime) and (QTime) show the average execution time in seconds for the preim-
age computation and forward quantization procedures, respectively. Overall,
Quadapter solves almost all the tasks of MPx and FPx for x ∈ {1, 2}, and
most tasks of MP4 and FP4, where all timeout cases occur in the preimage
computation process. For MP3 and FP3, all quantization failures are due to the
excessively small preimage returned by UnderPreImage, posing a great challenge
in finding a feasible quantization strategy, which requires that the quantized re-
gion must be strictly included within the preimage. Given the distribution shift
phenomenon shown in Fig. 1, we hypothesize that it may be alleviated by re-
laxing such “strict-inclusion” requirement on the early layer quantization while
not compromising soundness. Thus, we next relax the restriction by permitting
the quantized regions of some portion of neurons, e.g., 25%, in each affine layer
(except the output layer to guarantee the soundness of the approach) to devi-
ate from the preimage returned by UnderPreImage. Note that, when using the
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(hs, ws) = (3, 3) (hs, ws) = (5, 5)Network #S #F Bit-width Acc. Time(s) #S #F Bit-width Acc. Time(s)

MP1 49 0 (12,4) 96.87% 474.9 44 6 (10,4) 96.94% 595.4
MP2 43 7 (15,8,4) 97.06% 1,100 26 24 (12,8,4) 97.09% 1,293

FP1 50 0 (12,4) 85.29% 466.7 46 4 (9,4) 85.38% 511.4
FP2 40 10 (13,7,4) 86.61% 1,114 32 18 (11,8,4) 86.71% 1,063
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Fig. 4. Certified quantization strategies synthesis results for backdoor-freeness.

relaxed version of our tool, named Quadapter∗, we set Bl = 2 to circumvent situ-
ations where the use of the smallest bit-width (specifically, 1-bit), while theoreti-
cally yielding a viable solution for the current layer, may lead to a lack of feasible
quantization for subsequent layers. Experimental results are shown in Columns
8 to 13 in Table 2. We observe that Quadapter∗ usually synthesizes quantiza-
tion strategies with smaller bit-widths for earlier layers, larger bit-widths for the
last later, better accuracy, and solves more tasks on average. While the accuracy
drops slightly, it also slightly drops using the same but non-certified quantization
scheme and our certified quantization achieved comparable accuracy [50].

5.3 Certified Quantization for Backdoor-freeness

We evaluate Quadapter in terms of backdoor-freeness on MP1, MP2, FP1 and
FP2. For each network, we randomly select 5 trigger positions and consider all
the 10 output classes as target labels of the backdoor attacks with two shapes
of triggers, i.e., hs = ws = 3 and hs = ws = 5, resulting in 5 × 10 × 2 =
100 backdoor-freeness properties. Following [37], we set the input parameters of
Alg. 2 as (Bl,Bu) = (2, 16), θ = 0.9, K = 5, ϵ = 0.01, and σ = ϱ = δ = 0.05.
Note that these parameters do not affect the soundness of Alg. 2.

The results are given in Fig. 4. We observe that for (hs, ws) = (3, 3), Quadapter
solves almost all the tasks of MP1 and FP1, and most tasks on MP2 and FP2. For
(hs, ws) = (5, 5), over half of the tasks are solved by Quadapter. All the quanti-
zation failures (due to small values of scaling variables) may be solvable with the
relaxed version of Quadapter which is left as future work. The histogram shows
the distribution of target classes in the solved tasks on MP1 and FP1, where the
x-axis gives the synthesis success rate. We also observe that Quadapter is more
likely to successfully find certified quantization strategies w.r.t. target classes
{0, 1, 4, 6, 9} on MP1 and target classes {1, 2, 4, 5, 7, 8, 9} on FP1, compared to
its efficacy w.r.t. other classes. Due to the black-box nature, we currently cannot
explain the discrepancy in performance between target classes.
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6 Related Work

Numerous methods have been proposed to verify (local) robustness of DNNs
(e.g., [7,10,17,40,45,47]) and QNNs (e.g., [9,12,14,19,52–54]). Recently, backdoor-
freeness verification for DNNs has been explored leveraging a similar hypothesis
testing method [37]. Methods for verifying quantization error bound [30,35,36,51]
and Top-1 equivalence [16] between DNNs and QNNs have also been proposed.
Except for [16], these works only verify properties without adjusting quantization
strategies for falsified properties. The concurrent work [16] iteratively searches
for a quantization strategy and verifies Top-1 equivalence after quantization, re-
fining strategies if equivalence is violated. However, it does not support general
properties (e.g., backdoor freeness or robustness of multi-label classification [6]).
Additionally, [16] requires frequent equivalence verification, which is computa-
tionally expensive and inefficient (e.g., networks with 100 neurons in 20 minutes).
Comparison experiments are given in [50].

The primary contribution of this work is the first certified quantization strat-
egy synthesis approach utilizing preimage computation as a crucial step. Hence,
any (under-approximate) preimage computation methods can be integrated. [28]
introduced an exact preimage computation method that, while precise, is imprac-
tical due to its exponential time complexity. The inverse abstraction approach [4]
circumvents the intractability of exact preimage computation by using symbolic
interpolants [2] for compact symbolic abstractions of preimages. However, it still
faces scalability issues due to the complexity of the interpolation process. [18,49]
considered over-approximate preimages, which are unsuitable for our purpose.

Quantization-aware training has been studied to improve robustness for a
given fixed quantization strategy [19, 23, 24, 41, 43], but only [19] provides ro-
bustness guarantees by lifting abstract interpretation-based training [29] from
DNNs to QNNs. In contrast, our work aims to obtain a better quantification
strategy for preserving given properties. Thus, our work is orthogonal to and
could be combined with them. We leave this as interesting future work.

7 Conclusion

In this work, we have presented a pioneering method Quadapter to synthesize a
fine-grained quantization strategy such that the desired properties are preserved
within the resulting quantized network. We have implemented our methods as
an end-to-end tool and conducted extensive experiments to demonstrate the
effectiveness and efficiency of Quadapter in preserving robustness and backdoor-
freeness properties. For future work, it would be interesting to explore the adap-
tation of Quadapter to other activation functions and network architectures,
towards which this work makes a significant step.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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