
DOI 10.1007/s00165-014-0330-y
BCS © 2015
Formal Aspects of Computing (2015) 27: 397–421

Formal Aspects
of Computing

Model checking dynamic pushdown networks
Fu Song1 and Tayssir Touili2
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, No. 3663 Zhongshan Road(N), Shanghai,

People’s Republic of China
2 Liafa, CNRS and Université Paris Diderot, Paris, France

Abstract. A dynamic pushdown network (DPN) is a set of pushdown systems (PDSs) where each process can
dynamically create new instances of PDSs. DPNs are a natural model of multi-threaded programs with (possibly
recursive) procedure calls and thread creation. Thus, it is important to have model checking algorithms for DPNs.
We consider in this work model checking DPNs against single-indexed LTL and CTL properties of the form

∧
fi

such that fi is a LTL/CTL formula over the PDS i . We consider the model checking problems w.r.t. simple
valuations (i.e., whether a configuration satisfies an atomic proposition depends only on its control location)
and w.r.t. regular valuations (i.e., the set of the configurations satisfying an atomic proposition is a regular set
of configurations). We show that these model checking problems are decidable. We propose automata-based
approaches for computing the set of configurations of a DPN that satisfy the corresponding single-indexed
LTL/CTL formula.

Keywords: Model checking, Dynamic pushdown networks, LTL, CTL

1. Introduction

Multithreading is a commonly used technique for modern software. However, multithreaded programs are known
to be error prone and difficult to analyze. Dynamic pushdown networks (DPN) [BMOT05] are a natural model of
multi-threaded programs with (possibly recursive) procedure calls and thread creation. A DPN consists of a finite
set of pushdown systems (PDSs), each of them models a sequential program (process) that can dynamically create
new instances of PDSs. Therefore, it is important to investigate automated methods for verifying DPNs. While
existing works concentrate on the reachability problem of DPNs [BMOT05, Lug11, LMOW09, GLMO+11,
LMO07, Wen10], model checking for the linear temporal logic (LTL) and the computation tree logic (CTL)
which can describe more interesting properties of program behaviors has not been tackled yet for DPNs.

Correspondence and offprint requests to: F. Song, E-mail: fsong@sei.ecnu.edu.cn

398 F. Song, T. Touili

In general, the model checking problem is undecidable for double-indexed properties, i.e., properties where
atomic propositions are interpreted over the control states of two or more threads [KG06]. This undecidability
holds for pushdown networks even without thread creation. To obtain decidable results, in this paper, we consider
single-indexed LTL and CTL model checking for DPNs, where a single-index LTL or CTL formula is a formula
of the form

∧
fi such that fi is a LTL/CTL formula over the PDS i . A DPN satisfies

∧
fi iff every PDS i that runs

in the network satisfies the subformula fi . We first consider LTL model checking for DPNs with simple valuations
where whether a configuration of a PDS i satisfies an atomic proposition depends only on the control state of
the configuration. Then, we consider LTL model checking for DPNs with regular valuations where the set of
configurations of a PDS satisfying an atomic proposition is a regular set of configurations. Finally, we consider
CTL model checking for DPNs with simple and regular valuations. We show that these model checking problems
are decidable. We propose automata-based approaches for computing the set of configurations of a DPN that
satisfy the corresponding single-indexed LTL/CTL formula.

It is non-trivial to do LTL/CTL model checking for DPNs, since the number of instances of PDSs can be
unbounded. Checking independently whether all the different PDSs satisfy the corresponding subformula fi is
not correct. Indeed, we do not need to check whether an instance of a PDS j satisfies fj if this instance is not
created during a run. To solve this problem, we extend the automata-based approach for standard LTL/CTL
model checking for PDSs [BEM97, EKS03, EHRS00, ST11]. For every process i , we compute a finite automaton
Ai recognizing all the configurations from which there exists a run σ of the process i that satisfies fi . Ai also
memorizes the set of all the initial configurations of the instances of PDSs that are dynamically created during the
run σ . Then, to check whether a DPN satisfies a single-indexed LTL/CTL formula, it is sufficient to check whether
the initial configurations of the processes are recognized by the corresponding finite automata and whether the
set of generated instances of PDSs that are stored in the automata also satisfy the formula. This condition is
recursive. To solve it, we compute the largest set Dfp of the dynamically created initial configurations that satisfy
the formula f . Then, to check whether a DPN satisfies f , it is sufficient to check whether the initial configurations
of the different processes are recognized by the corresponding finite automata and whether the dynamically
created initial configurations that are stored in the automata are in Dfp .

To compute the finite automata Ais , we extend the automata-based approaches for standard LTL [BEM97,
EHRS00, EKS03] and CTL [ST11] model checking for PDSs. For every i , 1 ≤ i ≤ n, we construct a Büchi
Dynamic PDS (resp. alternating Büchi Dynamic PDS) which is a synchronization of the PDS i and the LTL
(resp. CTL) formula fi . Büchi Dynamic PDS (resp. alternating Büchi Dynamic PDS) is an extension of Büchi
PDS (resp. alternating Büchi PDS) with the ability to create new instances of PDSs during the run. The finite
automata Ais we are looking for correspond to the languages accepted by these Büchi Dynamic PDSs (resp.
alternating Büchi Dynamic PDSs). Then, we show how to solve these language problems and compute the finite
automata Ais .

Related work. The DPN model was introduced in [BMOT05]. Several other works use DPN and its extensions to
model multi-threaded programs [BMOT05, GLMO+11, LMOW09, Lug11, Wen10]. All these works only consider
reachability issues. Ground Tree Rewrite Systems [GL11] and process rewrite systems [BKRS09, May00] are two
models of multi-threaded programs with procedure calls and threads creation. However, [May00] only considers
reachability problem and [GL11, BKRS09] only consider subclasses of LTL. We consider LTL and CTL model
checking problems.

Pushdown networks with communication between processes are studied in [BET03, CCK+06, ABT08, TA10].
These works consider systems with a fixed number of threads. [LMO07, LMO08] use parallel flow graphs to model
multi-threaded programs. However, all these works only consider reachability. [Yah01] considers safety properties
of multi-threaded programs.

[KG06, KG07, KIG05] study single-index LTL/CTL and double-indexed LTL model checking problems for
networks of pushdown systems that synchronize via a finite set of nested locks. [KLTR09] considers model
checking on properties that are expressed in a kind of finite automata for such networks of pushdown systems.
These works don’t consider dynamic threads creation.

Outline. Section 2 gives the basic definitions. Sections 3 and 4 show LTL model checking for DPNs with simple
valuations and regular valuations, respectively. Section 5 shows CTL model checking for DPNs. We conclude in
Sect. 6.

This paper is the full version of the paper [ST13]. In this full version, we add the proofs of theorems and the
technical details of the results on single-indexed LTL model checking with regular valuations.

Model checking dynamic pushdown networks 399

void main(){
l0 : Socket sSocket= new Socket(445);
l1 : Socket cSocket=null;
l2 : while(true){
l3 : cSocket=sSocket.accept()
l4 : new Thread(worker,cSocket);
l5 : if (cond) break; }
l6 : return; }

void worker(Socket s){
l′0 : String str=null;
l′1 : Resource res==s.readLine();
l′2 : if (str==“req”){
l′3 : // prepare response for req
l′4 : s .send(“ack”); }
l′5 : if (str==“req′”){
l′6 : // prepare response for req′
l′7 : s .send(“ack′”); }
l′8 : s . close ();
l′9 : return; }

Fig. 1. A simplified concurrent server program, where l0, . . . , l6, l
′
0, . . . , l

′
9 are program control points

2. Preliminaries

2.1. Dynamic pushdown networks

Definition 2.1 A Dynamic Pushdown Network (DPN) M is a set {P1, . . . ,Pn } such that for every i , 1 ≤ i ≤ n,
Pi � (Pi , �i ,�i) is a dynamic pushdown system (DPDS), where Pi is a finite set of control locations such that
Pk ∩ Pi � ∅ for k �� i , �i is the stack alphabet, and �i is a finite set of transition rules in the following forms:
(a) qγ ↪→ p1ω1 or (b) qγ ↪→ p1ω1 � p2ω2 such that q, p1 ∈ Pi , γ ∈ �i , ω1 ∈ �∗i , p2ω2 ∈ Pj × �∗j for some
j , 1 ≤ j ≤ n.

A global configuration of M is a multiset G over
⋃n

i�1 Pi × �∗i . Each element qω ∈ Pi × �∗i ∩ G denotes
that an instance of Pi running in parallel in the network is at the local configuration qω, i.e., Pi is at the control
location q and its stack content is ω. If ω � γu for γ ∈ �i and there is in �i a transition (a) qγ ↪→ p1ω1
or (b) qγ ↪→ p1ω1 � p2ω2 such that p2ω2 ∈ Pj × �j , then the instance of Pi can move from qω to the
control location p1 and replace γ by ω1 at the top of its stack, i.e., Pi moves to p1ω1u. The other instances
in parallel in the network stay at the same local configurations. In addition, if the transition (b) is used for
moving to p1ω1u, then a new instance of Pj starting from p2ω2 is created. Formally, a DPDS Pi induces an
immediate successor relation �⇒i as follows: for every ω ∈ �∗i , if qγ ↪→ p1ω1 ∈ �i , then qγω �⇒i p1ω1ω; if
qγ ↪→ p1ω1 � p2ω2 ∈ �i , then qγω �⇒i p1ω1ω � {p2ω2}. To unify the presentation, if qγω �⇒i p1ω1ω, we
sometimes write qγω �⇒i p1ω1ω � ∅ instead. The transitive and reflexive closure of �⇒i is denoted by �⇒∗i .
Formally, for every pω ∈ Pi × �∗i , pω �⇒∗i pω � ∅; and if pω �⇒i p1ω1 � D1 and p1ω1 �⇒∗i p2ω2 � D2, then
pω �⇒∗i p2ω2 � D1 ∪D2. �⇒+

i is defined as usual.
A DPDS Pi can be seen as a pushdown system (PDS) with the ability of dynamically creating new instances

of PDSs. The initial local configuration of a newly created instance is called DCLIC (for Dynamically Created
Local Initial Configuration).

A local run of an instance of Pi from a local configuration c0 is a sequence of local configurations c0c1 . . . over
Pi×�∗i such that for every j ≥ 0, cj �⇒i cj+1 � D for some D . A global run ρ of M from a global configuration
G is a (potentially infinite) set of local runs. Initially, ρ contains exactly the local runs starting from the local
configurations in G. Whenever a DCLIC c is created by some local run of ρ, a new local run starting from c is
added into ρ. For every i , 1 ≤ i ≤ n, let ℘(σ) � i iff σ is a local run of an instance of Pi , and ℘(pω) � ℘(p) � i
iff p ∈ Pi . Let Di � {p2ω2 ∈ ⋃n

i�1 Pi × �∗i | qγ ↪→ p1ω1 � p2ω2 ∈ �i } be the set of potential DCLICs of the
DPDS Pi .

Example 2.1 Let us consider the simplified concurrent server program shown in Fig. 1. The main process creates
a socket object sSocket to listen on the port 445 and waits for requests from clients. When a request (connection)
arrives from a client, the main process creates a new process that runs worker with the parameter cSocket, and
then continues listening on the port 445 if cond is true (otherwise terminates). The process worker accepts a
connection s from the main process and processes it and reads the request. If it receives req (resp. req ′) from the
client, then it prepares the response and sends ack (resp. ack ′). Later, it closes the connection by invoking close()
and this process terminates. Otherwise, it closes the connection directly. This program has an unbound number
of processes of Worker. We can construct a DPN to model this program. Let M � (P1,P2) be the DPN such that

400 F. Song, T. Touili

for i ∈ {1, 2}, Pi � (Pi , �i ,�i), where Pi � {pi}, �1 � {l0, . . . , l6}, �2 � {l ′0, . . . , l ′9}, �1 and �2 are as follows.

�1 �
{

p1l0 ↪→ p1l1, p1l1 ↪→ p1l2, p1l2 ↪→ p1l3, p1l3 ↪→ p1accept0l4,
p1l4 ↪→ p1l5 � p2l0, p1l5 ↪→ p1l6, p1l5 ↪→ p1l2, p1l6 ↪→ p1ε.

}

�2 �
{p2l ′0 ↪→ p2l ′1, p2l ′1 ↪→ p2readLine0l ′2, p2l ′2 ↪→ p2l ′3, p2l ′2 ↪→ p2l ′5,

p2l ′3 ↪→ p2l ′4, p2l ′4 ↪→ p2send0l ′5, p2l ′5 ↪→ p2l ′6, p2l ′5 ↪→ p2l ′8,
p2l ′6 ↪→ p2l ′7, p2l ′7 ↪→ p2send0l ′8, p2l ′8 ↪→ p2close0l ′9, p2l ′9 ↪→ p2ε.

}

where accept0, send0, close0 and readLine0 are the entry points of the functions accept, send, close and readLine
respectively. For the sake of simplicity, we do not take the constructor of worker into account. Intuitively, P1
(resp. P2) models the main (resp. worker) process. The runs of M are an over-approximation of the program’s
executions.

2.2. LTL and Büchi automata

From now on, we fix a set of atomic propositions AP.

Definition 2.2 The set of LTL formulas is given by (where a ∈ AP):

ψ ::� a | ¬ψ | ψ ∧ ψ | Xψ | ψUψ.

Given an ω-word η � α0α1 . . . over 2AP, let η(k) denote αk , and ηk denote the suffix of η starting from αk .
η |� ψ (η satisfies ψ) is inductively defined as follows: η |� a iff a ∈ η(0); η |� ¬ψ iff η �|� ψ ; η |� ψ1 ∧ ψ2 iff
η |� ψ1 and η |� ψ2; η |� Xψ iff η1 |� ψ ; η |� ψ1Uψ2 iff there exists k ≥ 0 such that ηk |� ψ2 and for every j ,
1 ≤ j < k , ηj |� ψ1.

Definition 2.3 A Büchi automaton (BA) B is a tuple (G, �, θ, g0,F) where G is a finite set of states,� is the input
alphabet, θ ⊆ G × � × G is a finite set of transitions, g0 ∈ G is the initial state and F ⊆ G is a finite set of
accepting states.

A run of B over an ω-word α0α1 . . . is a sequence of states q0q1 . . . such that q0 � g0 and (qi , αi , qi+1) ∈ θ for
every i ≥ 0. A run is accepting iff it infinitely often visits some states in F .

It is well-known that given a LTL formula f , one can construct a BA Bf such that � � 2AP recognizing all
the ω-words that satisfy f [VW86].

Example 2.2 Let us consider the program in Example 2.1. One can use single-indexed LTL to express properties
of this program. For instance, let us consider a property of the worker process: “worker replies ack (resp. ack ′)
rather than ack ′ (resp. ack) for each request req (resp. req ′) from each client if this process is created by the main
process”. We can express this property in the LTL formula ψ2:

ψ2 � G((req �⇒ F(ack ∧G¬ack ′)) ∧ (req ′ �⇒ F(ack ′ ∧G¬ack))),

where req, req ′, ack and ack ′ are atomic propositions associated to l ′3, l
′
6, l
′
4, and l ′7, respectively. It is not correct

that worker replies ack ′ (resp. ack) or nothing if it receives req (resp. req ′). Also, the main process should have an
execution that always wait for requests from clients and processes every request. Otherwise, this server can serve
only a bound number of requests. We can express this property by the LTL formula ψ1:

ψ1 � G F accept,

where accept is an atomic proposition associated to l3. Therefore, we can check the property ψ1 ∧ ψ2. Note that
one cannot check ψ1 and ψ2, independently, since the worker process should satisfy ψ2 only if it is created by the
main process rather than others.

Model checking dynamic pushdown networks 401

2.3. Single-indexed LTL for DPNs

Let M � {P1, . . . ,Pn} be a DPN. A single-indexed LTL formula is a formula f of the form
∧n

i�1 fi 1 such that
for every i , 1 ≤ i ≤ n, fi is a LTL formula in which the validity of the atomic propositions depends only on
the DPDS Pi . Let λ : AP −→ 2

⋃n
i�1 Pi×�∗i be a valuation which assigns to each atomic proposition a set of

local configurations. A local run p0ω0p1ω1 . . . of Pi satisfies fi iff the ω-word α0α1 . . . where for every j ≥ 0,
αj � {a ∈ AP | pjωj ∈ λ(a)}, satisfies fi . A local configuration c of Pi satisfies fi iff Pi has a local run σ from
c that satisfies fi . If D is the set of DCLICs created during the run σ , we write c |�D fi . M satisfies f iff it has a
global run ρ such that for every i , 1 ≤ i ≤ n, each local run of Pi in ρ satisfies the formula fi .

2.4. Multi-automata and predecessors

From now on, we fix a DPN M � {P1, . . . ,Pn } where for every i , 1 ≤ i ≤ n, Pi � (Pi , �i ,�i), and a single-
indexed LTL formula f � ∧n

i�1 fi . To check whether M satisfies f is non-trivial. Indeed, it is not correct to check
independently whether each Pi satisfies fi . Instead, we need to check whether there exists a global run ρ from
a global configuration G such that an instance of Pi satisfies the formula fi only if it is an instance in G or it
is dynamically created during the run ρ. Thus, it is important to memorize the set of DCLICs that are created
during a run. To this aim, we introduce the function prePi

: 2Pi×�∗i×2Di −→ 2Pi×�∗i×2Di as follows. Given a set
U ⊆ (Pi × �∗i) × 2Di , prePi

(U) � {(c,D1 ∪ D2) | ∃c ′ ∈ Pi × �∗i , such that c �⇒i c ′ � D1 and (c′,D2) ∈ U }.
Intuitively, if Pi moves from c to c′ and generates the DCLIC D1 and (c ′,D2) ∈ U , then (c,D1∪D2) ∈ prePi

(U).
The transitive and reflexive closure of prePi

is denoted by pre∗Pi
. Formally, given a set U ⊆ (Pi × �∗i) × 2Di ,

pre∗Pi
(U) � {(c,D1 ∪ D2) | ∃c ′ ∈ Pi × �∗i , such that c �⇒∗i c ′ � D1 and (c′,D2) ∈ U }. Let pre+

Pi
(U) �

pre∗Pi
(prePi

(U)).
To finitely represent (infinite) sets of local configurations of DPDSs and DCLICs generated by DPDSs, we

use Multi-automata and Alternating Multi-automata.

Definition 2.4 An Alternating Multi-automaton (AMA) is a tuple Ai � (Qi , �i , δi , Ii ,Acci), where Qi is a finite
set of states, Ii ⊆ Qi is a finite set of initial states corresponding to the control locations of the DPDS Pi ,
Acci ⊆ Qi is a finite set of final states, δi ⊆ (Qi × �i)× 2Di × 2Qi is a finite set of transition rules.

A MA is an AMA Ai such that δi ⊆ (Qi × �i)× 2Di ×Qi .

We write p γ /D−−−→i {q1, . . . , qm} instead of (p, γ,D, {q1, . . . , qm }) ∈ δi , where D is a set of DCLICs. We define
the relation −→∗i⊆ (Qi × �∗i)× 2Di × 2Qi as the smallest relation such that: (1) q ε/∅−→∗i {q} for every q ∈ Qi , (2)

if q γ /D−−−→i {q1, . . . , qm } and qk
ω/Dk−−−→∗i Sk for every k , 1 ≤ k ≤ m, then q

γω/D∪⋃m
k�1 Dk−−−−−−−−−→∗i ⋃m

k�1 Sk . Let L(Ai) be

the set of tuples (pω,D) ∈ Pi × �∗i × 2Di such that p ω/D−−→∗i S for some S ⊆ Acci . A set W ⊆ Pi × �∗i × 2Di is
regular iff there exists an AMA Ai such that L(Ai) � W . A set of local configurations C ⊆ Pi × �∗i is regular
iff C × {∅} is a regular set. Here “regular” means that the set of words of the stack contents in a regular set of
configurations C is a regular language, i.e., the set of words {ω ∈ �∗i | pω ∈ C } can be represented by a standard
finite state automaton. In AMAs, the initial states are the control locations of DPDSs, and sets of DCLICs labeled
to transition rules could also be regarded as input characters. Similar as the transformation of alternating finite
state automata to finite state automata by performing a similar kind of powerset construction, given an AMA
Ai , we can construct a MA A′i such that L(Ai) � L(A′i).
Example 2.3 Let us consider the AMA Ai � ({p1, p2, q1, q2, q3, qf }, {γ1, γ2, γ3, γ4}, δ, {p1, p2}, {qf }), where δ is
shown in Fig. 2a, Di � {p ′1ω′1, p ′2ω′2}. The graph representation of Ai is shown in Fig. 2b. Consider the con-

figuration p1γ1γ2γ3, we have p1
γ1γ2γ3/{p ′1ω′1,p ′2ω′2}−−−−−−−−−−→∗i {qf }. Therefore, (p1γ1γ2γ3, {p ′1ω′1, p ′2ω′2}) ∈ L(Ai). Consider the

configuration p2γ1γ2γ3, it is not accepted by Ai for any set of DCLICs. In this example,

L(Ai) � {(p1γ1γ
i
2 γ3ω, {p ′1ω′1, p ′2ω′2}) | i ≥ 1, ω ∈ �∗}.

1 A single-indexed LTL formula
∧n

i�1 fi denotes the formula
∧n

i�1 Efi . Formulas of the form
∨n

i�1 Efi can be verified by checking Efi for
every i, 1 ≤ i ≤ n . Formulas of the form

∨n
i�1 Afi can be verified by checking E¬fi for every i, 1 ≤ i ≤ n .

402 F. Song, T. Touili

q1

q2

q3

qf

p1

p2

γ1/{p′
1ω

′
1}

γ2/{p′
2ω

′
2}

γ3/∅

γ/∅ : ∀γ ∈ Γγ2/∅

γ3/∅γ1/{p′
1ω

′
1}δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p1
γ1/{p′

1ω
′
1}−−−−−−→i {q1, q2}, p2

γ1/{p′
1ω

′
1}−−−−−−→i {q2, q3},

q1
γ2/{p′

2ω
′
2}−−−−−−→i {q1}, q3

γ3/∅−−−→i {qf},

q1
γ3/∅−−−→i {qf}, q2

γ2/∅−−−→i {qf},

qf
γ/∅−−→i {qf}, ∀γ ∈ Γ.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(a) (b)

Fig. 2. Graph representation of the AMA of Example 2.3

q1

q2

q3

qf

p1

p2

γ1/{p′
1ω

′
1}

γ2/{p′
2ω

′
2}

γ3/∅

γ/∅ : ∀γ ∈ Γ
γ2/∅

γ3/∅
γ1/{p′

1ω
′
1}

p3
γ3/∅

p4
γ4/{p′

1ω
′
1}

p5

γ5/{p′
3ω

′
3}

Fig. 3. The resulting AMA Apre∗
i

Given a DPDS Pi and a regular set W ⊆ Pi ×�∗i × 2Di accepted by a MA Ai � (Qi , �i , δi , Ii ,Acci), we can
construct a MA Apre∗

i � (Qi , �i , δ
′
i , Ii ,Acci) that exactly accepts pre∗Pi

(W). W.l.o.g., we assume that Ai has no

transition leading to an initial state and that Pi � Ii . Apre∗
i is constructed by the following saturation procedure

(an adaption of the saturation procedure of [BEM97]).

• For every pγ ↪→ p1ω1 ∈ �i and p1
ω1/D−−−→∗i q , add a new rule p γ /D−−−→i q ;

• For every pγ ↪→ p1ω1 � p2ω2 ∈ �i and p1
ω1/D−−−→∗i q , add a new rule p γ /D∪{p2ω2}−−−−−−−→i q .

The procedure adds only new transitions to Ai . Since the number |�i | of transition rules of Pi is finite,
DCLICs are fixed by transition rules of the form pγ ↪→ p1ω1 � p2ω2, we get that the number of DCLICs is
fixed and finite. Moveover, since the number of states is fixed, the number of possible new transitions is finite.
Thus, the saturation procedure always terminates. We can show that each transition can be processed only once.
Thus, the number of transition rules added into Apre∗

i is at most O(|�i | · |Qi |2 ·2|Di |). The intuition behind this
procedure is that, for every ω′ ∈ �∗i : suppose pγ ↪→ p1ω1 � p2ω2 ∈ �i and the tuple (p1ω1ω

′,D) is accepted by

the automaton, i.e., p1
ω1/D1−−−→∗i q ω′/D2−−−→∗i g for some g ∈ Acci and D � D1 ∪D2. Then, we add the new transition

rule p γ /D1∪{p2ω2}−−−−−−−−→i q that allows the automaton to accept (pγω′,D ∪ {p2ω2}), i.e., p γ /D1∪{p2ω2}−−−−−−−−→i q ω′/D2−−−→∗i g .
The case pγ ↪→ p1ω1 ∈ �i is similar.

Example 2.4 Let us consider the DPDS Pi such that �i � {p3γ3 ↪→i p1ε, p4γ4 ↪→i p3γ3γ1, p5γ5 ↪→i p3γ3 �

p ′3γ
′
3} and the AMA Ai as in Example 2.3. The resulting AMA Apre∗

i is shown in Fig. 3. The saturation procedure
processes as follows.

Model checking dynamic pushdown networks 403

• Since p1
ε/∅−→∗i {p1}, the transition rule p3γ3 ↪→i p1ε allows to add p3

γ3/∅−−−→i {p1}.
• The newly added rule p3

γ3/∅−−−→i {p1} together with p4γ4 ↪→i p3γ3γ1 and p1
γ1/{p ′1ω′1}−−−−−−→i {q1, q2} will create the

rule p4
γ4/{p ′1ω′1}−−−−−−→i {q1, q2}.

• Also, the newly added rule p3
γ3/∅−−−→i {p1} together with p5γ5 ↪→i p3γ3 � p ′3γ

′
3 will create the rule

p5
γ5/{p ′3ω′3}−−−−−−→i {p1}.

• No new rule can be added, the saturation procedure terminates.

We have the following two lemmas that bridge the successor relation of DPDSs and MAs. For the sake of
simplicity, let c �⇒k

i c ′ � D denote that the local run of Pi moves from c to c ′ after k steps and creates the
set of DCLICs D . Formally, c �⇒0

i c � ∅ for every c ∈ Pi × �∗i , if c�⇒k−1
i c ′′ � D1 and c ′′�⇒ic ′ � D2, then

c�⇒k
i c
′ � D1 ∪ D2. Let q u/D1−−−→k

i g denote that the run of an AMA Ai can move from the state q to the state g
after adding k number of transition rules into Apre∗

i .

Lemma 2.1 For every tuple (qu,D1) ∈ L(Ai), if pω�⇒∗i qu � D2, then p ω/D1∪D2−−−−−→∗i g for some final state g of Apre∗
i .

Proof. Assume pω�⇒k
i qu � D2. The proof proceeds by induction on k .

• Basis. k � 0. Then, p � q, ω � u. Since (qu,D1) ∈ L(Ai), we obtain that q u/D1−−−→0
i g for some final state g of

Ai . This implies that p ω/D1−−−→∗i g . Note that D2 � ∅.
• Step. k ≥ 1. Then,

(a) there exist local configurations p ′ω′ ∈ Pi × �∗i and q ′u ′ ∈ D2 such that

pω �⇒1
ip
′ω′ � {q ′u ′}, p ′ω′�⇒k−1

i qu � D3 and D2 � D3 ∪ {q ′u ′},
or

(b) there is a local configuration p ′ω′ ∈ Pi × �∗i such that

pω �⇒1
ip
′ω′ � ∅ and p ′ω′ �⇒k−1

i qu � D2.

The proof depends on whether (a) or (b) holds.

– Case (a): By applying the induction hypothesis to p ′ω′�⇒k−1
i qu � D3, we obtain that

p ′ ω
′/D3∪D1−−−−−→∗i g for some final state g .

Since pω �⇒1
i p ′ω′ � {q ′u ′}, there exist γ ∈ �i , ω1 ∈ �∗i and u1 ∈ �∗i such that

ω � γω1, ω
′ � u1ω1 and pγ ↪→ p ′u1 � q ′u ′ ∈ �i .

Let q1 be a state of Apre∗
i , D4 ⊆ Di and D5 ⊆ Di such that

p ′ u1/D4−−−→∗i q1
ω1/D5−−−→∗i g and D3 ∪D1 � D4 ∪D5.

By applying the saturation procedure to pγ ↪→ p ′u1 � q ′u ′, we obtain that

p γ /{q ′u ′}∪D4−−−−−−−→i q1.

Hence, we get that p γω1/{q ′u ′}∪D4∪D5−−−−−−−−−−−→∗i g .

Since ω � γω1,D1 ∪D2 � D1 ∪D3 ∪ {q ′u ′} � D4 ∪D5 ∪ {q ′u ′}, we obtain that p ω/D1∪D2−−−−−→∗i g .
– Case (b): By applying the induction hypothesis to p ′ω′ �⇒k−1

i qu � D2, we obtain that

p ′ ω
′/D2∪D1−−−−−→∗i g for some final state g .

404 F. Song, T. Touili

Since pω �⇒1
ip
′ω′ � ∅, there exist γ ∈ �i , ω1 ∈ �∗i and u1 ∈ �∗i such that

ω � γω1, ω
′ � u1ω1 and pγ ↪→ p ′u1 ∈ �i .

Let q1 be a state of Apre∗
i , D3,D4 ⊆ Di such that

p ′ u1/D3−−−→∗i q1
ω1/D4−−−→∗i g and D2 ∪D1 � D3 ∪D4.

By applying the saturation procedure to pγ ↪→ p ′u1, we get that

p γ /D3−−−→i q1.

Hence, we get that p γω1/D3∪D4−−−−−−→∗i g .
Since ω � γω1,D1 ∪D2 � D3 ∪D4, we obtain that p ω/D1∪D2−−−−−→∗i g . �

Lemma 2.2 If p ω/D−−→∗i q , then the following two properties hold:

1. pω�⇒∗i p ′ω′ � D1 for a local configuration p ′ω′ ∈ Pi × �∗i , D1 ⊆ Di and D2 ⊆ Di such that p ′ ω′/D2−−−→0
i q and

D � D1 ∪D2;
2. if q is an initial state, then ω′ � ε and D2 � ∅.

Proof. Assume p ω/D−−→k
i q . The proof proceeds by induction on k .

• Basis. k � 0. Since pω�⇒∗i p ′ω′ � D1 always hold when p � p ′, ω � ω′,D � D1 � ∅,D � D2, we obtain
that the property 1 holds. If q is an initial state, since there is no transition leading to an initial state, then
ω′ � ε.
• Step. k ≥ 1. Let t � p1

γ /D3−−−→i q ′ be the k th transition rule added into Ai . Let j be the number of times that
t is used in p ω/D−−→∗i q . The proof proceeds by induction on j .

– Basis. j � 0. Then, p ω/D−−→k−1
i q . By applying the induction hypothesis on k , we obtain that the property

(1) and the property (2) both hold.
– Step. j ≥ 1. Then, there exist u ∈ �∗i , v ∈ �∗i ,D4 ⊆ Di and D5 ⊆ Di such thatω � uγ v , D � D3∪D4∪D5

and

p u/D4−−−→k−1
i p1

γ /D3−−−→i q ′ v/D5−−−→∗i q .

Since p1 is an initial state, by applying the induction hypothesis to p u/D4−−−→k−1
i p1, we obtain that

pu �⇒∗i p1ε � D4. Since the transition rule t is added by the saturation procedure, then, either

(a) there exist p2 ∈ Pi and ω2 ∈ �∗i , such that p1γ ↪→ p2ω2 ∈ �i and p2
ω2/D3−−−→k−1

i q ′,

or

(b) there exist p2 ∈ Pi , ω2 ∈ �∗i , p3ω3 ∈ Di and D6 ⊆ Di such that D3 � D6 ∪ {p3ω3},
p1γ ↪→ p2ω2 � p3ω3 ∈ �i and p2

ω2/D6−−−→k−1
i q ′.

Model checking dynamic pushdown networks 405

Thus, we obtain that either

p2
ω2/D3−−−→k−1

i q ′ v/D5−−−→∗i q [for case (a)],

or

p2
ω2/D6−−−→k−1

i q ′ v/D5−−−→∗i q [for case (b)].

Since the derivation of p2
ω2/D3−−−→k−1

i q ′ v/D5−−−→∗i q or p2
ω2/D6−−−→k−1

i q ′ v/D5−−−→∗i q uses the transition t less often
than the derivation of p ω/D−−−→k

i q , by applying the induction hypothesis, we obtain that p2ω2v�⇒∗i p ′ω′ �
D7 and p ′ ω′/D8−−−−→0

i q , where either

D7 ∪D8 � D3 ∪D5 [for case (a)],

or

D7 ∪D8 � D6 ∪D5 [for case (b)].

As there is no transition rule leading to an initial state, we obtain that if ω′ � ε, then D8 � ∅.
Hence, we obtain that either

pω � puγ v�⇒∗i p1γ v � D4, p1γ v �⇒i p2ω2v � ∅ and p2ω2v�⇒∗i p ′ω′ � D7
for the case (a),

or

pω � puγ v�⇒∗i p1γ v � D4, p1γ v�⇒i p2ω2v � {p3ω3} and p2ω2v�⇒∗i p ′ω′ � D7
for the case (b).

Thus, we obtain that the properties (1) and (2) hold. Note that D2 � D8, and D1 � D4 ∪D7 [for the case
(a)], D1 � D4 ∪D7 ∪ {p3ω3} [for the case (b)]. �

Thus, from Lemmas 2.1 and 2.2, we obtain the following theorem.

Theorem 2.1 Given a MA Ai recognizing a regular set W of the DPDS Pi for some i , we can construct a MA Apre∗
i

recognizing pre∗Pi
(W) in time O(|�i| · |Qi|2 ·2|Di |).

Proof. Correctness:
(�⇒) Let (pω,D) ∈ pre∗i (L(Ai)). Then, pω �⇒∗i p ′ω′ � D1 for some tuple (p ′ω′,D2) ∈ L(Ai) such that

D � D1 ∪D2. By Lemma 2.1, p ω/D−−→∗i g for some final state g of Apre∗
i . So (pω,D) ∈ L(Apre∗

i) holds.

(⇐�) Let (pω,D) ∈ L(Apre∗
i). Then, p ω/D−−→∗i g for some final state g of Apre∗

i . By Lemma 2.2, pω�⇒∗i p ′ω′ � D1

for some local configuration p ′ω′ ∈ Pi × �∗i , D1 ⊆ Di such that p ′ ω′/D2−−−−→0
i g and D � D1 ∪D2.

Since p ′ ω′/D2−−−−→0
i g and g is a final state, we get that (p ′ω′,D2) ∈ L(Ai). Thus, we obtain that (pω,D) ∈

pre∗i (L(Ai)).
Complexity: It is shown in [EHRS00] that Apre∗

i can be computed in time O(| �i | · | Qi |2) if Di � ∅. We can
extend the efficient algorithm of [EHRS00] so that Apre∗

i can be computed in time O(| �i | · | Qi |2 ·2|Di |). �

3. Single-indexed LTL model checking for DPNs

In this section, we consider LTL model checking w.r.t. a labeling function l :
⋃n

i�1 Pi −→ 2AP assigning to each
control location a set of atomic propositions. In this case, the valuation λl (called simple valuation) is defined as
follows: for every a ∈ AP , λl (a) � {pω ∈ ⋃n

i�1 Pi ×�∗i | a ∈ l (p)}. A global configuration G satisfies f � ∧n
i�1 fi

iff M has a global run ρ from G such that every local run σ of ρ satisfies f℘(σ) where ℘(σ) denotes the index of
the DPDS which corresponds to the local run σ . Checking whether G satisfies f is non-trivial since the number
of global runs of G is unbounded, and the number of local runs in each global run ρ can also be unbounded. We
cannot check all the different instances of the DPDSs independently. Indeed, we do not have to check whether

406 F. Song, T. Touili

an instance of Pi (for some i , 1 ≤ i ≤ n) satisfies fi if this instance is not created during the execution. We can
solve this problem in a naive way as follows: Given an initial global configuration G, we can guess the set of
DCLICs D ⊆ ⋃n

i�1 Di which are created in a global run from G such that the global run satisfies f . Then, it is
sufficient to check that every local configuration c ∈ G ∪ D satisfies the LTL formula f℘(c) when disallowing the
transition rules which create a DCLIC outside of D and discarding the DCLICs inside of D . Checking whether
c satisfies f℘(c) could be solved by LTL model checking for PDSs [BEM97, EHRS00] if we discard the DCLICs
of the DPDS. However, this naive technique is very complicated as it necessitates an exponential number of calls
to the LTL model checking algorithm of PDSs. Moreover, it is very complex. We have to consider all the possible
sets of DCLICs whose number is at most O(2|

⋃n
i�1 Di |), and for each set D of DCLICs, we have to perform at

most O(| ⋃n
i�1 Di |) times of LTL model checking algorithm for PDSs, where LTL model checking for PDSs is

in time O(| P℘(d) |2 · | �℘(d) | ·2|f℘(d)|) [BEM97, EHRS00]. Thus, the complexity of checking whether G satisfies
f or not will be O(2|

⋃n
i�1 Di | ·∑d∈⋃n

i�1 Di∪G(| P℘(d) |2 · | �℘(d) | ·2|f℘(d)|)).
To overcome these problems, we propose in this section a direct algorithm. We compute for every i , 1 ≤ i ≤ n,

a MA Ai such that (c,D) ∈ L(Ai), where c is a local configuration of Pi and D ⊆ Di is a set of DCLICs, iff
Pi has a local run σ from c that satisfies fi such that D is the set of DCLICs created during the local run σ .
Then, a global configuration G satisfies f � ∧n

i�1 fi iff for every configuration c ∈ G, there exists a set of DCLICs
Dc such that (c,Dc) ∈ L(A℘(c)) and every d ∈ Dc satisfies f . This condition is recursive. However, it can be
effectively checked since there is only a finite number of DCLICs. Checking this condition naively is not efficient.
To obtain a more efficient procedure, we compute the largest set Dfp ⊆ ⋃n

i�1 Di of DCLICs such that d ∈ Dfp

iff d is a DCLIC and there exists a global run of M starting from d that satisfies f . Then, to check whether a
global configuration G satisfies f , it is sufficient to check for every c ∈ G whether there exists Dc ⊆ Dfp such that
(c,Dc) ∈ L(A℘(c)).

3.1. Computing the MAs Ai

To compute the MAs Ai , for i , 1 ≤ i ≤ n, we extend the automata-based approach for standard LTL model
checking for PDSs [BEM97, EHRS00]. We first compute a Büchi automaton (BA) Bi that corresponds to the
formula fi , for i , 1 ≤ i ≤ n. Then, we synchronize the BAs with the DPDSs to obtain Büchi DPDSs. The MAs
Ai we are looking for correspond to the languages accepted by these Büchi DPDSs.

Definition 3.1 A Büchi DPDS (BDPDS) is a tuple BP i � (Pi , �i ,�i ,Fi), where (Pi , �i ,�i) is a DPDS and
Fi ⊆ Pi is a finite set of accepting control locations.

A BDPDS is a kind of DPDS with a Büchi acceptance condition Fi . Runs of a BDPDS are defined as local
runs for DPDSs. A run σ of BP i is accepting iff σ infinitely often visits some control locations in Fi . Let L(BP i)
be the set of all the pairs (c,D) ∈ Pi ×�∗i × 2Di such that BP i has an accepting run from c and the run generates
the set of DCLICs D .

Let Bi � (Gi , 2AP, θi , g0
i ,Fi) be the BA recognizing all theω-words that satisfy fi . We compute a BDPDS BP i

such that Pi has a local run from pω that satisfies fi and generates a set of DCLICs D iff ([p, g0
i]ω,D) ∈ L(BP i).

We define BP i � (Pi × Gi , �i ,�
′
i ,F

′
i) as follows: for every p ∈ Pi , [p, g] ∈ F ′i iff g ∈ Fi ; and for every

(g1, l (p), g2) ∈ θi , we have:

1. [p, g1]γ ↪→ [p1, g2]ω1 ∈ �′i iff pγ ↪→ p1ω1 ∈ �i ;
2. [p, g1]γ ↪→ [p1, g2]ω1 � D ∈ �′i iff pγ ↪→ p1ω1 � D ∈ �i .

Intuitively, BP i is a product of Pi and the BA Bi . Bi has an accepting run g0g1 . . . over anω-word l (p0)l (p1) . . .
that corresponds to a local run σ � p0ω0 p1ω1 . . . of Pi iff BP i has an accepting run σ ′ � [p0, g0]ω0 [p1, g1]ω1 . . .,
and D is the set of DCLICs created during the run σ iff D is the set of DCLICs created during the run σ ′. Suppose
the run of Pi is at pjωj , then the run of Bi can move from gj to gj+1 iff (gj , l (pj), gj+1) ∈ θi . This is ensured
by Items 1 and 2 expressing that BP i can move from [pj , gj]ωj to [pj+1, gj+1]ωj+1 iff (gj , l (pj), gj+1) ∈ θi . The
accepting control locations F ′i � {[p, g] | p ∈ Pi , g ∈ Fi } ensure that the run of Bi visits infinitely often some
states in Fi iff the run of BP i visits infinitely often some control locations F ′i . Item 2 ensures that the run of Pi

creates a DCLIC p2ω2 iff the run of BP i creates this DCLIC. Thus, we obtain the following theorem.

Model checking dynamic pushdown networks 407

Lemma 3.1 Pi has a local run from pω that satisfies fi and creates a set of DCLICs D iff ([p, g0
i]ω,D) ∈ L(BP i),

where BP i can be constructed in time O(|�i | ·2|fi |).
The complexity follows from the fact that the number of transition rules of BP i is at most O(| �i | ·2|fi |).

Computing L(BP i): Let us fix an index i , 1 ≤ i ≤ n. We show that computing L(BP i) can boil down to pre∗BP i

computations.

Proposition 3.1 Let BP i � (Pi , �i ,�i ,Fi) be a BDPDS, BP i has an accepting run from c ∈ Pi ×�∗i and D is the
set of DCLICs created during this run iff ∃D1,D2,D3 ⊆ Di such that D � D1 ∪D2 ∪D3, and

(α1) : c �⇒∗i pγω � D1 for some ω ∈ �∗i ;
(α2) : pγ �⇒+

i gu � D2 and gu �⇒∗i pγ v � D3, for some g ∈ Fi , v ∈ �∗i .

Proof. (�⇒) Let σ � c0c1c2 . . . such that for every j ≥ 0 cj �⇒i cj+1 � Ij be the accepting run of BP i such that
D ⊆ Di is the set of all the DCLICs created during this run, i.e., D � ⋃

j≥0 Ij . Note that D is a finite set, because
Di is a finite set. Let ωj be the stack content of the local configuration cj for every j ≥ 0. Let σ k denote the local
configuration ck . We construct a subsequence ck1ck2 . . . such that

|ωk1 |� min{|ωj || j ≥ 0}
|ωkl
|� min{|ωj || j > kl−1},∀ l ≥ 1.

By this construction, we obtain that once the configurationσ kl is reached, the stack content except the topmost
symbol will never change in the rest run of σ . Since Pi × �i is finite, we can construct a subsequence cj1cj2 . . . of
ck1ck2 . . . such that for every h ≥ 1, the control location of cjh is p and the topmost symbol of the stack of cjh is
γ .

Since σ is an accepting run, we can find an m such that
c0 �⇒∗i cj1 � D4, cj1�⇒+

i cg � D5, cg�⇒∗i cjm � D6,

and the control location pg of cg is in Fi , D4 �⋃j1−1
h�0 Ih , D5 �⋃g−1

h�j1
Ih , D6 �⋃jm−1

h�g Ih , and for every h ≥ jm :
Ih⊆D6.

Let cj1 � pγω, then Item α1 holds.
Since the stack content except the topmost symbol of the stack of cjh will never change in the rest of the run

for every h ≥ 1, there exist u ∈ �∗i and v ∈ �∗i such that uω is the stack content of cg , vω is the stack content of
cjm , pγ�⇒+

i pgu � D5 and pgu�⇒∗i pγ v � D6. So Item α2 holds.
Let D1 � D4,D2 � D5,D3 � D6. Since D � D4 ∪D5 ∪D6, then D � D1 ∪D2 ∪D3.
(⇐�) To prove that BP i has an accepting run from c and D is the set of DCLICs created during this run, it

is sufficient to construct such an accepting run.
From Item α2, we obtain that pγ vkω�⇒+

i pguvkω � D2 and pguvk�⇒∗i pγ vk+1ω � D3, for every k ≥ 0.
From the fact that pg ∈ Fi and Item α1, we deduce an accepting run and D � D1 ∪D2 ∪D3. �

Intuitively, an accepting run from c will reach a configuration pγω (Item α1) followed by a repeatedly executed
cycle (Item α2) which is a sequence of configurations with an accepting location g . The execution of the cycle
returns to the control location p with the same symbol γ at the top of the stack. The rest of the stack will never
be popped during this cycle. Repeatedly executing the cycle yields an accepting run (since g ∈ Fi) and the set of
DCLICs generated during this cycle is D2 ∪ D3. Thus, the set of DCLICs created by the accepting run starting
from c is D1 ∪D2 ∪D3. To compute L(BP i), we reformulate the above conditions as follows:

Proposition 3.2 Let BP i � (Pi , �i ,�i ,Fi) be a BDPDS, BP i has an accepting run from c ∈ Pi ×�∗i and D is the
set of DCLICs created during this run iff ∃D1,D ′2 ⊆ Di such that D � D1 ∪D ′2, and

(β1) : (c,D1) ∈ pre∗Pi
({p} × γ�∗i × {∅});

(β2) : (pγ,D ′2) ∈ pre+
Pi

((Fi × �∗i × 2Di) ∩ pre∗Pi
({p} × γ�∗i × {∅})) (note that D ′2 � D2 ∪D3).

408 F. Song, T. Touili

Intuitively, Items β1 and β2 are reformulations of Items α1 and α2, respectively. By Proposition 3.2, we can get
that L(BP i) � {(c,D1 ∪D ′2) ∈ Pi × �i × 2Di | Items β1 and β2 hold}. Since Fi × �∗i × 2Di and {p} × γ�∗i × {∅}
are regular sets, using Theorem 2.1, we can construct two MAs A′ and A′′ accepting pre+

Pi
((Fi × �∗i × 2Di) ∩

pre∗Pi
({p} × γ�∗i × {∅})) and pre∗Pi

({p} × γ�∗i × {∅}). The intersection (Fi × �∗i × 2Di) ∩ pre∗Pi
({p} × γ�∗i × {∅})

is easy to compute. Since Fi × �∗i × 2Di denotes all the configurations whose control locations are accepting, we
only need to let the initial states of A′′ be the states of Fi . Since the set Pi × �i × 2Di is finite, we can determine
all the tuples (pγ,D ′2) ∈ Pi ×�i × 2Di such that Item β2 holds. The set of pairs (c,D1) is the union of all the sets
pre∗Pi

({p}×γ�∗i ×{∅}). Thus, we can get L(BP i). For every BDPDS Pi and MA Ai , pre∗Pi
(L(Ai)) and pre+

Pi
(L(Ai))

can be computed in time O(|�i| · | Qi |2 ·2|Di |), where | Qi |� O(| Pi |). Thus, we get that:

Lemma 3.2 For every BDPDS BP i � (Pi , �i ,�i ,Fi), we can construct a MA Ai in time O(|�i | · | �i | · | Pi |3
·2|Di |) such that L(Ai) � L(BP i).

From Lemmas 3.1 and 3.2, we get:

Theorem 3.1 Given a DPN M � {P1, . . . ,Pn}, a single-indexed LTL formula f � ∧n
i�1 fi and a labelling function

l , we can compute MAs A1, . . . ,An in time O(
∑n

i�1(| �i | ·2|fi |· | �i | · | Pi |3 ·2|Di |)) such that for every i ,
1 ≤ i ≤ n, every pω ∈ Pi × �∗i and D ⊆ Di , pω |�D fi iff ([p, g0

i]ω,D) ∈ L(Ai).

3.2. Single-indexed LTL model checking for DPNs with simple valuations

Given a DPN M � {P1, . . . ,Pn }and a single-indexed LTL formula f � ∧n
i�1 fi , by Theorem 3.1, we can construct

a set of MAs {A1, . . . ,An } such that for every i , 1 ≤ i ≤ n, and every local configuration pω ∈ Pi×�∗i , pω |�D fi
iff ([p, g0

i]ω,D) ∈ L(Ai). Then, to check whether a global configuration G satisfies f , we need to check whether
for every local configuration c ∈ G, there exists a set of DCLICs Dc such that (c,Dc) ∈ L(A℘(c)) and every
DCLIC d ∈ Dc satisfies f , i.e., there exists a set of DCLICs Dd such that (d ,Dd) ∈ L(A℘(d)), etc. This condition
is recursive. It can be solved because the number of DCLICs is finite. To obtain a more efficient procedure, we
compute the maximal set of DCLICs Dfp such that for every d ∈ ⋃n

i�1 Di , d satisfies f iff d ∈ Dfp . Then, to
check whether G satisfies f , it is sufficient to check whether for every c ∈ G, there exists Dc ⊆ Dfp such that
(c,Dc) ∈ L(A℘(c)).

Let {A1, . . . ,An}, such that for every i , 1 ≤ i ≤ n, Ai � (Qi , �i , δi , Ii ,Acci), be the set of the computed MAs.
Intuitively, Dfp should be equal to the set of local configurations pω ∈ ⋃n

i�1 Di such that there exists D ⊆ Dfp such
that pω |�D f℘(p), i.e., ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)). Thus, Dfp can be defined as the greatest fixpoint of the function
F (X) � {pω ∈ DI | ∃D ⊆ X such that ([p, g0

℘(p)]ω,D) ∈ L(A℘(p))}. This set can then be computed iteratively
as follows: Dfp � ⋂

j≥0 Dj , where D0 � DI and Dj+1 � {pω ∈ DI | ∃D ⊆ Dj , ([p, g0
℘(p)]ω,D) ∈ L(A℘(p))} for

every j ≥ 0. Since
⋃n

i�1 Di is a finite set, and for every j ≥ 0, Dj+1 is a subset of Dj , there always exists a fixpoint
m ≥ 0 such that Dm � Dm+1. Then, we can get that Dfp � Dm .

For every pω ∈ ⋃n
i�1 Di and D ⊆ D℘(p), to avoid checking whether ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)) at each step
when computing D0,D1, . . ., we can compute all these tuples that satisfy this condition once and store them in a
hash table. We can show that whether or not ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)) can be decided in time O(| ω | · | δ℘(p) |
· | Q℘(p) | ·2|D℘(p)|). Thus, we can get the hash table in time O(

∑
pω∈⋃n

i�1 Di
(| ω | · | δ℘(p) | · | Q℘(p) | ·2|D℘(p)|)).

Given Dj and the hash table, we can compute Dj+1 in time O(
∑

pω∈⋃n
i�1 Di

2|D℘(p)|). Thus we can get Dfp in time
O(

∑
pω∈DI

(| ω | · | δ℘(p) | · | Q℘(p) | ·2|DI |)+ | DI |2 ·2|DI |).

Theorem 3.2 We can compute Dfp in time O(
∑

pω∈⋃n
i�1 Di

(|ω| · | δ℘(p) | · | Q℘(p) | ·2|D℘(p)|+ | ⋃n
i�1 Di | ·2|D℘(p)|))

such that for every c ∈ ⋃n
i�1 Di , c satisfies the single-indexed LTL formula f iff c ∈ Dfp .

Proof. (�⇒) Suppose c satisfies f , we show that c ∈ Dfp . Since Dfp � ⋂
j≥0 Dj , where D0 � ⋃n

i�1 Di and
Dj+1 � {pω ∈ ⋃n

i�1 Di | ∃D ⊆ Dj such that ([p, g0
℘(p)]ω,D) ∈ L(A℘(p))} for every j ≥ 0, it is sufficient to show

that c ∈ Dj for every j ≥ 0. The proof proceeds by induction on j .

Model checking dynamic pushdown networks 409

Algorithm 1: computing the map function.
Input : A set of MAs {A1, . . . ,An } such that for every i , 1 ≤ i ≤ n, Ai � (Qi , �i , δi , Ii ,Acci);
Output: A function map :

⋃n
i�1 Di −→ 2

⋃n
i�1 Di such that D ∈ map(pω) iff (pω,D) ∈ L(A℘(p));

1 for pγ0 . . . γm ∈ ⋃n
i�1 Di do

2 Let S � Acc℘(p) × {∅};
3 for j ← m to 0 do

4 S :� {(q,D ∪D ′) | ∃q γj /D−−−→℘(p) q ′ ∈ δ℘(p) ∧ (q ′,D ′) ∈ S };
5 map(pγ0 . . . γm) � {D | (p,D) ∈ S };

• Basis j � 0: since D0 � ⋃n
i�1 Di and c ∈ D℘(c), we obtain that c ∈ D0.

• Step j > 0: Let ρ be the global run of M starting from c such that every local run σ of ρ satisfies f℘(σ). Let σc
be the local run starting from c in ρ, then σc satisfies f℘(c). Let Dc be the set of DCLICs created during the
local run σc , then (c,Dc) ∈ L(A℘(c)) and for every d ∈ Dc , d satisfies f . By applying the induction hypothesis,
we obtain that d ∈ Dj−1 for every d ∈ Dc , i.e., Dc ⊆ Dj−1. Since Dj � {pω ∈ ⋃n

i�1 Di | ∃D ⊆ Dj−1 such
that ([p, g0

℘(p)]ω,D) ∈ L(A℘(p))}, we obtain that c ∈ Dj .

(⇐�) Suppose c ∈ Dfp , we show that c satisfies f . For this, we construct a global run ρ starting from c such that
every local run σ of ρ satisfies f℘(σ). By the definition of Dfp , we can get that Dfp � {pω ∈ ⋃n

i�1 Di | ∃D ⊆ Dfp

such that ([p, g0
℘(p)]ω,D) ∈ L(A℘(p))}.

Since c ∈ Dfp , there exists Dc ⊆ Dfp such that (c,Dc) ∈ L(A℘(c)), by Lemmas 3.1 and 3.2, P℘(c) has a local
run σ℘(c) starting from c such that σ℘(c) satisfies f℘(c) and Dc is the set of DCLICs created during the local run
σ℘(c). Let σ℘(c) be the local run of ρ whenever a DCLIC c is created.

Since for every c′ ∈ Dc , c ′ ∈ Dfp , we can apply the same reasoning as c to c′, we obtain the local run σc′
starting from c ′ such that the local run σc′ satisfies f℘(c′) and Dc′ is the set of DCLICs created during the local
run σ℘(c′). Then, let σ℘(c′) be the local run of ρ whenever a DCLIC c′ is created during the global run ρ. Since
every DCLIC created during a local run σc′′ starting from c′′ such that c ′′ ∈ Dfp is also in Dfp , we obtain ρ such
that every local run σ of ρ satisfies f℘(σ).
Complexity. To compute Dfp , we first compute the function map (represented by a hash table) using Algorithm
1 such that for every pω ∈ ⋃n

i�1 Di ,D ⊆ D℘(p), D ∈ map(pω) iff (pω,D) ∈ L(A℘(p)). In Algorithm 1, for
every pγ0 . . . γm ∈ ⋃n

i�1 Di , we first compute the set of DCLICs D such that (pγ0 . . . γm ,D) ∈ L(A℘(p)) (Lines
3–4). Then, we set map(pγ0 . . . γm) � {D | (p,D) ∈ S } where S is exactly the set of pairs (q,D) such that
q γ0...γm/D−−−−−→∗℘(p) q ′ for some q ′ ∈ Acc℘(p). When pω is fixed, lines 3-4 need O(| ω | · | δ℘(p) | · | Q℘(p) | ·2|D℘(p)|) time.
Thus, we get that Algorithm 1 runs in at most O(

∑
pω∈DI

(| ω | · | δ℘(p) | · | Q℘(p) | ·2|D℘(p)|)) time.
Now, let us show how to compute Dfp . Since Dfp � ⋂

j≥0 Dj , where D0 � ⋃n
i�1 Di and Dj+1 � {pω ∈

Dj | ∃D ⊆ Dj , ([p, g0
℘(p)]ω,D) ∈ L(A℘(p))} for every j ≥ 0, and since

⋃n
i�1 Di is a finite set, and for every

j ≥ 0, Dj+1 is a subset of Dj , there always exists a fixpoint m ≥ 0 such that Dm � Dm+1. Then, we can get
that Dfp � Dm and m is at most | ⋃n

i�1 Di |. For every Dj , we can compute Dj+1 in time O(
∑

pω∈⋃n
i�1 Di

2|D℘(p)|),
since the number of possible sets of (pω,D) is at most O(

∑
pω∈⋃n

i�1 Di
2|D℘(p)|). Thus, we can get Dfp in time

O(
∑

pω∈⋃n
i�1 Di

(| ω | · | δ℘(p) | · | Q℘(p) | ·2|D℘(p)|+ | ⋃n
i�1 Di | ·2|D℘(p)|)). �

Then, from Theorems 3.1 and 3.2, we get the following theorem.

Theorem 3.3 Given a DPN M � {P1, . . . ,Pn}, a single-indexed LTL formula f � ∧n
i�1 fi and a labelling function

l , we can compute MAs A1, . . . ,An in time O(
∑n

i�1(| �i | ·2|fi |· | �i | · | Pi |3 ·2|Di |)) such that for every global
configuration G, G satisfies f iff for every pω ∈ G, there exists D ⊆ Dfp such that ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)).

You can see that the complexity of our technique is better than the one of the naive approach given at the
beginning of Sect. 3.

410 F. Song, T. Touili

4. Single-indexed LTL model checking with regular valuations

We generalize single-indexed LTL model checking for DPNs w.r.t. simple valuations to a more general model
checking problem where the set of configurations in which an atomic proposition holds is a regular set of local
configurations. Formally, a regular valuation is a function λ : AP −→ 2

⋃n
i�1 Pi×�∗i such that for every a ∈ AP ,

λ(a) is a regular set of local configurations of Pi for i , 1 ≤ i ≤ n. The previous construction can be extended to
deal with this case. For this, we follow the approach of [EKS03]. We compute, for i , 1 ≤ i ≤ n, a new DPDS P ′i ,
which is a kind of synchronization of the DPDS Pi and the deterministic finite automata corresponding to the
regular valuations. This allows to determine whether atomic propositions hold at a given step by looking only at
the top of the stack of P ′i , for every i , 1 ≤ i ≤ n. By doing this, we can reduce single-indexed LTL model checking
for DPNs with regular valuations to single-indexed LTL model checking for DPNs with simple valuations.

4.1. Storing the states into the stack

We fix a DPN M � {P1, . . . ,Pn } such that for every i , 1 ≤ i ≤ n, Pi � (Pi , �i ,�i). For every i , 1 ≤ i ≤ n, we
suppose w.l.o.g. that the DPDS Pi has a bottom-of-stack � that is never popped from the stack, and that for every
transition rule pγ ↪→ p1ω1 � p2ω2 or pγ ↪→ p1ω1 in�i , | ω1 |≤ 2. Indeed, every DPDS that does not satisfy this
condition can be simulated by a new DPDS for which this condition holds [Sch02]. Let us fix i , 1 ≤ i ≤ n, and let
APi � {a1, . . . , aι} be the set of atomic propositions used in fi and Pi � {p1, . . . , pκ}. For every a ∈ APi , p ∈ Pi ,
let M p

a � (Qp
a , �i , δ

p
a , s

p
a ,Accp

a) be a finite automaton such that for every ω ∈ �∗i , pω ∈ λ(a) (i.e., pω satisfies a
w.r.t. λ) iff the reverse of the word ω is accepted by M p

a , where Qp
a is a finite set of states, �i is the input alphabet,

sp
a is the initial state, δpa ⊆ Qp

a × �i −→ Qp
a is a transition function and Accp

a ⊆ Qp
a is a finite set of finial states.

W.l.o.g., we assume that for every a, b ∈ APi , p, q ∈ Pi whenever a �� b or p �� q , M p
a and M q

b have disjoint
sets of states, and we suppose that for every (a, p) ∈ APi × Pi , M p

a is deterministic and has a total transition
function δpa .

Since we have predicates over the stack content, to check whether or not the formula fi holds, we need to
know at each step which atomic propositions are satisfied by the stack content. To this aim, we compute a new
DPDS P ′i which is a synchronization of the DPDS Pi and the finite automata M p

a for (a, p) ∈ APi × Pi such

that the stack alphabet of P ′i is of the form [γ,
−→
S], where

−→
S � [s1

1 , . . . , s
1
ι , . . . , s

κ
1 , . . . , s

κ
ι], sk

j ∈ Qpk
aj

, 1 ≤ j ≤ ι
and 1 ≤ k ≤ κ, is a vector of states of the finite automata M p1

a1
, . . . ,M pκ

aι
. For every (a, p) ∈ APi × Pi , let−→

S (a, p) denote the state of the finite automaton M p
a in
−→
S . A local configuration p[γk ,

−→
Sk] · · · [γ0,

−→
S0] of P ′ is

consistent iff for every (a, p) ∈ APi ×Pi , every j , 1 ≤ j ≤ k −1, δpa (
−→
Sj (a, p), γj) � −−→Sj+1(a, p) and

−→
S0 (a, p) � sp

a .

Intuitively, a consistent local configuration p[γk ,
−→
Sk] · · · [γ0,

−→
S0] denotes that the stack content is γk . . . γ0 and

for every (a, p) ∈ APi × Pi , the run of the automaton M p
a over γ0 . . . γk−1 reaches the state

−→
Sk (a, p). Note that

γ0 . . . γk−1 is the reverse of the stack content γk−1 . . . γ0, this is why the automaton M p
a accepts the reverse of

the stack content. For every atomic proposition a ∈ APi , a consistent local configuration p[γk ,
−→
Sk] · · · [γ0,

−→
S0]

satisfies a iff there exists a state s ∈ Accp
a such that δpa (

−→
Sk (a, p), γk) � s . This means that whether or not a

consistent local configuration satisfies an atomic proposition a depends only on the top of the stack [γk ,
−→
Sk] and

the control location p.
Formally, let Statesi � Qp1

a1
× · · · × Qp1

aι
× · · · × Qpκ

a1
× · · · × Qpκ

aι
and
−→
S0 � [sp1

a1
, . . . , sp1

aι
, . . . , spκ

a1
, . . . , spκ

aι
].

We compute a new DPDS P ′i � (Pi , �
′
i ,�

′
i , [�,
−→
S0]) as follows: �′i � �i × Statesi , [�,

−→
S0] is the bottom-of-stack

of P ′i , �′i is the smallest set of transition rules satisfying the following: for every
−→
S ∈ Statesi ,

ν1: p1[γ,
−→
S] ↪→ p2ε ∈ �′i iff p1γ ↪→ p2ε ∈ �i ;

ν2: p1[γ,
−→
S] ↪→ p2ε � c ∈ �′i iff p1γ ↪→ p2ε � c ∈ �i ;

ν3: p1[γ,
−→
S] ↪→ p2[γ1,

−→
S] ∈ �′i iff p1γ ↪→ p2γ1 ∈ �i ;

ν4: p1[γ,
−→
S] ↪→ p2[γ1,

−→
S] � c ∈ �′i iff p1γ ↪→ p2γ1 � c ∈ �i ;

ν5: p1[γ,
−→
S] ↪→ p2[γ2,

−→
S ′][γ1,

−→
S] ∈ �′i iff p1γ ↪→ p2γ2γ1 ∈ �i ;

ν6: p1[γ,
−→
S] ↪→ p2[γ2,

−→
S ′][γ1,

−→
S] � c ∈ �′i iff p1γ ↪→ p2γ2γ1 � c ∈ �i ;

Model checking dynamic pushdown networks 411

where for every (a, p) ∈ APi × Pi , δpa (
−→
S (a, p), γ1) � −→S ′ (a, p).

Intuitively, the run of P ′i reaches a consistent local configuration p1[γm ,
−→
Sm] · · · [γ0,

−→
S0] iff the run of Pi

reaches the local configuration p1γm . . . γ0 and for every (a, p) ∈ APi × Pi , the run of the finite automaton M p
a

reaches the state
−→
Sm (a, p) over the word γ0 . . . γm−1, i.e., the reverse of the stack content γm−1 . . . γ0. Moreover,

the run of P ′i creates a DCLIC c iff the run of P ′i creates the DCLIC c. The intuition behind the Items ν1 − ν6
is explained as follows. Suppose Pi moves from p1γmγm−1 . . . γ0 to p2γm−1 . . . γ0 and creates a DCLIC c by
the transition rule p1γm ↪→ p2ε � c, and that for every (a, p) ∈ APi × Pi , the automaton M p

a is at state−−−→
Sm−1(a, p) after reading the stack wordγ0 . . . γm−2. Then,P ′i has to move fromp1[γm ,

−→
Sm][γm−1,

−−−→
Sm−1] · · · [γ0,

−→
S0]

to p2[γm−1,
−−−→
Sm−1] · · · [γ0,

−→
S0] and create the DCLIC c. This is ensured by Item ν2. Items ν1, ν3 and ν4 are similar.

If P ′i moves from p1γ
′
mγm−1 . . . γ0 to p2γm+1γmγm−1 . . . γ0 and creates a DCLIC c by the transition rule

p1γ
′
m ↪→ p2γm+1γm � c, and that for every (a, p) ∈ APi × Pi , the automaton M p

a is at state
−−→
Sm+1(a, p) after

reading the stack word γ0 . . . γm where δpa (
−→
Sm (a, p), γm) � −−→Sm+1(a, p). Then, P ′i moves from p1[γ ′m ,

−→
Sm][γm−1,−−−→

Sm−1] · · · [γ0,
−→
S0] to p2[γm+1,

−−→
Sm+1][γm ,

−→
Sm] · · · [γ0,

−→
S0] and creates the DCLIC c. This is ensured by Item ν6. Item

ν5 is analogous.
For every (a, p) ∈ APi × Pi , the fact that the finite automaton M p

a is deterministic guarantees that the top
of the stack and the control location can infer the truth of the atomic propositions. The fact that the transition
function of M p

a is total makes sure that M p
a has always a successor state on an arbitrary input.

4.2. Reducing regular valuations to simple valuations

We can define a new valuation λ′ : AP −→ 2
⋃n

i�1 Pi×�′∗i as follows: for every pγ ∈ Pi × �i ,
−→
S ∈ Statesi ,

λ
′(a) � {p[γ,

−→
S]ω | ω ∈ �′∗i , ∃ s ∈ Accp

a such that δpa (
−→
S (a, p), γ) � s}. We can show that a local run of Pi

starting from pγm . . . γ0 satisfies fi w.r.t. λ and creates a set of DCLICs D iff a local run of P ′i starting from a

consistent local configuration p[γm ,
−→
Sm] · · · [γ0,

−→
S0] satisfies fi w.r.t. λ′ and creates the set of DCLICs D .

Lemma 4.1 For every i , 1 ≤ i ≤ n, pγm . . . γ0 ∈ Pi × �∗i , Pi has a local run σ starting from pγm . . . γ0 such that
D is the set of DCLICs created during this local run and σ satisfies fi w.r.t. the regular valuation λ iff there exists
a consistent local configuration p[γm ,

−→
Sm] · · · [γ0,

−→
S0] from which P ′i has a local run σ ′ such that D is the set of

DCLICs created during the local run σ ′ and σ ′ satisfies fi w.r.t. the new valuation λ′.

Proof. According to the construction of P ′i , Pi has a local run σ � c0c1 . . . such that for every j ≥ 0,
cj � q1γ

j
mj
. . . γ

j
0 and cj�⇒i cj+1 � Ij iff P ′i has a local run σ ′ � c ′0c

′
1 . . . such that for every j ≥ 0,

c′j � qj [γ j
mj
,
−→
S j
mj

] · · · [γ j
0 ,
−→
S0] and c ′j�⇒ic ′j+1 � Ij . Then, we get that D � ⋃

j≥0 Ij .
Now, let us show that σ satisfies fi w.r.t. λ iff σ ′ satisfies fi w.r.t. λ′. The proof proceeds by induction on the

structure of fi (note that the operators {∧,¬,X,U} are sufficient to express any other LTL operator).

• φ � a where a is an atomic proposition: since σ satisfies a w.r.t. λ iff σ (0) � q0γ
0
m0
. . . γ 0

0 ∈ λ(a), i.e., γ 0
0 . . . γ

0
m0

is accepted by M p
a , and since M p

a is deterministic, we get that M p
a reaches the state

−→
S 0
m0

(a, p) after reading the

word γ 0
0 . . . γ

0
m0−1 and the immediate successor state of

−→
S 0
m0

(a, p) over γ 0
m0

is a final state of M p
a . This implies

that σ satisfies a w.r.t. λ iff q0[γ 0
m0
,
−→
S 0
m0

]ω ∈ λ′(a) for every ω ∈ �′∗i . Since σ ′ satisfies a w.r.t. λ′ iff there exists

a state s ∈ Accp
a such that δpa (

−→
S 0
m0

(a, p), γ 0
m0

) � s , we obtain that σ satisfies fi w.r.t. λ iff σ ′ satisfies fi w.r.t. λ′.
• φ � φ1 ∧ φ2: σ satisfies φ w.r.t. λ iff σ satisfies φ1 and φ2 w.r.t. λ. By applying the induction hypothesis, we

obtain that σ satisfies φ w.r.t. λ iff σ ′ satisfies φ1 and φ2 w.r.t. λ′. Thus, σ satisfies φ w.r.t. λ iff σ ′ satisfies φ
w.r.t. λ′.
• φ � Xφ1: By applying the induction hypothesis, σ1 satisfies φ1 w.r.t. λ iff σ ′1 satisfies φ1 w.r.t. λ′. Since σ satisfies
φ w.r.t. λ iff σ1 satisfies φ1 w.r.t. λ, and since σ ′ satisfies φ w.r.t. λ′ iff σ ′1 satisfies φ1 w.r.t. λ′, we obtain that σ
satisfies φ w.r.t. λ iff σ ′ satisfies φ w.r.t. λ′.

412 F. Song, T. Touili

• φ � ¬φ1: By applying the induction hypothesis, σ does not satisfy φ1 w.r.t. λ iff σ ′ does not satisfy φ1 w.r.t.
λ′. Since σ satisfies φ w.r.t. λ iff σ does not satisfy φ1 w.r.t. λ, and since σ ′ satisfies φ w.r.t. λ′ iff σ ′ does not
satisfy φ1 w.r.t. λ′, we obtain that σ satisfies φ w.r.t. λ iff σ ′ satisfies φ.

• φ � φ1Uφ2: σ satisfies φ w.r.t. λ iff there exists k ≥ 0 such that for every j , 0 ≤ j < k , σj satisfies φ1 w.r.t. λ
and σk satisfies φ2 w.r.t. λ.
By applying the induction hypothesis, for every j , 0 ≤ j < k , σj satisfies φ1 w.r.t. λ iff σ ′j satisfies φ1 w.r.t. λ′,
and σk satisfies φ2 w.r.t. λ iff σ ′k satisfies φ2 w.r.t. λ′. Since σ ′ satisfies φ w.r.t. λ′ iff there exists k ≥ 0 such that
for every j , 0 ≤ j < k , σ ′j satisfies φ1 w.r.t. λ′ and σ ′k satisfies φ2 w.r.t. λ′. Thus, we obtain that σ satisfies φ
w.r.t. λ iff σ ′ satisfies φ w.r.t. λ′.

�

4.3. Computing consistent configurations

To compute a MA Ai � (Qi , �
′
i , δi , Ii ,Acci) such that for every consistent local configuration pω ∈ Pi × �′∗i ,

P ′i has a local run from a consistent local configuration pω that satisfies fi and creates a set of DCLICs D
iff ([p, g0

i]ω,D) ∈ L(Ai), we readapt the construction of BP i underlying Lemma 3.1 as follows. Let Bi �
(Gi , 2AP, θi , g0

i ,Fi) be the BA recognizing all the ω-words that satisfy fi . We compute a BDPDS BP i such that
P ′i has a local run from a consistent local configuration pω that satisfies fi and generates a set of DCLICs D iff
([p, g0

i]ω,D) ∈ L(BP i). We define BP i � (Pi ×Gi , �
′
i ,�

′
i ,F

′
i) as follows: for every p ∈ Pi , [p, g] ∈ F ′i iff g ∈ Fi ;

and for every (g1, λ
′(pγ), g2) ∈ θi , we have:

1. [p, g1]γ ↪→ [p1, g2]ω1 ∈ �′i iff pγ ↪→ p1ω1 ∈ �i ;

2. [p, g1]γ ↪→ [p1, g2]ω1 � D ∈ �′i iff pγ ↪→ p1ω1 � D ∈ �i .

The intuition is similar to the construction underlying Lemma 3.1. The main difference is that the satisfiability
of the atomic propositions depends on the control location and the top of the stack. We can get that:

Lemma 4.2 P ′i has a local run from a consistent local configuration pω that satisfies fi and creates a set of DCLICs
D iff ([p, g0

i]ω,D) ∈ L(BP i), where BP i can be constructed in time O(|�i| ·2|fi |).
However, Ai also accepts pairs of the form ([p, g0

i]ω,D) such that pω is not a consistent local configuration of
P ′i . To solve this problem, we follow the approach of [EKS03] that performs a kind of synchronization of Ai with
the automata M p

a for (a, p) ∈ APi × Pi which will discard such pairs ([p, g0
i]ω,D). Let A′i � ((Qi × Statesi) ∪

Qi , �i , δ
′
i , Ii ,Acci × {−→S0 }) be a MA such that δ′i is defined as follows:

1. (q1,
−→
S1)

γ /D−→i (q2,
−→
S2) ∈ δ′i iff q1

[γ,
−→
S2]/D−−−−−→i q2 ∈ δi and for every (a, p) ∈ APi×Pi , δpa (

−→
S2 (a, p), γ) � −→S1 (a, p);

2. q
γ /D−→i (q ′,

−→
S) ∈ δ′i iff (q,

−→
S ′)

γ /D−→i (q ′,
−→
S) ∈ δ′i for every q ∈ Qi .

A′i has the same size than Ai , since the immediate successor states of
−→
S2 (a, p) for (a, p) ∈ APi ×

Pi are uniquely determined by
−→
S2 and γ . Intuitively, A′i accepts ([p0, g0

i]γm . . . γ0,D1 ∪ D2) by a path

[p0, g0
i] γm/D1−−−−→i (qm ,

−→
Sm) γm−1...γ0/D2−−−−−−−→∗i (q0,

−→
S0) iff the configuration p0[γm ,

−→
Sm] · · · [γ0,

−→
S0] is a consistent local

configuration of P ′ and ([p0, g0
i][γm ,

−→
Sm] · · · [γ0,

−→
S0],D1 ∪ D2) is accepted by Ai . Indeed, according to Item

1, (qm ,
−→
Sm) γm−1...γ0/D2−−−−−−−→∗i (q0,

−→
S0) iff Ai has a path qm

[γm−1,
−−−→
Sm−1]···[γ0,

−→
S0]/D2−−−−−−−−−−−−−→∗i q0 and for every 0 ≤ j ≤ m − 1,

every (a, p) ∈ APi × Pi , δpa (
−→
Sj (a, p), γj) � −−→Sj+1(a, p), i.e., p0[γm ,

−→
Sm] · · · [γ0,

−→
S0] is a consistent config-

uration of P ′. [p0, g0
i] γm/D1−−−−→i (qm ,

−→
Sm) iff there exists a state

−→
S such that ([p0, g0

i],
−→
S) γm/D1−−−−→i (qm ,

−→
Sm)

is a transition rule of A′i (by Item 2). Thus, from Item 1, we get that Ai has the transition rule

[p0, g0
i] [γm ,

−→
Sm]/D1−−−−−−−→i qm . Since (qm ,

−→
Sm) γm−1...γ0/D2−−−−−−−→∗i (q0,

−→
S0) iff Ai has a path qm

[γm−1,
−−−→
Sm−1]···[γ0,

−→
S0]/D2−−−−−−−−−−−−−→∗i q0 and

p0[γm ,
−→
Sm] · · · [γ0,

−→
S0] is a consistent configuration of P ′,we get that A′i accepts ([p0, g0

i]γm . . . γ0,D1 ∪ D2)

Model checking dynamic pushdown networks 413

(i.e., [p0, g0
i] γm/D1−−−−→i (qm ,

−→
Sm) γm−1...γ0/D2−−−−−−−→∗i (q0,

−→
S0)) iff the configuration p0[γm ,

−→
Sm] · · · [γ0,

−→
S0] is a consistent

local configuration of P ′ and ([p0, g0
i][γm ,

−→
Sm] · · · [γ0,

−→
S0],D1 ∪ D2) is accepted by Ai (i.e., [p0, g0

i] [γm ,
−→
Sm]/D1−−−−−−−→i

qm
[γm−1,

−−−→
Sm−1]···[γ0,

−→
S0]/D2−−−−−−−−−−−−−→∗i q0). We can show that:

Lemma 4.3 The configuration p0[γm ,
−→
Sm] · · · [γ0,

−→
S0] is a consistent local configuration of P ′ and ([p0, g0

i][γm ,−→
Sm] · · · [γ0,

−→
S0],D) is accepted by Ai iff A′i accepts ([p0, g0

i]γm . . . γ0,D).

Proof. Since [p0, g0
i] γm/D1−−−−→i (qm ,

−→
Sm) is a transition rule of A′i iff there exists

−→
S such that A′i has the transition

rule ([p0, g0
i],
−→
S) γm/D1−−−−→i (qm ,

−→
Sm), it is sufficient to show that Ai has a path [p0, g0

i] [γm ,
−→
Sm]···[γ0,

−→
S0]/D−−−−−−−−−−−→∗i q0 where−−→

Sj+1(a, p) � δpa (
−→
Sj (a, p), γj) for every j , 0 ≤ j < m − 1, every (a, p) ∈ APi × Pi iff there exists a state

−→
S such

that A′i has a path ([p0, g0
i],
−→
S) γm ...γ0/D−−−−−→∗i (q0,

−→
S0). The proof proceeds by induction on m.

• Basis. m � 0. Ai has a path [p0, g0
i] [γ0,

−→
S0]/D−−−−−→∗i q0 iff there exists a state

−→
S such that A′i has a path

([p0, g0
i],
−→
S) γ0/D−−−→∗i (q0,

−→
S0). This holds due to Item 1.

• Step. m > 0. Ai has a path [p0, g0
i] [γm ,

−→
Sm]···[γ0,

−→
S0]/D−−−−−−−−−−−→∗i q0 iff Ai has a transition rule [p0, g0

i] [γm ,
−→
Sm]/I−−−−−−→i qm

such that Ai has a path qm
[γm−1,

−−−→
Sm−1]···[γ0,

−→
S0]/D1−−−−−−−−−−−−−→∗i q0 and D � D1 ∪ I . This implies that there exist [qm ,

−→
Sm] ∈

Qi × Statesi and
−→
S such that for every (a, p) ∈ APi × Pi ,

−→
S (a, p) � δpa (

−→
Sm (a, p), γm), A′i has a transition

rule ([p0, g0
i],
−→
S) γm/I−−−→i [qm ,

−→
Sm] and Ai has a path qm

[γm−1,
−−−→
Sm−1]···[γ0,

−→
S0]/D1−−−−−−−−−−−−−→∗i q0.

By applying the induction hypothesis, Ai has the path qm
[γm−1,

−−−→
Sm−1]···[γ0,

−→
S0]/D1−−−−−−−−−−−−−→∗i q0 iff A′i has the path

(qm ,
−→
Sm) γm−1...γ0/D1−−−−−−−→∗i (q0,

−→
S0).

Thus, Ai has a path [p0, g0
i] [γm ,

−→
Sm]···[γ0,

−→
S0]/D−−−−−−−−−−−→∗i q0 iff there exists a state

−→
S such that A′i has a path

([p0, g0
i],
−→
S) γm ...γ0/D−−−−−→∗i (q0,

−→
S0). �

From Lemmas 4.1, 4.2 and 4.3, we can get that:

Theorem 4.1 Given a DPN M � {P1, . . . ,Pn }, a single-indexed LTL formula f � ∧n
i�1 fi and a regular valuation

λ, we can compute MAs A1, . . . ,An in time O(
∑n

i�1(| �i | ·2|fi |· | �i | · | Statesi | · | Pi |3 ·2|DI |)) such that for
every i , 1 ≤ i ≤ n, every pω ∈ Pi × �∗i and D ⊆ Dfp , pω |�D fi iff ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)).

From Theorems 4.1 and 3.2, we can deduce the following theorem.

Theorem 4.2 Given a DPN M � {P1, . . . ,Pn }, a single-indexed LTL formula f � ∧n
i�1 fi and a regular valuationλ,

we can compute MAs A1, . . . ,An in time O(
∑n

i�1(| �i | ·2|fi |· | �i | · | Statesi | · | Pi |3 ·2|Di |)) such that for every
global configuration G, G satisfies f iff for every pω ∈ G, there exists D ⊆ Dfp such that ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)).

5. Single-indexed CTL model checking for DPNs

In this section, we consider single-indexed CTL model checking for DPNs with regular valuations. Single-indexed
CTL model checking for DPNs with simple valuations is a special case.

414 F. Song, T. Touili

5.1. Single-indexed CTL

For technical reasons, we suppose that CTL formulas are given in positive normal form, i.e., only atomic proposi-
tions are negated. Indeed, any CTL formula can be translated into positive normal form by pushing the negations
inside. Moreover, we use the release operator R as the dual of the until operator U.

Definition 5.1 The set of CTL formulas is given by (where a ∈ AP):

ψ ::� a | ¬a | ψ ∧ ψ | ψ ∨ ψ | AXψ | EXψ | A[ψUψ] | E[ψUψ] | A[ψRψ] | E[ψRψ].

The other standard CTL operators can be expressed by the above operators. E.g., EFψ � E[trueUψ], AFψ �
A[trueUψ], EGψ � E[falseRψ] and AGψ � A[falseRψ]. The closure cl (ψ) ofψ is the set of all the subformulas of
ψ including ψ . Let At(ψ) � {a ∈ AP | a ∈ cl (ψ)} and clR(ψ) � {φ ∈ cl (ψ) | φ � E[ψ1Rψ2] or φ � A[ψ1Rψ2]}.

Let λ : AP → 2
⋃n

i�1 Pi×�∗i a regular valuation assigning to each atomic proposition a regular set of local
configurations. A local configuration c satisfies a CTL formula fi , (denoted by c |�λ fi), iff there exists D ⊆ Di

such that c |�λD fi holds, where |�λD is inductively defined as follows:

• c|�λ∅a ⇐⇒ c ∈ λ(a);

• c|�λ∅¬a ⇐⇒ c �∈ λ(a);

• c|�λDψ1 ∧ ψ2 ⇐⇒ ∃D1,D2 ⊆ ⋃n
i�1 Di such that D � D1 ∪D2, c|�λD1

ψ1 and c|�λD2
ψ2;

• c|�λDψ1 ∨ ψ2 ⇐⇒ c|�λDψ1 or c|�λDψ2;

• c|�λDAX ψ ⇐⇒ For every c1, . . . , cm ∈ Pi × �∗i such that for j , 1 ≤ j ≤ m, ∃Dj ,D ′j ⊆
⋃n

i�1 Di , c �⇒i

cj � D ′j , cj |�λDj
ψ and D � ⋃m

j�1(Dj ∪D ′j);

• c|�λDEX ψ ⇐⇒ There exist c′ ∈ Pi × �∗i , and D ′,D ′′ ⊆ ⋃n
i�1 Di such that c�⇒i c ′ � D ′′, c ′|�λD ′ψ and

D � D ′ ∪D ′′;
• c|�λDA[ψ1Uψ2] ⇐⇒ For every path σ � c0c1 . . . with c0 � c, for every m ≥ 1, ∃D ′m ⊆

⋃n
i�1 Di , such that

cm−1 �⇒ cm � D ′m , and ∃k ≥ 0, such that ∃Dk ⊆ ⋃n
i�1 Di , ck |�λDk

ψ2,∀ j , 0 ≤ j < k , cj |�λDj
ψ1 and

D � ⋃
σ (

⋃k
j�1 D ′j ∪

⋃k
j�0 Dj);

• c|�λDE[ψ1Uψ2] ⇐⇒ There exists a path σ � c0c1 . . . with c0 � c, for every m ≥ 1, ∃D ′m ⊆
⋃n

i�1 Di , such
that cm−1 �⇒ cm � D ′m , and ∃k ≥ 0, such that ∃Dk ⊆ ⋃n

i�1 Di , ck |�λDk
ψ2,∀ j , 0 ≤ j < k , cj |�λDj

ψ1, and

D � ⋃k
j�1 D ′j ∪

⋃k
j�0 Dj ;

• c|�λDA[ψ1Rψ2] ⇐⇒ For every path σ � c0c1 . . . with c0 � c, for every m ≥ 1, ∃D ′m ⊆
⋃n

i�1 Di , such
that cm−1 �⇒ cm � D ′m , and either ∀ j ≥ 0, ∃Dj ⊆ ⋃n

i�1 Di , cj |�λDj
ψ2 and Dσ � ⋃

j≥1 D ′j ∪
⋃

j≥0 Dj ,

or ∃k ≥ 0, ∃D ′′k ⊆
⋃n

i�1 Di such that ck |�λD ′′kψ1 and ∀ j , 0 ≤ j ≤ k , ∃Dj ⊆ ⋃n
i�1 Di , cj |�λDj

ψ2,Dσ �⋃k
j�0 Dj ∪D ′′k ∪

⋃k
j�1 D ′j .D �

⋃
σ Dσ ;

• c|�λDE[ψ1Rψ2] ⇐⇒ There exists a path σ � c0c1 . . . with c0 � c, for every m ≥ 1, ∃D ′m ⊆
⋃n

i�1 Di , such
that cm−1 �⇒ cm � D ′m , and either ∀ j ≥ 0, ∃Dj ⊆ ⋃n

i�1 Di , cj |�λDj
ψ2 and D � ⋃

j≥1 D ′j ∪
⋃

j≥0 Dj ,

or ∃k ≥ 0, ∃D ′′k ⊆
⋃n

i�1 Di such that ck |�λD ′′kψ1 and ∀ j , 0 ≤ j ≤ k , ∃Dj ⊆ ⋃n
i�1 Di , cj |�λDj

ψ2, and

D � ⋃k
j�0 Dj ∪D ′′k ∪

⋃k
j�1 D ′j .

Intuitively, c |�λD fi means that c satisfies fi and the executions that made c satisfy fi create the set of DCLICs
D , i.e., when a transition rule qγ ↪→ p1ω1 � p2ω2 is used to make fi satisfied, p2ω2 is in D . We write c |�D fi
instead of c |�λD fi when λ is clear from the context.

Model checking dynamic pushdown networks 415

A single-indexed CTL formula f is a formula of the form
∧n

i�1 fi 2 such that for every i , 1 ≤ i ≤ n, fi is a CTL
formula in which the validity of the atomic propositions depends only on the DPDS Pi . A global configuration
G satisfies f � ∧

fi iff for every c ∈ G, there exists a set of DCLICs D ⊆ D℘(c) such that c |�D f℘(c) and for every
d ∈ D , d also satisfies f .

5.2. Alternating BDPDSs

Definition 5.2 An Alternating BDPDS (ABDPDS) is a tuple BP ′i � (P ′i , �i ,�
′
i ,Fi), where P ′i is a finite set of

control locations,�i is the stack alphabet, Fi ⊆ P ′i is a set of accepting control locations,�′i is a finite set of transi-
tion rules in the form of pγ ↪→ {p1ω1, . . . , phωh} � {q1u1, . . . , qkuk } such that pγ ∈ P ′i×�i , {p1ω1, . . . , phωh} ⊆
P ′i × �∗i and {q1u1, . . . , qkuk } ⊆ Di .

An ABDPDS BP ′i induces a relation �→i ⊆ (P ′i × �∗i)× (2P ′i×�∗ × 2Di) defined as follows: for every ω ∈ �∗i ,
if pγ ↪→ {p1ω1, . . . , phωh} � {q1u1, . . . , qkuk } ∈ �i , then pγω �→i {p1ω1ω, . . . , phωhω} � {q1u1, . . . , qkuk }.
Intuitively, if BP ′i is at the configuration pγω, it can fork into h copies in the configurations p1ω1ω, . . . , phωhω
and creates k new instances of ABDPDSs starting from the DCLICs q1u1, . . . , qkuk , respectively. We sometimes
write pγ ↪→ {p1ω1, . . . , phωh} if pγ ↪→ {p1ω1, . . . , phωh} � ∅ ∈ �i .

A run of BP ′i from a configuration pω ∈ P ′i × �∗i is a tree rooted by pω, the other nodes are labeled by
elements of P ′i × �∗i . If a node is labelled by qu whose children are p1ω1, . . . , pmωm , then, necessarily, qu �→
{p1ω1, . . . , pmωm} � D for some D ⊆ Di . The run is accepting iff each branch of this run infinitely often visits
some control locations in Fi . Let L(BP ′i) be the set of all the pairs (c,D) ∈ P ′i × �∗i × 2Di such that BP ′i has an
accepting run from c and that creates the set of DCLICs D .

5.3. Computing corresponding alternating BDPDSs

To perform single-indexed CTL model checking for DPNs with regular valuations, we follow the approach for
LTL model checking for DPNs. But, in this case, we need alternating MAs and Alternating BDPDSs, since CTL
formulas can be translated to alternating Büchi automata. We compute a set of AMAs A′1, . . . ,A′n such that
for every i , 1 ≤ i ≤ n and every local configuration pω of Pi , pω |�D fi iff ([p, fi]ω,D) ∈ L(A′i). Later, we
compute the largest set of DCLICs D′fp such that a DCLIC d satisfies f iff d ∈ D′fp . Then, to check whether a
global configuration G satisfies f , it is sufficient to check whether for every pω ∈ G, there exists D ⊆ D′fp such
that ([p, f℘(p)]ω,D) ∈ L(A′℘(p)). To compute the AMAs, we construct a set of alternating BDPDSs BP ′i which
are synchronizations of the DPDSs Pi with formulas fi such that the AMAs we are looking for correspond to the
languages accepted by these alternating BDPDSs BP ′is . We first show how to compute the alternating BDPDSs
BP ′i . Then, we show how to compute the languages of these alternating BDPDSs BP is , i.e. the AMAs.

We fix an index i , 1 ≤ i ≤ n. We construct an ABDPDS BP ′i such that for every pω ∈ P ′i × �∗i , pω |�D

fi iff ([p, fi]ω,D) ∈ L(BP ′i). We suppose w.l.o.g. that the DPDS Pi has a bottom-of-stack � which is never
popped from the stack. For every a ∈ At(fi), since λ(a) is a regular set of local configurations of Pi , let Ma �
(Qa , �i , δa , Ia ,Acca) be a MA such that L(Ma) � λ(a)×{∅}, and M¬a � (Q¬a , �i , δ¬a , I¬a ,Acc¬a) a MA such
that L(M¬a) � (Pi ×�∗i \λ(a))×{∅}, i.e., the set of configurations where a does not hold. To distinguish between
all the initial states p in Ma and M¬a , we write pa and p¬a instead. W.l.o.g., we assume that the set of states Qas ,
and Q¬as are disjoint for every a ∈ At(fi).

Let BP ′i � (P ′i , �i ,�
′
i ,Fi) be the ABDPDS such that P ′i � Pi × cl (fi) ∪ ⋃

a∈At(fi)(Qa ∪ Q¬a); Fi �
Pi × clR(fi) ∪⋃

a∈At(fi)(Acca ∪ Acc¬a); and �′i is the smallest set of transition rules such that for every control
location p ∈ Pi , every subformula ψ ∈ cl (fi) and every γ ∈ �i , we have:

1. if ψ � a or ψ � ¬a, where a ∈ At(fi); [p, ψ]γ ↪→ {pψγ } ∈ �′i ;
2. if ψ � ψ1 ∧ ψ2; [p, ψ]γ ↪→ {[p, ψ1]γ, [p, ψ2]γ } ∈ �′i ;
3. if ψ � ψ1 ∨ ψ2; [p, ψ]γ ↪→ {[p, ψ1]γ } ∈ �′i and [p, ψ]γ ↪→ {[p, ψ2]γ } ∈ �′i ;

2 Formulas of the form
∨n

i�1 fi can be verified by checking fi for 1 ≤ i ≤ n .

416 F. Song, T. Touili

4. if ψ �EXψ1; [p, ψ]γ ↪→{[p ′, ψ1]ω} � {p ′′ω′} ∈ �′i if pγ ↪→ p ′ω � p ′′ω′ ∈ �i ; [p, ψ]γ ↪→ {[p ′, ψ1]ω} ∈ �′i
if pγ ↪→ p ′ω ∈ �i ;

5. if ψ � AXψ1; [p, ψ]γ ↪→ {[p ′, ψ1]ω | pγ ↪→ p ′ω � p ′′ω′ ∈ �i } � {p ′′ω′ | pγ ↪→ p ′ω � p ′′ω′ ∈ �i } ∈ �′i ;
6. if ψ � E[ψ1Uψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ } ∈ �′i , and [p, ψ]γ ↪→ {[p, ψ1]γ, [p ′, ψ]ω} � {p ′′ω′} ∈ �′i if

pγ ↪→ p ′ω � p ′′ω′ ∈ �i , [p, ψ]γ ↪→ {[p, ψ1]γ, [p ′, ψ]ω} ∈ �′i if pγ ↪→ p ′ω ∈ �i ;
7. if ψ � A[ψ1Uψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ } ∈ �′i and [p, ψ]γ ↪→ {[p, ψ1]γ, [p ′, ψ]ω | pγ ↪→ p ′ω � p ′′ω′ ∈
�i } � {p ′′ω′ | pγ ↪→ p ′ω � p ′′ω′ ∈ �i } ∈ �′i ;

8. if ψ � E[ψ1Rψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ, [p, ψ1]γ } ∈ �′i , and [p, ψ]γ ↪→ {[p, ψ2]γ,
[p ′, ψ]ω} � {p ′′ω′} ∈ �′i if pγ ↪→ p ′ω � p ′′ω′ ∈ �i , [p, ψ]γ ↪→ {[p, ψ2]γ, [p ′, ψ]ω} ∈ �′i if pγ ↪→ p ′ω ∈ �i ;

9. if ψ � A[ψ1Rψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ, [p, ψ1]γ } ∈ �′i and [p, ψ]γ ↪→ {[p, ψ2]γ,
[p ′, ψ]ω | pγ ↪→ p ′ω � p ′′ω′ ∈ �i } � {p ′′ω′ | pγ ↪→ p ′ω � p ′′ω′ ∈ �i } ∈ �′i .

10. for every transition (q1, γ, q2) in
⋃

a∈At(fi)(δa ∪ δ¬a); q1γ ↪→ {q2ε} ∈ �′i ,
11. for every q ∈ ⋃

a∈At(fi)(Acca ∪Acc¬a); q� ↪→ {q�} ∈ �′i .
For every pω ∈ P ′i × �∗i , BP ′i has an accepting run σ from [p, fi]ω and D is the set of DCLICs created by σ

iff pω |�D fi . The intuition behind each rule is explained as follows.
If ψ � a ∈ At(fi), for every pω ∈ P ′i ×�∗i , pω satisfies ψ iff BP ′i has an accepting run from [p, a]ω. To check

this, BP ′i moves to the initial state corresponding to p in Ma (i.e. pa) by Item 1 allowing to check whether Ma

accepts ω. Then the run of BP ′i from paω mimics the run of Ma from the initial state p. Checking whether Ma

accepts ω is ensured by Item 10. If BP ′i is at state q1 with γ on the top of the stack and q1
γ−→ q2 is a transition

of Ma , then BP ′i pops γ from the stack and moves the control location from q1 to q2. Popping γ from the stack
allows to check the rest of the stack content. The configuration pω is accepted by Ma iff the run of Ma reaches
a final state q ∈ Acca , i.e., the run of BP ′i from pω reaches the control location q with the empty stack, i.e., the
stack only contains �. Thus, BP ′i should have an infinite run from q� which infinitely often visits some control
locations in Fi . This is ensured by adding a loop on the configuration q� (Item 11) and adding q into Fi . The
case ψ � ¬a such that a ∈ At(fi) is similar.

If ψ � ψ1 ∧ ψ2, then, for every pω ∈ P ′i × �∗i , pω satisfies ψ iff pω satisfies ψ1 and ψ2. This is ensured by
Item 2 stating that BP ′i has an accepting run from [p, ψ1 ∧ψ2]ω iff BP ′i has an accepting run from [p, ψ1]ω and
[p, ψ2]ω. Item 3 is similar to Item 2.

Item 4 expresses that if ψ � EXψ1, then, for every pγu ∈ P ′i × �∗i such that γ ∈ �i , pγu satisfies ψ iff there
exists a transition t1 � pγ ↪→ p ′ω ∈ �i or t2 � pγ ↪→ p ′ω � p ′′ω′ ∈ �i such that p ′ωu satisfies ψ1. Thus, BP ′i
should have an accepting run from [p, ψ]γu iff BP ′i has an accepting run from [p ′, ψ1]ωu. Moreover, if t2 is the
fired transition rule, the created DCLIC p ′′ω′ should also be created by BP ′i . Item 5 is analogous.

If ψ � E[ψ1Uψ2], then, for every pγu ∈ P ′i × �∗i such that γ ∈ �i , pγu satisfies ψ iff either it satisfies ψ2, or
it satisfies ψ1 and there exists a transition t1 � pγ ↪→ p ′ω ∈ �i or t2 � pγ ↪→ p ′ω � p ′′ω′ ∈ �i such that p ′ωu
satisfies ψ . Thus, BP ′i has an accepting run from [p, ψ]γu iff either BP ′i has an accepting run from [p, ψ2]γu or
BP ′i has an accepting run from [p, ψ1]γu and [p ′, ψ]ωu. This is ensured by Item 6. Moreover, if t2 is the fired
transition rule, the created DCLIC p ′′ω′ should also be created by BP ′i . The case ψ � A[ψ1Uψ2] is analogous.

Item 8 expresses that if ψ � E[ψ1Rψ2], then, for every pγu ∈ P ′i × �∗i such that γ ∈ �i , pγu satisfies ψ iff
it satisfies ψ2, and either it satisfies also ψ1, or there exists a transition t1 � pγ ↪→ p ′ω ∈ �i or t2 � pγ ↪→
p ′ω � p ′′ω′ ∈ �i such that p ′ωu satisfies ψ . This guarantees that ψ2 holds either always, or until both ψ1 and ψ2
hold. The fact that the state [p, ψ] is in Fi ensures that paths where ψ2 always hold are accepting. If t2 is the fired
transition rule, the created DCLIC p ′′ω′ should also be created by BP ′i . The intuition behind Item 9 is analogous
to Item 8. Then, we obtain the following lemma.

Lemma 5.1 For every i , 1 ≤ i ≤ n, we can compute an ABDPDS BP ′i with O(| Pi | · | fi | + ∑
a∈At(fi)(| Qa | + |

Q¬a |)) states and O
(
(| Pi | · | �i | + | �i |) | fi | + ∑

a∈At(fi)(| δa | + | δ¬a |)
)

transition rules such that for every
(pω,D) ∈ Pi × �∗i × 2Di , pω |�D fi iff ([p, fi]ω,D) ∈ L(BP ′i).

Model checking dynamic pushdown networks 417

5.4. Computing L(BP ′i)
Let us fix an index i , 1 ≤ i ≤ n, the AMA A′i we are looking for corresponds to L(BP ′i). To compute this
language, it is insufficient to simply compute the set of configurations from which BP ′i has an accepting run,
since we also need to memorize the set of DCLICs created during the run of BP ′i . To this aim, we follow the
automata-based approach for CTL model checking of PDSs presented in [ST11]. We first characterize the set
L(BP ′i), then we compute the AMA A′i such that L(A′i) � L(BP ′i).
Characterizing L(BP ′i): To characterize L(BP ′i), we introduce the function preBP ′i : 2P ′i×�∗i×2Di −→ 2P ′i×�∗i×2Di as
follows: preBP ′i (U) � {(c,D) | c �→i {c1, . . . , cm } � D0, ∀ j : 1 ≤ j ≤ m, (cj ,Dj) ∈ U , and D � ⋃m

j�0 Dj }.
The transitive and reflexive closure of preBP ′i is denoted by pre∗BP ′i . Formally, pre∗BP ′i (U) � {(c,D) | (c,D) ∈
U or there exist c1, . . . , cm such that c �→i {c1, . . . , cm} � D0, ∀ j : 1 ≤ j ≤ m, (cj ,Dj) ∈ pre∗BP ′i (U), and D �⋃m

j�0 Dj }. Let pre+
BP ′i (U) � pre∗BP ′i (preBP ′i (U)).

Let YBP ′i �
⋂

j≥1 Yj where Y0 � P ′i×�∗i ×{∅}, Yj+1 � pre+
BP ′i (Yj ∩Fi×�∗i ×2Di) for every j ≥ 0. Intuitively,

(c,D) ∈ Y1 iff BP ′i has a run from c such that each path of this run visits accepting control locations at least
once and D is the set of DCLICs created during this run. (c,D) ∈ Yj iff BP ′i has a run from c such that each
path of this run visits some control locations in Fi at least j times and D is the set of DCLICs created during
this run. Since YBP ′i �

⋂
j≥1 Yj , for every (c,D) ∈ YBP ′i , BP ′i has a run from c such that each path visits some

control locations in Fi infinitely often and D is the set of all the DCLICs created during this run. Thus, we get:

Proposition 5.1 L(BP ′i) � YBP ′i .

Proof. (�⇒) First we show that if (c,D) ∈ L(BP ′i), then (c,D) ∈ YBP ′i . Since YBP ′i �
⋂

k≥1 Yk , it is sufficient to
prove that (c,D) ∈ Yk for every k ≥ 1. The proof proceeds by induction on k . Let �→+

i be the transitive closure
of �→i .

• Basis. k � 1. We show that (c,D) ∈ Y1. Since (c,D) ∈ L(BP ′i), BP ′i has a run from c such that each path of
this run infinitely often visits some control locations in Fi and D is the set of DCLICs created during in this
run. Since the number of such D ⊆ Di is finite, we can find a finite set of local configurations p1ω1, . . . , pmωm

such that the control locations p1, . . . , pm are in Fi and c �→+
i {p1ω1, . . . , pmωm} � D .

Since pjωj ∈ Fi × �∗i for every j , 1 ≤ j ≤ m and Y0 � Pi × �∗i × {∅}, we can obtain that (pjωj ,∅) ∈
Y0 ∩ Fi × �∗i × 2Di , for every j , 1 ≤ j ≤ m.
Since Y1 � pre+

BP ′i (Y0 ∩ Fi × �∗i × 2Di), we obtain that (c,D) ∈ Y1.

• Step. k > 1. We show that (c,D) ∈ Yk . Since (c,D) ∈ L(BP ′i), BP ′i has a run from c such that each path
of this run infinitely often visits some control locations in Fi and D is the set of DCLICs created during in
this run, we can find a finite set of local configurations p1ω1, . . . , pmωm and sets of DCLICs D ′,D1, . . . ,Dm

such that the control locations p1, . . . , pm are in Fi , D � D ′ ∪ ⋃m
j�1 Dj , pω�⇒+

i {p1ω1, . . . , pmωm} � D ′,
and (pjωj ,Dj) ∈ L(BP ′i) for every j , 1 ≤ j ≤ m.
By applying the induction hypothesis (induction on k) to (pjωj ,Dj) ∈ L(BP ′i) for every j , 1 ≤ j ≤ m, we
obtain that (pjωj ,Dj) ∈ Yk−1 for every j , 1 ≤ j ≤ m.
Since Yk � pre+

BP ′i (Yk−1 ∩ Fi × �∗i × 2Di), we obtain that (c,D) ∈ Yk .

(⇐�) Let us show that if (c,D) ∈ YBP ′i , then (c,D) ∈ L(BP ′i). It is sufficient to construct an accepting run from
c such that D is the set of DCLICs created during this run.

Since YBP ′i �
⋂

j≥1 Yj where Y0 � P ′i × �∗i × {∅}, Yj+1 � pre+
BP ′i (Yj ∩ Fi × �∗i × 2Di) for every j ≥ 0, we

obtain that YBP ′i � pre+
BP ′i (YBP ′i ∩ Fi × �∗i × 2Di).

Since (c,D) ∈ YBP ′i � pre+
BP ′i (YBP ′i∩Fi×�∗i×2Di), there exists a set of tuples{(p1ω1,D1), . . . , (pmωm ,Dm)} ⊆

YBP ′i ∩ Fi × �∗i × 2Di such that c�⇒+
i {p1ω1, . . . , pmωm} � I0 and D � I0 ∪⋃m

k�1 Dk .

418 F. Song, T. Touili

Algorithm 2: computation of YBP ′i .

Input : An ABDPDS BP ′i � (P ′i , �i ,�
′
i ,Fi);

Output: An AMA A′i � (Qi , �i , δi , Ii , {qf }) such that L(A′i) � YBP ′i ;
1 Let k :� 0, δi :� {(qf , γ,∅, {qf }) for every γ ∈ �i }, and ∀ p ∈ P ′i , p0 :� qf ;
2 repeat we call this loop loop1
3 k :� k + 1;

4 Add a new transition rule pk ε/∅−→i {pk−1} in δi for every p ∈ Fi ;
5 repeat we call this loop loop2
6 For every pγ ↪→ {p1ω1, . . . , phωh} � D in �′i ,
7 and every case pk

j

ωj /Dj−−−→∗i Rj for all j , 1 ≤ j ≤ h;

8 pk γ /D∪⋃h
j�1 Dj−−−−−−−−−→i

⋃h
j�1 Rj in δi

9 until No new transition rule can be added ;

10 Remove from δi the transition rules pk ε/∅−−→i {pk−1}, ∀ p ∈ Fi ;

11 Replace in δi transition rule pk γ /D−−−→i R by pk γ /D−−−→i π
k (R), ∀ p ∈ P ′i , γ ∈ �i ,R ⊆ Qi ;

12 until k > 1 and ∀ p ∈ P ′i , γ ∈ �i ,R ⊆ P ′i × {k} ∪ {qf },D ⊆ Di , pk γ /D−→i R ∈ δi iff pk−1 γ /D−→i π
−1(R) ∈ δi ;

Since {(p1ω1,D1), . . . , (pmωm ,Dm)} ⊆ YBP ′i ∩Fi ×�∗i × 2Di , we obtain that (pkωk ,Dk) ∈ YBP ′i and pk ∈ Fi

for every k , 1 ≤ k ≤ m. Let us construct a finite tree (run) ρ with root pω, the leaves of ρ are p1ω1, . . . , pmωm ,
the inner nodes of ρ are the successors during the run pω�⇒+

i {p1ω1, . . . , pmωm} � I0. Each path of ρ can visit
some control locations in Fi at least once and I0 is the set of DCLICs created during the run ρ.

Since pkωk ∈ YBP ′i for every k , 1 ≤ k ≤ m, we can repeatedly construct a finite tree ρk for the local
configuration pkωk such that ρk has the same properties as ρ. Let us replace each leaf pkωk in ρ by the tree ρk
and obtain a new tree ρ such that each path of the new tree ρ can visit some control locations in Fi at least twice.

Now we infinitely repeat this procedure to the leaves of the latest tree ρ. Finally, we can obtain an infinite run
such that each path of this run visits some control locations in Fi and D is the set of DCLICs created during this
run. �

Computing YBP ′i : We show that YBP ′i can be represented by an AMA A′i � (Qi , �i , δi , Ii ,Acci) where Qi ⊆
P ′i × N ∪ {qf } and qf is the unique final state, i.e., Acci � {qf }. Let qk denote (q, k) ∈ P ′i × N. Intuitively, to
compute YBP ′i , we will compute iteratively the different Yj s . The iterative procedure computes different AMAs.
To force termination, we use an acceleration based on the projection functions π−1 and πk : for every S ⊆ Qi ,

π−1(S) �
{ {qk | qk+1 ∈ S } ∪ {qf } if qf ∈ S or ∃q1 ∈ S ,

{qk | qk+1 ∈ S } else.

πk (S) � {qk | ∃ j , 1 ≤ j ≤ k such that q j ∈ S } ∪ {qf | qf ∈ S }.
Algorithm 2 computes an AMA A′i recognizing YBP ′i . Let us explain the intuition behind the different lines

of this algorithm. Let A0 be the automaton obtained after the initialization (Line 1). It is clear that A0 accepts Y0.
Let Ak be the AMA obtained at step k (a step starts at Line 3). For every p ∈ P ′i , state pk denotes state p at step

k , i.e., Ak recognizes a tuple (pω,D) iff pk ω/D−−→∗i {qf }. Suppose the algorithm is at the beginning of the k th step

(loop1). Line 4 adds the ε-transition pk ε/∅−−→i {pk−1} for every p ∈ Fi . Then, we obtain L(Ak−1)∩Fi ×�∗i × 2Di .
loop2 (Lines 5-9) is the saturation procedure that computes pre∗BP ′i (L(Ak−1)∩Fi ×�∗i ×2Di). Line 10 removes the

ε-transition pk ε/∅−−→i {pk−1} for every p ∈ Fi . After this, we obtain pre+
BP ′i (L(Ak−1) ∩ Fi × �∗i × 2Di). Thus, in

case of termination, the algorithm outputs YBP ′i . The substitution at Line 11 is used to force termination. Thus,
we can show the following theorem.

Model checking dynamic pushdown networks 419

Theorem 5.1 Algorithm 1 always terminates and produces YBP ′i .

Proof. The proof follows the proof of [ST11]. Algorithm 1 follows the idea of the algorithm of [ST11]. computing an
AMA recognizing the language of an ABDPDS when transition rules are in the form of pγ ↪→ {p1ω1, . . . , phωh},
i.e., Di � ∅ . The main differences are:

To compute pre∗BP ′i (L(Ak−1) ∩ Fi × �∗i × 2Di), instead of using the following saturation procedure given in
[BEM97] that computes reachable configurations of Alternating PDSs:

If pγ ↪→ {p1ω1, . . . , pmωm} ∈ �′i and pk
j

ωj /∅−−→∗i Rj , for j , 1 ≤ j ≤ m, add pk γ /∅−→i ∪m
j�1Rj in δi .

We use the following saturation procedure:

If pγ ↪→ {p1ω1, . . . , phωh} � D ∈ �′i and pk
j

ωj /Dj−−−→∗i Rj for j , 1 ≤ j ≤ h, add pk γ /D∪⋃h
j�1 Dj−−−−−−−−−→ ∪h

j�1 Rj in δi .
The idea behind our saturation procedure is the following: suppose pγ ↪→ {p1ω1, . . . , phωh} � D ∈ �′i

and for every j , 1 ≤ j ≤ h, (pjωjω
′,Dj) is in L(A′k−1) ∩ Fi × �∗i × 2Di (i.e., pk

j

ωj /D
′
j−−−→∗i Rj

ω′/D ′′j−−−→∗i {qf } and

Dj � D ′j ∪ D ′′j). Then, Lines 3–6 add the new transition rule pk
γ (D∪⋃h

j�1 D ′j)−−−−−−−−−→i

⋃h
j�1 Rj that allows to accept

(pγω′,D ∪⋃h
j�1 Dj), i.e., (pγω′,D ∪⋃h

j�1 Dj) ∈ pre∗BP ′i ({(p1ω1ω
′,D1), . . . , (pjωjω

′,Dj)}). �

Complexity. Following [ST11], we can show that loop2 can be done in time O(| P ′i | · | �′i | ·24|P ′i |+|Di |). The
substitution (Line 11) and termination condition (Line 12) can be done in time O(| �i | · | P ′i | ·22|P ′i |+|Di |) and
O(| �i | · | P ′i | ·2|P ′i |+|Di |), respectively. Putting all these estimations together, the global complexity of Algorithm
2 is O(| P ′i |2 · | �′i | · | �i | ·25|P ′i |+|Di |).

By Proposition 5.1 and Theorem 5.1, we get:

Lemma 5.2 Given an ABDPDS BP ′i , we can construct an AMA A′i with O(| �i | · | P ′i | ·2|P ′i |+|Di |) transitions and
O(| P ′i |) states in time O(| P ′i |2 · | �′i | · | �i | ·25|P ′i |+|Di |) such that L(BP ′i) � L(A′i).

From Lemmas 5.1 and 5.2, we get:

Lemma 5.3 We can compute AMAs A′1, . . . ,A′n in time O(
∑n

i�1((| Pi | · | fi | +k)2 · ((| Pi | · | �i | + | �i |) | fi |
+d)· | �i | ·25(|Pi |·|fi |+k)+|Di |)) such that for every i , 1 ≤ i ≤ n, pω ∈ Pi × �∗i , pω |�D fi iff ([p, fi],D) ∈ L(A′i),
where k �∑

a∈At(fi)(| Qa | + | Q¬a |) and d �∑
a∈At(fi)(| δa | + | δ¬a |).

5.5. CTL Model checking for DPNs with regular valuations

By Lemma 5.3, we obtain a set of AMAs {A′1, . . . ,A′n } such that for every i , 1 ≤ i ≤ n and every local
configuration pω ∈ Pi × �∗i , pω |�D fi iff ([p, fi]ω,D) ∈ L(A′i). Following the approach for single-indexed LTL
model checking for DPNs, to obtain an efficient procedure, we compute the largest set D′fp of DCLICs such that
for every d ∈ ⋃n

i�1 Di , d satisfies f iff d ∈ D′fp . Then, to check whether a global configuration G satisfies f , it is
sufficient to check whether for every pω ∈ G, there exists D ⊆ D′fp such that ([p, f℘(p)]ω,D) ∈ L(A′℘(p)). D′fp can
be computed as done in Sect. 3.2. We can show that:

Theorem 5.2 We can compute AMAs A′1, . . . ,A′n in time O(
∑n

i�1((|Pi | · | fi | +k)2 · ((|Pi | · |�i | + | �i |) | fi |
+d)· | �i | ·25(|Pi |·|fi |+k)+|Di |)) such that for every global configuration G, G satisfies f iff for every pω ∈ G, there
exists D ⊆ D′fp such that ([p, f℘(p)]ω,D) ∈ L(A′℘(p)), where k � ∑

a∈At(fi)(| Qa | + |Q¬a |) and d � ∑
a∈At(fi)(|

δa | + | δ¬a |).

6. Conclusion and future work

In this work, we show that the model checking problems for DPNs against single-indexed LTL and CTL with
simple and regular valuations are decidable. We present automata-based algorithms for these problems which
construct a set of MAs (resp. AMAs) to finitely represent all the global configurations of a DPN that satisfy a
given LTL (resp. CTL) formula.

420 F. Song, T. Touili

In DPNs, instances of DPDSs do not allow to communicate with each other, therefore DPNs cannot model
multi-threaded programs that have synchronization such as message passing, global variables or lock/unlock
mechanism. Omitting the synchronization in multi-threaded programs, the DPN models will not precise. For
lock/unlock synchronized programs, the resulting models could be an over-approximation of the programs.
Extending of DPNs with synchronization is non-trivial. The pairwise reachability problem of DPNs extended
with a simple synchronization mechanism, lock/unlock, will be undecidable even for the DPNs without dynamic
thread creation [KG06]. It is show that the problem will be decidable if DPNs are extended with well-nested
lock/unlock is decidable [LMOW09]. We plan to investigate the single-indexed LTL/CTL model-checking problem
for DPNs with well-nested lock/unlock, so that the DPNs can model programs that synchronized via well-nested
lock/unlock mechanism.

Acknowledgements

We gratefully acknowledge the editor and anonymous reviewers for their valuable comments and suggestions
to improve the quality of the paper. This work was partially supported by the Pujiang Talent Project of the
Shanghai Science and Technology Committee (No. 14PJ1403200), NSFC Project (No. 61402179, No. 91418203),
the ChenGuang Project of the Shanghai Municipal Education Commission and the Shanghai Education Devel-
opment Foundation (No. 13CG21), the Open Project of Shanghai Key Laboratory of Trustworthy Computing
(No. 07dz22304201301), ANR Grant (No. ANR-08-SEGI-006).

References

[ABT08] Atig MF, Bouajjani A, Touili T (2008) On the reachability analysis of acyclic networks of pushdown systems. In CONCUR,
pp 356–371

[BEM97] Bouajjani A, Esparza J, Maler O (1997) Reachability analysis of pushdown automata: application to model checking. In
CONCUR’97. LNCS 1243

[BET03] Bouajjani A, Esparza J, Touili T. (2003) A generic approach to the static analysis of concurrent programs with procedures. In
POPL, pp 62–73

[BKRS09] Bozzelli L, Kretı́nský M, Rehák V, Strejcek J (2009) On decidability of LTL model checking for process rewrite systems. Acta
Inf, 46(1)

[BMOT05] Bouajjani A, Müller-Olm M, Touili T (2005) Regular symbolic analysis of dynamic networks of pushdown systems. In
CONCUR, pp 473–487

[CCK+06] Chaki S, Clarke EM, Kidd N, Reps TW, Touili T (2006) Verifying concurrent message-passing c programs with recursive calls.
In TACAS, pp 334–349

[EHRS00] Esparza J, Hansel D, Rossmanith P, Schwoon S (2000) Efficient algorithm for model checking pushdown systems. In CAV’00,
volume 1885 of LNCS

[EKS03] Esparza J, Kucera A, Schwoon S (2003) Model checking LTL with regular valuations for pushdown systems. Inf Comput,
186(2):355–376

[GL11] Göller S, Lin AW (2011) The complexity of verifying ground tree rewrite systems. In LICS, pp 279–288
[GLMO+11] Gawlitza TM, Lammich P, Müller-Olm M, Seidl H, Wenner A (2011) Join-lock-sensitive forward reachability analysis for

concurrent programs with dynamic process creation. In VMCAI, pp 199–213
[KG06] Kahlon V, Gupta A (2006) An automata-theoretic approach for model checking threads for LTL properties. In LICS, pp

101–110
[KG07] Kahlon V, Gupta A (2007) On the analysis of interacting pushdown systems. In POPL, pp 303–314
[KIG05] Kahlon V, Ivancic F, Gupta A (2005) Reasoning about threads communicating via locks. In CAV, pp 505–518
[KLTR09] Kidd N, Lammich P, Touili T, Reps TW (2009) A decision procedure for detecting atomicity violations for communicating

processes with locks. In SPIN, pp 125–142
[LMO07] Lammich P, Müller-Olm M (2007) Precise fixpoint-based analysis of programs with thread-creation and procedures. In CON-

CUR, pp 287–302
[LMO08] Lammich P, Müller-Olm M (2008) Conflict analysis of programs with procedures, dynamic thread creation, and monitors. In

SAS, pp 205–220
[LMOW09] Lammich P, Müller-Olm M, Wenner A (2009) Predecessor sets of dynamic pushdown networks with tree-regular constraints.

In CAV, pp 525–539
[Lug11] Lugiez D (2011) Forward analysis of dynamic network of pushdown systems is easier without order. Int J Found Comput Sci,

22(4):843–862
[May00] Mayr R (2000) Process rewrite systems. Inf Comput, 156(1–2):264–286
[Sch02] Schwoon S (2002) Model-Checking Pushdown Systems. PhD thesis, Technische Universität München
[ST11] Song F, Touili T (2011). Efficient CTL model-checking for pushdown systems. In CONCUR
[ST13] Song F, Touili T (2013) Model checking dynamic pushdown networks. In APLAS, pp 33–49
[TA10] Touili T, Atig MF (2010) Verifying parallel programs with dynamic communication structures. Theor Comput Sci, 411(38–

39):3460–3468

Model checking dynamic pushdown networks 421

[VW86] Vardi MY, Wolper P (1986) Automata-theoretic techniques for modal logics of programs. J Comput Syst Sci, 32(2):183–221
[Wen10] Wenner A (2010) Weighted dynamic pushdown networks. In ESOP, pp 590–609
[Yah01] Yahav E (2001) Verifying safety properties of concurrent java programs using 3-valued logic. In POPL, pp 27–40

Received 3 June 2014
Revised 31 August 2014
Accepted 26 November 2014 by Jin Song Dong
Published online 8 January 2015

	Model checking dynamic pushdown networks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Dynamic pushdown networks
	2.2 LTL and Büchi automata
	2.3 Single-indexed LTL for DPNs
	2.4 Multi-automata and predecessors

	3 Single-indexed LTL model checking for DPNs
	3.1 Computing the MAs mathcalAi
	3.2 Single-indexed LTL model checking for DPNs with simple valuations

	4 Single-indexed LTL model checking with regular valuations
	4.1 Storing the states into the stack
	4.2 Reducing regular valuations to simple valuations
	4.3 Computing consistent configurations

	5 Single-indexed CTL model checking for DPNs
	5.1 Single-indexed CTL
	5.2 Alternating BDPDSs
	5.3 Computing corresponding alternating BDPDSs
	5.4 Computing L(mathcalBPi')
	5.5 CTL Model checking for DPNs with regular valuations

	6 Conclusion and future work
	Acknowledgements
	References

