
K-RAPID: A Formal Executable Semantics of the
RAPID Robot Programming Language

Zichen Wang
College of Control Science and

Engineering, Zhejiang University
Hangzhou, China

withnorman@zju.edu.cn

Jingyi Wang∗
College of Control Science and

Engineering, Zhejiang University
Hangzhou, China

wangjyee@zju.edu.cn

Fu Song
1Key Laboratory of System Software

(Chinese Academy of Sciences)
2State Key Laboratory of Computer

Science, Institute of Software,
Chinese Academy of Sciences

Beijing, China
songfu@ios.ac.cn

Kun Wang
College of Control Science and

Engineering, Zhejiang University
Hangzhou, China

kunwang_yml@zju.edu.cn

Hongyi Pu
College of Control Science and

Engineering, Zhejiang University
Hangzhou, China

hongyipu.zju@gmail.com

Peng Cheng
College of Control Science and

Engineering, Zhejiang University
Hangzhou, China

lunarheart@zju.edu.cn

Abstract
Industrial robots are widely used in industrial production as
mechanical devices. It is essential to guarantee that their con-
trol software operates safely and properly, as any functional
or security-related defects may lead to serious incidents.
However, industrial robots are programmed mostly in pro-
prietary languages varying from vendor to vendor, making
it challenging to formally analyze their correctness in a uni-
fied way. One of the most representative robot programming
languages is the RAPID language proposed by ABB Robot-
ics. In this paper, we present K-RAPID, a formal executable
semantics of RAPID in the K-Framework (K). K-RAPID is
developed according to the official ABB documentation and
defined in a generic extensible manner. It can be used either
for validating the correctness of compiler implementation
or analyzing the control programs written in RAPID. We
evaluate the correctness of K-RAPID by executing 563 test
programs collected from multiple sources and comparing
the results against the official robot simulation environment
RobotStudio. The results suggest that K-RAPID covers the
core features of RAPID correctly. Moreover, we show how

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPSS ’24, July 2, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0420-8/24/07
https://doi.org/10.1145/3626205.3659149

we could apply K-RAPID to verify RAPID programs using
LTL model checking and to provide a formal specification of
RAPID to uncover inappropriate behaviors in the programs.

CCS Concepts: •Computer systems organization→ Em-
bedded and cyber-physical systems; • Security and pri-
vacy→ Formal methods and theory of security.

Keywords: Industrial robots, Formal methods in robotics
and automation, Robot programming, RAPID language, K-
Framework

ACM Reference Format:
ZichenWang, JingyiWang, Fu Song, KunWang, Hongyi Pu, and Peng
Cheng. 2024. K-RAPID: A Formal Executable Semantics of the
RAPID Robot Programming Language. In 10th ACM Cyber-Physical
System Security Workshop (CPSS ’24), July 2, 2024, Singapore, Singa-
pore. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3626205.3659149

1 Introduction
With the widespread application of industrial robots, safety
incidents caused by the wrong operations of robots occur
from time to time [14, 18, 19]. Thus, industrial robots should
be ensured to operate safely and properly in order to elimi-
nate the threat that abnormal operations pose to human and
equipment safety.
The operating logic of an industrial robot is determined

by its control program, which is pre-programmed by robot
operators with the aid of some proprietary domain-specific
languages [11]. A robot programming language contains a
series of instructions that supervise the robot’s activities in-
cluding moving the robots, manipulating end effectors, and
communicating with robot operators. These functionalities
make robot control programs security- and safety-critical.
Any functional or security-related defects (e.g. setting the

64

https://doi.org/10.1145/3626205.3659149
https://doi.org/10.1145/3626205.3659149
https://doi.org/10.1145/3626205.3659149
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626205.3659149&domain=pdf&date_stamp=2024-07-01

CPSS ’24, July 2, 2024, Singapore, Singapore Zichen Wang, Jingyi Wang, Fu Song, Kun Wang, Hongyi Pu, and Peng Cheng

destination of a move instruction to an unreachable posi-
tion) may lead to harmful consequences. Hence, it is critical
to guarantee that control programs for industrial robots are
correctly implemented and exhibit expected behaviors when
they are executed.

Several works attempt to look into the security and safety
risks related to robot software. Pogliani et al. [16] propose
a static code analyzer for ABB’s and KUKA’s robot control
programs, and discover insecure or potentially malicious
issues in the use of sensitive primitives. Mandal et al. [12] de-
velop a static program analysis framework for RAPID using
the .NET framework and further extend it to apply to PLC
programming languages [13]. Wang et al. [22] use model
checking to rigorously verify the correctness of code genera-
tion models of ROS systems. Existing works are limited since
they lack the aid of formal methods. To balance the accuracy
and efficiency of static analysis and model checking, it is
necessary to fully comprehend the purpose and structure
of each robot control program. Such firm understanding is
inseparable from a complete formal semantics.
To the best of our knowledge, there has been no work

on the formal semantics of industrial robot programming
languages so far. Compared to previous work on mainstream
languages like C [5] and Java [3], several new challenges need
to be addressed for the formal semantics of robot program-
ming languages. First, robot programming languages have a
bunch of features to control the operations of robots. These
features are not supported by general-purpose languages.
Thus, formal semantics of general-purpose programming
languages cannot be directly applied to robot languages.
Besides, robot programming languages are proprietary lan-
guages varying from vendor to vendor, making it challenging
to define a generic formal semantics available for diverse
robot programming language implementations.
To tackle the challenges, we propose the first formal se-

mantics of a widely used specific language called RAPID. All
the control programs of ABB’s robots are written in RAPID
[4] , which has complex program structures and complete
instruction functions. We formalize the semantics in the K-
Framework [17] and name it as K-RAPID. We evaluate the
correctness of K-RAPID by executing 563 test programs and
comparing the results against the robot simulation environ-
ment RobotStudio [2]. We find that K-RAPID can run 529 of
these programs correctly. We also evaluate the completeness
of K-RAPID by analyzing the types of features that it cov-
ers. It turns out that K-RAPID has covered the core features
of RAPID, showing its high completeness. K-RAPID also
supports LTL model checking on RAPID programs, offering
functionalities besides just interpreting RAPID programs.
As a demonstration, we present a case study that performs
model checking on the control program of an industrial sort-
ing system and illustrates the ability of model checking to

find program flaws. Furthermore, K-RAPID provides a for-
mal specification of RAPID and we find two categories of
inappropriate behaviors in RAPID with the aid of K-RAPID.

2 Preliminaries
2.1 Overview of Robot Programming
An industrial robot, as shown in Figure 1(a), is an “automati-
cally controlled, reprogrammable, multipurpose manipulator
programmable in three or more axes, which can be either fixed
in place or mobile for use in industrial automation applica-
tions” as defined in ISO 8373 [9]. They are often deployed
in relatively harsh environments to complete complex pro-
duction activities. We abstract the architectural design of
an industrial robot into the form illustrated in Figure 1(b)
for easy understanding. Specifically, an industrial robot is a
mechanical arm with multiple joints, controlled by a control
unit and terminated by an end effector (e.g., welding gun,
gripper, cutter) that interacts with the environment.
The control unit plays a crucial role in the operations of

industrial robots. It is a complex device consisting of col-
laborative hardware and software systems. The control unit
determines the operating logic of the manipulator and drives
its movement by means of control programs, which are pre-
programmed by robot operators. These programs can be
developed with the aid of the FlexPendant or the Integrated
Development Environment (IDE). Programming on the Flex-
Pendant is often used when the operator is on the produc-
tion site and the control program is relatively simple, while
the IDE is suitable for building more complex programs re-
motely. The IDE (e.g. ABB’s RobotStudio), which is aided by
simulators, allows programmers to write and debug control
programs in a safe offline environment.

There are no standards for robot programming languages,
instead, leading robot manufacturers design their own lan-
guages. RAPID [15] is one of the most representative robot
programming languages. It is a high-level programming lan-
guage for industrial robots of ABB Robotics with complex
program structures, rich instruction functions and operands,
to control the robot, set the output, read the input, etc.
We introduce the entire process of robot programming

by analyzing the following RAPID program. It moves the
end effector to the point p0 and displays a message on the
FlexPendant.

MODULE MainModule
PERS robtarget p0 := [...];
PERS tooldata grip := [...];
PROC main()

MoveJ p0, v500, fine, grip;
TPWrite "Successfully moved to p0!";

ENDPROC
ENDMODULE

65

K-RAPID: A Formal Executable Semantics of the RAPID Robot Programming Language CPSS ’24, July 2, 2024, Singapore, Singapore

Manipulator

Control Unit

FlexPendant

(a)

Control Unit

Programmer

Robot
Network

Service
Network

FlexPendant

Axis I/O

End Effector I/O

Operator

(b)

Figure 1. (a) An industrial robot and (b) its architecture
overview.

More specifically, it first defines two persistent variables
p0 and grip, where p0 of type robtarget denotes a destina-
tion point, and grip of type tooldata contains parameters
of the end effector, such as load mass and center of gravity
position. In the main procedure, the controller drives the end
effector to the point p0 via the MoveJ Instruction. Note that
the predefined parameters v500 and fine specify the mov-
ing speed and positioning level of the end effector. Next, the
program displays a string on the screen of the FlexPendant
via the TPWrite instruction to prompt the operator that the
move operation is finished.

2.2 The K-Framework
The K-Framework (K) provides a way to define rewrite-based
executable semantics of programming languages using con-
figurations and rules [17]. It has been used to formalize a
few mainstream programming languages, e.g., C [8], Java
[3], Python [7], PHP [6], Rust [20] and Solidity [10].

The architecture of the K-Framework is illustrated in Fig-
ure 2. The formal semantics, which is the core of K, con-
sists of two parts, namely the runtime configuration and
the semantic rules. Note that formal semantics describe the
behavior of each statement in a programming language and
need to be manually defined with reference to the language’s
technical manual. The semantic rules parse the programs
statement by statement, during which they exchange the
runtime states with the runtime configuration. The formal
semantics is compiled into the interpreter or model checker

Test Program

Semantic Rule

Runtime Configuration

Parsing

State
Writing

State
Reading

Formal Semantics

kompile kompile

krun krun

Execution
Result

Model Checking
Result

Interpreter Model
Checker

Figure 2. Overview of the K-Framework

of the programming language (utilizing the kompile com-
mand), which is used to execute or verify the target program
(utilizing the krun command).

3 K-RAPID: The Formal Semantics of
RAPID in K

3.1 Runtime Configuration
The RAPID programs need to update several kinds of states
when being executed in K. To monitor these states well, we
need to delicately design the structure of the runtime con-
figuration. We show the configuration defined in K-RAPID
in Figure 3.
Overview. In this configuration, there are six main cells

in the whole configuration cell T named k, environment,
attribute, storage, control and robotState. Each cell
contains one or more sub-cells, the values of which are ini-
tialized in the configuration with its type specified.
Program execution. In the cell k, a source program

named Pgm is stored for execution. If the program stored
in cell k is terminated in a normal manner, the content of
the cell will become a dot, indicating that the cell is empty
and there are no more programs to execute.

66

CPSS ’24, July 2, 2024, Singapore, Singapore Zichen Wang, Jingyi Wang, Fu Song, Kun Wang, Hongyi Pu, and Peng Cheng

Execution environment.During the execution of RAPID
programs, we need to save the runtime environment of
the program, i.e., the location of variables, constants, func-
tions, procedures, and other objects in the storage, involv-
ing the cell environment and the cell control. The cell
environment consists of genv, env, tenv and lenv, which
record the mappings from objects to their locations. The
cell control, consisting of fstack, returnType, present,
curmodu and bfexe, is used to store the intermediate states
during execution.

Memory operation. The memory operation involves the
cell storage and the cell attribute. In the cell storage,
there are two cells named store and nextLoc. The cell store
records the values of all the defined variables and constants
and stores the return types, the arguments, and the bodies of
the defined routines. When a new variable or a new routine
is declared, a new location denoted by an integer will be
allocated from the nextLoc cell. As a result, the integer value
in nextLoc will be increased by one. The cell local records
whether the variables and the routines have the attribute
LOCAL or not.
Robot states. Since the RAPID language covers the fea-

tures of robot movement, IO, etc., we need to use a cell to
record the relevant states, which involves five cells named
tcp-pos, tool, aliasio, in and out. The tcp-pos cell is
used to indicate the position information of the robot’s tool
center point (TCP). The tool cell records the tool data cur-
rently being used by the robot. To improve the portability of
the program, the I/O signals used in the RAPID program can
be named freely. When the program is used for a specific
robot, the program I/O and the actual system configuration
I/O can be bounded by defining the I/O signal with an alias
name. The cell aliasio is used to record such alias names of
I/O signals. The communication between the robot controller
and the FlexPendant is the most commonly used commu-
nication operation of the RAPID programs. The user can
input information to the controller through the FlexPendant.
The controller can also output information to the screen of
the FlexPendant. Here, we use in and out to simulate the
FlexPendant.

3.2 Semantic Rules
Next, we introduce the executable operational semantic rules
of RAPID formalized in the K-Framework. We mainly intro-
duce semantic rules that are not common in other languages
or are challenging to describe in operational semantics.

Module Declaration. A RAPID program consists of one
or more program modules. Global data declarations and rou-
tine definitions are within the modules. Before executing or
analyzing the programs, K needs to parse the modules in
the programs one by one, complete the data definition work
at the beginning of each module, and save the definition of
each routine for subsequent calls.

RULE (1) specifies how the runtime configuration is af-
fected after the execution of the module declaration state-
ment. The statement, which is located in the cell k, mainly
consists of three parts: module name M, a list of module
data declarations Ds, and a list of routine declarations Rs.
We rewrite the statement by using a sequence of function
#pcsModDataDeclarations and function #pcsRoutDecla-
rations. The symbol↷ here stands for "followed by". Specif-
ically, #pcsModDataDeclarations(M,Ds) deals with each
data declaration in themodule. #pcsRoutDeclarations(M,Rs)
is used to deal with routine declarations.
Routine Declaration and Routine Calls. In RAPID,

routines can be divided into user routines and predefined
routines. A user routine is defined by a RAPID routine decla-
ration, while a predefined routine is supplied by the system.
We consider two types of routines, which are procedures and
functions. The difference between a function and a procedure
is whether there is a return value in its definition.
1) User Routines: RULE (2) shows how functions are de-

clared by the K-Framework. Declaring a RAPID function is
achieved through FUNC T:Type F:Id(Ps:Paras) B:RoutBody
ENDFUNC, where T is the type of the return value, F is the
function name, Ps specifies the parameters of the function,
and B is the function body. First, we add a mapping of F and
L in the cell genv. The function is not local, so we record
false in local. mname record the name of the module to
which the function belongs. In the cell store, we store M, T,
Ps and B in #lambda for subsequent calls.
When a user function is called, the function name will

be first transformed into a #lambda function. Then we can
proceed with the call according to RULE (3). In the cell k, we
rewrite the function call as three sub-steps, which are the
#mkDecls, the #pcsRoutBody, and the RETURN statement. To
be specific, #mkDecls passes the values of the arguments of
the function call to the parameters, #pcsRoutBody decom-
poses the function body, and the RETURN statement results
in a forced return. Meanwhile, the local environment is up-
dated to GEnv, and we back up the former environment in
tenv. The current module is changed to M, to which the
function belongs. We also update the type of return value
in returnType and clear present. In addition, the current
environment should be pushed to fstack.

The semantic rules of procedure declaration and procedure
call are basically the same as the function, except that there
are no return values.

2) Predefined Routines: 78 predefined routines are covered
by K-RAPID in total. Since the predefined routines are offi-
cially provided by the ABB, such routines are not declared
in user programs. Thus, we do not need to define the se-
mantic rules for declarations of the predefined routines. As
for predefined routine calls, since we cannot obtain their
implementation details, each routine has its unique semantic
rule. We summarize the list of covered predefined functions
in Table 2 for space reasons.

67

K-RAPID: A Formal Executable Semantics of the RAPID Robot Programming Language CPSS ’24, July 2, 2024, Singapore, Singapore

Figure 3. The K configuration for the states of RAPID programs

VariableDeclaration andAssignment.Next, we present
the semantic rules for declarations and assignments of vari-
ables. Variables declared in the module can be either global
or local. A global variable can be accessed not only inside
the module to which it belongs but also outside the module.

RULE (4) specifies the semantic rule of global variable dec-
laration in a RAPID module. In the cell k, a variable of type T,
named X, is declared using the function #pcsModDataDecla-
ration. The variable belongs to the module M and its value
is initialized during declaration. The initialization operation
is rewritten by the function #initialize. A mapping from
the variable name and its location in the storage is recorded
in genv and env. Similar to RULE (2), the cell local, type,
mname, mutable and nextLoc are updated accordingly.
The semantic rule (5) is defined for the ordinary assign-

ment, such as assigning a new value to a variable of type
num. It says that the assignment operation could be rewritten
to a #write (RULE (6)) function only if X is mutable.
Then we come to the read operation on variables and

routines shown in RULE (7). Here, we consider the object X as
a variable. First, we need to obtain the location L of X in env.
According to L, we can get the value V in store. Note that
RULE (7) could be executed only if a prerequisite is satisfied.
The prerequisite requires that X is not local, or the program
is before the execution phase, or X is local meanwhile it’s
being accessed inside the module.
Move Instructions. In addition to common functional-

ities, one of the important features of RAPID is that it is
specially designed to control robots. More importantly, there
are instructions for making a robot move. K-RAPID cov-
ers 9 move instructions in total and we introduce one of
them, MoveJ, due to limited space. The semantic rule of the
MoveJ instruction is specified in RULE (8). As we can see, the
MoveJ instruction has 4 parameters. We mainly concentrate
on the first and the fourth. The first parameter, which is
of robtarget type, identifies the target TCP of the robot’s
movement. The target TCP consists of four elements, and
the first one among them is a three-dimensional coordinate
data P of Pos type. The fourth parameter in the instruction
is the tool data T of the tool used by the robot. The robot
movements are programmed as pose-to-pose movements, i.e.
“move from the current position to a new position”. The path
between these two positions is then automatically calculated
by the robot. Unfortunately, we cannot model the robot’s
trajectory through the K-Framework because the end effec-
tor’s trajectory planning algorithm is unavailable. Thus, the

trajectory of the robot cannot be recorded in the runtime
configuration. What we can do is update the target position
data from P’ to P in the cell tcp-pos, and update the tool
data from T’ to T in the cell tool.

I/O Operations. The robot can be equipped with I/O sig-
nals that can be read and changed in the user program. The
signals are used for communication with external equipment
the robot cooperates with. Input signals are set by the ex-
ternal equipment and can be used in the RAPID program to
initiate the operation of the robot. Output signals are set by
the RAPID program to signal that the external equipment
should do something.

RULE (9) specifies the semantic rule of AliasIO instruction,
which bounds an I/O unit with its alias name. Specifically,
given an I/O unit named after X1, we get its location infor-
mation in the cell env. Then we add a mapping from L to the
alias name X2 of the unit in the cell aliasio.
The value of a digital signal is whether 0 or 1. Some in-

structions can change the values of the digital I/O signals in
RAPID. We introduce one of them, which is Set instruction
being used to set the value of an output signal to 1. The usage
of the Set instruction is divided into two situations. The first
one is that the signal name X is not an alias name. Then the
signal is directly sent to 1 by using RULE (10).
User Interaction. In the ABB robots, messages can be

transferred between the controller and the FlexPendant. There
are several instructions for sending information to the robot
operator or receiving input from the operator. In K-RAPID,
we simulate the FlexPendant by using the console. Instead
of getting user input from the FlexPendant, the program re-
ceives input from the standard input. Similarly, user output
is displayed through the standard output. We introduce two
instructions TPWrite and TPReadNum.

TPWrite outputs information to the FlexPendant. As shown
in RULE (11), a string Swith a line break is put to the cell out,
which represents the standard output.

TPReadNum reads a number from the FlexPendant. RULE
(12) specifies the semantic rule of TPReadNum. The format of
the instruction is TPReadNum X:Id,S:String;, in which X
is the name of the variable storing the input number and S
is a string that will be output to the FlexPendant. S is output
through another TPWrite instruction. After that, the input
number is read through a #tpreadnum function, the semantic
rule of which is RULE (13). An input number is read in the
cell in and is assigned to variable X.

68

CPSS ’24, July 2, 2024, Singapore, Singapore Zichen Wang, Jingyi Wang, Fu Song, Kun Wang, Hongyi Pu, and Peng Cheng

Table 1. The partial semantic rules of K-RAPID

Module Declaration
[Module-Declaration] (1)〈
MODULE M:Id Ds:ModDataDeclarations Rs:RoutDeclarations ENDMODULE

#pcsModDataDeclarations(M,Ds) ↷ #pcsRoutDeclarations(M,Rs) · · ·
〉
𝑘

Routine Declaration and Routine Calls
[Function-Declaration] (2)〈
#pcsRoutDeclaration(M:Id,FUNC T:Type F:Id(Ps:Paras) B:RoutBody ENDFUNC)

. · · ·
〉
𝑘

〈
GEnv

GEnv[F<-L]

〉
𝑔𝑒𝑛𝑣

〈
L

L +Int 1

〉
𝑛𝑒𝑥𝑡𝐿𝑜𝑐〈

· · · .Map
L|->false · · ·

〉
𝑙𝑜𝑐𝑎𝑙

〈
· · · .Map

L|->M · · ·
〉
𝑚𝑛𝑎𝑚𝑒

〈
· · · .Map

L|->#lambda(M,T,Ps,B) · · ·
〉
𝑠𝑡𝑜𝑟𝑒

[User-Function-Call] (3)〈
#lambda(M:Id,T:Type,Ps:Paras, B:RoutBody)(As:Args)↷K

#mkDecls(Ps,As)↷#pcsRoutBody(B)↷RETURN;

〉
𝑘
⟨GEnv⟩𝑔𝑒𝑛𝑣

〈
Env
GEnv

〉
𝑒𝑛𝑣

〈
TEnv
Env

〉
𝑡𝑒𝑛𝑣

〈
M’
M

〉
𝑐𝑢𝑟𝑚𝑜𝑑𝑢

〈
T’
T

〉
𝑟𝑒𝑡𝑢𝑟𝑛𝑇 𝑦𝑝𝑒〈

P’
.List

〉
𝑝𝑟𝑒𝑠𝑒𝑛𝑡

〈
.List

ListItem((T’,Env,TEnv,M’,P’,K)) · · ·
〉
𝑓 𝑠𝑡𝑎𝑐𝑘

Variable Declaration and Assignment
[Module-Data-Declaration] (4)〈
#pcsModDataDeclaration(M:Id, VAR T:Type X:Id:=E:Expression;)

#initialize(L,E,T) · · ·
〉
𝑘

〈
GEnv

GEnv[X<-L]

〉
𝑔𝑒𝑛𝑣

〈
Env

Env[X<-L]

〉
𝑒𝑛𝑣

〈
· · · .Map

L|->false · · ·
〉
𝑙𝑜𝑐𝑎𝑙〈

· · · .Map
L|->T · · ·

〉
𝑡𝑦𝑝𝑒

〈
· · · .Map

L|->M · · ·
〉
𝑚𝑛𝑎𝑚𝑒

〈
· · · .Map

L|->true · · ·
〉
𝑚𝑢𝑡𝑎𝑏𝑙𝑒

〈
L

L +Int 1

〉
𝑛𝑒𝑥𝑡𝐿𝑜𝑐

[Assignment] (5)〈
#pcsStatement(X:Id:=E:Expression;)

#write(L,E,T) · · ·
〉
𝑘
⟨· · · X|->L · · · ⟩𝑒𝑛𝑣 ⟨· · · L|->T · · · ⟩𝑡𝑦𝑝𝑒 ⟨· · · L|->true · · · ⟩𝑚𝑢𝑡𝑎𝑏𝑙𝑒

[Write] (6)〈
#write(L:Int,V:Value,T:Type)

. · · ·
〉
𝑘

〈
· · · L|->V’

L|->V · · ·
〉
𝑠𝑡𝑜𝑟𝑒

requires #equalType(T,#typeof(V)) ==K true

[Read] (7)〈
X:Id
V · · ·

〉
𝑘
⟨· · · X|->L · · · ⟩𝑒𝑛𝑣 ⟨· · · L|->B1 · · · ⟩𝑙𝑜𝑐𝑎𝑙 ⟨M2⟩𝑐𝑢𝑟𝑚𝑜𝑑𝑢 ⟨B2⟩𝑏𝑓 𝑒𝑥𝑒

〈
· · · L

V:Value · · ·
〉
𝑠𝑡𝑜𝑟𝑒

⟨· · · L|->M1 · · · ⟩𝑚𝑛𝑎𝑚𝑒

requires B1 ==K false orBool (M1 ==K M2 andBool B1 ==K true) orBool B2 ==K true

Move Instructions
[MoveJ-Instruction] (8)〈
#pcsStatement(MoveJ [P:Pos,_,_,_],_,_, T:Tool;)

. · · ·
〉
𝑘

〈
P’
P

〉
𝑡𝑐𝑝-𝑝𝑜𝑠

〈
T’
T

〉
𝑡𝑜𝑜𝑙

I/O Operations
[AliasIO-Instruction] (9)〈
#pcsStatement(AliasIO X1:Id,X2:Id;)

. · · ·
〉
𝑘
⟨· · · X2|->L · · · ⟩𝑒𝑛𝑣

〈
· · · .Map

L|->X1 · · ·
〉
𝑎𝑙𝑖𝑎𝑠𝑖𝑜

[Set-Instruction] (10)〈
#pcsStatement(Set X:Id;)

. · · ·
〉
𝑘
⟨𝑀⟩𝑎𝑙𝑖𝑎𝑠𝑖𝑜 ⟨· · · X|->L · · · ⟩𝑒𝑛𝑣 ⟨· · · L|->signaldo · · · ⟩𝑡𝑦𝑝𝑒 ⟨· · · L|->true · · · ⟩𝑚𝑢𝑡𝑎𝑏𝑙𝑒〈

· · · L|->_
L|->1 · · ·

〉
𝑠𝑡𝑜𝑟𝑒

requires L in_keys(M) ==K false

User Interaction
[TPWrite-Instruction] (11)〈
#pcsStatement(TPWrite S:String;)

. · · ·
〉
𝑘

〈
· · · .List

ListItem(S +String "\ n")

〉
𝑜𝑢𝑡

[TPReadNum-Instruction] (12)〈
#pcsStatement(TPReadNum X:Id,S:String;);
#pcsStatement(TPWrite S;) ↷#tpreadnum(X) · · ·

〉
𝑘

[TPReadNum-Auxiliary-Function] (13)〈
#tpreadnum(X:Id)

#pcsStatement(X:=I;) · · ·
〉
𝑘

〈
ListItem(I:Int)

.List · · ·
〉
𝑖𝑛

4 Semantics Evaluation
In this section, we elaborate on how to systematically evalu-
ate K-RAPID. We implement it in the K-Framework release
5.1.234 with around 7500 lines of code and compile it using
the kompile command in K. The experiments that run the
test programs by K-RAPID are conducted on a virtual ma-
chine configured with Ubuntu 20.04 LTS. The experiments

that run the test programs on RobotStudio are conducted on
a virtual machine configured with Windows 7.

4.1 Overview of the Test Process
Our overall test workflow, which is displayed in Figure 4, con-
sists of 4 steps: data collecting and preprocessing, program
executing, consistency checking, and coverage analysis.

69

K-RAPID: A Formal Executable Semantics of the RAPID Robot Programming Language CPSS ’24, July 2, 2024, Singapore, Singapore

Figure 4. Overview of the test process

Table 2. Predefined routines covered by K-RAPID

Categories Covered Routines

Arithmetic
Operation

Function

Abs(), AbsDnum(), Sqrt(),
SqrtDnum(), Exp(), Pow(),

PowDnum(), Round(), Trunc(),
TruncDnum(),Sin(), RoundDnum(),
SinDnum(), Cos(), CosDnum(),
Tan(), TanDnum(), ASin(),

ASinDnum(), ACos(), ACosDnum(),
ATan(), ATanDnum(), ATan2(),

ATan2Dnum(), BitAnd(), BitOr(),
BitNeg(), BitLSh(), BitRSh(),

BitCheck(), StrDigCalc(),
StrDigCmp(), NumToDnum(),
DnumToNum(), StrPart(),
ByteToStr(), StrToByte(),
DecToHex(), HexToDec()

Procedure Clear, Add, Incr, Decr, TryInt

Move
Operation

Function Offs(), CPos(), CTool(),
VectMagn(), Distance(), Dotprod()

Procedure
MoveJ, MoveC, MoveL, MoveJSync,
MoveLSync, MoveCSync, MoveJDO,

MoveLDO, MoveCDO

Return
and Stop Procedure RETURN, EXIT, Break, ExitCycle, Stop

I/O
Operation

Function DInput(), DOutput(), TestDI(),
ValidIO()

Procedure AliasIO, AliasIOReset, Set, Reset,
InvertDO, SetDO

User
Interaction Procedure TPWrite, TPReadNum, TPReadFK

Data collecting and preprocessing. First, we collect
RAPID programs to be tested from multiple sources and
preprocess them as test programs. To evaluate K-RAPID as
accurately as possible, we construct a test suite consisting
of multiple sources summarized in Table 3. We collect 103
publicly available test programs and generate an additional
460 programs based on the mutation algorithm in [21] to
increase the diversity of test samples. In total, we test our
semantics with 563 test programs covering diverse semantic
features. Besides, we need to perform data preprocessing
on the collected RAPID programs. To be specific, all the
comments are removed from the test programs. We also
remove infinite loops to facilitate the observation of the
program execution results. Furthermore, we change all the

main module names to MainModule and the main routine
names to main, so that K-RAPID can find the entry points
of the programs. For programs without a main routine, we
manually add one and call other routines in it so that the
programs can execute normally.
Program Execution. We utilize the processed RAPID

programs as inputs to test the correctness of K-RAPID. The
execution procedure is divided into two parts. First, we use
K-RAPID to execute the programs and get the results named
Results 1. In themeantime, we input the programs to Robot-
Studio, ABB’s official simulation and offline programming
software, to simulate the operations of the robots when ex-
ecuting the programs. Then we get the execution results
named Results 2.

Consistency Checking. After finishing the program ex-
ecution period, we carry out consistency checking on the
execution results to evaluate the correctness of K-RAPID. In
other words, we manually compare Results 1 and Results
2 and get the result of a pass or fail verdict. Details are intro-
duced in subsection 4.2.
Coverage Analysis. We then do coverage analysis by

checking out the source code of K-RAPID and the consistency
checking results. If all tests involving a particular feature
mentioned in K-RAPID pass the checking, we consider that
the feature is fully covered. The results are displayed in
subsection 4.2.

Table 3. Test program sources and the corresponding file
number

Source Pass/Total

publicly available

Github 39/55
ABB robot forum 13/13
Academic papers 3/3

User manuals of RAPID 9/9
Example programs from RobotStudio 19/23

Generated by mutation algorithm 446/460
Total 529/563

4.2 Experiment Results and Analyses
As aforementioned, we evaluate K-RAPID from two per-
spectives, which are semantics correctness and semantics

70

CPSS ’24, July 2, 2024, Singapore, Singapore Zichen Wang, Jingyi Wang, Fu Song, Kun Wang, Hongyi Pu, and Peng Cheng

427

296

33
99

481
546 562 546

246

125

10

443

148 192 175

562 562 563

327

149

360

34

Figure 5. Number of tests for each feature in the test set

completeness. To be specific, the correctness shows the con-
sistency of program execution results between K-RAPID and
the robot itself, and the semantics completeness denotes the
coverage of K-RAPID. For the sake of safety and convenience,
we carry out our experiments on the official ABB robot sim-
ulation software RobotStudio instead of ABB robot entities.
Our analyses show that the proposed semantics K-RAPID has
covered the core features mentioned in the official RAPID
documentation [1] and the execution results are consistent
with RobotStudio.

Semantics correctness. We test the K-RAPID interpreter
on the test casesmentioned above. As described in subsection
4.1, the test programs are separately input to K-RAPID and
RobotStudio. The evaluation is carried out by manually com-
paring the execution behaviors of K-RAPID with the ones of
RobotStudio. We regard a test program as correct if the re-
sult from K-RAPID is consistent with that from RobotStudio.
Referring to the data in Table 3, among the 563 programs, 34
of them cannot be successfully parsed by K-RAPID because
they contain socket communication instructions that are not
covered by K-RAPID. Besides, the remaining 529 programs
all pass the consistency checking.

Semantics completeness. We manually count the num-
ber of tests for each important feature among the 563 tests
and list the results in Figure 5. As indicated in Figure 5, the
atomic type and record type are the most common types
in the test set. The assignment statement and the if state-
ment are the most common statements. Besides, expressions,
variable declarations, scope attributes, routine declarations,
routine calls, and module declarations appear so frequently
that they are present in almost every program.
We assume that all programs in the test set that can be

parsed by K-RAPID collectively form a set P. If all tests in P
involving a particular feature pass the consistency checking,
we consider that the feature is fully covered. The coverage
of K-RAPID is listed in Table 4 from the perspective of each
feature specified by the official RAPID documentation. Table
4 indicates that K-RAPID can cover all features listed
in Figure 5 except socket communication. Concerning
data types, K-RAPID covers 27 data types in RAPID, which
are the most used. These types fall into 3 categories: atomic
types, record types, and alias types. Among the three cate-
gories, record types are composite types composed of one
or more atomic types and alias types are alias of atomic

Table 4. Coverage of the proposed RAPID semantics

Features Coverage Features Coverage
Data Types Exit Statement !

Atomic Types ! Break Statement !

Record Types ! If Statement !

Alias Types ! For Statement !

Arrays While Statement !

Linear Arrays ! Test Statement !

Expressions Label Statement !

Arithmetic Operations ! Routines
Logical Operations ! Routine Declarations
Bitwise Operations ! Function Declarations !

Relation Operations ! Procedure Declarations !

Look Up ! Routine Calls
Index Access ! Function Calls !

Variable Declarations Procedure Calls !

VAR ! Modules
PERS ! Module Declarations !

CONST ! Instructions
Scope Attributes Move Instructions !

GLOBAL ! IO Instructions !

LOCAL ! FlexPendant Instructions !

Statements Socket Communication %

Assignment Statement !

Return Statement !

!: Covered %: Not Covered

types or record types. For arrays, K-RAPID covers both lin-
ear arrays and multi-dimensional arrays. Expressions such as
arithmetic operations, logical operations, bitwise operations,
relation operations, look-up operations, and index access are
covered. In RAPID, there are variable types named VAR, PERS
and CONST, all supported by K-RAPID. Furthermore, when
declaring variables or routines, scope attributes GLOBAL and
LOCAL should be declared. So they are also included in the
proposed semantics. The semantics of statements listed in
Figure 5 are all covered. As for routines, we implement decla-
rations and calls for functions and procedures. User-defined
routines and predefined routines are covered. Also, module
declarations are covered. Lastly, as a key part of controlling
the operations of the robots, instructions can not be ignored.
K-RAPID has covered the most important instructions which
are move instructions, I/O instructions, and FlexPendant in-
structions. The reason K-RAPID does not support socket
communication is that they are used by industrial robots
to communicate with servers and other robots, whereas we
are currently only focusing on offline single robotic arms.
Socket communication with other entities is technically a
difficult problem in K, so we leave the formal definitions of
socket communication for future work.

5 LTL Model Checking
In this section, we present a real-world case study to illus-
trate an application of K-RAPID in verifying RAPID pro-
grams. Specifically, we use Linear Temporal Logic (LTL) to
analyze the properties of a robot control program in an in-
dustrial sorting system, which provides a function of sorting
defective and non-defective precision pinions.

71

K-RAPID: A Formal Executable Semantics of the RAPID Robot Programming Language CPSS ’24, July 2, 2024, Singapore, Singapore

The workflow of the industrial sorting system is illus-
trated in Figure 6, and the corresponding control program
A is in Section A.1. First, all the pinions, whether defective
or not, are shipped on Conveyor1 in a single direction of
movement. Once a pinion reaches the inspection zone B,
Conveyor1 stops and the pinion is inspected by the visual
sensor Sensor1 and the gravity sensor Sensor2. Sensor1 de-
tects whether the pinion has surface defects, while Sensor2
detects whether the weight of the pinion is within the preset
range. A pinion that does not pass the inspection of either
sensor is considered to be defective. Next, the inspected pin-
ion is sorted by an ABB robot that uses a gripper as the end
effector. A defective pinion will be transferred to Conveyor3
and a non-defective one will be transferred to Conveyor2.
Conveyor2 and Conveyor3 run continuously to transport the
pinions to the target location. Six I/O signals are involved in
the system:

• C_IN is the status signal for the motor of Conveyor1.
"1" means the belt is working, and "0" means it is
stopped.

• C_OUT is the control signal that the robot outputs to
the motor of Conveyor1. "1" means the robot com-
mands conveyor1 to work, and "0" means the robot
commands Conveyor1 to stop.

• S_1 is the signal of Sensor1. "1" means the pinion is
defective, and "0" means it is non-defective.

• S_2 is the signal of Sensor2. "1" means the pinion is
defective, and "0" means it is non-defective.

• S_3 is the signal of Sensor3. "1" means the pinion is
transferred to C1, and "0" means it is not transferred
to C1.

• S_4 is the signal of Sensor4. "1" means the pinion is
transferred to C2, and "0" means it is not transferred
to C2.

Throughout the sorting process, the intent of the robot is:
When a non-defective pinion is detected, the robot moves
from point A to B and grips the pinion. Then the robot moves
to point C1 and drops the pinion onto Conveyor2. Finally,
the robot moves back to A and lets Conveyor1 continue to
work. When a defective pinion is detected, the robot behaves
similarly, except that the pinion is dropped on Conveyor3
instead of Conveyor2.
We summarize three properties from the sorting system

and list the corresponding LTL formulas. P1: To ensure that
the pinion can be swimmingly inspected by the sensors and
gripped by the robot, Conveyor1 should stop when the pin-
ion reaches the inspecting zone (i.e., C_IN is false). When
a pinion is identified as non-defective (i.e. S_1 and S_2 are
both true), the pinion will be transported to C1 (i.e. S_3 is
true and S_4 is false). Thus, we can represent P1 as:

□(¬C_IN ∧ (S_1 ∧ S_2) → ♢(S_3 ∧ ¬S_4)),

Sensor1 (S_1)

Sensor2 (S_2)

Conveyer1
(C_IN, C_OUT)

······

······

A

B

C1

Conveyer2

Conveyer3

C2

Sensor4 (S_4)

Sensor3 (S_3)

Figure 6. Overview of the sorting system

where ∧ denotes "always", ♢ denotes "eventually" and ¬ de-
notes "not". P2: Similar to P1, when a pinion is identified as
defective (i.e. S_1 or S_2 is false), the pinion will be trans-
ported to C2 (i.e. S_3 is false and S_4 is true). Thus, we can
represent P2 as:

□(¬C_IN ∧ ¬(S_1 ∧ S_2) → ♢(¬S_3 ∧ S_4)).

P3: After the pinion is transported (i.e. either S_3 is true or
S_4 is true), the robot moves back to the starting point A
and restart Conveyor1 (i.e. C_OUT is set to 1). Thus, we can
represent P3 as:

□((S_3 ∧ ¬S_4) ∨ (¬S_3 ∧ S_4) → ♢(C_OUT)) .

A specified RAPID program can be verified with the afore-
mentioned LTL formulas by utilizing the built-in LTL model
checking tool inK. The basic idea is to explore the state space
of the control program by executing it on the interpreter gen-
erated by K that checks whether the specified properties are
violated. The model checker finds a counterexample for the
property if there is a violation, or the property is verified
to be true. Besides, there are two flawed RAPID programs
that show the negligence of the programmers. Specifically,
program B (in Section A.2) is basically the same as the non-
defective program, but the target transfer position C2 of the
defective pinions is mistakenly set to C1. The consequence
of this is that all the pinions are transported to C1, which
violates property P2. Program C (in Section A.3) does not set
the signal C_OUT to 1 after finishing the transport, resulting
in Conveyor1 not continuing to run. The behavior of pro-
gram C violates property P3. Both of the violations can be
detected using the model checker.

6 Formal Specification of RAPID
For programmers, the use of programming languages should
be as consistent as possible with the intent of the language
designers. However, the actual situation is not always sat-
isfactory. The main reference material for RAPID language

72

CPSS ’24, July 2, 2024, Singapore, Singapore Zichen Wang, Jingyi Wang, Fu Song, Kun Wang, Hongyi Pu, and Peng Cheng

Table 5. Inappropriate Behaviors Found by K-RAPID

Categories Examples

Inconsistencies between
documents and RobotStudio

Inconsistent requirements for parameter case in documents
and RobotStudio.
e.g. MoveL start, v2000, z40, grip3 \WObj:=fixture

is correct both in the official documentation and RobotStudio;
MoveL start, v2000, z40, grip3 \Wobj:=fixture
is correct in RobotStudio, but wrong in the documentation.

Undefined behaviors
in the documentation

RobotStudio restricts the parameter tooldata in move instructions
to only PERS type, but there is no clear restriction on this in the
official documentation.
e.g. MoveL start, v2000, z40, grip3 \WObj:=fixture

is correct regardless of whether grip3 is of type VAR or of type
PERS. However, grip3 must be of type PERS to be correct in
RobotStudio.

programming is the official documentation provided by ABB,
and the development environment is RobotStudio. Program
developers refer to the official documentation to write and
run control programs on RobotStudio. Much of the content
in RAPID documents is described in natural language, which
can easily lead to ambiguities or undefined behaviors. Also,
there exist behaviors of the compiler in RobotStudio incon-
sistent with official documentation or inconsistent with pro-
gramming conventions. For these reasons, program develop-
ers may write programs with inappropriate behaviors.
K-RAPID offers a formal specification of industrial robot

control programs written in the RAPID language. With the
assistance of K-RAPID, developers can write correct control
programs for ABB robots. In Table 5 we give some examples
to illustrate this.

First, we introduce an example of inconsistency between
official documents and RobotStudio. Move instructions in
RAPID, such as MoveL and MoveC, contain optional param-
eter \WObj which specifies the data of the work object it is
operating on. It is noteworthy that the spelling of \WObj is
case-sensitive according to RAPID documentation. However,
RobotStudio ignores this case-sensitivity and developers can
use identifiers such as \Wobj to replace \WObj. This leads to
inconsistency between RAPID official documentation and
RobotStudio. Similar problems exist with optional parame-
ters like \Tool and \Num. Since K-RAPID strictly stipulates
the case of identifiers in the syntax and semantic rules, such
problems are avoided.

There are undefined behaviors that are processed in Robot-
Studio but not clearly stated in the documentation. For in-
stance, RobotStudio restricts tooldata in move instructions
to only PERS type, not VAR or CONST type. Such undefined
behaviors can be eliminated with the specification that the
formal semantics provides.

7 Conclusion
In this work, we introduce an executable operational seman-
tics K-RAPID for RAPID formalized in the K-Framework.
K-RAPID covers the core features of RAPID, such as routine
declaration and routine calls, variable declaration and assign-
ment, move instructions, I/O operations, and user interaction.
We systematically test K-RAPID by using test programs col-
lected from multiple sources to show its correctness and
completeness. Besides, we perform LTL model checking on
RAPID programs based on K-RAPID and make it a formal
specification to uncover multiple inappropriate behaviors of
RAPID, demonstrating that K-RAPID can provide function-
alities besides just interpreting RAPID programs.

Acknowledgments
The work was partially supported by Fundamental Research
Funds for the Central Universities of China under Grants
226-2024-00048 and partially supported by National Science
Foundation of China (NSFC) under Grants 62293511.

References
[1] ABB. 2008. Technical reference manual - RAPID kernel.
[2] ABB. 2022. RobotStudio Suite. https://new.abb.com/products/robotics/

robotstudio.
[3] D. Bogdnaş and G. Roşu. 2015. K-Java: A complete semantics of Java.

Conference Record of the Annual ACM Symposium on Principles of
Programming Languages 2015 (2015), 445–456.

[4] Sudeep Chakravarty. 2019. World’s Top 10 Industrial Robot Manu-
facturers. https://www.marketresearchreports.com/blog/2019/05/08/
world%E2%80%99s-top-10-industrial-robot-manufacturers.

[5] Chucky Ellison and Grigore Rosu. 2012. An Executable Formal Seman-
tics of C with Applications. In Proceedings of the 39th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’12).
533–544.

[6] Daniele Filaretti and Sergio Maffeis. 2014. An Executable Formal
Semantics of PHP. In ECOOP 2014 – Object-Oriented Programming.
567–592.

[7] Dwight Guth. 2013. A formal semantics of Python 3.3. http://hdl.
handle.net/2142/45275.

73

https://new.abb.com/products/robotics/robotstudio
https://new.abb.com/products/robotics/robotstudio
https://www.marketresearchreports.com/blog/2019/05/08/world%E2%80%99s-top-10-industrial-robot-manufacturers
https://www.marketresearchreports.com/blog/2019/05/08/world%E2%80%99s-top-10-industrial-robot-manufacturers
http://hdl.handle.net/2142/45275
http://hdl.handle.net/2142/45275

K-RAPID: A Formal Executable Semantics of the RAPID Robot Programming Language CPSS ’24, July 2, 2024, Singapore, Singapore

[8] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. 2015. Defining
the undefinedness of C. In PLDI 2015 - Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. Association for Computing Machinery, 336–345.

[9] International Organization for Standardization. 2012. International
Organization for Standardization, Robots and robotic devices - Vocab-
ulary, ser. International standard; ISO 8373.

[10] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanán, Yang Liu, and
Jun Sun. 2020. Semantic Understanding of Smart Contracts: Executable
Operational Semantics of Solidity. In 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. 1695–
1712.

[11] Federico Maggi and Marcello Pogliani. 2020. Rogue Automation
- Vulnerable and Malicious Code in Industrial Programming.
https://documents.trendmicro.com/assets/white_papers/wp-
rogue-automation-vulnerable-and-malicious-code-in-industrial-
programming.pdf.

[12] Avijit Mandal, Raoul Jetley, Meenakshi D’Souza, and Sreeja Nair. 2017.
A Static Analyzer for Industrial Robotic Applications. In 2017 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW). 24–27.

[13] Avijit Mandal, Devina Mohan, Raoul Jetley, Sreeja Nair, and Meenakshi
D’Souza. 2018. A Generic Static Analysis Framework for Domain-
specific Languages. In 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), Vol. 1. 27–34.

[14] Jeff Martin. 2016. Robotic machine kills woman at auto parts plant,
two weeks before wedding. https://www.ctvnews.ca/world/robotic-
machine-kills-woman-at-auto-parts-plant-two-weeks-before-
wedding-1.3204248.

[15] Michal. 2019. What programming language is used for robot-
ics? https://roboticsbook.com/what-programming-language-is-used-
for-robotics/.

[16] Marcello Pogliani, FedericoMaggi, Marco Balduzzi, Davide Quarta, and
Stefano Zanero. 2020. Detecting Insecure Code Patterns in Industrial
Robot Programs. Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security (2020).

[17] Runtime Verification Inc. 2022. K Semantic Framework. https:
//kframework.org/.

[18] Staff RT. 2015. Factory Robot Kills Worker in India.
https://www.roboticsbusiness-review.com/rbr/factory_robot_
kills_worker_in_india/.

[19] Staff RT. 2015. Robot Kills Worker in Volkswagen Factory Accident.
https://www.roboticsbusinessreview.com/rbr/robot_kills_worker_in_
volkswagen_factory_accident/#:~:text=Robot%20Kills%20Worker%
20in%20Volkswagen%20Factory%20Accident%20A,injuries.%20By%
20RT%20Staff%20%7C%20July%201%2C%202015.

[20] Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang. 2018.
KRust: A Formal Executable Semantics of Rust. In 2018 International
Symposium on Theoretical Aspects of Software Engineering, TASE 2018,
Guangzhou, China, August 29-31, 2018. 44–51.

[21] KunWang, JingyiWang, ChristopherM. Poskitt, Xiangxiang Chen, Jun
Sun, and Peng Cheng. 2023. K-ST: A Formal Executable Semantics of
the Structured Text Language for PLCs. IEEE Transactions on Software
Engineering 49, 10 (2023), 4796–4813. https://doi.org/10.1109/TSE.2023.
3315292

[22] Rui Wang, Yong Guan, Houbing Song, Xinxin Li, Xiaojuan Li, Zhiping
Shi, and Xiaoyu Song. 2019. A Formal Model-Based Design Method
for Robotic Systems. IEEE Systems Journal 13, 1 (2019), 1096–1107.

A The Control Programs of the Sorting
Systems

A.1 Program A
MODULE MainModule

// Define the target positions of robot.
VAR robtarget a := [...];
VAR robtarget b := [...];
VAR robtarget c1 := [...];
VAR robtarget c2 := [...];

// Define the speed of the robot.
VAR speeddata v := [...];

// Define the zonedata of the robot.
VAR zonedata z:= [...];

// Define the end effector of the robot.
VAR tooldata grip := [...];

// Declare the I/O signals.
VAR signaldi s1;
VAR signaldi s2;
VAR signaldi s3;
VAR signaldi s4;
VAR signaldi c_in;
VAR signaldo c_out;

// Define the I/O units.
CONST string config_cin := “C_IN”;
CONST string config_cout := “C_OUT”
CONST string config_s1 := ”S_1”;
CONST string config_s2 := ”S_2”;
CONST string config_s1 := ”S_3”;
CONST string config_s2 := ”S_4”;

PROC main()
Bool flag_1 := false;
Bool flag_2 := false;
Bool flag_3 := false;
Bool flag_4 := false;

// Link the I/O units with the I/O variables.
AliasIO config_cin, c_in;
AliasIO config_cout, c_out;
AliasIO config_s1, s1;
AliasIO config_s2, s2;
AliasIO config_s3, s3;
AliasIO config_s4, s4;
WHILE true DO

// Transport the non-defective pinions
// and restart the conveyor.
flag_1 := c_in=0 AND s1=1 AND s2=1;
IF flag_1 THEN

MoveJ b, v, zone, grip;
Grip();
MoveJ c1, v, zone, grip;

74

https://documents.trendmicro.com/assets/white_papers/wp-rogue-automation-vulnerable-and-malicious-code-in-industrial-programming.pdf
https://documents.trendmicro.com/assets/white_papers/wp-rogue-automation-vulnerable-and-malicious-code-in-industrial-programming.pdf
https://documents.trendmicro.com/assets/white_papers/wp-rogue-automation-vulnerable-and-malicious-code-in-industrial-programming.pdf
https://www.ctvnews.ca/world/robotic-machine-kills-woman-at-auto-parts-plant-two-weeks-before-wedding-1.3204248
https://www.ctvnews.ca/world/robotic-machine-kills-woman-at-auto-parts-plant-two-weeks-before-wedding-1.3204248
https://www.ctvnews.ca/world/robotic-machine-kills-woman-at-auto-parts-plant-two-weeks-before-wedding-1.3204248
https://roboticsbook.com/what-programming-language-is-used-for-robotics/
https://roboticsbook.com/what-programming-language-is-used-for-robotics/
https://kframework.org/
https://kframework.org/
https://www.roboticsbusiness-review.com/rbr/factory_robot_kills_worker_in_india/
https://www.roboticsbusiness-review.com/rbr/factory_robot_kills_worker_in_india/
https://www.roboticsbusinessreview.com/rbr/robot_kills_worker_in_volkswagen_factory_accident/#:~:text=Robot%20Kills%20Worker%20in%20Volkswagen%20Factory%20Accident%20A,injuries.%20By%20RT%20Staff%20%7C%20July%201%2C%202015
https://www.roboticsbusinessreview.com/rbr/robot_kills_worker_in_volkswagen_factory_accident/#:~:text=Robot%20Kills%20Worker%20in%20Volkswagen%20Factory%20Accident%20A,injuries.%20By%20RT%20Staff%20%7C%20July%201%2C%202015
https://www.roboticsbusinessreview.com/rbr/robot_kills_worker_in_volkswagen_factory_accident/#:~:text=Robot%20Kills%20Worker%20in%20Volkswagen%20Factory%20Accident%20A,injuries.%20By%20RT%20Staff%20%7C%20July%201%2C%202015
https://www.roboticsbusinessreview.com/rbr/robot_kills_worker_in_volkswagen_factory_accident/#:~:text=Robot%20Kills%20Worker%20in%20Volkswagen%20Factory%20Accident%20A,injuries.%20By%20RT%20Staff%20%7C%20July%201%2C%202015
https://doi.org/10.1109/TSE.2023.3315292
https://doi.org/10.1109/TSE.2023.3315292

CPSS ’24, July 2, 2024, Singapore, Singapore Zichen Wang, Jingyi Wang, Fu Song, Kun Wang, Hongyi Pu, and Peng Cheng

Drop();
MoveJ a, v, zone, grip;
flag_3 = (s3 = 1) AND (s4 = 0);
IF flag_3 THEN

SetDO c_out, 1;
ENDIF

ENDIF

// Transport the defective pinions
// and restart the conveyor.
flag_2:=c_in=0 AND NOT s1=1 AND s2=1;
IF flag_2 THEN

MoveJ b, v, zone, grip;
Grip();
MoveJ c2, v, zone, grip;
Drop();
MoveJ a, v, zone, grip;
flag_4 = (s3 = 0) AND (s4 = 1);
IF flag_4 THEN

SetDO c_out, 1;
ENDIF

ENDIF
ENDWHILE

ENDPROC

// Grip the pinions.
PROC grip()

...
ENDPROC

// Drop the pinions.
PROC drop()

...
ENDPROC ENDMODULE

A.2 Program B
MODULE MainModule

// Define the target positions of robot.
VAR robtarget a := [...];
VAR robtarget b := [...];
VAR robtarget c1 := [...];
VAR robtarget c2 := [...];

// Define the speed of the robot.
VAR speeddata v := [...];

// Define the zonedata of the robot.
VAR zonedata z:= [...];

// Define the end effector of the robot.
VAR tooldata grip := [...];

// Declare the I/O signals.
VAR signaldi s1;
VAR signaldi s2;
VAR signaldi s3;
VAR signaldi s4;

VAR signaldi c_in;
VAR signaldo c_out;

// Define the I/O units.
CONST string config_cin := “C_IN”;
CONST string config_cout := “C_OUT”
CONST string config_s1 := ”S_1”;
CONST string config_s2 := ”S_2”;
CONST string config_s1 := ”S_3”;
CONST string config_s2 := ”S_4”;

PROC main()
Bool flag_1 := false;
Bool flag_2 := false;
Bool flag_3 := false;
Bool flag_4 := false;

// Link the I/O units with the I/O variables.
AliasIO config_cin, c_in;
AliasIO config_cout, c_out;
AliasIO config_s1, s1;
AliasIO config_s2, s2;
AliasIO config_s3, s3;
AliasIO config_s4, s4;
WHILE true DO

// Transport the non-defective pinions
// and restart the conveyor.
flag_1 := c_in=0 AND s1=1 AND s2=1;
IF flag_1 THEN

MoveJ b, v, zone, grip;
Grip();
MoveJ c1, v, zone, grip;
Drop();
MoveJ a, v, zone, grip;
flag_3 = (s3 = 1) AND (s4 = 0);
IF flag_3 THEN

SetDO c_out, 1;
ENDIF

ENDIF

// Transport the defective pinions
// and restart the conveyor.
flag_2:=c_in=0 AND NOT s1=1 AND s2=1;
IF flag_2 THEN

MoveJ b, v, zone, grip;
Grip();
// Mistakenly move the defective
// pinions to c1.
MoveJ c1, v, zone, grip;
Drop();
MoveJ a, v, zone, grip;
flag_4 = (s3 = 0) AND (s4 = 1);
IF flag_4 THEN

SetDO c_out, 1;
ENDIF

ENDIF
ENDWHILE

75

K-RAPID: A Formal Executable Semantics of the RAPID Robot Programming Language CPSS ’24, July 2, 2024, Singapore, Singapore

ENDPROC

// Grip the pinions.
PROC grip()

...
ENDPROC

// Drop the pinions.
PROC drop()

...
ENDPROC ENDMODULE

A.3 Program C
MODULE MainModule

// Define the target positions of robot.
VAR robtarget a := [...];
VAR robtarget b := [...];
VAR robtarget c1 := [...];
VAR robtarget c2 := [...];

// Define the speed of the robot.
VAR speeddata v := [...];

// Define the zonedata of the robot.
VAR zonedata z:= [...];

// Define the end effector of the robot.
VAR tooldata grip := [...];

// Declare the I/O signals.
VAR signaldi s1;
VAR signaldi s2;
VAR signaldi s3;
VAR signaldi s4;
VAR signaldi c_in;
VAR signaldo c_out;

// Define the I/O units.
CONST string config_cin := “C_IN”;
CONST string config_cout := “C_OUT”
CONST string config_s1 := ”S_1”;
CONST string config_s2 := ”S_2”;
CONST string config_s1 := ”S_3”;
CONST string config_s2 := ”S_4”;

PROC main()
Bool flag_1 := false;
Bool flag_2 := false;

// Link the I/O units with the I/O variables.
AliasIO config_cin, c_in;
AliasIO config_cout, c_out;
AliasIO config_s1, s1;
AliasIO config_s2, s2;
AliasIO config_s3, s3;
AliasIO config_s4, s4;
WHILE true DO

// Forget to restart the conveyor
// after transporting.
// Transport the non-defective pinions
// and restart the conveyor.
flag_1 := c_in=0 AND s1=1 AND s2=1;
IF flag_1 THEN

MoveJ b, v, zone, grip;
Grip();
MoveJ c1, v, zone, grip;
Drop();
MoveJ a, v, zone, grip;

ENDIF

// Transport the defective pinions
// and restart the conveyor.
flag_2:=c_in=0 AND NOT s1=1 AND s2=1;
IF flag_2 THEN

MoveJ b, v, zone, grip;
Grip();
MoveJ c2, v, zone, grip;
Drop();
MoveJ a, v, zone, grip;

ENDIF
ENDWHILE

ENDPROC

// Grip the pinions.
PROC grip()

...
ENDPROC

// Drop the pinions.
PROC drop()

...
ENDPROC ENDMODULE

76

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Overview of Robot Programming
	2.2 The K-Framework

	3 K-RAPID: The Formal Semantics of RAPID in K
	3.1 Runtime Configuration
	3.2 Semantic Rules

	4 Semantics Evaluation
	4.1 Overview of the Test Process
	4.2 Experiment Results and Analyses

	5 LTL Model Checking
	6 Formal Specification of RAPID
	7 Conclusion
	Acknowledgments
	References
	A The Control Programs of the Sorting Systems
	A.1 Program A
	A.2 Program B
	A.3 Program C

