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Abstract. Masking is a widely-used effective countermeasure against
power side-channel attacks for implementing cryptographic algorithms.
Surprisingly, few formal verification techniques have addressed a fun-
damental question, i.e., whether the masked program and the original
(unmasked) cryptographic algorithm are functional equivalent. In this
paper, we study this problem for masked arithmetic programs over Galois
fields of characteristic 2. We propose an automated approach based on
term rewriting, aided by random testing and SMT solving. The overall
approach is sound, and complete under certain conditions which do meet
in practice. We implement the approach as a new tool FISCHER and carry
out extensive experiments on various benchmarks. The results confirm
the effectiveness, efficiency and scalability of our approach. Almost all
the benchmarks can be proved for the first time by the term rewriting
system solely. In particular, FISCHER detects a new flaw in a masked
implementation published in EUROCRYPT 2017.

1 Introduction

Power side-channel attacks [42] can infer secrecy by statistically analyzing the
power consumption during the execution of cryptographic programs. The vic-
tims include implementations of almost all major cryptographic algorithms, e.g.,
DES [41], AES [54], RSA [33], Elliptic curve cryptography [46,52] and post-
quantum cryptography [56,59]. To mitigate the threat, cryptographic algorithms
are often implemented via masking [37], which divides each secret value into
(d + 1) shares by randomization, where d is a given masking order. However, it
is error-prone to implement secure and correct masked implementations for non-
linear functions (e.g., finite-field multiplication, module addition and S-Box),
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which are prevalent in cryptography. Indeed, published implementations of AES
S-Box that have been proved secure via paper-and-pencil [19,40,58] were later
shown to be vulnerable to power side-channels when d is no less than 4 [24].

While numerous formal verification techniques have been proposed to prove
resistance of masked cryptographic programs against power side-channel attacks
(e.g., [7,13,26,29–32,64]), one fundamental question which is largely left open is
the (functional) correctness of the masked cryptographic programs, i.e., whether
a masked program and the original (unmasked) cryptographic algorithm are
actually functional equivalent. It is conceivable to apply general-purpose pro-
gram verifiers to masked cryptographic programs. Constraint-solving based
approaches are available, for instance, Boogie [6] generates constraints via weak-
est precondition reasoning which then invokes SMT solvers; SeaHorn [36] and
CPAChecker [12] adopt model checking by utilizing SMT or CHC solvers. More
recent work (e.g., CryptoLine [28,45,53,62]) resorts to computer algebra, e.g.,
to reduce the problem to the ideal membership problem. The main challenge of
applying these techniques to masked cryptographic programs lies in the pres-
ence of finite-field multiplication, affine transformations and bitwise exclusive-
OR (XOR). For instance, finite-field multiplication is not natively supported by
the current SMT or CHC solvers, and the increasing number of bitwise XOR
operations causes the infamous state-explosion problem. Moreover, to the best of
our knowledge, current computer algebra systems do not provide the full support
required by verification of masked cryptographic programs.
Contributions. We propose a novel, term rewriting based approach to effi-
ciently check whether a masked program and the original (unmasked) crypto-
graphic algorithm (over Galois fields of characteristic 2) are functional equiva-
lent. Namely, we provide a term rewriting system (TRS) which can handle affine
transformations, bitwise XOR, and finite-field multiplication. The verification
problem is reduced to checking whether a term can be rewritten to normal form
0. This approach is sound, i.e., once we obtain 0, we can claim functional equiv-
alence. In case the TRS reduces to a normal form which is different from 0,
most likely they are not functional equivalent, but a false positive is possible.
We further resort to random testing and SMT solving by directly analyzing the
obtained normal form. As a result, it turns out that the overall approach is
complete if no uninterpreted functions are involved in the normal form.

We implement our approach as a new tool FISCHER (FunctionalIty of
maSked CryptograpHic program verifiER), based on the LLVM framework [43].
We conduct extensive experiments on various masked cryptographic program
benchmarks. The results show that our term rewriting system solely is able
to prove almost all the benchmarks. FISCHER is also considerably more effi-
cient than the general-purpose verifiers SMACK [55], SeaHorn, CPAChecker, and
Symbiotic [22], cryptography-specific verifier CryptoLine, as well as a straight-
forward approach that directly reduces the verification task to SMT solving. For
instance, our approach is able to handle masked implementations of finite-field
multiplication with masking orders up to 100 in less than 153 s, while none of
the compared approaches can handle masking order of 3 in 20min.
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In particular, for the first time we detect a flaw in a masked implementation of
finite-field multiplication published in EUROCRYPT 2017 [8]. The flaw is tricky,
as it only occurs for the masking order d ≡ 1 mod 4.1 This finding highlights
the importance of the correctness verification of masked programs, which has
been largely overlooked, but of which our work provides an effective solution.

Our main contributions can be summarized as follows.

– We propose a term rewriting system for automatically proving the functional
correctness of masked cryptographic programs;

– We implement a tool FISCHER by synergistically integrating the term rewrit-
ing based approach, random testing and SMT solving;

– We conduct extensive experiments, confirming the effectiveness, efficiency,
scalability and applicability of our approach.

Related Work. Program verification has been extensively studied for decades.
Here we mainly focus on their application in cryptographic programs, for which
some general-purpose program verifiers have been adopted. Early work [3] uses
Boogie [6]. HACL* [65] uses F* [2] which verifies programs by a combination of
SMT solving and interactive proof assistants. Vale [15] uses F* and Dafny [44]
where Dafny harnesses Boogie for verification. Cryptol [61] checks equivalence
between machine-readable cryptographic specifications and real-world imple-
mentations via SMT solving. As mentioned before, computer algebra systems
(CAS) have also been used for verifying cryptographic programs and arithmetic
circuits, by reducing to the ideal membership problem together with SAT/SMT
solving. Typical work includes CryptoLine and AMulet [38,39]. However, as
shown in Sect. 7.2, neither general-purpose verifiers (SMACK with Boogie and
Corral, SeaHorn, CPAChecker and Symbiotic) nor the CAS-based verifier Cryp-
toLine is sufficiently powerful to verify masked cryptographic programs. Interac-
tive proof assistants (possibly coupled with SMT solvers) have also been used to
verify unmasked cryptographic programs (e.g., [1,4,9,23,27,48,49]). Compared
to them, our approach is highly automatic, which is more acceptable and easier
to use for general software developers.
Outline. Section 2 recaps preliminaries. Section 3 presents a language on which
the cryptographic program is formalized. Section 4 gives an example and an
overview of our approach. Section 5 and Sect. 6 introduce the term rewriting
system and verification algorithms. Section 7 reports experimental results. We
conclude in Sect. 8. The source code of our tool and benchmarks are available at
https://github.com/S3L-official/FISCHER.

2 Preliminaries

For two integers l, u with l ≤ u, [l, u] denotes the set of integers {l, l+1, · · · , u}.
Galois Field. A Galois field GF(pn) comprises polynomials an−1X

n−1 + · · · +
a1X

1 + a0 over Zp = [0, p − 1], where p is a prime number, n is a posi-
tive integer, and ai ∈ Zp. (Here p is the characteristic of the field, and pn

1 This flaw has been confirmed by an author of [8].

https://github.com/S3L-official/FISCHER
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is the order of the field.) Symmetric cryptography (e.g., DES [50], AES [25],
SKINNY [10], PRESENT [14]) and bitsliced implementations of asymmetric
cryptography (e.g., [17]) intensively uses GF(2n). Throughout the paper, F

denotes the Galois field GF(2n) for a fixed n, and ⊕ and ⊗ denote the addition
and multiplication on F, respectively. Recall that GF(2n) can be constructed
from the quotient ring of the polynomial ring GF(2)[X] with respect to the ideal
generated by an irreducible polynomial P of degree n. Hence, multiplication is
the product of two polynomials modulo P in GF(2)[X] and addition is bitwise
exclusive-OR (XOR) over the binary representation of polynomials. For exam-
ple, AES uses GF(256) = GF(2)[X]/(X8 + X4 + X3 + X + 1). Here n = 8 and
P = X8 + X4 + X3 + X + 1.
Higher-Order Masking. To achieve order-d security against power side-
channel attacks under certain leakage models, masking is usually used [37,60].
Essentially, masking partitions each secret value into (usually d + 1) shares so
that knowing at most d shares cannot infer any information of the secret value,
called order-d masking. In Boolean masking, a value a ∈ F is divided into shares
a0, a1, . . . , ad ∈ F such that a0⊕a1⊕. . .⊕ad = a. Typically, a1, . . . , ad are random
values and a0 = a⊕a1⊕. . .⊕ad. The tuple (a0, a1, . . . , ad), denoted by a, is called
an encoding of a. We write

⊕
i∈[0,d] ai (or simply

⊕
a) for a0⊕a1⊕. . .⊕ad. Addi-

tive masking can be defined similarly to Boolean masking, where ⊕ is replaced
by the module arithmetic addition operator. In this work, we focus on Boolean
masking as the XOR operation is more efficient to implement.

To implement a masked program, for each operation in the cryptographic
algorithm, a corresponding operation on shares is required. As we will see later,
when the operation is affine (i.e. the operation f satisfies f(x⊕y) = f(x)⊕f(y)⊕c
for some constant c), the corresponding operation is simply to apply the original
operation on each share ai in the encoding (a0, a1, . . . , ad). However, for non-
affine operations (e.g., multiplication and addition), it is a very difficult task and
error-prone [24]. Ishai et al. [37] proposed the first masked implementation of
multiplication, but limited to the domain GF(2) only. The number of the required
random values and operations is not optimal and is known to be vulnerable in
the presence of glitches because the electric signals propagate at different speeds
in the combinatorial paths of hardware circuits. Thus, various follow-up papers
proposed ways to implement higher-order masking for the domain GF(2n) and/or
optimizing the computational complexity, e.g., [8,11,21,34,58], all of which are
referred to as ISW scheme in this paper. In another research direction, new
glitch-resistant Boolean masking schemes have been proposed, e.g., Hardware
Private Circuits (HPC1 & HPC2) [20], Domain-oriented Masking (DOM) [35]
and Consolidating Masking Schemes (CMS) [57]. In this work, we are interested
in automatically proving the correctness of the masked programs.

3 The Core Language

In this section, we first present the core language MSL, given in Fig. 1, based on
which the verification problem is formalized.
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Fig. 1. Syntax of MSL in Backus-Naur form

A program P in MSL is given by a sequence of procedure definitions and
affine transformation definitions/declarations. A procedure definition starts with
the keyword proc, followed by a procedure name, a list of input parameters, an
output and its body. The procedure body has two blocks of statements, separated
by a special statement shares d+1, where d is the masking order. The first block
〈stmts〉origin, called the original block, implements its original functionality on
the input parameters without masking. The second block 〈stmts〉masked, called
the masked block, is a masked implementation of the original block over the
input encodings x of the input parameters x. The input parameters and output
x, declared using the keywords input and output respectively, are scalar variables
in the original block, but are treated as the corresponding encodings (i.e., tuples)
x in the masked block. For example, input x declares the scalar variable x as
the input of the original block, while it implicitly declares an encoding x =
(x0, x1, . . . , xd) as the input of the masked block with shares d + 1.

We distinguish affine transformation definitions and declarations. The former
starts with the keyword affine, followed by a name f , an input, an output and its
body. It is expected that the affine property ∀x, y ∈ F.f(x⊕y) = f(x)⊕f(y)⊕ c
holds for some affine constant c ∈ F. (Note that the constant c is not explicitly
provided in the program, but can be derived, cf. Sect. 6.2.) The transformation
f is linear if its affine constant c is 0. In contrast, an affine transformation dec-
laration f simply declares a transformation. As a result, it can only be used
to declare a linear one (i.e., c must be 0), which is treated as an uninterpreted
function. Note that non-linear affine transformation declarations can be achieved
by declaring linear affine transformations and affine transformation definitions.
Affine transformation here serves as an abstraction to capture complicated oper-
ations (e.g., shift, rotation and bitwise Boolean operations) and can accelerate
verification by expressing operations as uninterpreted functions. In practice, a
majority of cryptographic algorithms (in symmetric cryptography) can be rep-
resented by a composition of S-box, XOR and linear transformation only.

Masking an affine transformation can simply mask an input encoding in a
share-wise way, namely, the masked version of the affine transformation f(a) is

f(a0 ⊕ a1 ⊕ . . . ⊕ ad) =
{

f(a0) ⊕ f(a1) ⊕ . . . ⊕ f(ad), if d is even;
f(a0) ⊕ f(a1) ⊕ . . . ⊕ f(ad) ⊕ c, if d is odd.
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This is default, so affine transformation definition only contains the original
block but no masked block.

A statement is either an assignment or a function call. MSL features two
types of assignments which are either of the form x ← e defined as usual or of
the form r ←rand which assigns a uniformly sampled value from the domain
F to the variable r. As a result, r should be read as a random variable. We
assume that each random variable is defined only once. We note that the actual
parameters and output are scalar if the procedure is invoked in an original block
while they are the corresponding encodings if it is invoked in a masked block.

MSL is the core language of our tool. In practice, to be more user-friendly,
our tool also accepts C programs with conditional branches and loops, both
of which should be statically determinized (e.g., loops are bound and can be
unrolled; the branching of conditionals can also be fixed after loop unrolling).
Furthermore, we assume there is no recursion and dynamic memory allocation.
These restrictions are sufficient for most symmetric cryptography and bitsliced
implementations of public-key cryptography, which mostly have simple control
graphs and memory aliases.
Problem Formalization. Fix a program P with all the procedures using order-
d masking. We denote by Po (resp. Pm) the program P where all the masked
(resp. original) blocks are omitted. For each procedure f , the procedures fo and
fm are defined accordingly.

Definition 1. Given a procedure f of P with m input parameters, fm and fo
are functional equivalent, denoted by fm ∼= fo, if the following statement holds:

∀a1, · · · , am, r1, · · · , rh ∈ F, ∀a1, · · · ,am ∈ F
d+1.

( ∧

i∈[1,m]
ai =

⊕

j∈[0,d]
ai

j

) → (
fo(a

1, · · · , am) =
⊕

i∈[0,d]
fm(a

1, · · · ,am)i
)

where r1, · · · , rh are all the random variables used in fm.

Note that although the procedure fm is randomized (i.e., the output encoding
fm(a1, · · · ,ami ) is technically a random variable), for functional equivalence we
consider a stronger notion, viz., to require that fm and fo are equivalent under
any values in the support of the random variables r1, · · · , rh. Thus, r1, · · · , rh
are universally quantified in Definition 1.

The verification problem is to check if fm ∼= fo for a given procedure f
where

∧
i∈[1,m] ai =

⊕
j∈[0,d] a

i
j and fo(a1, · · · , am) =

⊕
i∈[0,d] fm(a

1, · · · ,am)i
are regarded as pre- and post-conditions, respectively. Thus, we assume the
unmasked procedures themselves are correct (which can be verified by, e.g.,
CryptoLine). Our focus is on whether the masked counterparts are functional
equivalent to them.

4 Overview of the Approach

In this section, we first present a motivating example given in Fig. 2, which com-
putes the multiplicative inverse in GF(28) for the AES S-Box [58] using first-order



Automated Verification of Correctness for Masked Arithmetic Programs 261

Fig. 2. Motivating example, where x denotes (x0, x1).

Boolean masking. It consists of three affine transformation definitions and two
procedure definitions. For a given input x, exp2(x) outputs x2, exp4(x) outputs
x4 and exp16(x) outputs x16. Obviously, these three affine transformations are
indeed linear.

Procedure sec_multo(a, b) outputs a⊗b. Its masked version sec_multm(a,b)
computes the encoding c = (c0, c1) over the encodings a = (a0, a1) and b =
(b0, b1). Clearly, it is desired that c0 ⊕ c1 = a ⊗ b if a0 ⊕ a1 = a and b0 ⊕
b1 = b. Procedure refresh_maskso(x) is the identity function while its masked
version refresh_masksm(x) re-masks the encoding x using a random variable r0.
Thus, it is desired that y0 ⊕ y1 = x if x = x0 ⊕ x1. Procedure sec_exp254o(x)
computes the multiplicative inverse x254 of x in GF(28). Its masked version
sec_exp254m(x) computes the encoding y = (y0, y1) where refresh_masksm is
invoked to avoid power side-channel leakage. Thus, it is desired that y0 ⊕ y1 =
x254 if x0⊕x1 = x. In summary, it is required to prove sec_multm ∼= sec_multo,
refresh_masksm ∼= refresh_maskso and sec_exp254m ∼= sec_exp254o.

4.1 Our Approach

An overview of FISCHER is shown in Fig. 3. The input program is expected
to follow the syntax of MSL but in C language. Moreover, the pre-conditions
and post-conditions of the verification problem are expressed by assume and
assert statements in the masked procedure, respectively. Recall that the input
program can contain conditional branches and loops when are statically deter-
minized. Furthermore, affine transformations can use other common operations
(e.g., shift, rotation and bitwise Boolean operations) besides the addition ⊕ and
multiplication ⊗ on the underlying field F. FISCHER leverages the LLVM frame-
work to obtain the LLVM intermediate representation (IR) and call graph, where
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FISCHER
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Fig. 3. Overview of FISCHER.

all the procedure calls are inlined. It then invokes Affine Constant Computing to
iteratively compute the affine constants for affine transformations according to
the call graph, and Functional Equivalence Checking to check functional equiva-
lence, both of which rely on the underpinning engines, viz., Symbolic Execution
(refer to symbolic computation without path constraint solving in this work),
Term Rewriting and SMT-based Solving.

We apply intra-procedural symbolic execution to compute the symbolic out-
puts of the procedures and transformations, i.e., expressions in terms of inputs,
random variables and affine transformations. The symbolic outputs are treated
as terms based on which both the problems of functional equivalence checking
and affine constant computing are solved by rewriting to their normal forms (i.e.,
sums of monomials w.r.t. a total order). The analysis result is often conclusive
from normal forms. In case it is inconclusive, we iteratively inline affine trans-
formations when their definitions are available until either the analysis result
is conclusive or no more affine transformations can be inlined. If the analysis
result is still inconclusive, to reduce false positives, we apply random testing
and accurate (but computationally expansive) SMT solving to the normal forms
instead of the original terms. We remark that the term rewriting system solely
can prove almost all the benchmarks in our experiments.

Consider the motivating example. To find the constant c ∈ F of exp2 such
that the property ∀x, y ∈ F.exp2(x ⊕ y) = exp2(x) ⊕ exp2(y) ⊕ c holds, by
applying symbolic execution, exp2(x) is expressed as the term x ⊗ x. Thus, the
property is reformulated as (x ⊕ y) ⊗ (x ⊕ y) = (x ⊗ x) ⊕ (y ⊗ y) ⊕ c, from
which we can deduce that the desired affine constant c is equivalent to the term
((x ⊕ y)⊗ (x ⊕ y))⊕ (x ⊗ x)⊕ (y ⊗ y). Our TRS will reduce the term as follows:

((x ⊕ y) ⊗ (x ⊕ y)) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Distributive Law
= (x ⊗ (x ⊕ y)) ⊕ (y ⊗ (x ⊕ y)) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Distributive Law
= (x ⊗ x) ⊕ (x ⊗ y) ⊕ (y ⊗ x) ⊕ (y ⊗ y) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Commutative Law
= (x ⊗ x) ⊕ (x ⊗ y) ⊕ (x ⊗ y) ⊕ (y ⊗ y) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Commutative Law
= (x ⊗ x) ⊕ (x ⊗ x) ⊕ (x ⊗ y) ⊕ (x ⊗ y) ⊕ (y ⊗ y) ⊕ (y ⊗ y) = 0 Zero Law of XOR

For the transformation exp4(x), by applying symbolic execution, it can be
expressed as the term exp2(exp2(x)). To find the constant c ∈ F to satisfy ∀x, y ∈
F.exp4(x⊕y) = exp4(x)⊕exp4(y)⊕c, we compute the term exp2(exp2(x⊕y))⊕
exp2(exp2(x)) ⊕ exp2(exp2(y)). By applying our TRS, we have:
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exp2(exp2(x ⊕ y)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y))

= exp2(exp2(x) ⊕ exp2(y)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y))

= exp2(exp2(x)) ⊕ exp2(exp2(y)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y))

= exp2(exp2(x)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y)) ⊕ exp2(exp2(y)) = 0

Clearly, the affine constant of exp4 is 0. Similarly, we can deduce that the affine
constant of the transformation exp16 is 0 as well.

To prove sec_multo ∼= sec_multm, by applying symbolic execution, we have
that sec_multo(a, b) = a ⊗ b and sec_multm(a,b) = c = (c0, c1), where c0 =
(a0⊗b0)⊕r0 and c1 = (a1⊗b1)⊕(r0⊕(a0⊗b1)⊕(a1⊗b0)). Then, by Definition 1,
it suffices to check

∀a, b, a0, a1, b0, b1, r0 ∈ F.
(
a = a0 ⊕ a1 ∧ b = b0 ⊕ b1

) →
(
a ⊗ b = ((a0 ⊗ b0) ⊕ r0) ⊕ (

(a1 ⊗ b1) ⊕ (r0 ⊕ (a0 ⊗ b1) ⊕ (a1 ⊗ b0))
))

.

Thus, we check the term
(
(a0 ⊕ a1)⊗ (b0 ⊕ b1)

) ⊕ ((a0 ⊗ b0)⊕ r0)⊕ ((a1 ⊗ b1)⊕
(r0 ⊕ (a0 ⊗ b1)⊕ (a1 ⊗ b0))) which is equivalent to 0 iff sec_multo ∼= sec_multm.
Our TRS is able to reduce the term to 0. Similarly, we represent the outputs
of sec_exp254o and sec_exp254m as terms via symbolic execution, from which
the statement sec_exp254o ∼= sec_exp254m is also encoded as a term, which
can be reduced to 0 via our TRS without inlining any transformations.

5 Term Rewriting System

In this section, we first introduce some basic notations and then present our
term rewriting system.

Definition 2. Given a program P over F, a signature ΣP of P is a set of
symbols F ∪ {⊕,⊗, f1, . . . , ft}, where s ∈ F with arity 0 are all the constants in
F, ⊕ and ⊗ with arity 2 are addition and multiplication operators on F, and
f1, · · · , ft with arity 1 are affine transformations defined/declared in P.

For example, the signature of the motivating example is F ∪
{⊕,⊗, exp2, exp4, exp16}. When it is clear from the context, the subscript P
is dropped from ΣP .

Definition 3. Let V be a set of variables (assuming Σ∩V = ∅), the set T [Σ,V ]
of Σ-terms over V is inductively defined as follows:

– F ⊆ T [Σ,V ] and V ⊆ T [Σ,V ] (i.e., every variable/constant is a Σ-term);
– τ ⊕ τ ′ ∈ T [Σ,V ] and τ ⊗ τ ′ ∈ T [Σ,V ] if τ, τ ′ ∈ T [Σ,V ] (i.e., application of

addition and multiplication operators to Σ-terms yield Σ-terms);
– fj(τ) ∈ T [Σ,V ] if τ ∈ T [Σ,V ] and j ∈ [1, t] (i.e., application of affine

transformations to Σ-terms yield Σ-terms).

We denote by T\⊕(Σ,V ) the set of Σ-terms that do not use the operator ⊕.
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A Σ-term α ∈ T [Σ,V ] is called a factor if τ ∈ F ∪ V or τ = fi(τ ′) for some
i ∈ [1, t] such that τ ′ ∈ T\⊕(Σ,V ). A monomial is a product α1 ⊗ · · · ⊗ αk of
none-zero factors for k ≥ 1. We denote by M [Σ,V ] the set of monomials. For
instance, consider variables x, y ∈ V and affine transformations f1, f2 ∈ Σ. All
f1(f2(x))⊗f1(y), f1(2⊗f2(4⊗x)), f1(x⊕y) and f1(f2(x))⊕f1(x) are Σ-terms,
both f1(f2(x))⊗f1(y) and f1(2⊗f2(4⊗x)) are monomials, while neither f1(x⊕y)
nor f1(f2(x))⊕f1(x) is a monomial. For the sake of presentation, Σ-terms will be
written as terms, and the operator ⊗ may be omitted, e.g., τ1τ2 denotes τ1 ⊗ τ2,
and τ2 denotes τ ⊗ τ .

Definition 4. A polynomial is a sum
⊕

i∈[1,t] mi of monomials m1 . . . mt ∈
M [Σ,V ]. We use P [Σ,V ] to denote the set of polynomials.

To simplify and normalize polynomials, we impose a total order on monomials
and their factors.

Definition 5. Fix an arbitrary total order ≥s on V � Σ.
For two factors α and α′, the factor order ≥l is defined such that α ≥l α′ if

one of the following conditions holds:

– α, α′ ∈ F ∪ V and α ≥s α′;
– α = f(τ) and α′ = f ′(τ ′) such that f ≥s f ′ or (f = f ′ and τ ≥p τ ′);
– α = f(τ) such that f ≥s α′ or α′ = f(τ) such that α ≥s f .

Given a monomial m = α1 · · · αk, we write sort≥l
(α1, · · · , αk) for the monomial

which includes α1, · · · , αk as factors, but sorts them in descending order.
Given two monomials m = α1 · · · αk and m′ = α′

1 · · · α′
k′ , the monomial

order ≥p is defined as the lexicographical order between sort≥l
(α1, · · · , αk) and

sort≥l
(α′

1, · · · , α′
k′).

Intuitively, the factor order ≥l follows the given order ≥s on V � Σ, where
the factor order between two factors with the same affine transformation f
is determined by their parameters. We note that if sort≥l

(α′
1, · · · , α′

k′) is a
prefix of sort≥l

(α1, · · · , αk), we have: α1 · · · αk ≥p α′
1 · · · α′

k′ . Furthermore, if
α1 · · · αk ≥p α′

1 · · · α′
k′ and α′

1 · · · α′
k′ ≥p α1 · · · αk, then sort≥l

(α′
1, · · · , α′

k′) =
sort≥l

(α1, · · · , αk). We denote by α1 · · · αk >p α′
1 · · · α′

k′ if α1 · · · αk ≥p α′
1 · · · α′

k′

but sort≥l
(α′

1, · · · , α′
k′) �= sort≥l

(α1, · · · , αk).

Proposition 1. The monomial order ≥p is a total order on monomials.

Definition 6. Given a program P, we define the corresponding term rewriting
system (TRS) R as a tuple (Σ,V,≥s,Δ), where Σ is a signature of P, V is a
set of variables of P (assuming Σ ∩ V = ∅), ≥s is a total order on V � Σ, and
Δ is the set of term rewriting rules given below:
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R1
(m′

1, · · · ,m′
k) = sort≥p

(m1, · · · ,mk) �= (m1, · · · ,mk)

m1 ⊕ · · · ⊕ mk �→ m′
1 ⊕ · · · ⊕ m′

k

R3
τ ⊕ τ �→ 0

R5
0τ �→ 0

R2
(α′

1, · · · , α′
k) = sort≥l

(α1, · · · , αk) �= (α1, · · · , αk)
α1 · · · αk �→ α′

1 · · · α′
k

R4
τ0 �→ 0

R6
τ ⊕ 0 �→ τ

R7
0 ⊕ τ �→ τ

R8
τ1 �→ τ

R9
1τ �→ τ

R10
(τ1 ⊕ τ2)τ �→ (τ1τ) ⊕ (τ2τ)

R11
τ(τ1 ⊕ τ2) �→ (ττ1) ⊕ (ττ2)

R12
f(τ1 ⊕ τ2) �→ f(τ1) ⊕ f(τ2) ⊕ c

R13
f(0) �→ c

where m1,m
′
1, · · · ,mk,m

′
k ∈ M [Σ,V ], α1, α2, α3 are factors, τ, τ1, τ2 ∈ T [Σ,V ]

are terms, f ∈ Σ is an affine transformation with affine constant c.

Intuitively, rules R1 and R2 specify the commutativity of ⊕ and ⊗, respec-
tively, by which monomials and factors are sorted according to the orders ≥p

and ≥l, respectively. Rule R3 specifies that ⊕ is essentially bitwise XOR. Rules
R4 and R5 specify that 0 is the multiplicative zero. Rules R6 and R7 (resp. R8
and R9) specify that 0 (resp. 1) is additive (resp. multiplicative) identity. Rules
R10 and R11 express the distributivity of ⊗ over ⊕. Rule R12 expresses the
affine property of an affine transformation while rule R13 is an instance of rule
R12 via rules R3 and R5.

Given a TRS R = (Σ,V,≥s,Δ) for a given program P, a term τ ∈ T [Σ,V ]
can be rewritten to a term τ ′, denoted by τ ⇒ τ ′, if there is a rewriting rule
τ1 �→ τ2 such that τ ′ is a term obtained from τ by replacing an occurrence of the
sub-term τ1 with the sub-term τ2. A term is in a normal form if no rewriting
rules can be applied. A TRS is terminating if all terms can be rewritten to a
normal form after finitely many rewriting. We denote by τ � τ ′ with τ ′ being
the normal form of τ .

We show that any TRS R associated with a program P is terminating, and
that any term will be rewritten to a normal form that is a polynomial, indepen-
dent of the way of applying rules.

Lemma 1. For every normal form τ ∈ T [Σ,V ] of the TRS R, the term τ must
be a polynomial m1 ⊕ · · · ⊕ mk such that (1) ∀i ∈ [1, k − 1], mi >p mi+1, and
(2) for every monomial mi = α1 · · · αh and ∀i ∈ [1, h − 1], αi ≥l αi+1.

Proof. Consider a normal form τ ∈ T [Σ,V ]. If τ is not a polynomial, then there
must exist some monomial mi in which the addition operator ⊕ is used. This
means that either rule R10 or R11 is applicable to the term τ which contradicts
the fact that τ is normal form.

Suppose τ is the polynomial m1 ⊕ · · · ⊕ mk.

– If there exists i : 1 ≤ i < k such that mi >p mi+1 does not hold, then either
mi = mi+1 or mi+1 >p mi. If mi = mi+1, then rule R3 is applicable to the
term τ . If mi+1 >p mi, then rule R1 is applicable to the term τ . Thus, for
every 1 ≤ i < k, mi >p mi+1.

– If there exist a monomial mi = α1 · · · αh and i : 1 ≤ i < h such that αi ≥l

αi+1 does not hold, then αi+1 >l αi. This means that rule R2 is applicable to
the term τ . Thus, for every monomial mi = α1 · · · αh and every i : 1 ≤ i < h,
αi ≥l αi+1. ��
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Lemma 2. The TRS R = (Σ,V,≥s,Δ) of a given program P is terminating.

Proof. Consider a term τ ∈ T [Σ,V ]. Let π = τ1 ⇒ τ2 ⇒ τ3 ⇒ · · · ⇒ τi ⇒ · · · be
a reduction of the term τ by applying rewriting rules, i.e., τ = τ1. We prove that
the reduction π is finite by showing that all the rewriting rules can be applied
finitely.

First, since rules R1 and R2 only sort the monomials and factors, respectively,
while sorting always terminates using any classic sorting algorithm (e.g., quick
sort algorithm), rules R1 and R2 can only be consecutively applied finitely for
each term τi due to the premises sort≥p

(m1, · · · ,mk) �= (m1, · · · ,mk) and
sort≥l

(α1, · · · , αk) �= (α1, · · · , αk) in rules R1 and R2, respectively.
Second, rules R10, R11 and R12 can only be applied finitely in the reduction

π, as these rules always push the addition operator ⊕ toward the root of the
syntax tree of the term τi when one of them is applied onto a term τi, while the
other rules either eliminate or reorder the addition operator ⊕.

Algorithm 1: Term Normalization
1 Function TermNorm(R, τ , λ):
2 Rewrite τ by iteratively applying rules R3–R13 until no more update;
3 τ ′ ← sort(τ) by iteratively applying rule R2;
4 τ ′ ← sort(τ ′) by iteratively applying rule R1;
5 Rewrite τ ′ by iteratively applying rules R3, R6, R7 until no more update;
6 return τ ′

Lastly, rules R3–9 and R13 can only be applied finitely in the reduction π,
as these rules reduce the size of the term by 1 when one of them is applied onto
a term τi while the rules R10–12 that increase the size of the term can only be
applied finitely.

Hence, the reduction π is finite indicating that the TRS R is terminating. ��
By Lemmas 1 and 2, any term τ ∈ T [Σ,V ] can be rewritten to a normal

form that must be a polynomial.

Theorem 1. Let R = (Σ,V,≥s,Δ) be the TRS of a program P. For any term
τ ∈ T [Σ,V ], a polynomial τ ′ ∈ T [Σ,V ] can be computed such that τ � τ ′.

Remark 1. Besides the termination of a TRS, confluence is another important
property of a TRS, where a TRS is confluent if any given term τ ∈ T [Σ,V ]
can be rewritten to two distinct terms τ1 and τ2, then the terms τ1 and τ2 can
be reduced to a common term. While we conjecture that the TRS R associated
with the given program is indeed confluent which may be shown by its local
confluence [51], we do not strive to prove its confluence, as it is irrelevant to the
problem considered in the current work.
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6 Algorithmic Verification

In this section, we first present an algorithm for computing normal forms, then
show how to compute the affine constant for an affine transformation, and finally
propose an algorithm for solving the verification problem.

6.1 Term Normalization Algorithm

We provide the function TermNorm (cf. Algorithm 1) which applies the rewriting
rules in a particular order aiming for better efficiency. Fix a TRS R = (Σ,V,≥s,
Δ), a term τ ∈ T [Σ,V ] and a mapping λ that provides required affine constants
λ(f). TermNorm(R, τ, λ) returns a normal form τ ′ of τ , i.e., τ � τ ′.

Algorithm 2: Computing Affine Constants
1 Function AffConst(P, R, G):
2 foreach affine transformation f in a topological order of call graph G do
3 if f is only declared in P then
4 λ(f) ← 0;
5 else
6 x ←input of f ;
7 ξ(x) ← symbolicExecution(f);
8 τ ← ξ(x)[x �→ x ⊕ y] ⊕ ξ(x) ⊕ ξ(x)[x �→ y];
9 while True do

10 τ ← TermNorm(R, τ, λ);
11 if τ is some constant c then
12 λ(f) ← c; break;
13 else if g is defined in P but has not been inlined in τ then
14 Inline g in τ ; continue;
15 else if τ does not contain any uninterpreted function then
16 v1, u1, v2, u2 ←random values from F s.t. v1 	= v2 ∨ u1 	= u2;
17 if τ [x �→ v1, y �→ u1] 	= τ [x �→ v2, y �→ u2] then
18 Emit(f is not affine) and Abort;
19 if SMTSolver(∀x.∀y.τ = c)=SAT then
20 λ(f) ←extract c from the model; break;
21 else Emit(f may not be affine) and Abort;
22 return λ;

TermNorm first applies rules R3–R13 to rewrite the term τ (line 2), resulting
in a polynomial which does not have 0 as a factor or monomial (due to rules
R4–R7), or 1 as a factor in a monomial unless the monomial itself is 1 (due to
rules R8 and R9). Next, it recursively sorts all the factors and monomial involved
in the polynomial from the innermost sub-terms (lines 3 and 4). Sorting factors
and monomials will place the same monomials at adjacent positions. Finally,
rules R3 and R6–R7 are further applied to simplify the polynomial (line 5),
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where consecutive syntactically equivalent monomials will be rewritten to 0 by
rule R3, which may further enable rules R6–R7. Obviously, the final term τ ′ is
a normal form of the input τ , although its size may be exponential in that of τ .

Lemma 3. TermNorm(R, τ, λ) returns a normal form τ ′ of τ . ��

6.2 Computing Affine Constants

The function AffConst in Algorithm 2 computes the associated affine constant
for an affine transformation f . It first sorts all affine transformations in a topo-
logical order based on the call graph G (lines 2–21). If f is only declared in
P, as mentioned previously, we assumed it is linear, thus 0 is assigned to λ(f)
(line 4). Otherwise, it extracts the input x of f and computes its output ξ(x)
via symbolic execution (line 7), where ξ(x) is treated as f(x). We remark that
during symbolic execution, we adopt a lazy strategy for inlining invoked affine
transformations in f to reduce the size of ξ(x). Thus, ξ(x) may contain affine
transformations.

Recall that c is the affine constant of f iff ∀x, y ∈ F.f(x⊕y) = f(x)⊕f(y)⊕c
holds. Thus, we create the term τ = ξ(x)[x �→ x⊕y]⊕ξ(x)⊕ξ(x)[x �→ y] (line 7),
where e[a �→ b] denotes the substitution of a with b in e. Obviously, the term τ
is equivalent to some constant c iff c is the affine constant of f .

The while-loop (lines 9–21) evaluates τ . First, it rewrites τ to a normal form
(line 10) by invoking TermNorm in Alg.1. If the normal form is some constant c,
then c is the affine constant of f . Otherwise, AffConst repeatedly inlines each
affine transformation g that is defined in P but has not been inlined in τ (lines 13
and 14) and rewrites the term τ to a normal form until either the normal form
is some constant c or no affine transformation can be inlined. If the normal form
is still not a constant, τ is evaluated using random input values. Clearly, if τ is
evaluated to two distinct values (line 18), f is not affine. Otherwise, we check the
satisfiability of the constraint ∀x, y.τ = c via an SMT solver in bitvector theory
(line 19), where declared but undefined affine transformations are treated as
uninterpreted functions provided with their affine properties. If ∀x, y.τ = c is
satisfiable, we extract the affine constant c from its model (line 20). Otherwise,
we emit an error and then abort (line 21), indicating that the affine constant of
f cannot be computed. Since the satisfiability problem module bitvector theory
is decidable, we can conclude that f is not affine if ∀x.∀y.τ = c is unsatisfiable
and no uninterpreted function is involved in τ .

Lemma 4. Assume an affine transformation f in P. If AffConst(P,R, G) in
Algorithm 2 returns a mapping λ, then λ(f) is the affine constant of f . ��

6.3 Verification Algorithm

The verification problem is solved by the function Verifier(P) in Algorithm 3,
which checks if fm ∼= fo, for each procedure f defined in P. It first preprocesses
the given program P by inlining all the procedures, unrolling all the loops and
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eliminating all the branches (line 2). Then, it computes the corresponding TRS
R, call graph G and affine constants as the mapping λ, respectively (line 3). Next,
it iteratively checks if fm ∼= fo, for each procedure f defined in P (lines 4–23).

For each procedure f , it first extracts the inputs a1, · · · , am of fo that are
scalar variables (line 5) and input encodings a1, · · · ,am of fm that are vectors of
variables (line 6). Then, it computes the output ξ(a1, · · · , am) of fo via symbolic
execution, which yields an expression in terms of a1, · · · , am and affine trans-
formations (line 7). Similarly, it computes the output ξ′(a1, · · · ,am) of fm via
symbolic execution, i.e., a tuple of expressions in terms of the entries of the input
encodings a1, · · · ,am, random variables and affine transformations (line 8).

Recall that fm ∼= fo iff for all a1, · · · , am, r1, · · · , rh ∈ F and for all
a1, · · · ,am ∈ F

d+1, the following constraint holds (cf. Definition 1):

(∧

i∈[1,m]
ai =

⊕

j∈[0,d]
aij

) → (
fo(a1, · · · , am) =

⊕

i∈[0,d]
fm(a1, · · · ,ami )

)

where r1, · · · , rh are all the random variables used in fm. Thus, it creates the term
τ = ξ(a1, · · · , am)[a1 �→ ⊕

a1, · · · , am �→ ⊕
am] ⊕ ⊕

ξ′(a1, · · · ,am) (line 9),
where ai �→ ⊕

ai is the substitution of ai with the term
⊕

ai in the expression
ξ(a1, · · · , am). Obviously, τ is equivalent to 0 iff fm ∼= fo.

Algorithm 3: Verification Algorithm
1 Function Verifier(P):
2 Inline all the procedures, unroll loops and eliminate branches in P;
3 R ← buildTRS(P); G ← buildCallGraph(P); λ ← AffConst(P, R, G);
4 foreach procedure f defined in P do
5 Let a1, · · · , am be the inputs of fo;
6 Let a1, · · · ,am be the input encodings of fm;
7 ξ(a1, · · · , am) ← symbolicExecution(fo);
8 ξ′(a1, · · · ,am) ← symbolicExecution(fm);
9 τ ← ξ(a1, · · · , am)[a1 �→ ⊕

a1, · · · , am �→ ⊕
am] ⊕ ⊕

ξ′(a1, · · · ,am);
10 while True do
11 τ ← TermNorm(R, τ, λ)
12 if τ is some constant c then
13 if c = 0 then Emit(f is correct); break;
14 else Emit(f is incorrect); break;
15 else if g is defined in P but has not been inlined in τ then
16 Inline g in τ ; continue;
17 else if τ does not contain any uninterpreted function then
18 v1, · · · ,vm ←random values from F

d+1;
19 if τ [a1 �→ v1, · · · ,am �→ vm] 	= 0 then
20 Emit(f is incorrect); break;
21 if SMTSolver(τ 	= 0)=UNSAT then
22 Emit(f is correct); break;
23 else Emit(f may be incorrect); break;
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To check if τ is equivalent to 0, similar to computing affine constants in
Algorithm 2, the algorithm repeatedly rewrites the term τ to a normal form by
invoking TermNorm in Algorithm 1 until either the conclusion is drawn or no
affine transformation can be inlined (lines 10–23). We declare that f is correct if
the normal form is 0 (line 13) and incorrect if it is a non-zero constant (line 14).
If the normal form is not a constant, we repeatedly inline affine transformation
g defined in P which has not been inlined in τ and re-check the term τ .

If there is no definite answer after inlining all the affine transformations, τ
is evaluated using random input values. f is incorrect if τ is non-zero (line 20).
Otherwise, we check the satisfiability of the constraint τ �= 0 via an SMT solver
in bitvector theory (line 21). If τ �= 0 is unsatisfiable, then f is correct. Otherwise
we can conclude that f is incorrect if no uninterpreted function is involved in τ ,
but in other cases it is not conclusive.

Theorem 2. Assume a procedure f in P. If Verifier(P) emits “f is correct”,
then fm ∼= fo; if Verifier(P) emits “f is incorrect” or “f may be incorrect”
with no uninterpreted function involved in its final term τ , then fm �∼= fo. ��

6.4 Implementation Remarks

To implement the algorithms, we use the total order ≥s on V � Σ where all
the constants are smaller than the variables, which are in turn smaller than the
affine transformations. The order of constants is the standard one on integers,
and the order of variables (affine transformations) uses lexicographic order.

In terms of data structure, each term is primarily stored by a directed acyclic
graph, allowing us to represent and rewrite common sub-terms in an optimised
way. Once a (sub-)term becomes a polynomial during term rewriting, it is stored
as a sorted nested list w.r.t. the monomial order ≥p, where each monomial is
also stored as a sorted list w.r.t. the factor order ≥l. Moreover, the factor of the
form αk in a monomial is stored by a pair (α, k).

We also adopted two strategies: (i) By Fermat’s little theorem [63], x2n−1 = 1
for any x ∈ GF(2n). Hence each k in (α, k) can be simplified to k mod (2n − 1).
(ii) By rule R12, a term f(τ1 ⊕ · · · ⊕ τk) can be directly rewritten to f(τ1) ⊕
· · ·⊕ (τk) if k is odd, and f(τ1)⊕ · · ·⊕ f(τk)⊕ c if k is even, where c is the affine
constant associated with the affine transformation f .

7 Evaluation

We implement our approach as a tool FISCHER for verifying masked programs
in LLVM IR, based on the LLVM framework. We first evaluate FISCHER for
computing affine constants (i.e., Algorithm 2), correctness verification, and scal-
ability w.r.t. the masking order (i.e., Algorithm 3) on benchmarks using the
ISW scheme. To show the generality of our approach, FISCHER is then used to
verify benchmarks using glitch-resistant Boolean masking schemes and lattice-
based public-key cryptography. All experiments are conducted on a machine
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with Linux kernel 5.10, Intel i7 10700 CPU (4.8GHz, 8 cores, 16 threads) and
40 GB memory. Milliseconds (ms) and seconds (s) are used as the time units in
our experiments.

7.1 Evaluation for Computing Affine Constants

To evaluate Algorithm 2, we compare with a pure SMT-based approach which
directly checks ∃c.∀x, y ∈ F.f(x ⊕ y) = f(x) ⊕ f(y) ⊕ c using Z3 [47],
CVC5 [5] and Boolector [18], by implementing ⊕ and ⊗ in bit-vector the-
ory, where ⊗ is achieved via the Russian peasant method [16]. Technically,
SMT solvers only deal with satisfiability, but they usually can eliminate the
universal quantifiers in this case, as x, y are over a finite field. In partic-
ular, in our experiment, Z3 is configured with default (i.e. (check-sat)),
simplify (i.e. (check-sat-using (then simplify smt))) and bit-blast (i.e.
(check-sat-using (then bit-blast smt))), denoted by Z3-d, Z3-s and Z3-
b, respectively. We focus on the following functions: expi(x) = xi for i ∈
{2, 4, 8, 16}; rotli(x) for i ∈ {1, 2, 3, 4} that left rotates x by i bits; af(x) =
rotl1(x) ⊕ rotl2(x) ⊕ rotl3(x) ⊕ rotl4(x) ⊕ 99 used in AES S-Box; L1(x) =
7x2 ⊕ 14x4 ⊕ 7x8, L3(x) = 7x ⊕ 12x2 ⊕ 12x4 ⊕ 9x8, L5(x) = 10x ⊕ 9x2 and
L7(x) = 4x ⊕ 13x2 ⊕ 13x4 ⊕ 14x8 used in PRESENT S-Box over GF(16) =
GF(2)[X]/(X4 +X +1) [14,19]; f1(x) = x3, f2(x) = x2 ⊕ x ⊕ 1, f3(x) = x ⊕ x5

and f4(x) = af(exp2(x)) over GF(28).

Table 1. Results of computing affine constants, where † means Algorithm 2 needs
SMT solving, ‡ means affineness is disproved via testing, ✗ means nonaffineness, and
Algorithm 2+B means Algorithm 2+Boolector.

Tool exp2 exp4 exp8 exp16 rotl1 rotl2 rotl3 rotl4 af L1 L3 L5 L7 f1 f2 f3 f4

Algorithm 2+Z3-d 3 ms 3 ms 3 ms 3 ms 18 ms† 18 ms† 18 ms† 18 ms† 21 ms† 3 ms 3 ms 3 ms 3 ms 3 ms‡ 3 ms 3 ms‡ 21 ms†

Algorithm 2+Z3-b 3 ms 3 ms 3 ms 3 ms 15 ms† 16 ms† 15 ms† 15 ms† 20 ms† 3 ms 3 ms 3 ms 3 ms 3 ms‡ 3 ms 3 ms‡ 20 ms†

Algorithm 2+B 3 ms 3 ms 3 ms 3 ms 8 ms† 8 ms† 8 ms† 8 ms† 13 ms† 3 ms 3 ms 3 ms 3 ms 3 ms‡ 3 ms 3 ms‡ 14 ms†

Z3-d 181 ms 333 ms 316 ms 521 ms 14 ms 14 ms 14 ms 14 ms 16 ms 113 ms 213 ms 73 ms 194 ms 33 ms 249 ms 38 ms 7.5s
Z3-s 180 ms 373 ms 452 ms 528 ms 12 ms 12 ms 12 ms 12 ms 15 ms 158 ms 202 ms 194 ms 213 ms 28 ms 252 ms 35 ms 7.6s
Z3-b 15 ms 16 ms 18 ms 20 ms 12 ms 12 ms 12 ms 12 ms 79 ms 45 ms 42 ms 21 ms 82 ms 17 ms 22 ms 24 ms 60 ms
Boolector 15 ms 18 ms 12 ms 17 ms 5 ms 5 ms 6 ms 5 ms 71 ms 25 ms 34 ms 27 ms 78 ms 14 ms 15 ms 17 ms 67 ms
CVC5 8.4 s 20.3 s 44.4 s 18.6 s 5 ms 5 ms 5 ms 5 ms 113 ms 158.4 s 263.4 s 43.7 s 214.9 s 92 ms 10.3 s 2.3 s 10.4 s
Result 0 0 0 0 0 0 0 0 99 0 0 0 0 ✗ 1 ✗ 99

The results are reported in Table 1, where the 2nd–8th rows show the exe-
cution time and the last row shows the affine constants if they exist otherwise
✗. We observe that Algorithm 2 significantly outperforms the SMT-based app-
roach on most cases for all the SMT solvers, except for rotli and af (It is not
surprising, as they use operations rather than ⊕ and ⊗, thus SMT solving is
required). The term rewriting system is often able to compute affine constants
solely (e.g., expi and Li), and SMT solving is required only for computing the
affine constants of rotli. By comparing the results of Algorithm 2+Z3-b vs.
Z3-b and Algorithm 2+B vs. Boolector on af, we observe that term rewriting is
essential as checking normal form—instead of the original constraint—reduces
the cost of SMT solving.
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7.2 Evaluation for Correctness Verification

To evaluate Algorithm 3, we compare it with a pure SMT-based approach
with SMT solvers Z3, CVC5 and Boolector. We also consider several promising
general-purpose software verifiers SMACK (with Boogie and Corral engines),
SeaHorn, CPAChecker and Symbiotic, and one cryptography-specific verifier
CryptoLine (with SMT and CAS solvers), where the verification problem is
expressed using assume and assert statements. Those verifiers are configured in
two ways: (1) recommended ones in the manual/paper or used in the competi-
tion, and (2) by trials of different configurations and selecting the optimal one.
Specifically:

– CryptoLine (commit 7e237a9). Both solvers SMT and CAS are used;
– SMACK v2.8.0. integer-encoding: bit-vector, verifier: corral/boogie (both

used), solver: Z3/CVC4 (Z3 used), static-unroll: on, unroll: 99;
– SEAHORN v0.1.0 RC3 (commit e712712). pipeline: bpf, arch: m64, inline:

on, track: mem, bmc: none/mono/path (mono used), crab: on/off (off used);
– CPAChecker v2.1.1. default.properties with cbmc: on/off (on used);
– Symbiotic v8.0.0. officially-provided SV-COMP configuration with exit-on-

error: on.

The benchmark comprises five different masked programs sec_mult for finite-
field multiplication over GF(28) by varying masking order d = 0, 1, 2, 3, where
the d = 0 means the program is unmasked. We note that sec_mult in [8] is only
available for masking order d ≥ 2.

Table 2. Results on various sec_mult, where T.O. means time out (20 min), N/A
means that UNKNOWN result, and � means that verification result is incorrect.

Order Ref. Algorithm 3 Z3 Boolector CVC5 CryptoLine SMACK SeaHorn CPAChecker Symbiotic
d default simplify bit-blast SMT CAS Boogie Corral

0 [58] 17 ms 29 ms 27 ms 42 ms 25 ms 29 ms 39 ms N/A 29 s 66 s 132 ms T.O 870 s
[11] 20 ms 31 ms ms 31 ms 45 ms 28 ms 33 ms 35 ms N/A 46 s 144 s 128 ms T.O 899 s
[34] 21 ms 33 ms 31 ms 46 ms 29 ms 33 ms 32 ms N/A 23 s 43 s 127 ms T.O 872 s
[21] 18 ms 30 ms 28 ms 25 ms 26 ms 31 ms 32 ms N/A 17 s 56 s 130 ms T.O 876 s

1 [58] 18 ms 298 ms 299 ms 391 s 3.8 s T.O 469 ms N/A T.O T.O 13 s T.O T.O
[11] 20 ms 299 ms 299 ms 1049 s 1.91049 T.O 582 ms N/A T.O T.O 13 s T.O T.O
[34] 24 ms 295 ms 295 ms 1199 s 1.8 s T.O 951 ms N/A T.O T.O 14 s T.O T.O
[21] 20 ms 1180 s 921 s T.O 7.7 s T.O 21 s N/A T.O T.O T.O T.O T.O.

2 [58] 20 ms 4.1 s 4.2 s T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[11] 22 ms 4.2 s 4.4 s T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[8] 30 ms 4.2 s 4.1 s T.O T.O T.O T.O N/A T.O 26 s� T.O T.O T.O
[34] 29 ms 4.2 s 4.2 s T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[21] 22 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O.

3 [58] 21 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[11] 26 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[8] 27 ms T.O T.O T.O T.O T.O T.O N/A T.O 1059 s� T.O T.O T.O
[34] 29 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[21] 24 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O

The results are shown in Table 2. We can observe that FISCHER is signifi-
cantly more efficient than the others, and is able to prove all the cases using
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our term rewriting system solely (i.e., without random testing or SMT solving).
With the increase of masking order d, almost all the other tools failed. Both
CryptoLine (with the CAS solver) and CPAChecker fail to verify any of the
cases due to the non-linear operations involved in sec_mult. SMACK with Cor-
ral engine produces two false positives (marked by 	 in Table 2). These results
suggest that dedicated verification approaches are required for proving the cor-
rectness of masked programs.

7.3 Scalability of FISCHER

To evaluate the scalability of FISCHER, we verify different versions of sec_mult
and masked procedures sec_aes_sbox (resp. sec_present_sbox) of S-Boxes
used in AES [58] (resp. PRESENT [19]) with varying masking order d. Since
it is known that refresh_masks in [58] is vulnerable when d ≥ 4 [24], a fixed
version RefreshM [7] is used in all the S-Boxes (except that when sec_mult is
taken from [8] its own version is used). We note that sec_present_sbox uses
the affine transformations L1, L3, L5, L7, exp2 and exp4, while sec_aes_sbox
uses the affine transformations af, exp2, exp4 and exp16.

The results are reported in Table 3. All those benchmarks are proved using
our term rewriting system solely except for the three incorrect ones marked
by 	. FISCHER scales up to masking order of 100 or even 200 for sec_mult,
which is remarkable. FISCHER also scales up to masking order of 30 or even
40 for sec_present_sbox. However, it is less scalable on sec_aes_sbox, as it
computes the multiplicative inverse x254 on shares, and the size of the term
encoding the equivalence problem explodes with the increase of the masking
order. Furthermore, to better demonstrate the effectiveness of our term writing
system in dealing with complicated procedures, we first use Algorithm 2 to derive
affine constants on sec_aes_sbox with ISW [58] and then directly apply SMT
solvers to solve the correctness constraints obtained at Line 9 of Algorithm 3.
It takes about 1 s to obtain the result on the first-order masking, while fails to
obtain the result within 20min on the second-order masking.

Table 3. Results on sec_mult and S-Boxes, where T.O. means time out (20 min), and
� means that the program is incorrect.

Ref. d

sec_mult sec_present_sbox sec_aes_sbox
5 10 20 50 100 200 1 2 5 10 20 30 40 1 2 4 5

ISW [58] 23 ms 33 ms 84 ms 1.0s 15s 545s 44 ms 51 ms 93 ms 535 ms 14s 118s T.O. 87 ms 234 ms 25s 160s
ISW [11] 26 ms 44 ms 100 ms 712 ms 7.3s 212s 54 ms 63 ms 110 ms 673 ms 17s 163s T.O. 108 ms 265 ms 23s 142s
ISW [8] 36 ms� 49 ms 109 ms 601 ms 3.2s 18s – 86 ms 142 ms� 237 ms 841 ms 2.4s 5.3s – 559 ms 9.7s 142s�

ISW [34] 34 ms 50 ms 98 ms 518 ms 3.1s 19s 67 ms 91 ms 137 ms 700 ms 20s 173s T.O. 140 ms 571 ms 63s T.O.
ISW [21] 30 ms 109 ms 224 ms 5.0s 152s T.O. 51 ms 61 ms 113 ms 354 ms 2.4s 9.7s 29s 133 ms 269 ms 13s 68s
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Table 4. Results on sec_mult and S-Boxes for HPC, DOM and CMS.

Ref. d

sec_mult sec_present_sbox sec_aes_sbox
0 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

HPC1 [20] 28 ms 30 ms 32 ms 35 ms 39 ms 42 ms 63 ms 72 ms 84 ms 98 ms 117 ms 104 ms 254 ms 1.8s 13s 67s
HPC2 [20] 23 ms 25 ms 26 ms 28 ms 31 ms 33 ms 57 ms 66 ms 75 ms 92 ms 110 ms 92 ms 244 ms 1.9s 13s 65s
DOM [35] 24 ms 24 ms 25 ms 26 ms 28 ms 29 ms 52 ms 60 ms 67 ms 77 ms 90 ms 80 ms 223 ms 1.8s 12s 66s
CMS [57] – – 24 ms – – – – 53 ms – – – – 211 ms – – –

A highlight of our findings is that FISCHER reports that sec_mult from [8]
and the S-boxes based on this version are incorrect when d = 5. After a careful
analysis, we found that indeed it is incorrect for any d ≡ 1 mod 4 (i.e., 5, 9, 13,
etc.). This is because [8] parallelizes the multiplication over the entire encodings
(i.e., tuples of shares) while the parallelized computation depends on the value
of d mod 4. When the reminder is 1, the error occurs.

7.4 Evaluation for More Boolean Masking Schemes

To demonstrate the applicability of FISCHER on a wider range of Boolean
masking schemes, we further consider glitch-resistant Boolean masking schemes:
HPC1, HPC2 [20], DOM [35] and CMS [57]. We implement the finite-field mul-
tiplication sec_mult using those masking schemes, as well as masked versions
of AES S-box and PRESENT S-box. We note that our implementation of DOM
sec_mult is derived from [20], and we only implement the 2nd-order CMS
sec_mult due to the difficulty of implementation. All other experimental set-
tings are the same as in Sect. 7.3.

The results are shown in Table 4. Our term rewriting system solely is able to
efficiently prove the correctness of finite-field multiplication sec_mult, masked
versions of AES S-box and PRESENT S-box using the glitch-resistant Boolean
masking schemes HPC1, HPC2, DOM and CMS. The verification cost of those
benchmarks is similar to that of benchmarks using the ISW scheme, demonstrat-
ing the applicability of FISCHER for various Boolean masking schemes.

Table 5. Results on sec_add, sec_add_modp and sec_a2b [17], where T.O. means time
out (20 min).

d k

sec_add sec_add_modp sec_a2b
2 3 4 6 8 12 16 2 3 4 6 8 12 2 3 4 6 8 12 16

1 34 ms 38 ms 42 ms 51 ms 61 ms 83 ms 109 ms 97 ms 248 ms 805 ms 7.5s 44s 623s 41 ms 48 ms 55 ms 70 ms 87 ms 121 ms 156 ms
2 35 ms 40 ms 45 ms 55 ms 65 ms 91 ms 124 ms 111 ms 331 ms 1.1s 11s 67s 936s 58 ms 74 ms 93 ms 134 ms 199 ms 523 ms 1.5s
3 36 ms 42 ms 47 ms 58 ms 71 ms 100 ms 139 ms 127 ms 417 ms 1.5s 15s 89s T.O. 73 ms 93 ms 118 ms 182 ms 293 ms 927 ms 3.0s
4 38 ms 44 ms 50 ms 62 ms 76 ms 109 ms 155 ms 144 ms 506 ms 1.9s 18s 112s T.O. 93 ms 130 ms 190 ms 676 ms 3.3s 49s 366s
5 39 ms 45 ms 51 ms 66 ms 81 ms 118 ms 168 ms 160 ms 586 ms 2.2s 22s 136s T.O. 109 ms 159 ms 256 ms 1.1s 6.5s 100s 746s
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7.5 Evaluation for Arithmetic/Boolean Masking Conversions

To demonstrate a wider applicability of FISCHER other than masked implemen-
tations of symmetric cryptography, we further evaluate FISCHER on three key
non-linear building blocks for bitsliced, masked implementations of lattice-based
post-quantum key encapsulation mechanisms (KEMs [17]). Note that KEMs are
a class of encryption techniques designed to secure symmetric cryptographic
key material for transmission using asymmetric (public-key) cryptography. We
implement the Boolean masked addition modulo 2k (sec_add), Boolean masked
addition modulo p (sec_add_modp) and the arithmetic-to-Boolean masking con-
version modulo 2k (sec_a2b) for various bit-width k and masking order d, where
p is the largest prime number less than 2k. Note that some bitwise operations
(e.g., circular shift) are expressed by affine transformations, and the modulo
addition is implemented by the simulation algorithm [17] in our implementa-
tions.

The results are reported in Table 5. FISCHER is able to efficiently prove the
correctness of these functions with various masking orders (d) and bit-width (k),
using the term rewriting system solely. With the increase of the bit-width k (resp.
masking order d), the verification cost increases more quickly for sec_add_modp
(resp. sec_a2b) than for sec_add. This is because sec_add_modp with bit-width
k invokes sec_add three times, two of which have the bit-width k + 1, and the
number of calls to sec_add in sec_a2b increases with the masking order d though
using the same bit-width as sec_a2b. These results demonstrate the applicability
of FISCHER for asymmetric cryptography.

8 Conclusion

We have proposed a term rewriting based approach to proving functional equiva-
lence between masked cryptographic programs and their original unmasked algo-
rithms over GF(2n). Based on this approach, we have developed a tool FISCHER
and carried out extensive experiments on various benchmarks. Our evaluation
confirms the effectiveness, efficiency and applicability of our approach.

For future work, it would be interesting to further investigate the theoretical
properties of the term rewriting system. Moreover, we believe the term rewriting
approach extended with more operations may have a greater potential in verify-
ing more general cryptographic programs, e.g., those from the standard software
library such as OpenSSL.
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