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Abstract. To alleviate the practical constraints for deploying deep neu-
ral networks (DNNs) on edge devices, quantization is widely regarded as
one promising technique. It reduces the resource requirements for com-
putational power and storage space by quantizing the weights and/or
activation tensors of a DNN into lower bit-width fixed-point numbers,
resulting in quantized neural networks (QNNs). While it has been empir-
ically shown to introduce minor accuracy loss, critical verified properties
of a DNN might become invalid once quantized. Existing verification
methods focus on either individual neural networks (DNNs or QNNs)
or quantization error bound for partial quantization. In this work, we
propose a quantization error bound verification method, named QEB-
Verif, where both weights and activation tensors are quantized. QEBVerif
consists of two parts, i.e., a differential reachability analysis (DRA) and
a mixed-integer linear programming (MILP) based verification method.
DRA performs difference analysis between the DNN and its quantized
counterpart layer-by-layer to compute a tight quantization error inter-
val efficiently. If DRA fails to prove the error bound, then we encode
the verification problem into an equivalent MILP problem which can
be solved by off-the-shelf solvers. Thus, QEBVerif is sound, complete,
and reasonably efficient. We implement QEBVerif and conduct extensive
experiments, showing its effectiveness and efficiency.

1 Introduction

In the past few years, the development of deep neural networks (DNNs) has
grown at an impressive pace owing to their outstanding performance in solving
various complicated tasks [23,28]. However, modern DNNs are often large in
size and contain a great number of 32-bit floating-point parameters to achieve
competitive performance. Thus, they often result in high computational costs
and excessive storage requirements, hindering their deployment on resource-
constrained embedded devices, e.g., edge devices. A promising solution is to
quantize the weights and/or activation tensors as fixed-point numbers of lower
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bit-width [17,21,25,35]. For example, TensorFlow Lite [18] supports quantiza-
tion of weights and/or activation tensors to reduce the model size and latency,
and Tesla FSD-chip [61] stores all the data and weights of a network in the form
of 8-bit integers.

In spite of the empirically impressive results which show there is only minor
accuracy loss, quantization does not necessarily preserve properties such as
robustness [16]. Even worse, input perturbation can be amplified by quanti-
zation [11,36], worsening the robustness of quantized neural networks (QNNs)
compared to their DNN counterparts. Indeed, existing neural network quan-
tization methods focus on minimizing its impact on model accuracy (e.g., by
formulating it as an optimization problem that aims to maximize the accu-
racy [27,43]). However, they cannot guarantee that the final quantization error
is always lower than a given error bound, especially when some specific safety-
critical input regions are concerned. This is concerning as such errors may lead to
catastrophes when the quantized networks are deployed in safety-critical appli-
cations [14,26]. Furthermore, analyzing (in particular, quantifying) such errors
can also help us understand how quantization affect the network behaviors [33],
and provide insights on, for instance, how to choose appropriate quantization
bit sizes without introducing too much error. Therefore, a method that soundly
quantifies the errors between DNNs and their quantized counterparts is highly
desirable.

There is a large and growing body of work on developing verification
methods for DNNs [2,12,13,15,19,24,29,30,32,37,38,51,54,55,58-60,62] and
QNNs [1,3,16,22,46,66,68], aiming to establish a formal guarantee on the net-
work behaviors. However, all the above-mentioned methods focus exclusively on
verifying individual neural networks. Recently, Paulsen et al. [48,49] proposed
differential verification methods, aimed to establish formal guarantees on the
difference between two DNNs. Specifically, given two DNNs N; and N> with the
same network topology and inputs, they try to prove that [N (x) — Na(x)| < €
for all possible inputs x € X, where X is the interested input region. They
presented fast and sound difference propagation techniques followed by a refine-
ment of the input region until the property can be successfully verified, i.e., the
property is either proved or falsified by providing a counterexample. This idea
has been extended to handle recurrent neural networks (RNNs) [41] though the
refinement is not considered therein. Although their methods [41,48,49] can be
used to analyze the error bound introduced by quantizing weights (called par-
tially QNNs), they are not complete and cannot handle the cases where both
the weights and activation tensors of a DNN are quantized to lower bit-width
fixed-point numbers (called fully QNNs). We remark that fully QNN can signifi-
cantly reduce the energy-consumption (floating-point operations consume much
more energy than integer-only operations) [61].

Main Contributions. We propose a sound and complete Quantization Error
Bound Verification method (QEBVerif) to efficiently and effectively verify if the
quantization error of a fully QNN w.r.t. an input region and its original DNN
is always lower than an error bound (a.k.a. robust error bound [33]). QEBVerif
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first conducts a novel reachability analysis to quantify the quantization errors,
which is referred to as differential reachability analysis (DRA). Such an analysis
yields two results: (1) Proved, meaning that the quantization error is proved to
be always less than the given error bound; or (2) Unknown, meaning that it fails
to prove the error bound, possibly due to a conservative approximation of the
quantization error. If the outcome is Unknown, we further encode this quanti-
zation error bound verification problem into an equivalent mixed-integer linear
programming (MILP) problem, which can be solved by off-the-shelf solvers.

There are two main technical challenges that must be addressed for DRA.
First, the activation tensors in a fully QNN are discrete values and contribute
additional rounding errors to the final quantization errors, which are hard to
propagate symbolically and make it difficult to establish relatively accurate dif-
ference intervals. Second, much more activation-patterns (i.e., 3 x 6 = 18) have
to consider in a forward propagation, while 9 activation-patterns are sufficient
in [48,49], where an activation-pattern indicates the status of the output range
of a neuron. A neuron in a DNN under an input region has 3 patterns: always-
active (i.e., output > 0), always-inactive (i.e., output < 0), or both possible. A
neuron in a QNN has 6 patterns due to the clamp function (cf. Definition 2).
We remark that handling these different combinations efficiently and soundly is
highly nontrivial. To tackle the above challenges, we propose sound transforma-
tions for the affine and activation functions to propagate quantization errors of
two networks layer-by-layer. Moreover, for the affine transformation, we provide
two alternative solutions: interval-based and symbolic-based. The former directly
computes sound difference intervals via interval analysis [42], while the latter
leverages abstract interpretation [10] to compute sound and symbolic difference
intervals, using the polyhedra abstract domain. In comparison, the symbolic-
based one is usually more accurate but less efficient than the interval-based one.
Note that though existing tools can obtain quantization error intervals by inde-
pendently computing the output intervals of two networks followed by interval
subtractions, such an approach is often too conservative.

To resolve those problems that cannot be proved via our DRA, we resort to
the sound and complete MILP-based verification method. Inspired by the MILP
encoding of DNN and QNN verification [39,40,68], we propose a novel MILP
encoding for verifying quantization error bounds. QEBVerif represents both the
computations of the QNN and the DNN in mixed-integer linear constraints which
are further simplified using their own output intervals. Moreover, we also encode
the output difference intervals of hidden neurons from our DRA as mixed-integer
linear constraints to boost the verification.

We implement our method as an end-to-end tool and use Gurobi [20] as
our back-end MILP solver. We extensively evaluate it on a large set of verifica-
tion tasks using neural networks for ACAS Xu [26] and MNIST [31], where the
number of neurons varies from 310 to 4890, the number of bits for quantizing
weights and activation tensors ranges from 4 to 10 bits, and the number of bits
for quantizing inputs is fixed to 8 bits. For DRA, we compare QEBVerif with a
naive method that first independently computes the output intervals of DNNs
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and QNN using the existing state-of-the-art (symbolic) interval analysis [22,55],
and then conducts an interval subtraction. The experimental results show that
both our interval- and symbolic-based approaches are much more accurate and
can successfully verify much more tasks without the MILP-based verification. We
also find that the quantization error interval returned by DRA is getting tighter
with the increase of the quantization bit size. The experimental results also con-
firm the effectiveness of our MILP-based verification method, which can help
verify many tasks that cannot be solved by DRA solely. Finally, our results also
allow us to study the potential correlation of quantization errors and robustness
for QNNs using QEBVerif.

We summarize our contributions as follows:

— We introduce the first sound, complete, and reasonably efficient quantiza-
tion error bound verification method QEBVerif for fully QNNs by cleverly
combining novel DRA and MILP-based verification methods;

— We propose a novel DRA to compute sound and tight quantization error
intervals accompanied by an abstract domain tailored to QNNs, which can
significantly and soundly tighten the quantization error intervals;

— We implement QEBVerif as an end-to-end open-source tool [64] and conduct
an extensive evaluation on various verification tasks, demonstrating its effec-
tiveness and efficiency.

The source code of our tool and benchmarks are available at https://github.
com/S3L-official/QEBVerif. Missing proofs, more examples, and experimental
results can be found in [65].

2 Preliminaries

We denote by R,Z,N and B the sets of real-valued numbers, integers, natu-
ral numbers, and Boolean values, respectively. Let [n] denote the integer set
{1,...,n} for given n € N. We use BOLD UPPERCASE (e.g., W) and bold
lowercase (e.g., x) to denote matrices and vectors, respectively. We denote by
W, ; the j-entry in the i-th row of the matrix W, and by x; the i-th entry of

the vector x. Given a matrix W and a vector x, we use W and % (resp. W and
X) to denote their quantized/integer (resp. fixed-point) counterparts.

2.1 Neural Networks

A deep neural network (DNN) consists of a sequence of layers, where the first
layer is the input layer, the last layer is the output layer and the others are called
hidden layers. Each layer contains one or more neurons. A DNN is feed-forward
if all the neurons in each non-input layer only receive inputs from the neurons
in the preceding layer.

Definition 1 (Feed-forward Deep Neural Network). A feed-forward DNN
N : R" — R® with d layers can be seen as a composition of d functions such
that N =1lg0l4_10---0ly. Then, given an input x € R™, the output of the DNN
y = N(x) can be obtained by the following recursive computation:
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— Input layer l; : R® — R™ is the identity function, i.e., x' = I3 (x) = x;

— Hidden layer l; : R™-1 — R™ for 2 < i < d—1 is the function such that
Xi — lz_(xifl) — (i)(Wixi*l + bi),’

~ Output layer lg : R™-1 — R* is the function such that y = x¢ = l4(x?71) =
Wixd—1 4 b,

where n, =n, W and b? are the weight matriz and bias vector in the i-th layer,
and ¢(-) is the activation function which acts element-wise on an input vector.

In this work, we focus on feed-forward DNNs with the most commonly used acti-
vation functions: the rectified linear unit (ReLU) function, defined as ReLU(z) =
max(z,0). We also use ng to denote the output dimension s.

A quantized neural network (QNN) is structurally similar to its real-valued
counterpart, except that all the parameters, inputs of the QNN, and outputs of
all the hidden layers are quantized into integers according to the given quantiza-
tion scheme. Then, the computation over real-valued arithmetic in a DNN can
be replaced by the computation using integer arithmetic, or equally, fixed-point
arithmetic. In this work, we consider the most common quantization scheme, i.e.,
symmetric uniform quantization [44]. We first give the concept of quantization
configuration which effectively defines a quantization scheme.

A quantization configuration C is a tuple (1,Q, F'), where Q and F' are the
total bit size and the fractional bit size allocated to a value, respectively, and
7 € {+, £} indicates if the quantized value is unsigned or signed. Given a real
number z € R and a quantization configuration C = (7,Q, F), its quantized
integer counterpart & and the fixed-point counterpart & under the symmetric
uniform quantization scheme are:

# = clamp([2F - 2], C®, C") and 7 = 3/2F

where C'* =0 and C"? =29 —1if r = 4, C® = =291 and C"P = 29~1 —1 oth-
erwise, and |-] is the round-to-nearest integer operator. The clamping function
clamp(z, a, b) with a lower bound a and an upper bound b is defined as:

a, ifx <a;
clamp(z,a,b) = ¢z, ifa<z<b
b, ifx>0b.

Definition 2 (Quantized Neural Network). Given quantization configura-
tions for the weights, biases, output of the input layer and each hidden layer as
Cow = <7-w7 Quan>; Cp = <7-b7 Qban>; Cin = <Tina Qinan’n>; Ch = <Tha Qhn, Fh>;
the quantized version (i.e., QNN) of a DNN N with d layers is a function
N :Z" — R® such that N = lyolyq0---0l;. Then, given a quantized input
x € Z", the output of the QNN y = ./\A/()E) can be obtained by the following
recursive computation:

— Input layer 1 : Z" — Z™ s the identity function, i.e., X! = [1(X) = X;

— Hidden layer I; s Zmi— — 7z for 2 <i<d-—1 is the function such that for

each j € [n;],
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(a) DNN A,. (b) QNN N..

Fig. 1. A 3-layer DNN N, and its quantized version ./\76.

t = clamp([?FiW;: D 2F’L_be)ﬂ,0, CP),
where F; is F’} — Fy, — Fy, ifi =2, and —F,, otherwise; .

~ Output layer lq : Z"+=1 — R® is the function such that y = %% = [4(x%1) =
2 P14 2Fr il

where for every 2 <i < d and k € [n;_1], \/7\ij = clamp(LQFWWj.,k],Cg’,C;b) is
the quantized weight and B; = clamp(LQbeé-],Céb,Cl‘jb) is the quantized bias.

We remark that 277 and 27»~% in Definition 2 are used to align the precision
between the inputs and outputs of hidden layers, and F; for i = 2 and i > 2
because quantization bit sizes for the outputs of the input layer and hidden layers
can be different.

2.2 Quantization Error Bound and Its Verification Problem

We now give the formal definition of the quantization error bound verification
problem considered in this work as follows.

Definition 3 (Quantization Error Bound). Given a DNN N : R" — R®,
the corresponding QNNA7 12" — R?, a quantized input x € Z", a radius r € N
and an error bound € € R. The QNN N has a quantization error bound of € w.r.t.
the input region R(X,7r) = {X' € Z" | ||X — X||oo < r} if for every X’ € R(%,7),

o~

we have [|27Fr N'(X) — N(X')|| oo < €, where x' = %' /(C2P — CIP).

Intuitively, quantization-error-bound is the bound of the output difference of
the DNN and its quantized counterpart for all the inputs in the input region. In
this work, we obtain the input for DNN via dividing %’ by (C2> — CIP) to allow
input normalization. Furthermore, 27+ is used to align the precision between
the outputs of QNN and DNN.

Ezample 1. Consider the DNN N, with 3 layers (one input layer, one hidden
layer, and one output layer) given in Fig. 1, where weights are associated with the
edges and all the biases are 0. The quantization configurations for the weights,
the output of the input layer and hidden layer are C,, = (£,4,2), C;p, = (+,4,4)
and C, = (+,4,2). Its QNN A, is shown in Fig. 1.
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Given a quantized input x = (9,6) and a radius r» = 1, the input region for
QNN N, is R((9,6),1) = {(z,y) € Z2 | 8 < 2 < 10,5 < y < 7}. Since C* = 15
and C® = 0, by Definitions 1, 2, and 3, we have the maximum quantization error
as max(272N,(X') — N.(X/15)) = 0.067 for X' € R((9,6),1). Then, N, has a
quantization error bound of € w.r.t. input region R((9, 6), 1) for any € > 0.067.

We remark that if only weights are quantized and the activation tensors
are floating-point numbers, the maximal quantization error of N, for the input
region R((9,6),1) is 0.04422, which implies that existing methods [48,49] cannot
be used to analyze the error bound for a fully QNN.

In this work, we focus on the quantization error bound verification problem
for classification tasks. Specifically, for a classification task, we only focus on the
output difference of the predicted class instead of all the classes. Hence, given
a DNN N, a corresponding QNN N, a quantized input % which is classified
to class g by the DNN N/, a radius 7 and an error bound ¢, the quantization
error bound property P(N, N %, €) for a classification task can be defined as
follows:

Nsengn (127N &)y = Nl <) A (X' =%/ (€l = CR))

Note that N(~)g denotes the g-th entry of the vector N(-).

2.3 DEeEerPoLy

We briefly recap DEEPPOLY [55], which will be leveraged in this work for com-
puting the output of each neuron in a DNN.

The core idea of DEEPPOLY is to give each neuron an abstract domain in the
form of a linear combination of the variables preceding the neuron. To achieve
this, each hidden neuron xi (the j-th neuron in the ¢-th layer) in a DNN is
o such that x}, = Y705 Wi xi ! + b} (affine
function) and xJ 1 = ReLU(x} ) (ReLU function). Then, the affine function is
characterized as an abstract transformer using an upper polyhedral computa-
tion and a lower polyhedral computation in terms of the variables xk 11 Finally,
it recursively substitutes the variables in the upper and lower polyhedral com-
putations with the corresponding upper/lower polyhedral computations of the
variables until they only contain the input variables from which the concrete
intervals are computed.

Formally, the abstract element A’ _ for the node x} _ (s € {0,1}) is a tuple

< ; e 0>
A’ = (a 35 ,ays ,l; U5 o), where ay > and a3 are respectlvely the lower and

upper polyhedral cornputatlons in the form of a linear comblnatlon of the vari-
ables xz Dsifs =0or X o8 if s =1, l; s € Rand uj ; € R are the concrete
lower and upper bound of the neuron. Then, the concretlzation of the abstract

element .A;SISF(.Ai )—{m€R|a’— <x/\x<al’—}.

,< 1;_ < Ti— 1 % i
Concretely, a7y and a77 are defined as a5 = a5 = >, W} kxk 1 +b

Furthermore, we can repeatedly substitute every Varlable in a] 5 (resp a] 5 ) with

seen as two nodes X 0 and x%
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its lower (resp. upper) polyhedral computation according to the coefficients until
no further substitution is possible. Then, we can get a sound lower (resp. upper)
bound in the form of a linear combination of the input variables based on which
l;,o (resp. uj»,o) can be computed immediately from the given input region.

For ReLU function xj-,l = ReLU(xévo), there are three cases to consider of
the abstract element A’ ;:

7,<

. -~ , .
~ Ifuf, <0, then ayy =ay7 = 0,11, =uj, =0;
i LS oS 2 62 g i i
- Ifl;y >0, thena/; =a/g, a;] =a;5, 5, U5 0 and ujy = uj o
i i 0> Upo(Go—lio) i<\
= Iflj g <O0Aujo >0, then ajT = A = Ax’ o where A € {0,1}

such that thg area of resulting shape by aj? and ajlz is minimal, lj»,l = Al;,o
l

—
and uj; = ul .

Note that DEEPPOLY also introduces transformers for other functions, such
as sigmoid, tanh, and maxpool functions. In this work, we only consider DNNs
with only ReLU as non-linear operators.

3 Methodology of QEBVerif

In this section, we first give an overview of our quantization error bound verifi-
cation method, QEBVerif, and then give the detailed design of each component.

3.1 Overview of QEBVerif

An overview of QEBVerif is shown in Fig.2. Given a DNN N/, its QNN ./\A/', a
quantization error bound € and an input region consisting of a quantized input x
and a radius 7, to verify the quantization error bound property P(N, N, X,r,¢€),
QEBVerif first performs a differential reachability analysis (DRA) to compute
a sound output difference interval for the two networks. Note that, the differ-
ence intervals of all the neurons are also recorded for later use. If the output
difference interval of the two networks is contained in [—e, €], then the prop-
erty is proved and QEBVerif outputs “Proved”. Otherwise, QEBVerif leverages
our MILP-based quantization error bound verification method by encoding the
problem into an equivalent mixed integer linear programming (MILP) problem
which can be solved by off-the-shelf solvers. To reduce the size of mixed inte-
ger linear constraints and boost the verification, QEBVerif independently applies
symbolic interval analysis on the two networks based on which some activation
patterns could be omitted. We further encode the difference intervals of all the
neurons from DRA as mixed integer linear constraints and add them to the MILP
problem. Though it increases the number of mixed integer linear constraints, it
is very helpful for solving hard verification tasks. Therefore, the whole verifi-
cation process is sound, complete yet reasonably efficient. We remark that the
MILP-based verification method is often more time-consuming and thus the first
step allows us to quickly verify many tasks first.
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@ Input QEBVerif
N "€glon| | pifferential MILP-based MILP
P Error || Reachability —{ Formal [— Solver
—* Boun Analysis Verification Gurobi —
<$ DNN T 7
Quantization Symbolic Interval Symbolic Interval Result
QNN Analysis for DNN Analysis for QNN

Fig. 2. An overview of QEBVerif.

3.2 Differential Reachability Analysis

Naively, one could use an existing verification tool in the literature to indepen-
dently compute the output intervals for both the QNN and the DNN, and then
compute their output difference directly by interval subtraction. However, such
an approach would be ineffective due to the significant precision loss.

Recently, Paulsen et al. [48] proposed RELUDIFF and showed that the accu-
racy of output difference for two DNNs can be greatly improved by propagating
the difference intervals layer-by-layer. For each hidden layer, they first compute
the output difference of affine functions (before applying the ReLU), and then
they use a ReLU transformer to compute the output difference after applying
the ReLU functions. The reason why RELUDIFF outperforms the naive method
is that RELUDIFF first computes part of the difference before it accumulates.
RELUDIFF is later improved to tighten the approximated difference intervals [49].
However, as mentioned previously, they do not support fully quantified neural
networks. Inspired by their work, we design a difference propagation algorithm
for our setting. We use S**(x}) (resp. S**(x%)) to denote the interval of the j-th
neuron in the i-th layer in the DNN (resp. QNN) before applying the ReLU func-
tion (resp. clamp function), and use S(x}) (resp. S(X’)) to denote the output
interval after applying the ReLU function (resp. clamp function). We use i
(resp. ¢;) to denote the difference interval for the i-th layer before (resp. after)
applying the activation functions, and use 51“; (resp. ¢;,;) to denote the interval
for the j-th neuron of the i-th layer. We denote by LB(-) and UB(-) the concrete
lower and upper bounds accordingly.

Based on the above notations, we give our difference propagation in Algo-
rithm 1. It works as follows. Given a DNN N, a QNN A and a quantized input
region R(X,r), we first compute intervals S (x’) and S(x’) for neurons in A
using symbolic interval analysis DEEPPOLY, and compute interval $*(x’) and

S(x}) for neurons in N using concrete interval analysis method [22]. Remark that
no symbolic interval analysis for QNNs exists. By Definition 3, for each quan-
tized input X’ for QNN, we obtain the input for DNN as x’ = x//(CE> — CI).
After precision alignment, we get the input difference as 27 Fingx’ — x/ =
(2= Fin —1/(CH> — CP))%’. Hence, given an input region, we get the output dif-
ference of the input layer: §; = (27i» —1/(C8> — CIP))S(%'). Then, we compute
the output difference J; of each hidden layer iteratively by applying the affine
transformer and activation transformer given in Algorithm 2 and Algorithm 3.
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Algorithm 1: Forward Difference Propagation

Input : DNN N, QNN ./i\/' input region R(Z, )
output: Output difference interval ¢

1 Compute S“L(xb) and S(xi) for ¢ € [d — 1], j € [n;] using DEEPPOLY;
2 Compute S*" (xf) and S(xl) for ¢ € [d — 1], j € [n;] by applying interval analysis [22];
3 Initialize the difference: §; = (27 Fin — 1/(C“b - CEI,’L))S( by;

4 for :in 2,...,d—1do propagate in hidden layers

5 for jinl,...,n; do

6 Abl =27Tvbl —bl; ¢ =271

7 5% = AFFTRrs(W} 27 Fwwt ,AbL, S(xT1), 8501, £);

8 5” = ActTrs(8/%, 57" (x}), 2 Fhsi"()z;l));

9 propagate in the output layer

10 for jin 1,...,n4 do
11 Ab? :27be)? —b}i'-,

12 b4, =614 = AFFTRS(W?,:, 2’Fw\7\\/'_;{:, Ab?, S(x?1),84_1,0);

13 return (5i,j)2§'i§d,1§j§nd;

Algorithm 2: ArrTRs Function

Input : Weight vector W; weight vector \7\7;1:, bias difference Ab;’-, neuron interval
S(xFI)7 difference interval §;_1, rounding error &
output: Difference interval 6;";

1 1b=LB(W} 6;_1+ (Wi — Wi )Sx'"1)) + Ab’ — ¢;
2 ub=UB(W! &1+ (Wi, — Wi )S(x'"1)) + Ab + ¢
3 return [lb, ub];

Finally, we get the output difference for the output layer using only the affine
transformer.

Affine Transformer. The difference before applylng\the activation function for
the j-th neuron in the i-th layer is: 61" =27 Fn|2F W S(x =1y 4 2Fh— bez]

W’ S(xiTh)— b? where 27 is used to ahgn the precision between the outputs of

the ‘two networks (cf. Sect. 2). Then, we soundly remove the rounding operators
and give constraints for upper/lower bounds of 6“? as follows:

B(6/") < UB(2~F» (2F1W1 SEIY) 42— Frbl 40.5) - Wi S(x1) — bY)
B(6:%) > LB(2 P (2P W S(x7~1) + 25~ Frbi — 0.5) — W' S(x'~1) — bi)

Finally, we have UB(d;%) < UB (VVZ ST = Wi S(xT)) + Abl + € and
LB(0;%) > LB(W}:S(Q N - W S(x'™ b)) + Ab’ — &, which can be further
reformulated as follows:
UB(6;") < UB(W% i1+ AW S(x'71)) + Abl +¢
B(6i") > LB(W Bica +AW1 S( =1)) + Abj — ¢

where S(x71) = 27Fin§(x171) if i = 2, and 27+ S(%*71) otherwise. \7\7; =
2 o Wi AWE =W — Wi  Abl=2""bi —bi and £ =271,



QEBVerif: Quantization Error Bound Verification of Neural Networks 423

Algorithm 3: AcTTRs function

Input : Difference interval 6;”’1, neuron interval S’iﬂ/(x;), neuron interval S’iﬂ/(i;), clamp
upper bound ¢

output: Difference interval §; ;
1 if UB(S™"(x)) < 0 then b = clamp(LB(S*(X})), 0, t); ub = clamp(UB(S*"(k})), 0, t);
2 else if LB(S'"(x})) > 0 then
if UB(S™(x})) <t and LB(S""(%_’;)) >0 then b= LB(8;"); ub = UB(8{");
4 else if LB(S"™(X})) > t or UB(S"" (%)) < 0 then
5 Ib = clamp(LB(S*™(k})), 0, ) —UB(S™™ (x}));
6 ub = clamp(UB(Si"‘(i{;)), 0, t)—LB(Si"(x}));
7 else if UB(S'"(%X})) < t then
8
9

w

b = max(fUB(S"’"(x;)), LB(zﬂ@))7 ub = max(fLB(Sm(x;)), UB((Sl"J)),
else if LB(S"" (%)) > 0 then

10 Ib = min(t — UB(S™™(x})), LB(6{7)); ub = min(t — LB(S*™(x})), UB(5}™));
11 else

12 Ib = max(—UB(S""(x})), min(t — UB(S™™(x%)), LB(67"%)));

13 ub = max(—LB(5™(x})), min(t —LB(S*™(x%)), UB(8]™)));

14 else

15 if UB(S™(X})) < ¢ and LB(S™"(X})) > 0 then o v

16 Ib = min(LB(S"" (X})), LB(6}"})); ub = min(UB(S™" (%})), UB(8]";));

17 else if LB(S*"(X})) > t or UB(S""(x})) < 0 then ‘ ‘

18 b = clamp(LB(S'"(X})), 0, t)—UB(S'"(x})); ub = clamp(UB(S'"(x})), 0, t);
19 else if UB(S™(X])) < t then v o

20 b = max(LB(8;7;), —UB(S""(x}))); ub = min(UB(5;"), UB(S'"(%X})));

21 if UB(5;") < 0 then ub = 0;

22 if LB(5}") > 0 then 1b = 0;

23 else if LB(S™"(X})) > 0 then o ‘

24 Ib = min(LB(5}"), LB(S™™ (X)), t —UB(S™™(x}))); ub = min(UB(8"), t);
25 else

26 Ib = min(t —UB(S™™(x%)), 0, max(LB(5;%), —UB(S*™ (x}))));

27 ub = clamp(UB(éf;’;-), 0, t);

28 return [lb, ub] N ((Sm(ij) n[o,t) — (s (x;) N[0, +00)));

Activation Transformer. Now we give our activation transformer in Algo-
rithm 3 which computes the difference interval §; ; from the difference interval
5;7; Note that, the neuron interval S ()2;) for the QNN has already been con-
verted to the fixed-point counterpart S (5(17) =2"Fng (f(;) as an input parameter,
as well as the clamping upper bound (¢t = 2~ +Cp®). Different from RELUDIFF
[48] which focuses on the subtraction of two ReLU functions, here we investigate
the subtraction of the clamping function and ReLU function.

Theorem 1. If 7, = +, then Algorithm 1 is sound.

Ezxample 2. We exemplify Algorithm 1 using the networks N, and /Ve shown
in Fig. 1. Given quantized input region R((9,6),3) and the corresponding real-
valued input region R((0.6,0.4),0.2), we have S(x1) = [6,12] and S(x3) = [3,9].

First, we get S™(x3) = S(x?) = [0.36,0.92], S (x3) = [-0.4,0.2], S(x3) =
[0,0.2] based on DEEPPOLY and S™(x3) = S(x3) = [1,4], S™(x3) = [-2,1],
S(%3) = [0, 1] via interval analysis: LB(S"*(%?)) = | (5LB(%1) —UB(%3))/27%] =
1, UB(5™(x3)) = L(SUB(x})—LB(xb))/2 4] = 4, LB(S™(x3)) = |(~3UB(x})+
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3LB(x3))/274] = -2, and UB(S™(%3)) = | (- 3LB(x1) + 3UB(%3))/27%] = 1.
By Line 3 in Algorithm 1, we have §;; = S(x1) = [-0.05,-0.025],
12 = — ez S(%3) = [—0.0375, —0.0125].

Then, we compute the difference interval before the activation functions.
The rounding error is ¢ = 27f»~1 = 0.125. We obtain the difference intervals
(55"}1 = [-0.194375,0.133125] and (55"2 = [—0.204375,0.123125] as follows based
on Algorithm 2:

LB(ém ) = LB(VV1 1(51 1+ Wl 2(51 2 + AW 1S(X%) + AW%’QS(X%» — ¢
1.25 x LB(d1,1) — 0. 25 x UB(dy, 2) (1.25—1. 2) x LB(S(x1)) + (—0.25+0.2)
UB(S(x})) — 0.125, UB(0) = UB(W1 011 + W1 5012 + AW S(x})
AWiQS(x ) 4+ € = 1.25 x UB(S11) — 0.25 x LB(d1.0) + (1.25 — 1.2)
UB(S(x1)) 4 (—0.25 + 0.2) x LB(S(x3)) + 0.125;

~ LB(d%%) = LB(W), 611 + Wi,d10 + AW S(x]) + Awé’QS(xg)) =
—0.75 x UB(61,1) + 0.75 x LB(61.9) + (—0.75 + 0. 7) x UB(S(x})) + (0.75 —
0.8) x UB(S(x}))—0.125, UB(83%) = UB(W3} 1611+ W3 281 5+ AW S(x})+
AWQQS(XQ)) +&=—-0.75x LB(61.1) + 0.75 x UB(01.2) + (=0.75 + 0.7) x
LB(S(x!)) + (0.75 — 0.8) x LB(S(x})) + 0.125.

16><15

X 4+ X |

By Lines 20~22 in Algorithm 3, we get the difference intervals after the acti-

vation functions for the hidden layer as: o1 = 65 = [—0.194375,0.133125],
92,1 = [maX(LB((S%’fz), —UB(S™" (x%))) , min(UB(éész), UB(S™" (i%)))] =
[—0.2,0.123125].

Next, we compute the output difference interval of the networks using
Algorlthm 2 again but with £ = 0: LB(65}) = LB(W% 1021 + W1 2022 +
AW? | S(x7) + AW? ,5(x3)) = 0.25 x LB(d2,1) +0.75 x LB(6272) (0.25—0.3) x
UB(S(x7)) + (0.75 — 0.7) x LB(S(x3)), UB(65%) = UB(W3 1021 + Wi 5020 +

W%,ls(X%) + AW%QS(X%)) =0.25x UB((52,1) +0.75 x UB(6272) +(0.25—-0.3) x
LB(S(x2)) + (0.75—0.7) x UB(S(x3)). Finally, the quantization error interval is
[-0.24459375, 0.117625].

3.3 MILP Encoding of the Verification Problem

If DRA fails to prove the property, we encode the problem as an equivalent
MILP problem. Specifically, we encode both the QNN and DNN as sets of (mixed
integer) linear constraints, and quantize the input region as a set of integer linear
constraints. We adopt the MILP encodings of DNNs [39] and QNNs [40] to
transform the DNN and QNN into a set of linear constraints. We use (symbolic)
intervals to further reduce the size of linear constraints similar to [39] while [40]
did not. We suppose that the sets of constraints encoding the QNN, DNN, and
quantized input region are @5, O, and Op, respectively. Next, we give the
MILP encoding of the robust error bound property.

Recall that, given a DNN A/, an input region R(X, ) such that x is classified
to class ¢ by N, a QNN N has a quantization error bound € w.r.t. R(X,r) if
for every X’ € R(x,r), we have |27Fhﬂ\/(§<')g — N (x')4| < €. Thus, it suffices to
check if |2_Fh./\7(§<’)g — N (x')4| > € for some X' € R(x, 7).
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Let x¢ (resp. x%) be the g-th output of N (resp. ). We introduce a real-
valued variable 1 and a Boolean variable v such that n = max(2~f» 5{3 — Xg, 0)
can be encoded by the set @, of constraints with an extremely large number M:

={n>0,n>2""xd —x? n<M-v, <27z —xI + M- (1-0)}.
As a result, |27 thg d| >e€ 1ff the set of linear constraints 9 =0,U{2n—
(2= Fh Ag g) > €} holds.

Finally, the quantization error bound verification problem is equivalent to the
solving of the constraints: Op = O U Ox UOr U O,. Remark that the output
difference intervals of hidden neurons obtained from Algorithm 1 can be encoded
as linear constraints which are added into the set ©p to boost the solving.

4 An Abstract Domain for Symbolic-Based DRA

While Algorithm 1 can compute difference intervals, the affine transformer
explicitly adds a concrete rounding error interval to each neuron, which accu-
mulates into a significant precision loss over the subsequent layers. To alleviate
this problem, we introduce an abstract domain based on DEEPPOLY which helps
to compute sound symbolic approximations for the lower and upper bounds of
each difference interval, hence computing tighter difference intervals.

4.1 An Abstract Domain for QNNs

We first introduce transformers for affine transforms with rounding operators
and clamp functions in QNNs. Recall that the activation function in a QNN
N is also a min-ReL.U function: mln(ReLU(H) C b). Thus, we regard each

o} Xt —
hidden neuron x] in a QNN as three nodes X} ;, X} ;, and Xj 5 such that xj , =

[2F5 S WZ kfcz 5 + 2F”*beﬂ (affine function), X} ; = max(x} ;,0) (ReLU
Xj, 1,C“b) (min function). We now give the abstract
domain A;,p = (é; ;, A; ;,Z;p, 0 ) for each neuron X5 (p € {0,1,2}) in a QNN
as follows. _ _

Following DEEPPOLY, a%'5 and a75 for the affine function of Xi o with round-

ing operators are defined as 475 = 2% Y ! Wl WX +20 be’ — 0.5 and

alg = 2R W K th—be;. +0.5. We remark that +0.5 and —0.5
here are added to soundly encode the rounding operators and have no effect
on the perseverance of invariant since the rounding operators will add/subtract
0.5 at most to round each floating-point number into its nearest integer. The
abstract transformer for the ReLU function x}, = ReLU(x’ ) is defined the
same as DEEPPOLY.

For the min function X} , = min(%}

functlon) and Xj o = min(X;

ub < Ab .
X’ 1,Ci°), there are three cases for A} ,:

74 < _ at,> _ ~ub Ji 7 ub

-1t >Ch,then j2 = j,z—chaj,z 059 =Cp";
o ~ 1 A< A< A1, A>T ~7
Ifu 1 < Ch sthenays =aj7, a5 =a/7, [, =105, and 4, = 4 y;
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(a) (v, 1) = (0,C3"). (b) (v, 1) = (1,0).

Fig. 3. Convex approximation for the min function in QNNs, where Fig.3(a) and

Fig. 3(b) show the two ways where a = C.h' lli L and = w
J= Ui

N N i L A epe—it
- If 0, <GP Adl ) > CpP, then a}’% = A%}, + p and a}:% = u: l;’ix;-’l +
%lj 1» where (X, ) € {(0,Cp®), (1,0)} such that the area of resulting

shape by aji and a ’— is minimal, Z;Q = Z;l and a;2 = )\11;71 + 1. We show
the two ways of approx1mation in Fig. 3.

Theorem 2. The min abstract transformer preserves the following invariant:
I(A55) C [l 2,45 5).

From our abstract domain for QNNs, we get a symbolic interval analysis,
similar to the one for DNNs using DEEPPOLY, to replace Line 2 in Algorithm 1.

4.2 Symbolic Quantization Error Computation

Recall that to compute tight bounds of QNNs or DNNs via symbolic interval
analysis, variables in upper and lower polyhedral computations are recursively
substituted with the corresponding upper/lower polyhedral computations of vari-
ables until they only contain the input variables from which the concrete intervals
are computed. This idea motivates us to design a symbolic difference computa-
tion approach for differential reachability analysis based on the abstract domain
DeepPoOLY for DNNs and our abstract domain for QNNs.

Consider two hidden neurons xi _and f{i from the DNN N and the QNN

) S

A/ ka6, iy 2>, _ (ALSx 1,2, -
N.Let A7 = (ay ", a5 *,l;t, Z*>and./41 = (a5, a;p*,l;;, Z’k>bethe1r
abstract elements, respectively, Where all the polyhedral computations are linear

combinations of the input variables of the DNN and QNN, respectively, i.e.,

l<>k l* z>* w,* U,k
- _Zk 1kak b _Zk 1 W X, + b

Az,<,*7 ~ Lkl l* Az,>,*7 Au*A u*
T &p Doy WXy + by S w b

Then, the sound lower bound Al’ * and upper Au - bound of the difference can
be derived as follows, where p = 25
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Table 1. Benchmarks for QNNs and DNNs on MNIST.

Arch #Paras QNNs DNNs

R=4 Q=6 Q=8 Q=10
P1: 1blk 100 | ~ 79.5k | 96.38% 96.79% 96.77% 96.74% 96.92%
P2: 2blk 100 | ~ 89.6k | 96.01% 97.04% 97.00% 97.02% | 97.07%
P3: 3blk 100 @ ~ 99.7k | 95.53% 96.66% 96.59% 96.68% | 96.71%
P4: 2blk 512 | = 669.7k | 96.69% 97.41% 97.35% 97.36% | 97.36%
P5: 4blk 1024 | =~ 3,963k | 97.71% 98.05% 98.01% 98.04% | 97.97%

- 1,k —Fu 3 Az,<,* 1,2 %,
AlyS =LB(2 x]p ) =2- a —a;T
- T,k —Fn$ Fy, A1,>,* - 1, < %
Auj,s - UB( XJ P ) =27 Ap a5 -

Given a quantized input X of the QNN /(\/' the input difference of two networks
is 27 Fing —x = (27 FinC® — 1)x. Therefore, we have AL = x} —xi =27 Fingl —
x} = (27FinC — 1)x. Then, the lower bound of difference can be reformulated
as follows Wthh only contains the input variables of DNN N: All = Abl *
S (—wpt 2T chubvv;*)xk, where Ab’* = 2-Fibl* —bl*, . Fyp — Fh,
A} —fck—xk andwk =2 AL*.

Similarly, we can reformulated the upper bound Au“; as follows using the
input variables of the DNN: AuZ L= AbPT 3 (w27 )
where AbY* = 2 Fip!* — bg*, F* = Foy — F, and wk = 2w

Finally, we compute the concrete input difference interval ;" based on the
given input region as 4§, = [LB(AZ;-’B), UB(Au;:B)], with which we can replace
the AFFTRS functions in Algorithm 1 directly. An illustrating example is given
in [65].

5 Evaluation

We have implemented our method QEBVerif as an end-to-end tool written in
Python, where we use Gurobi [20] as our back-end MILP solver. All floating-
point numbers used in our tool are 32-bit. Experiments are conducted on a
96-core machine with Intel(R) Xeon(R) Gold 6342 2.80 GHz CPU and 1 TB
main memory. We allow Gurobi to use up to 24 threads. The time limit for each
verification task is 1h.

Benchmarks. We first build 45 * 4 QNNs from the 45 DNNs of ACAS Xu [26],
following a post-training quantization scheme [44] and using quantization con-
figurations C;, = (+,8,8), C,, = Cp = (£,Q,Q — 2), Cr, = (+,Q,Q — 2), where
Q € {4,6,8,10}. We then train 5 DNNs with different architectures using the
MNIST dataset [31] and build 5 * 4 QNNs following the same quantization
scheme and quantization configurations except that we set C;,, = (+,8,8) and
Cw = (£,Q,Q — 1) for each DNN trained on MNIST. Details on the networks
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trained on the MNIST dataset are presented in Tablel. Column 1 gives the
name and architecture of each DNN, where Ablk B means that the network
has A hidden layers with each hidden layer size B neurons, Column 2 gives the
number of parameters in each DNN, and Columns 3-7 list the accuracy of these
networks. Hereafter, we denote by Px-y (resp. Az-y) the QNN using the archi-
tecture Pz (using the a-th DNN) and quantization bit size Q = y for MNIST
(resp. ACAS Xu), and by Pa-Full (resp. Az-Full) the DNN of architecture Pz
for MNIST (resp. the z-th DNN in ACAS Xu).

5.1 Effectiveness and Efficiency of DRA

We first implement a naive method using existing state-of-the-art reachability
analysis methods for QNNs and DNNs. Specifically, we use the symbolic interval
analysis of DEEPPOLY [55] to compute the output intervals for a DNN, and
use interval analysis of [22] to compute the output intervals for a QNN. Then,
we compute quantization error intervals via interval subtraction. Note that no
existing methods can directly verify quantization error bounds and the methods
in [48,49] are not applicable. Finally, we compare the quantization error intervals
computed by the naive method against DRA in QEBVerif, using DNNs Ax-Full,
Py-Full and QNNs Az-z, Py-z for x = 1, y € {1,2,3,4,5} and 2z € {4,6,8,10}.
We use the same adversarial input regions (5 input points with radius r =
{3,6,13,19,26} for each point) as in [29] for ACAS Xu, and set the quantization
error bound € € {0.05,0.1,0.2,0.3,0.4}, i.e., resulting 25 tasks for each radius.
For MNIST, we randomly select 30 input samples from the test set of MNIST
and set radius r = 3 for each input sample and quantization error bound € €
{1,2,4,6,8}, resulting in a total of 150 tasks for each pair of DNN and QNN of
same architecture for MNIST.

Table2 reports the analysis results for ACAS Xu (above) and MNIST
(below). Column 2 lists different analysis methods, where QEBVerif (Int) is
Algorithm 1 and QEBVerif (Sym) uses a symbolic-based method for the affine
transformation in Algorithm 1 (cf. Sect.4.2). Columns (H _Diff) (resp. O Diff)
averagely give the sum ranges of the difference intervals of all the hidden neu-
rons (resp. output neurons of the predicted class) for the 25 verification tasks
for ACAS Xu and 150 verification tasks for MNIST. Columns (#S/T) list the
number of tasks (#S) successfully proved by DRA and average computation
time (T) in seconds, respectively, where the best ones (i.e., solving the most
tasks) are highlighted in blue. Note that Table 2 only reports the number of true
propositions proved by DRA while the exact number is unknown.

Unsurprisingly, QEBVerif (Sym) is less efficient than the others but is still
in the same order of magnitude. However, we can observe that QEBVerif (Sym)
solves the most tasks for both ACAS Xu and MNIST and produces the most
accurate difference intervals of both hidden neurons and output neurons for
almost all the tasks in MNIST, except for P1-8 and P1-10 where QEBVerif (Int)
performs better on the intervals for the output neurons. We also find that QEB-
Verif (Sym) may perform worse than the naive method when the quantization
bit size is small for ACAS Xu. It is because: (1) the rounding error added into



QEBVerif: Quantization Error Bound Verification of Neural Networks 429

Table 2. Differential Reachability Analysis on ACAS Xu and MNIST.

0 Method r=3 \ r=6 | r=13 | r=19 \ -
| \11 Diff O_Diff #S/T |H_Diff O_Diff #S/T |H_Diff O_Diff #S/T |[H_Diff O_Diff #S/T |H_Diff O_Diff #S/T
Naive 270.5 0.70 15/0.47 ‘ 423.7 0.99 9/0.52 ‘ 1,182 449 0/0.67 | 6,110  50.91 0/0.79 ‘ 18,255 186.6  0/0.81

QEBVerif (Int) | 2705 070 15/0.49 4234 099  9/0.53 1181 446 0/0.70 | 6,044 50.91 0/0.81 17,696 186.6 0/0.85
QEBVerif (Sym)| 749.4 1457  0/2.02 | 780.9 1502 0/211 | 1,347 2104 0/224 | 6,176 2547  0/2.35 | 18283 343.7 0/2.39

Naive 268.3 1.43 5/0.47 ‘ 557.2 4.00 0/0.51 ‘ 1,258 6.91  0/0.67 | 6,145 53.29 0/0.77 ‘ 18,299 189.0  0/0.82
QEBVerif (Int) | 2680 141  5/0.50 555.0 3.98 0/0.54 1245 6.90 0/0.69 | 6,125 53.28 0/0.80 18,218 189.0 0/0.83
QEBVerif (Sym) | 299.7 2.58 10/1.48 ‘ 365.1 3.53 9/1.59 ‘ 1,032 7.65  5/1.91 | 5946  85.46 4/2.15 ‘ 18,144 260.5  0/2.27

ES

Naive 397.2 3.57 0/0.47 ‘ 587.7 5.00 0/0.51 ‘ 1,266 790 0/0.67 | 6,160 54.27 0/0.78 ‘ 18,308 190.0  0/0.81
QEBVerif (Int) | 388.4 3.56 0/0.49 = 560.1 5.00 0/0.53 | 1,222 7.89  0/0.69 | 6,103 54.27 0/0.79 | 18,212 190.0 0/0.83
QEBVerif (Sym) | 35.75 0.01  24/1.10 ‘ 93.78 0.16  18/1.19 ‘ 845.2 584  8/1.65 | 5832 58.73 5/1.97 ‘ 18,033  209.6  5/2.12

3

| Naive 3045 367 0/0.49 | 5914 517  0/051 | 1,268 804 0/0.68 | 6164 5442 0/0.78 | 18312 190.1  0/0.80
10| QEBVerif (Int) | 361.9 3.67 0/0.50 5462 517 0/0.54 1209 804 0/0.68 | 6,083 5442 0/0.79 18182 1901 0/0.83

‘QEB\/erw' Sym) ‘ 15.55 0.01 54.29 0.06 22/1.15 4.53 5,780  57.21 5/1.91 ‘ 18,011  228.7 5/2.08
Pl P2 P3 P4 P5
o Mehod | . ! e SRS DR | .
| |H_Diff O_Diff #S/T |H_Diff O_Diff #S/T |H_Diff O_Diff #S/T |H_Diff O_Diff #S/T |H_Diff O_Diff #S/T
Naive 64.45 7.02 61/0.77 ‘ 220.9 20.27 0/1.53 ‘ 551.6 47.75  0/2.38 | 470.1 22.69 2/11.16 ‘ 5,336 1404 0/123.0
4 | QEBVerif (Int) | 32.86 6.65 63/0.78 1948 20.27 0/1.54 530.9 47.75 0/2.40 | 443.3  22.69 2/11.23 5,275 1404  0/123.4
QEBVerif (Sym) 32.69 3.14 88/1.31 ‘ 134.9 7.11 49/2.91 ‘ 313.8 14.90 1/5.08 | 365.2 1111 35/22.28 ‘ 1,864 50.30  1/310.2
Naive 68.94 7.89 66/0.77 ‘ 249.5  24.25 0/1.52 ‘ 616.2 54.66 0/2.38 | 6122 31.67 1/11.18 ‘ 7,399 221.0 0/125.4
6 | QEBVerif (Int) | 10.33 2.19 115/0.78 89.66 12.81 14/1.54 466.0 52.84 0/2.39 | 307.6 20.22 5/11.28 7,092  221.0 0/125.1

QEBVerif (Sym) | 10.18 146  130/1 34‘ 55.73 3.11 88/2.85 ‘ 131.3 533  70/4.72| 158.5 3.99 102 21.85‘ 861.9 12.67 22/279.9

Naive 69.15 7.95  64/0.77 ‘ 251.6  24.58 0/1.52 ‘ 623.1 5542 0/2.38 | 6206 3243 1/11.29 ‘ 7,542 226.1 0/125.3
QEBVerif (Int) 4.27 0.89 135/0.78 38.87 5.99 66/1.54 320.1 40.84 0/2.39 | 134.0 899 50/11.24 | 7,109 226.1 0/125.7
QEBVerif (Sym) | 4.13 1.02 136 1.35‘ 34.01 2.14 108, 282‘ 82.90 3.48  86/4.61| 96.26 2.39 128 21;’15‘ 675.7 6.20 27/273.6

3

Naive 69.18 7.96 65/0.77 ‘ 252.0 24.63 0/1.52 ‘ 624.0  55.55 0/2.36 | 620.4 32.40 1/11.19 ‘ 7,559 2269 0/124.2
QEBVerif (Int) 2.72 0.56 : 415  79/1.53 | 260.9 34.35 0/2.40 | 84.12 5.75 73/11.26 7,090 226.9 0/125.9
QEBVerif (Sym) | 2.61 0.92 139,’1433‘ 28.59 191 112 282‘ 71.33 3.06  92/4.56 | 81.08 2.01  131/21 r'18‘ 646.5 5.68 31/271.5

S

the abstract domain of the affine function in each hidden layer of QNNs is large
due to the small bit size, and (2) such errors can accumulate and magnify layer
by layer, in contrast to the naive approach where we directly apply the interval
subtraction. We remark that symbolic-based reachability analysis methods for
DNNs become less accurate as the network gets deeper and the input region
gets larger. It means that for a large input region, the output intervals of hid-
den/output neurons computed by symbolic interval analysis for DNNs can be
very large. However, the output intervals of their quantized counterparts are
always limited by the quantization grid limit, i.e., [0, 2 2Q 25=+]. Hence, the difference
intervals computed in Table2 can be very conservative for large input regions
and deeper networks.

5.2 Effectiveness and Efficiency of QEBVerif

We evaluate QEBVerif on QNNs Az-z, Py-z for z = 1, y € {1,2,3,4} and
z € {4,6,8,10}, as well as DNNs correspondingly. We use the same input regions
and error bounds as in Sect. 5.1 except that we consider r € {3,6,13} for each
input point for ACAS Xu. Note that, we omit the other two radii for ACAS Xu
and use medium-sized QNNs for MNIST as our evaluation benchmarks of this
experiment for the sake of time and computing resources.

Figure 4 shows the verification results of QEBVerif within 1h per task, which
gives the number of successfully verified tasks with three methods. Note that
only the number of successfully proved tasks is given in Fig.4 for DRA due
to its incompleteness. The blue bars show the results using only the symbolic
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differential reachability analysis, i.e., QEBVerif (Sym). The yellow bars give the
results by a full verification process in QEBVerif as shown in Fig. 2, i.e., we first
use DRA and then use MILP solving if DRA fails. The red bars are similar to
the yellow ones except that linear constraints of the difference intervals of hidden
neurons got from DRA are added into the MILP encoding.

Overall, although DRA successfully proved most of the tasks (60.19% with
DRA solely), our MILP-based verification method can help further verify many
tasks on which DRA fails, namely, 85.67% with DRA+MILP and 88.59% with
DRA+MILP+Diff. Interestingly, we find that the effectiveness of the added lin-
ear constraints of the difference intervals varies on the MILP solving efficiency
on different tasks. Our conjecture is that there are some heuristics in the Gurobi
solving algorithm for which the additional constraints may not always be helpful.
However, those difference linear constraints allow the MILP-based verification
method to verify more tasks, i.e., 79 tasks more in total.

5.3 Correlation of Quantization Errors and Robustness

We use QEBVerif to verify a set of properties ¥ = {PN,N, %, 7€)},
where N' = P1-Full, N € {P14,P18}, & € X and X is the set of
the 30 samples from MNIST as above, r € {3,5,7} and ¢ € 2 =
{0.5,1.0,1.5,2.0,2.5, 3.0, 3.5,4.0,5.0}. We solve all the above tasks and process
all the results to obtain the tightest range of quantization error bounds [a,b]
for each input region such that a,b € (2. It allows us to obtain intervals that
are tighter than those obtained via DRA. Finally, we implemented a robustness
verifier for QNNs in a way similar to [40] to check the robustness of P1-4 and
P1-8 w.r.t. the input regions given in ¥.

Figure5 gives the experimental results. The blue (resp. yellow) bars in
Figs. 5(a) and 5(e) show the number of robust (resp. non-robust) samples among
the 30 verification tasks, and blue bars in the other 6 figures demonstrate the
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quantization error interval for each input region. By comparing the results of
P1-8 and P1-4, we observe that P1-8 is more robust than P1-4 w.r.t. the 90
input regions and its quantization errors are also generally much smaller than
that of P1-4. Furthermore, we find that P1-8 remains consistently robust as the
radius increases, and its quantization error interval changes very little. However,
P1-4 becomes increasingly less robust as the radius increases and its quantiza-
tion error also increases significantly. Thus, we speculate that there may be some
correlation between network robustness and quantization error in QNNs. Specif-
ically, as the quantization bit size decreases, the quantization error increases
and the QNN becomes less robust. The reason we suspect “the fewer bits, the
less robust” is that with fewer bits, a perturbation may easily cause significant
change on hidden neurons (i.e., the change is magnified by the loss of precision)
and consequently the output. Furthermore, the correlation between the quanti-
zation error bound and the empirical robustness of the QNN suggests that it is
indeed possible to apply our method to compute the quantization error bound
and use it as a guide for identifying the best quantization scheme which balances
the size of the model and its robustness.

6 Related Work

While there is a large and growing body of work on quality assurance tech-
niques for neural networks including testing (e.g., [4-7,47,50,56,57,63,69]) and
formal verification (e.g., [2,8,12,13,15,19,24,29,30,32,34,37,38,51,54,55,58-60,
62,70]). Testing techniques are often effective in finding violations, but they
cannot prove their absence. While formal verification can prove their absence,
existing methods typically target real-valued neural networks, i.e., DNNs, and
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are not effective in verifying quantization error bound [48]. In this section, we
mainly discuss the existing verification techniques for QNNs.

Early work on formal verification of QNNs typically focuses on 1-bit quan-
tized neural networks (i.e., BNNs) [3,9,46,52,53,66,67]. Narodytska et al. [46]
first proposed to reduce the verification problem of BNNs to a satisfiability prob-
lem of a Boolean formula or an integer linear programming problem. Baluta
et al. [3] proposed a PAC-style quantitative analysis framework for BNNs via
approximate SAT model-counting solvers. Shih et al. proposed a quantitative
verification framework for BNNs [52,53| via a BDD learning-based method [45].
Zhang et al. [66,67] proposed a BDD-based verification framework for BNNs,
which exploits the internal structure of the BNNs to construct BDD models
instead of BDD-learning. Giacobbe et al. [16] pushed this direction further by
introducing the first formal verification for multiple-bit quantized DNNs (i.e.,
QNNs) by encoding the robustness verification problem into an SMT formula
based on the first-order theory of quantifier-free bit-vector. Later, Henzinger et
al. [22] explored several heuristics to improve the efficiency and scalability of [16].
Very recently, [40,68] proposed an ILP-based method and an MILP-based verifi-
cation method for QNNs, respectively, and both outperform the SMT-based ver-
ification approach [22]. Though these works can directly verify QNNs or BNNs;
they cannot verify quantization error bounds.

There are also some works focusing on exploring the properties of two neural
networks which are most closely related to our work. Paulsen et al. [48,49] pro-
posed differential verification methods to verify two DNNs with the same network
topology. This idea has been extended to handle recurrent neural networks [41].
The difference between [41,48,49] and our work has been discussed throughout
this work, i.e., they focus on quantized weights and cannot handle quantized
activation tensors. Moreover, their methods are not complete, thus would fail to
prove tighter error bounds. Semi-definite programming was used to analyze the
different behaviors of DNNs and fully QNNs [33]. Different from our work focus-
ing on verification, they aim at generating an upper bound for the worst-case
error induced by quantization. Furthermore, [33] only scales tiny QNNs, e.g., 1
input neuron, 1 output neuron, and 10 neurons per hidden layer (up to 4 hidden
layers). In comparison, our differential reachability analysis scales to much larger
QNNs, e.g., QNN with 4890 neurons.

7 Conclusion

In this work, we proposed a novel quantization error bound verification method
QEBVerif which is sound, complete, and arguably efficient. We implemented it as
an end-to-end tool and conducted thorough experiments on various QNNs with
different quantization bit sizes. Experimental results showed the effectiveness and
the efficiency of QEBVerif. We also investigated the potential correlation between
robustness and quantization errors for QNNs and found that as the quantization
error increases the QNN might become less robust. For further work, it would be
interesting to investigate the verification method for other activation functions
and network architectures, towards which this work makes a significant step.
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