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Abstract. In this paper, we propose Android Stack Machine (ASM), a
formal model to capture key mechanisms of Android multi-tasking such
as activities, back stacks, launch modes, as well as task affinities. The
model is based on pushdown systems with multiple stacks, and focuses
on the evolution of the back stack of the Android system when interact-
ing with activities carrying specific launch modes and task affinities. For
formal analysis, we study the reachability problem of ASM. While the
general problem is shown to be undecidable, we identify expressive frag-
ments for which various verification techniques for pushdown systems or
their extensions are harnessed to show decidability of the problem.

1 Introduction

Multi-tasking plays a central role in the Android platform. Its unique design, via
activities and back stacks, greatly facilitates organizing user sessions through
tasks, and provides rich features such as handy application switching, back-
ground app state maintenance, smooth task history navigation (using the “back”
button), etc [16]. We refer the readers to Section 2 for an overview.

Android task management mechanism has substantially enhanced user expe-
riences of the Android system and promoted personalized features in app design.
However, the mechanism is also notoriously difficult to understand. As a witness,
it constantly baffles app developers and has become a common topic of question-
and-answer websites (for instance, [2]). Surprisingly, the Android multi-tasking
mechanism, despite its importance, has not been thoroughly studied before, let
along a formal treatment. This has impeded further developments of computer-
aided (static) analysis and verification for Android apps, which are indispensable
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for vulnerability analysis (for example, detection of task hijacking [16]) and app
performance enhancement (for example, estimation of energy consumption [8]).

This paper provides a formal model, i.e., Android Stack Machine (ASM),
aiming to capture the key features of Android multi-tasking. ASM addresses the
behavior of Android back stacks, a key component of the multi-tasking machin-
ery, and their interplay with attributes of the activity. In this paper, for these
attributes we consider four basic launch modes, i.e., standard (STD), singleTop
(STP), singleTask (STK), singleInstance (SIT), and task affinities. (For simplic-
ity more complicated activity attributes such as allowTaskReparenting will not
be addressed in the present paper.) We believe that the semantics of ASM, spec-
ified as a transition system, captures faithfully the actual mechanism of Android
systems. For each case of the semantics, we have created “diagnosis” apps with
corresponding launch modes and task affinities, and carried out extensive exper-
iments using these apps, ascertaining its conformance to the Android platform.
(Details will be provided in Section 3.)

For Android, technically ASM can be viewed as the counterpart of pushdown
systems with multiple stacks, which are the de facto model for (multi-threaded)
concurrent programs. Being rigours, this model opens a door towards a formal
account of Android’s multi-tasking mechanism, which would greatly facilitate de-
velopers’ understanding, freeing them from lengthy, ambiguous, elusive Android
documentations. We remark that it is known that the evolution of Android back
stacks could also be affected by the intent flags of the activities. ASM does not
address intent flags explicitly. However, the effects of most intent flags (e.g.,
FLAG ACTIVITY NEW TASK, FLAG ACTIVITY CLEAR TOP) can be simulated by
launch modes, so this is not a real limitation of ASM.

Based on ASM, we also make the first step towards a formal analysis of An-
droid multi-tasking apps by investigating the reachability problem which is fun-
damental to all such analysis. ASM is akin to pushdown systems with multiple
stacks, so it is perhaps not surprising that the problem is undecidable in general;
in fact, we show undecidability for most interesting fragments even with just two
launch modes. In the interest of seeking more expressive, practice-relevant decid-
able fragments, we identify a fragment STK-dominating ASM which assumes
STK activities have different task affinities and which further restricts the use
of SIT activities. This fragment covers a majority of open-source Android apps
(e.g., from Github) we have found so far. One of our technical contributions
is to give a decision procedure for the reachability problem of STK-dominating
ASM, which combines a range of techniques from simulations by pushdown sys-
tems with transductions [19] to abstraction methods for multi-stacks. The work,
apart from independent interests in the study of multi-stack pushdown systems,
lays a solid foundation for further (static) analysis and verification of Android
apps related to multi-tasking, enabling model checking of Android apps, secu-
rity analysis (such as discovering task hijacking), or typical tasks in software
engineering such as automatic debugging, model-based testing, etc.

We summarize the main contributions as follows: (1) We propose—to the best
of our knowledge—the first comprehensive formal model, Android stack machine,
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for Android back stacks, which is also validated by extensive experiments. (2) We
study the reachability problem for Android stack machine. Apart from strongest
possible undecidablity results in the general case, we provide a decision procedure
for a practically relevant fragment.

2 Android stack machine: An informal overview

In Android, an application, usually referred to as an app, is regarded as a collec-
tion of activities. An activity is a type of app components, an instance of which
provides a graphical user interface on screen and serves the entry point for inter-
acting with the user [1]. An app typically has many activities for different user
interactions (e.g., dialling phone numbers, reading contact lists, etc). A distin-
guished activity is the main activity, which is started when the app is launched.
A task is a collection of activities that users interact with when performing a
certain job. The activities in a task are arranged in a stack in the order in which
each activity is opened. For example, an email app might have one activity to
show a list of latest messages. When the user selects a message, a new activity
opens to view that message. This new activity is pushed to the stack. If the user
presses the “Back” button, an activity is finished and is popped off the stack. [In
practice, the onBackPressed() method can be overloaded and triggered when the
“Back” button is clicked. Here we assume—as a model abstraction—that the on-
BackPressed() method is not overloaded.] Furthermore, multiple tasks may run
concurrently in the Android platform and the back stack stores all the tasks as
a stack as well. In other words, it has a nested structure being a stack of stacks
(tasks). We remark that in android, activities from different apps can stay in the
same task, and activities from the same app can enter different tasks.

Typically, the evolution of the back stack is dependent mainly on two at-
tributes of activities: launch modes and task affinities. All the activities of an
app, as well as their attributes, including the launch modes and task affinities,
are defined in the manifest file of the app. The launch mode of an activity decides
the corresponding operation of the back stack when the activity is launched. As
mentioned in Section 1, there are four basic launch modes in Android: “stan-
dard”, “singleTop”, “singleTask” and “singleInstance”. The task affinity of an
activity indicates to which task the activity prefers to belong. By default, all the
activities from the same app have the same affinity (i.e., all activities in the same
app prefer to be in the same task). However, one can modify the default affinity
of the activity. Activities defined in different apps can share a task affinity, or
activities defined in the same app can be assigned with different task affinities.
Below we will use a simple app to demonstrate the evolution of the back stack.

Example 1. In Fig. 1, an app ActivitiesLaunchDemo1 is illustrated. The app
contains four activities of the launch modes STD, STP, STK and SIT, depicted
by green, blue, yellow and red, respectively. We will use the colours to name the
activities. The green, blue and red activities have the same task affinity, while

1 Adapted from an open-source app https://github.com/wauoen/LaunchModeDemo
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the yellow activity has a distinct one. The main activity of the app is the green
activity. Each activity contains four buttons, i.e., the green, blue, yellow and red
button. When a button is clicked, an instance of the activity with the colour
starts. Moreover, the identifiers of all the tasks of the back stack, as well as
their contents, are shown in the white zones of the window. We use the following
execution trace to demonstrate how the back stack evolves according to the
launch modes and the task affinities of the activities: The user clicks the buttons
in the order of green, blue, blue, yellow, red, and green.
1. [Launch the app] When the app is launched, an instance of the main activity
starts, and the back stack contains exactly one task, which contains exactly one
green activity (see Fig. 1(a)). For convenience, this task is called the green task
(with id: 23963).
2. [Start an STD activity] When the green button is clicked, since the launch
mode of the green activity is STD, a new instance of the green activity starts
and is pushed into the green task (see Fig. 1(b)).
3. [Start an STP activity] When the blue button is clicked, since the top activity
of the green task is not the blue activity, a new instance of the blue activity is
pushed into the green task (see Fig. 1(c)). On the other hand, if the blue button
is clicked again, because the launch mode of the blue activity is STP and the
top activity of the green task is already the blue one, a new instance of the blue
activity will not be pushed into the green task and its content is kept unchanged.
4. [Start an STK activity] Suppose now that the yellow button is clicked, since
the launch mode of the yellow activity is STK, and the task affinity of the yellow
activity is different from that of the bottom activity of the green task, a new
task is created and an instance of the yellow activity is pushed into the new task
(called the yellow task, with id: 23964, see Fig. 1(d), where the leftmost task is
the top task of the back stack).
5. [Start an SIT activity] Next, suppose that the red button is clicked, because
the launch mode of the red activity is SIT, a new task is created and an instance
of the red activity is pushed into the new task (called the red task, with id:
23965, see Fig. 1(e)). Moreover, at any future moment, the red activity is the
only activity of the red task. Note that here a new task is created in spite of the
affinity of the red activity.
6. [Start an STD activity from an SIT activity] Finally, suppose the green button
is clicked again. Since the top task is the red task, which is supposed to contain
only one activity (i.e., the red activity), the green task is then moved to the top
of the back stack and a new instance of the green activity is pushed into the
green task (see Fig. 1(f)).

3 Android stack machine

For k ∈ N, let [k] = {1, · · · , k}. For a function f : X → Y , let dom(f) and rng(f)
denote the domain (X) and range (Y ) of f respectively.

Definition 1 (Android stack machine). An Android stack machine (ASM)
is a tuple A = (Q,Sig, q0, ∆), where
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(a) (b) (c) (d) (e) (f)

Fig. 1: ActivitiesLaunchDemo: The running example

– Q is a finite set of control states, and q0 ∈ Q is the initial state,
– Sig = (Act, Lmd,Aft, A0) is the activity signature, where

• Act is a finite set of activities,
• Lmd : Act→ {STD,STP,STK,SIT} is the launch-mode function,
• Aft : Act→ [m] is the task-affinity function, where m = |Act|,
• A0 ∈ Act is the main activity,

– ∆ ⊆ Q × (Act ∪ {.}) × Inst × Q is the transition relation, where Inst =
{�, back}∪{start(A) | A ∈ Act}, such that (1) for each transition (q, A, α, q′) ∈
∆, it holds that q′ 6= q0, and (2) for each transition (q, ., α, q′) ∈ ∆, it holds
that q = q0, α = start(A0), and q′ 6= q0.

For convenience, we usually write a transition (q, A, α, q′) ∈ ∆ as q
A,α−−→ q′, and

(q, ., α, q′) ∈ ∆ as q
.,α−−→ q′. Intuitively, . denotes an empty back stack, � denotes

there is no change over the back stack, back denotes the pop action, and start(A)
denotes the activity A being started. We assume that, if the back stack is empty,
the Android stack system terminates (i.e., no further continuation is possible)
unless it is in the initial state q0, We use Act? to denote {B ∈ Act | Lmd(B) = ?}
for ? ∈ {STD,STP,STK,SIT}.
Semantics. Let A = (Q,Sig, q0, ∆) be an ASM with Sig = (Act, Lmd,Aft, A0).

A task of A is encoded as a word S = [A1, · · · , An] ∈ Act+ which denotes
the content of the stack, with A1 (resp. An) as the top (resp. bottom) symbol,
denoted by top(S) (resp. btm(S)). We also call the bottom activity of a
non-empty task S as the root activity of the task. (Intuitively, this is the
first activity of the task.) For ? ∈ {STD,STP,STK,SIT}, a task S is called a
?-task if Lmd(btm(S)) = ?. We define the affinity of a task S, denoted by Aft(S),
to be Aft(btm(S)). For S1 ∈ Act∗ and S2 ∈ Act∗, we use S1 · S2 to denote the
concatenation of S1 and S2, and ε is used to denote the empty word in Act∗.

As mentioned in Section 2, the (running) tasks on Android are organized as
the back stack, which is the main modelling object of ASM. Typically we write
a back stack ρ as a sequence of non-empty tasks, i.e., ρ = (S1, · · · , Sn), where
S1 and Sn are called the top and the bottom task respectively. (Intuitively, S1

is the currently active task.) ε is used to denote the empty back stack. For a
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non-empty back stack ρ = (S1, · · · , Sn), we overload top by using top(ρ) to refer
to the task S1, and thus top2(ρ) the top activity of S1.

Definition 2 (Configurations). A configuration of A is a pair (q, ρ) where q ∈
Q and ρ is a back stack. Assume that ρ = (S1, · · · , Sn) with Si = [Ai,1, · · · , Ai,mi ]
for each i ∈ [n]. We require ρ to satisfy the following constraints:

1. For each A ∈ ActSTK or A ∈ ActSIT, A occurs in at most one task. Moreover,
if A occurs in a task, then A occurs at most once in that task. [At most
one instance for each STK/SIT-activity]

2. For each i ∈ [n] and j ∈ [mi − 1] such that Ai,j ∈ ActSTP, Ai,j 6= Ai,j+1.
[Non-stuttering for STP-activities]

3. For each i ∈ [n] and j ∈ [mi] such that Ai,j ∈ ActSTK, Aft(Ai,j) = Aft(Si).
[Affinities of STK-activities agree to the host task]

4. For each i ∈ [n] and j ∈ [mi] such that Ai,j ∈ ActSIT, mi = 1. [SIT-
activities monopolize a task]

5. For i 6= j ∈ [n] such that btm(Si) 6∈ ActSIT and btm(Sj) 6∈ ActSIT, Aft(Si) 6=
Aft(Sj). [Affinities of tasks are mutually distinct, except for those
rooted at SIT-activities]

By Definition 2(5), each back stack ρ contains at most |ActSIT|+ |rng(Aft)| (more
precisely, |ActSIT| + |{Aft(A) | A ∈ Act \ ActSIT}|) tasks. Moreover, by Defini-
tion 2(1-5), all the root activities in a configuration are pairwise distinct, which
allows to refer to a task whose root activity is A as the A-task.

Let ConfA denote the set of configurations of A. The initial configuration of
A is (q0, ε). To formalize the semantics of A concisely, we introduce the following
shorthand stack operations and one auxiliary function. Here ρ = (S1, · · · , Sn) is
a non-empty back stack.

Noaction(ρ) ≡ ρ Push(ρ,B) ≡ (([B] · S1), S2, · · · , Sn)
NewTask(B) ≡ ([B]) NewTask(ρ,B) ≡ ([B], S1, · · · , Sn)

Pop(ρ) ≡


ε, if n = 1 and S1 = [A];
(S2, · · · , Sn), if n > 1 and S1 = [A];
(S′1, S2, · · · , Sn), if S1 = [A] · S′1 with S′1 ∈ Act+;

PopUntil(ρ,B) ≡ (S′′1 , S2, · · · , Sn), where

S1 = S′1 · S′′1 with S′1 ∈ (Act \ {B})∗ and top(S′′1 ) = B;
Move2Top(ρ, i) ≡ (Si, S1, · · · , Si−1, Si+1, · · · , Sn)

GetNonSITTaskByAft(ρ, k) ≡
{
Si, if Aft(Si) = k and Lmd(btm(Si)) 6= SIT;
Undef, otherwise.

Intuitively, GetNonSITTaskByAft(ρ, k) returns a non-SIT task whose affinity is k
if it exists, otherwise returns Undef.

In the sequel, we define the transition relation (q, ρ)
A−→ (q′, ρ′) on ConfA to

formalize the semantics of A. We start with the transitions out of the initial
state q0 and those with � or back action.

– For each transition q0
.,start(A0)−−−−−−→ q, (q0, ε)

A−→ (q,NewTask(A0)).
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– For each transition q
A,�−−→ q′ and (q, ρ) ∈ ConfA such that top2(ρ) = A,

(q, ρ)
A−→ (q′,Noaction(ρ)).

– For each transition q
A,back−−−−→ q′ and (q, ρ) ∈ ConfA such that top2(ρ) = A,

(q, ρ)
A−→ (q′,Pop(ρ)).

The most interesting case is, however, the transitions of the form q
A,start(B)−−−−−−→

q′. We shall make case distinctions based on the launch mode of B. For each

transition q
A,start(B)−−−−−−→ q′ and (q, ρ) ∈ ConfA such that top2(ρ) = A, (q, ρ)

A−→
(q′, ρ′) if one of the following cases holds. Assume ρ = (S1, · · · , Sn).

Case Lmd(B) = STD

– Lmd(A) 6= SIT, then ρ′ = Push(ρ,B);
– Lmd(A) = SIT 2, then
• if GetNonSITTaskByAft(ρ,Aft(B)) = Si

3, then ρ′ = Push(Move2Top(ρ, i), B),
• if GetNonSITTaskByAft(ρ,Aft(B)) = Undef, then ρ′ = NewTask(ρ,B);

Case Lmd(B) = STP

– Lmd(A) 6= SIT and A 6= B, then ρ′ = Push(ρ,B);
– Lmd(A) 6= SIT and A = B, then ρ′ = Noaction(ρ);
– Lmd(A) = SIT 2,
• if GetNonSITTaskByAft(ρ,Aft(B)) = Si

3, then
∗ if top(Si) 6= B, ρ′ = Push(Move2Top(ρ, i), B),
∗ if top(Si) = B, ρ′ = Move2Top(ρ, i);

• if GetNonSITTaskByAft(ρ,Aft(B)) = Undef, then ρ′ = NewTask(ρ,B);

Case Lmd(B) = SIT

– A = B 2, then ρ′ = Noaction(ρ);
– A 6= B and Si = [B] for some i ∈ [n] 4, then ρ′ = Move2Top(ρ, i);
– A 6= B and Si 6= [B] for each i ∈ [n], then ρ′ = NewTask(ρ,B);

Case Lmd(B) = STK

– Lmd(A) 6= SIT and Aft(B) = Aft(S1), then
• if B does not occur in S1

5, then ρ′ = Push(ρ,B);
• if B occurs in S1

6, then ρ′ = PopUntil(ρ,B);
– Lmd(A) 6= SIT =⇒ Aft(B) 6= Aft(S1), then
• if GetNonSITTaskByAft(ρ,Aft(B)) = Si

7,

2 By Definition 2(4), S1 = [A].
3 If i exists, it must be unique by Definition 2(5). Moreover, i > 1, as Lmd(A) = SIT.
4 If i exists, it must be unique by Definition 2(1). Moreover, i > 1, as A 6= B.
5 B does not occur in ρ at all by Definition 2(3-5).
6 Note that B occurs at most once in S1 by Definition 2(1).
7 If i exists, it must be unique by Definition 2(5). Moreover, i > 1, as Lmd(A) 6=
SIT =⇒ Aft(B) 6= Aft(S1).
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∗ if B does not occur in Si
5, then ρ′ = Push(Move2Top(ρ, i), B);

∗ if B occurs in Si
8, then ρ′ = PopUntil(Move2Top(ρ, i), B),

• if GetNonSITTaskByAft(ρ,Aft(B)) = Undef, then ρ′ = NewTask(ρ,B);

This concludes the definition of the transition definition of
A−→. As usual, we use

A
=⇒ to denote the reflexive and transitive closure of

A−→.

Example 2. The ASM for the ActivitiesLaunchDemo app in Example 1 is A =
(Q,Sig, q0, ∆), where Q = {q0, q1}, Sig = (Act, Lmd,Aft, Ag) with

– Act = {Ag, Ab, Ay, Ar}, corresponding to the green, blue, yellow and red
activity respectively in the ActivitiesLaunchDemo app,

– Lmd(Ag) = STD, Lmd(Ab) = STP, Lmd(Ay) = STK, Lmd(Ar) = SIT,
– Aft(Ag) = Aft(Ab) = Aft(Ar) = 1, Aft(Ay) = 2,

and ∆ comprises the transitions illustrated in Fig. 2. Below is a path in the

graph
A−→ corresponding to the sequence of user actions clicking the green, blue,

blue, yellow, red, blue button (cf. Example 1),

(q0, ε)
.,start(Ag)−−−−−−−→ (q1, ([Ag]))

Ag,start(Ab)−−−−−−−−→ (q1, ([Ab, Ag]))
Ab,start(Ab)−−−−−−−→

(q1, ([Ab, Ag]))
Ab,start(Ay)−−−−−−−−→ (q1, ([Ay], [Ab, Ag]))

Ay,start(Ar)−−−−−−−−→

(q1, ([Ar], [Ay], [Ab, Ag]))
Ar,start(Ag)−−−−−−−−→ (q1, ([Ag, Ab, Ag], [Ar], [Ay])).

q0 q1

Ac, start(Ac′) :
c, c′ ∈ {g, b, y, r}

., start(Ag)

back

Fig. 2: ASM corresponding to
the ActivitiesLaunchDemo app

Proposition 1 reassures that
A−→ is indeed

a relation on ConfA as per Definition 2.

Proposition 1. Let A be an ASM. For each

(q, ρ) ∈ ConfA and (q, ρ)
A−→ (q′, ρ′), (q′, ρ′) ∈

ConfA, namely, (q′, ρ′) satisfies the five con-
straints in Definition 2.

Remark 1. A single app can clearly be modeled by an ASM. However, ASM
can also be used to model multiple apps which may share tasks/activities. (In
this case, these multiple apps can be composed into a single app, where a new
main activity is added.) This is especially useful when analysing, for instance,
task hijacking [16]. We sometimes do not specify the main activity explicit for
convenience. The translation from app source code to ASM is not trivial, but
follows standard routines. In particular, in ASM, the symbols stored into the
back stack are just names of activities. Android apps typically need to, similar
to function calls of programs, store additional local state information. This can
be dealt with by introducing an extend activity alphabet such that each symbol
is of the form A(b), where A ∈ Act and b represents local information. When we
present examples, we also adopt this general syntax.

8 Note that B occurs at most once in Si by Definition 2(1).
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Model validation. We validate the ASM model by designing “diagnosis” Android
apps with extensive experiments. For each case in the semantics of ASM, we
design an app which contains activities with the corresponding launch modes and
task affinities. To simulate the transition rules of the ASM, each activity contains
some buttons, which, when clicked, will launch other activities. For instance, in
the case of Lmd(B) = STD, Lmd(A) = SIT, GetNonSITTaskByAft(ρ,Aft(B)) =
Undef, the app contains two activities A and B of launch modes SIT and STD
respectively, where A is the main activity. When the app is launched, an instance
of A is started. A contains a button, which, when clicked, starts an instance of
B. We carry out the experiment by clicking the button, monitoring the content
of the back stack, and checking whether the content of the back stack conforms
to the definition of the semantics. Specifically, we check that there are exactly
two tasks in the back stack, one task comprising a single instance of A and
another task comprising a single instance of B, with the latter task on the top.
Our experiments are done in a Redmi-4A mobile phone with Android version
6.0.1. The details of the experiments can be found at https://sites.google.

com/site/assconformancetesting/.

4 Reachability of ASM

Towards formal (static) analysis and verification of Android apps, we study the
fundamental reachability problem of ASM. Fix an ASM A = (Q,Sig, q0, ∆) with
Sig = (Act, Lmd,Aft, A0) and a target state q ∈ Q. There are usually two variants:

the state reachability problem asks whether (q0, ε)
A
=⇒ (q, ρ) for some back stack ρ,

and the configuration reachability problem asks whether (q0, ε)
A
=⇒ (q, ρ) when ρ is

also given. We show they are interchangeable as far as decidability is concerned.

Proposition 2. The configuration reachability problem and the state reachabil-
ity problem of ASM are interreducible in exponential time.

Proposition 2 allows to focus on the state reachability problem in the rest of
this paper. Observe that, when the activities in an ASM are of the same launch
mode, the problem degenerates to that of standard pushdown systems or even
finite-state systems. These systems are well-understood, and we refer to [6] for
explanations. To proceed, we deal with the cases where there are exactly two
launch modes, for which we have

(
4
2

)
= 6 possibilities. The classification is given

in Theorem 1–2. Clearly, they entail that the reachability for general ASM (with
at least two launch modes) is undecidable. To show the undecidablity, we reduce
from Minsky’s two-counter machines [14], which, albeit standard, reveals the
expressibility of ASM. We remark that the capability of swapping the order of
two distinct non-SIT-tasks in the back stack—without resetting the content of
any of them—is the main source of undecidability.

Theorem 1. The reachability problem of ASM is undecidable, even when the
ASM contains only (1) STD and STK activities, or (2) STD and SIT activities,
or (3) STK and STP activities, or (4) SIT and STP activities.

9

https://sites.google.com/site/assconformancetesting/
https://sites.google.com/site/assconformancetesting/


In contrast, we have some relatively straightforward positive results:

Theorem 2. The state reachability problem of ASM is decidable in polynomial
time when the ASM contains STD and STP activities only, and in polynomial
space when the ASM contains STK and SIT activities only.

As mentioned in Section 1, we aim to identify expressive fragments of ASM
with decidable reachability problems. To this end, we introduce a fragment called
STK-dominating ASM, which accommodates all four launch modes.

Definition 3 (STK-dominating ASM). An ASM is said to be STK-dominating
if the following two constraints are satisfied:

(1) the task affinities of the STK activities are mutually distinct,

(2) for each transition q
A,start(B)−−−−−−→ q′ ∈ ∆ such that A ∈ ActSIT, it holds that

either B ∈ ActSIT ∪ ActSTK, or B ∈ ActSTD ∪ ActSTP and Aft(B) = Aft(A0).

The following result explains the name “STK-dominating”.

Proposition 3. Let A = (Q,Sig, q0, ∆) be an STK-dominating ASM with Sig =
(Act, Lmd,Aft, A0). Then each configuration (q, ρ) that is reachable from the ini-
tial configuration (q0, ε) in A satisfies the following constraints: (1) for each STK
activity A ∈ Act with Aft(A) 6= Aft(A0), A can only occur at the bottom of some
task in ρ, (2) ρ contains at most one STD/STP-task, which, when it exists, has
the same affinity as A0.

It is not difficult to verify that the ASM given in Example 2 is STK-dominating.

Theorem 3. The state reachability of STK-dominating ASM is in 2-EXPTIME.

The proof of Theorem 3 is technically the most challenging part of this paper.
We shall give a sketch in Section 5 with the full details in [6].

5 STK-dominating ASM

For simplicity, we assume that A contains STD and STK activities only9. To
tackle the (state) reachability problem for STK-dominating ASM, we consider
two cases, i.e., Lmd(A0) = STK and Lmd(A0) 6= STK. The former case is simpler
because, by Proposition 3, all tasks will be rooted at STK activities. For the
latter, more general case, the back stack may contain, apart from several tasks
rooted at STK activities, one single task rooted at A0. Section 5.1 and Section 5.2
will handle these two cases respectively.

We will, however, first introduce some standard, but necessary, backgrounds
on pushdown systems. We assume familiarity with standard finite-state automata
(NFA) and finite-state transducers (FST). We emphasize that, in this paper,

9 The more general case that A also contains STP and SIT activities is slightly more
involved and requires more space to present, which can be found in [6].
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FST refers to a special class of finite-state transducers, namely, letter-to-letter
finite-state transducers where the input and output alphabets are the same.

Preliminaries of Pushdown systems. A pushdown system (PDS) is a tuple P =
(Q,Γ,∆), where Q is a finite set of control states, Γ is a finite stack alphabet,
and ∆ ⊆ Q×Γ ×Γ ∗×Q is a finite set of transition rules. The size of P, denoted
by |P|, is defined as |∆|.

Let P = (Q,Γ,∆) be a PDS. A configuration of P is a pair (q, w) ∈ Q× Γ ∗,
where w denotes the content of the stack (with the leftmost symbol being the
top of the stack). Let ConfP denote the set of configurations of P. We define

a binary relation
P−→ over ConfP as follows: (q, w)

P−→ (q′, w′) iff w = γw1 and

there exists w′′ ∈ Γ ∗ such that (q, γ, w′′, q′) ∈ ∆ and w′ = w′′w1. We use
P
=⇒ to

denote the reflexive and transitive closure of
P−→.

A configuration (q′, w′) is reachable from (q, w) if (q, w)
P
=⇒ (q′, w′). For

C ⊆ ConfP , pre∗(C) (resp. post∗(C)) denotes the set of predecessor (resp. suc-

cessor) reachable configurations {(q′, w′) | ∃(q, w) ∈ C, (q′, w′) P=⇒ (q, w)} (resp.

{(q′, w′) | ∃(q, w) ∈ C, (q, w)
P
=⇒ (q′, w′)}). For q ∈ Q, we define Cq = {q} × Γ ∗

and write pre∗(q) and post∗(q) as shorthand of pre∗(Cq) and post∗(Cq) respec-
tively.

As a standard machinery to solve reachability for PDS, a P-multi-automaton
(P-MA) is an NFA A = (Q′, Γ, δ, I, F ) such that I ⊆ Q ⊆ Q′ [4]. Evidently,
multi-automata are a special class of NFA. Let A = (Q′, Γ, δ, I, F ) be a P-MA
and (q, w) ∈ ConfP , (q, w) is accepted by A if q ∈ I and there is an accepting
run q0q1 · · · qn of A on w with q0 = q. Let ConfA denote the set of configurations
accepted by A. Moreover, let L(A) denote the set of words w such that (q, w) ∈
ConfA for some q ∈ I. For brevity, we usually write MA instead of P-MA when
P is clear from the context. Moreover, for an MA A = (Q′, Γ, δ, I, F ) and q′ ∈ Q,
we use A(q′) to denote the MA obtained from A by replacing I with {q′}. A set
of configurations C ⊆ ConfP is regular if there is an MA A such that ConfA = C.

Theorem 4 ([4]). Given a PDS P and a set of configurations accepted by an
MA A, we can compute, in polynomial time in |P| + |A|, two MAs Apre∗ and
Apost∗ that recognise pre∗(ConfA) and post∗(ConfA) respectively.

The connection between ASM and PDS is rather obvious. In a nutshell,
ASM can be considered as a PDS with multiple stacks, which is well-known to
be undecidable in general. Our overall strategy to attack the state reachability
problem for the fragments of ASM is to simulate them (in particular, the multiple
stacks) via—in some cases, decidable extensions of—PDS.

5.1 Case Lmd(A0) = STK

Our approach to tackle this case is to simulate A by an extension of PDS, i.e.,
pushdown systems with transductions (TrPDS), proposed in [19]. In TrPDS, each
transition is associated with an FST defining how the stack content is modified.
Formally, a TrPDS is a tuple P = (Q,Γ,T , ∆), where Q and Γ are precisely
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the same as those of PDS, T is a finite set of FSTs over the alphabet Γ , and
∆ ⊆ Q×Γ ×Γ ∗×T ×Q is a finite set of transition rules. Let R(T ) denote the
set of transductions defined by FSTs from T and JR(T )K denote the closure
of R(T ) under composition and left-quotient. A TrPDS P is said to be finite if
JR(T )K is finite.

The configurations of P are defined similarly as in PDS. We define a binary

relation
P−→ on ConfP as follows: (q, w)

P−→ (q′, w′) if there are γ ∈ Γ , the

words w1, u, w2, and T ∈ T such that w = γw1, (q, γ, u, T , q′) ∈ ∆, w1
T−→

w2, and w′ = uw2. Let
P
=⇒ denote the reflexive and transitive closure of

P−→.
Similarly to PDS, we can define pre∗(·) and post∗(·) respectively. Regular sets
of configurations of TrPDS can be represented by MA, in line with PDS. More
precisely, given a finite TrPDS P = (Q,Γ,T , ∆) and an MA A for P, one can
compute, in time polynomial in |P|+ |JR(T )K|+ |A|, two MAs Apre∗ and Apost∗

that recognize the sets pre∗(ConfA) and post∗(ConfA) respectively [19,18,17].
To simulate A via a finite TrPDS P, the back stack ρ = (S1, · · · , Sn) of A

is encoded by a word S1] · · · ]Sn]⊥ (where ] is a delimiter and ⊥ is the bottom
symbol of the stack), which is stored in the stack of P. Recall that, in this
case, each task Si is rooted at an STK-activity which sits on the bottom of Si.
Suppose top(S1) = A. When a transition (q, A, start(B), q′) with B ∈ ActSTK is
fired, according to the semantics of A, the B-task of ρ, say Si, is switched to
the top of ρ and changed into [B] (i.e., all the activities in the B-task, except B
itself, are popped). To simulate this in P, we replace every stack symbol in the
place of Si with a dummy symbol † and keep the other symbols unchanged. On
the other hand, to simulate a back action of A, P continues popping until the
next non-dummy and non-delimiter symbol is seen.

Proposition 4. Let A = (Q,Sig, q0, ∆) be an STK-dominating ASM with Sig =
(Act, Lmd,Aft, A0) and Lmd(A0) = STK. Then a finite TrPDS P = (Q′, Γ,T , ∆′)
with Q ⊆ Q′ can be constructed in time polynomial in |A| such that, for each
q ∈ Q, q is reachable from (q0, ε) in A iff q is reachable from (q0,⊥) in P.

For a state q ∈ Q, pre∗P(q) can be effectively computed as an MA Bq, and
the reachability of q in A is reduced to checking whether (q0,⊥) ∈ ConfBq .

5.2 Case Lmd(A0) 6= STK

We then turn to the more general case Lmd(A0) 6= STK which is significantly
more involved. For exposition purpose, we consider an ASM A where there are
exactly two STK activities A1, A2, and the task affinity of A2 is the same
as that of the main task A0 (and thus the task affinity of A1 is different from
that of A0). We also assume that all the activities in A are “standard” except
A1, A2. Namely Act = ActSTD∪{A1, A2} and A0 ∈ ActSTD in particular. Neither
of these two assumptions is fundamental and their generalization is given in [6].

By Proposition 3, there are at most two tasks in the back stack of A. The
two tasks are either an A0-task and an A1-task, or an A2-task and an A1-task.
An A2-task can only surface when the original A0-task is popped empty. If
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this happens, no A0-task will be recreated again, and thus, according to the
arguments in Section 5.1, we can simulate the ASM by TrPDS directly and we
are done. The challenging case is that we have both an A0-task and an A1-task.
To solve the state reachability problem, the main technical difficulty is that
the order of the A0-task and the A1-task may be switched for arbitrarily many
times before reaching the target state q. Readers may be wondering why they
cannot simply simulate two-counter machines. The reason is that the two tasks
are asymmetric in the sense that, each time when the A1-task is switched from
the bottom to the top (by starting the activity A1), the content of the A1-task is
reset into [A1]. But this is not the case for A0-task: when the A0-task is switched
from the bottom to the top (by starting the activity A2), if it does not contain
A2, then A2 will be pushed into the A0-task; otherwise all the activities above
A2 will be popped and A2 becomes the top activity of the A0-task. Our decision
procedure below utilises the asymmetry of the two tasks.

Intuition of construction. The crux of reachability analysis is to construct a
finite abstraction for the A1-task and incorporate it into the control states of
A, so we can reduce the state reachability of A into that of a pushdown system
PA (with a single stack). Observe that a run of A can be seen as a sequence

of task switching. In particular, an A0;A1;A0 switching denotes a path in
A−→

where the A0-task is on the top in the first and the last configuration, while the
A1-task is on the top in all the intermediate configurations. The main idea of
the reduction is to simulate the A0;A1;A0 switching by a “macro”-transition of
PA. Note that the A0-task regains the top task in the last configuration either
by starting the activity A2 or by emptying the A1-task. Suppose that, for an
A0;A1;A0 switching, in the first (resp. last) configuration, q (resp. q′) is the
control state and α (resp. β) is the finite abstraction of the A1-task. Then for
the “macro”-transition of PA, the control state will be updated from (q, α) to
(q′, β), and the stack content of PA is updated accordingly:

– If the A0-task regains the top task by starting A2, then the stack content is
updated as follows: if the stack does not contain A2, then A2 will be pushed
into the stack; otherwise all the symbols above A2 will be popped.

– On the other hand, if the A0-task regains the top task by emptying the
A1-task, then the stack content is not changed.

Roughly speaking, the abstraction of the A1-task must carry the information
that, when A0-task and A1-task are the top resp. bottom task of the back stack
and A0-task is emptied, whether the target state q can be reached from the
configuration at that time. As a result, we define the abstraction of the A1-task
whose content is encoded by a word w ∈ Act∗, denoted by α(w), as the set of all
states q′′ ∈ Q such that the target state q can be reached from (q′′, (w)) in A.
[Note that during the process that q is reached from (q′′, (w)) in A, the A0-task
does not exist anymore, but a (new) A2-task, may be formed.] Let AbsA1 = 2Q.

To facilitate the construction of the PDS PA, we also need to record how the
abstraction “evolves”. For each (q′, A, α) ∈ Q×(Act\{A1})×AbsA1

, we compute
the set Reach(q′, A, α) consisting of pairs (q′′, β) satisfying: there is an A0;A1;A0
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switching such that in the first configuration, A is the top symbol of the A0-task,
q′ (resp. q′′) is the control state of the first (resp. last) configuration, and α (resp.
β) is the abstraction for the A1-task in the first (resp. last) configuration.10

Computing Reach(q′, A, α). Let (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1
. We first

simulate relevant parts of A as follows:

– Following Section 5.1, we construct a TrPDS PA0
= (QA0

, ΓA0
,TA0

, ∆A0
)

to simulate the A1-task and A2-task of A after the A0-task is emptied, where
QA0

= Q ∪ Q×Q and ΓA0
= Act ∪ {], †,⊥}. Note that A0 may still—as

a “standard” activity—occur in PA0
though the A0-task disappears.

In addition, we construct an MA Bq = (Qq, ΓA0
, δq, Iq, Fq) to represent

pre∗PA0
(q), where Iq ⊆ QA0

. Then given a stack content w ∈ Act∗STDA1 of

the A1-task, the abstraction α(w) of w, is the set of q′′ ∈ Iq ∩ Q such that
(q′′, w]⊥) ∈ ConfBq .

– We construct a PDS PA0, A2
= (QA0, A2

, ΓA0, A2
,TA0, A2

, ∆A0, A2
) to sim-

ulate the A1-task of A, where ΓA0, A2
= (Act \ {A2}) ∪ {⊥}. In addi-

tion, to compute Reach(q′, A, α) later, we construct an MA M(q′,A,α) =
(Q(q′,A,α), ΓA0, A2

, δ(q′,A,α), I(q′,A,α), F(q′,A,α)) to represent

post∗PA0, A2
({(q1, A1⊥) | (q′, A, start(A1), q1) ∈ ∆}).

Definition 4. Reach(q′, A, α) comprises

– the pairs (q′′, β) ∈ Q × AbsA1
satisfying that (1) (q′, A, start(A1), q1) ∈ ∆,

(2) (q1, A1⊥)
PA0, A2=====⇒ (q2, Bw⊥), (3) (q2, B, start(A2), q′′) ∈ ∆, and (4) β

is the abstraction of Bw, for some B ∈ Act \ {A2}, w ∈ (Act \ {A2})∗ and
q1, q2 ∈ Q,

– the pairs (q′′,⊥) such that (q′, A, start(A1), q1) ∈ ∆ and (q1, A1⊥)
PA0, A2=====⇒

(q′′,⊥) for some q1 ∈ Q.

Importantly, conditions in Definition 4 can be characterized algorithmically.

Lemma 1. For (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1
, Reach(q′, A, α) is the

union of

– {(q′′,⊥) | (q′′,⊥) ∈ ConfM(q′,A,α)
} and

– the set of pairs (q′′, β) ∈ Q × AbsA1
such that there exist q2 ∈ Q and B ∈

Act \ {A2} satisfying that (q2, B, start(A2), q′′), and

(B(Act \ {A2})∗]⊥)∩ (Act∗STDA1]⊥)∩ (L(M(q′,A,α)(q2))〈⊥〉−1)]⊥∩Lβ 6= ∅,
where L(M(q′,A,α)(q2))〈⊥〉−1 is the set of words w such that w⊥ belongs to

L(M(q′,A,α)(q2)), and Lβ =
⋂

q′′′∈β
L(Bq(q′′′)) ∩

⋂
q′′′∈Q\β

L(Bq(q′′′)), with L

representing the complement language of L.

10 As we can see later, Reach(q′, A, α) does not depend on α for the two-task special
case considered here. We choose to keep α in view of readability.
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Construction of PA. We first construct a PDS PA0
= (QA0

, ΓA0
, ∆A0

), to
simulate the A0-task of A. Here QA0

= (Q × {0, 1}) ∪ (Q × {1} × {pop}),
ΓA0 = ActSTD ∪ {A2,⊥}, and ∆A0 comprises the transitions. Here 1 (resp. 0)
marks that the activity A2 is in the stack (resp. is not in the stack) and the tag
pop marks that the PDS is in the process of popping until A2. The construction
of PA0

is relatively straightforward, the details of which can be found in [6].
We then define the PDS PA = (QA, ΓA0 , ∆A), where QA = (AbsA1 ×QA0)∪

{q}, and ∆A comprises the following transitions,

– for each (p, γ, w, p′) ∈ ∆A0
and α ∈ AbsA1

, we have ((α, p), γ, w, (α, p′)) ∈
∆A (here p, p′ ∈ QA0

, that is, of the form (q′, b) or (q′, b, pop)), [behaviour
of the A0-task]

– for each (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1
and b ∈ {0, 1} such that

M(q′,A,α)(q) 6= ∅, we have ((α, (q′, b)), A,A, q) ∈ ∆A, [switch to the A1-
task and reach q before switching back]

– for each (q′, A, α) ∈ Q × (Act \ {A1}) × AbsA1
and (q′′, β) ∈ Reach(q′, A, α)

such that β 6= ⊥,

• if A 6= A2, then we have ((α, (q′, 0)), A,A2A, (β, (q
′′, 1))) ∈ ∆A and

((α, (q′, 1)), A, ε, (β, (q′′, 1, pop))) ∈ ∆A,
• if A = A2, then we have ((α, (q′, 1)), A2, A2, (β, (q

′′, 1))) ∈ ∆A,

[switch to the A1-task and switch back to the A0-task later by
launching A2]

– for each (q′, A, α) ∈ Q× (Act \ {A1})× AbsA1
, (q′′,⊥) ∈ Reach(q′, A, α) and

b ∈ {0, 1}, we have ((α, (q′, b)), A,A, (∅, (q′′, b))) ∈ ∆A,
[switch to the A1-task and switch back to the A0-task later when
the A1-task becomes empty]

– for each α ∈ AbsA1 , b ∈ {0, 1} and A ∈ ActSTD ∪ {A2}, ((α, (q, b)), A,A, q) ∈
∆A, [q is reached when the A0-task is the top task]

– for each q′ ∈ Q and α ∈ AbsA1 with q′ ∈ α, ((α, (q′, 0)),⊥,⊥, q) ∈ ∆A.
[q is reached after the A0-task becomes empty and the A1-task
becomes the top task]

Proposition 5. Let A be an STK-dominating ASM where there are exactly two
STK-activities A1, A2 and Aft(A2) = Aft(A0). Then q is reachable from the
initial configuration (q0, ε) in A iff q is reachable from the initial configuration
((∅, (q0, 0)),⊥) in PA.

6 Related work

We first discuss pushdown systems with multiple stacks (MPDSs) which are the
most relevant to ASM. (For space reasons we will skip results on general push-
down systems though.) A multitude of classes of MPDSs have been considered,
mostly as a model for concurrent recursive programs. In general, an ASM can be
encoded as an MPDS. However, this view is hardly profitable as general MPDSs
are obviously Turing-complete, leaving the reachability problem undecidable.
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To regain decidability at least for reachability, several subclasses of MPDSs
were proposed in literature: (1) bounding the number of context-switches [15],
or more generally, phases [10], scopes [11], or budgets [3]; (2) imposing a linear
ordering on stacks and pop operations being reserved to the first non-empty
stack [5]; (3) restricting control states (e.g., weak MPDSs [7]). However, our
decidable subclasses of ASM admit none of the above bounded conditions. A
unified and generalized criterion [12] based on MSO over graphs of bounded
tree-width was proposed to show the decidability of the emptiness problem for
several restricted classes of automata with auxiliary storage, including MPDSs,
automata with queues, or a mix of them. Since ASMs work in a way fairly
different from multi-stack models in the literature, it is unclear—literally for
us—to obtain the decidability by using bounded tree-width approach. Moreover,
[12] only provides decidability proofs, but without complexity upper bounds. Our
decision procedure is based on symbolic approaches for pushdown systems, which
provides complexity upper bounds and which is amenable to implementation.

Higher-order pushdown systems represent another type of generalization of
pushdown systems through higher-order stacks, i.e., a nested “stack of stack”
structure [13], with decidable reachability problems [9]. Despite apparent resem-
blance, the back stack of ASM can not be simulated by an order-2 pushdown
system. The reason is that the order between tasks in a back stack may be
dynamically changed, which is not supported by order-2 pushdown systems.

On a different line, there are some models which have addressed, for instance,
GUI activities of Android apps. Window transition graphs were proposed for
representing the possible GUI activity (window) sequences and their associated
events and callbacks, which can capture how the events and callbacks modify
the back stack [21]. However, the key mechanisms of back stacks (launch modes
and task affinities) were not covered in this model. Moreover, the reachability
problem for this model was not investigated. A similar model, labeled transition
graph with stack and widget (LATTE [20]) considered the effects of launch modes
on the back stacks, but not task affinities. LATTE is essentially a finite-state
abstraction of the back stack. However, to faithfully capture the launch modes
and task affinities, one needs an infinite-state system, as we have studied here.

7 Conclusion

In this paper, we have introduced Android stack machine to formalize the back
stack system of the Android platform. We have also investigated the decidability
of the reachability problem of ASM. While the reachability problem of ASM is
undecidable in general, we have identified a fragment, i.e., STK-dominating ASM,
which is expressive and admits decision procedures for reachability.

The implementation of the decision procedures is in progress. We also plan to
consider other features of Android back stack systems, e.g., the “allowTaskRe-
parenting” attribute of activities. A long-term program is to develop an efficient
and scalable formal analysis and verification framework for Android apps, to-
wards which the work reported in this paper is the first cornerstone.
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A Preliminaries

For k ∈ N, let [k] denote {1, · · · , k}. For a function f : X → Y , let dom(f) and
rng(f) denote the domain (X) and range (Y ) of f respectively.

A.1 Finite-state automata

A nondeterministic finite-state automaton (NFA) is a tuple A = (Q,Γ, δ, I, F ),
where Q is a finite set of states, Γ is a finite alphabet, δ ⊆ Q × Γ × Q is a
transition relation, I ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting
states. The size of A, denoted by |A|, is defined as the number of transitions in
δ. For q ∈ Q, let A(q) denote the NFA obtained from A by replacing the set of
initial states with {q}.

A (finite) word w is a finite sequence of symbols from Γ . We use Γ ∗ to
denote the set of words, and ε ∈ Γ ∗ to denote the empty word. For a word
w, let |w| denote the length of w. Assume an NFA A = (Q,Γ, δ, I, F ) and word
w = γ1 · · · γn. A run of A on w is a sequence of states q0q1 · · · qn, such that q0 ∈ I
and (qi−1, γi, qi) ∈ δ for each i ∈ [n]. The run q0q1 · · · qn is accepting if qn ∈ F . A
word w is accepted by A if there is an accepting run of A on w. In particular, ε
is accepted by A iff I ∩F 6= ∅. Let L(A) denote the set of words accepted by A.
For an NFA A and γ ∈ Γ , we use L(A)〈γ〉−1 to denote {w ∈ Γ ∗ | wγ ∈ L(A)}.

A.2 Finite-state transducers

We also consider finite-state transducers, but focus on a special class of them,
i.e., letter-to-letter finite-state transducers where the input and output alphabets
are the same. A letter-to-letter finite-state transducer (FST for short) is a tuple
T = (Q,Γ, δ, I, F ), where Q,Σ, I, F are the same as those in NFA, while the
transition relation δ is defined as δ ⊆ Q× Γ × Γ ×Q.

Intuitively, a transition (q, γ, γ′, q′) means that when T is in the state q and
reads the symbol γ, it may output a symbol γ′ and move to the state q′. For

readability, we usually write a transition (q, γ, γ′, q′) ∈ δ as q
γ,γ′−−→ q′. Similar to

NFA, the size of T , denoted by |T |, is defined as the number of transitions in δ.
Let T = (Q,Γ, δ, I, F ) be an FST and w = γ1 · · · γn be a word. Then a run

of T on w is a sequence q0γ
′
1q1 · · · γ′nqn such that q0 ∈ I and qi−1

γi,γ
′
i−−−→ qi ∈ δ

for each i ∈ [n]. A run q0γ
′
1q1 · · · γ′nqn is accepting if qn ∈ F . If q0γ

′
1q1 · · · γ′nqn is

an accepting run of T on w, then w′ = γ′1 · · · γ′n is said to be an output of T on
w. In particular, ε is an output of T on ε iff I ∩ F 6= ∅. We use R(T ) to denote
the set of pairs (w,w′) such that w′ is an output of T on w. For convenience,

we also write (w,w′) ∈ R(T ) as w
T−→ w′.

We use Tid to denote the identity transducer, that is, the FST (Q,Γ, δ, I, F ),
where Q = I = F = {q0} and δ = {(q0, γ, γ, q0) | γ ∈ Γ}. A relation τ ⊆ Γ ∗×Γ ∗
is called a transduction if τ = R(T ) for some FST T . In particular, we use τ∅
to denote the empty transduction (that is, the transduction relation is ∅), and
τid to denote the identity transduction (that is, the relation {(w,w) | w ∈ Γ ∗}).
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Let τ, τ ′ be two transductions. The composition of τ and τ ′, denoted by τ ◦ τ ′,
is defined as {(w,w′) | ∃w′′. (w,w′′) ∈ τ, (w′′, w′) ∈ τ ′}. For each transduction τ
and L ⊆ Γ ∗, we use τ |L to denote the restriction of τ to the domain L, that is,
τ |L = {(w,w′) ∈ τ | w ∈ L}.

Let w,w′ be two words of the same length. We define the left-quotient of
τ w.r.t. (w,w′), denoted by 〈w,w′〉−1τ , inductively as follows: 〈ε, ε〉−1τ = τ ,
〈γ, γ′〉−1τ = {(w,w′) | (γw, γ′w′) ∈ τ}, and 〈γw, γ′w′〉−1τ = 〈w,w′〉−1(〈γ, γ′〉−1τ).
Moreover, we define the left-extension of τ w.r.t. (w,w′), denoted by 〈w,w′〉+1τ ,
as follows: 〈w,w′〉+1τ = {(ww1, w

′w′1) | (w1, w
′
1) ∈ τ}.

Definition 5 (Closure of transductions). Let T be a set of transductions.
Then the closure of T under composition and left-quotient, denoted by JT K, is
inductively defined as follows,

– T ⊆ JT K, τ∅ ∈ JT K, τid ∈ JT K,
– if τ1, τ2 ∈ JT K, then τ1 ◦ τ2 ∈ JT K,
– if τ ∈ JT K and γ, γ′ ∈ Γ , then 〈γ, γ′〉−1τ ∈ JT K.

Recall that for a set of transducers T , for brevity, we use R(T ) to denote
{R(T ) | T ∈ T }.

A.3 Pushdown systems with transductions

A pushdown system with transductions (TrPDS) is a tuple P = (Q,Γ,T , ∆),
where Q and Γ are exactly the same as those of pushdown systems, T is a finite
set of FST over the alphabet Γ , and ∆ ⊆ Q× Γ × Γ ∗ ×T ×Q is a finite set of
transition rules. A TrPDS P is said to be finite if JR(T )K is finite.

Let P = (Q,Γ,T , ∆) be a TrPDS. The configurations of P are defined
similarly as in PDS. Let ConfP denote the set of configurations of P. We define

a binary relation
P−→ on ConfP as follows: (q, w)

P−→ (q′, w′) if there are γ ∈ Γ , the

words w1, u, w2, and T ∈ T such that w = γw1, (q, γ, u, T , q′) ∈ ∆, w1
T−→ w2,

and w′ = uw2.

Let
P
=⇒ denote the reflexive and transitive closure of

P−→. Similarly to PDS,
we can define pre∗(·) and post∗(·) respectively. Moreover, in parallel to multi-
automata, we use NFA with transductions to represent regular sets of configu-
rations of TrPDS [19].

Given a finite TrPDS P = (Q,Γ,T , ∆), an NFA with transductions (TrNFA
for short) for P is a tuple A = (Q′, Γ,T , δ, I, F ), where Q′ is a finite set of states
with Q ⊆ Q′, δ ⊆ Q′×Γ × JR(T )K×Q′ is a finite set of transition rules, I ⊆ Q
is a set of initial states, and F ⊆ Q′ is a set of final states. For readability, we

usually write a transition (q, γ, τ, q′) ∈ δ as q
γ|τ−−→ q′. Intuitively, a transition

q
γ|τ−−→ q′ means that the current symbol is γ and the transduction τ is applied

to the rest of the input (i.e., the suffix after γ).
Let A = (Q′, Γ,T , δ, I, F ) be a TrNFA for P. A configuration (q, ε) is ac-

cepted by A if q ∈ I ∩F . On the other hand, for a configuration (q, w) such that
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w = γ1 · · · γn is a nonempty word, (q, w) is accepted by A if there is an accepting

run of A on w, that is, a sequence of transitions q0
γ′1|τ1−−−→ q1

γ′2|τ2−−−→ · · · γ
′
n−1|τn−1−−−−−−−→

qn−1
γ′n|τn−−−→ qn such that q = q0 ∈ I, qn ∈ F , γ′1 = γ1, and (ε, ε) ∈ τ ′n, where

τ ′1 = τ1 and for each 2 ≤ i ≤ n, τ ′i = (〈γi, γ′i〉−1τ ′i−1) ◦ τi. Note that (ε, ε) ∈ τ ′n
implies that, for each 2 ≤ i ≤ n, τ ′i 6= τ∅, and thus 〈γi, γ′i〉−1τ ′i−1 6= τ∅, that is,
τ ′i−1(γiu) = γ′iu

′ for words u, u′. Intuitively, for each 2 ≤ i ≤ n, the transduction
τ ′i−1 summarizes the effect of the transductions τ1, · · · , τi−1 on the positions ≥ i,
and γ′i is produced from γi by applying τ ′i−1. We use ConfA to denote the set of
configurations accepted by A.

Theorem 5 ([19,18,17]). Let P = (Q,Γ,T , ∆) be a finite TrPDS. Given a
set of configurations represented by a TrNFA A for P, we can compute, in time
polynomial in |P|+ |JR(T )K|+ |A|, two TrNFA Apre∗ and Apost∗ that recognise
the sets pre∗(ConfA) and post∗(ConfA) respectively. Moreover, for each TrNFA
A, an equivalent MA can be computed in time polynomial in |A|+ |JR(T )K|.

B Details of Section 4

We sketch how to tackle the state reachability problem when there is a single
launch mode for the activities in an ASM.

– STD: this is simply a PDS;
– SIT: the back stack contains tasks, each of which contains only one activity.

Clearly we treat the back stack as a permutation of activities, and reduce to
finite-state systems;

– STP: this can be treated as a PDS;
– STK: activities with the same affinities are grouped together, and each ac-

tivity can appear at most once. This can be encoded by a finite-state system.

Remark 2. For those cases reduced to PDS, the reachability can be decided in
polynomial time. For those reduced to finite-state systems, there is in general
an exponential blowup in size, and one can obtain Pspace-upper bound.

B.1 Proof of Proposition 2

The reduction from the state reachability problem to the configuration reacha-
bility is easy. The idea is that once the target state q is reached, we can enter a
special state q⊥, where a transition with the back action is continuously applied
until the back stack becomes empty. Evidently, the reduction is in polynomial
time.

Next, we show the reduction from the configuration reachability to the state
reachability. The reduction uses ASM with parameters, an extension of ASM
where parameters are attached to activities.

An ASM with parameters is a tuple A = (Q,Sig, q0, ∆) such that Sig =
(Act, Lmd,Aft,Art, A0(b0)), where
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– Q, q0,Act, Lmd,Aft are defined as for ASM (without parameters);
– Art : Act→ N is an arity function which denotes the numbers of parameters

of activities;
– A0(b0) is the main activity A0, with b0 ∈ {0, 1}Art(A0) as the initial values

of the parameters;
– ∆ ⊆ Q × (EAct ∪ {.}) × Inst × Q is the transition relation, where EAct =
{A(b) | A ∈ Act, b ∈ {0, 1}Art(A)}, and Inst = {�, back} ∪ {start(A(b)) |
A(b) ∈ EAct}, such that: (1) for each transition (q, A(b), α, q′) ∈ ∆, it holds
that q′ 6= q0, and (2) for each transition (q, ., α, q′) ∈ ∆, it satisfies that
q = q0, α = start(A0(b0)), and q′ 6= q0.

The semantics of ASM with parameters are defined similarly to those of ASM.
A task of ASM with parameters is now S = [A1(b1), · · · , An(bn)] ∈ EAct+,
with A1 as the top activity, denoted by top(S), and An as the bottom activity,
denoted by btm(S). Back stack ρ is still a sequence of non-empty tasks, i.e., ρ =
(S1, · · · , Sn). A configurations is defined as a pair of a control state and a back
stack satisfying the conditions in Definition 2 (with some minor adaptations).

For clarity, we would like to describe below the semantics of the transitions

q
A(b),start(B(b′))−−−−−−−−−−→ q′ with Lmd(B) = STK. Let ρ = (S1, . . . , Sn). We first adapt

the notations used for defining the semantics of ASM.

Noaction(ρ) ≡ ρ Push(ρ,B(b)) ≡ (([B(b)] · S1), S2, · · · , Sn)
NewTask(B(b)) ≡ ([B(b)]) NewTask(ρ,B(b)) ≡ ([B(b)], S1, · · · , Sn)

Pop(ρ) ≡


ε, if n = 1 and S1 = [A(b)];
(S2, · · · , Sn), if n > 1 and S1 = [A(b)];
(S′1, S2, · · · , Sn), if S1 = [A(b)] · S′1 with S′1 ∈ EAct+;

PopUntil(ρ,B) ≡ (S′′1 , S2, · · · , Sn), where

S1 = S′1 · S′′1 with S′1 ∈ (EAct \ {B(b) | b ∈ {0, 1}Art(B)})∗ and top(S′′1 ) = B;
Move2Top(ρ, i) ≡ (Si, S1, · · · , Si−1, Si+1, · · · , Sn)

GetNonSITTaskByAft(ρ, k) ≡
{
Si, if Aft(Si) = k and Lmd(btm(Si)) 6= SIT;
Undef, otherwise.

Then (q, ρ)
A−→ (q′, ρ′) if one of the following holds:

– Lmd(A) 6= SIT and Aft(B) = Aft(S1), then
• if B does not occur in S1, then ρ′ = Push(ρ,B(b));
• if B occurs in S1, then ρ′ = PopUntil(ρ,B);

– Lmd(A) 6= SIT and Aft(B) 6= Aft(S1), then
• if GetNonSITTaskByAft(ρ,Aft(B)) = Si,

∗ if B does not occur in Si, then ρ′ = Push(Move2Top(ρ, i), B(b));
∗ if B occurs in Si, then ρ′ = PopUntil(Move2Top(ρ, i), B),

• if GetNonSITTaskByAft(ρ,Aft(B)) = Undef, then ρ′ = NewTask(ρ,B(b));
– Lmd(A) = SIT, then
• if GetNonSITTaskByAft(ρ,Aft(B)) = Si, then

∗ if B does not occur in Si, then ρ′ = Push(Move2Top(ρ, i), B(b));
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∗ if B occurs in Si, then ρ′ = PopUntil(Move2Top(ρ, i), B);
• if GetNonSITTaskByAft(ρ,Aft(B)) = Undef, then ρ′ = NewTask(ρ,B(b)).

From the aforementioned description of the semantics, we know that for B ∈
ActSTK, if an instance of the B-activity, say B(b′), is already in the back stack,
then executing an action start(B(b)) will not modify the parameters of the in-
stance of B in the back stack and the parameters b are lost, in other words,
B(b′) will be still stored in the back stack after executing the action.

Since in many apps, activities do have parameters, which typically take
Boolean values, ASM with parameters is a natural extension of ASM to model
such Apps. All the results for ASM obtained in this paper can be easily
extended to ASM with parameters.

We are ready to present the reduction. Suppose A = (Q,Sig, q0, ∆) is an
ASM with Sig = (Act, Lmd,Aft, A0) and (q, ρ) ∈ ConfA. Let ρ = (S1, · · · , Sn),
where Si = [Ai,1, · · · , Ai,mi ] for each i ∈ [n].

We use Aft6sit to denote the set of affinities of non-SIT activities, i.e., {Aft(A) |
A ∈ Act \ Actsit}. Intuitively, in the reduction, we encode ρ as a word

enc(ρ) = A1,1(0), · · · , A1,m1−1(0), A1,m1(1), · · · , An,1(0), · · · , An,mn−1(0), An,mn(1),

where A1,m1
(1) denotes the fact that A1,m1

is the root of the top task, similarly
for A2,m2(1), and so on.

Let EAct = {A(b) | A ∈ Act, b ∈ {0, 1}} and Sfxρ denote the set of suffixes of

enc(ρ). Moreover, we define a relation α
A(b)−−−→ α′ as follows: For α, α′ ∈ Sfxρ and

A(b) ∈ EAct, we have α
A(b)−−−→ α′ if α = A(b) · α′.

The ASM B = (Q′,Sig′, q′0, ∆
′), such that

– Sig′ = (Act, Lmd,Aft,Art, A0(1)) such that Art(A) = 1 for each A ∈ Act,
– Q′ = Q× 2Actsit∪Aft 6sit ∪ {qα | α ∈ Sfxρ}, where each state (q′, I) denotes the

fact that the current state of A is q′ and I is the union of the set of SIT
activities in the back stack and the set of affinities of non-SIT tasks,

– q′0 = (q0, ∅),
– ∆′ is defined below.

We construct ∆′ out of the transitions from ∆ by mimicking their semantics.

– For each transition q0
.,start(A0)−−−−−−→ q′ ∈ ∆,

• if Lmd(A0) = SIT, then, (q0, ∅)
.,start(A0(1))−−−−−−−−→ (q′, {A0}) ∈ ∆′,

• if Lmd(A0) 6= SIT, then, (q0, ∅)
.,start(A0(1))−−−−−−−−→ (q′, {Aft(A0)}) ∈ ∆′.

– For each transition q′
A,�−−→ q′′ ∈ ∆, I ⊆ Actsit ∪ Aft6sit and b ∈ {0, 1},

(q′, I)
A(b),�−−−−→ (q′′, I) ∈ ∆′.

– For each transition q′
A,back−−−−→ q′′ ∈ ∆ and I ⊆ Actsit ∪ Aft6sit,

• if Lmd(A) = SIT and A ∈ I, then (q′, I)
A(1),back−−−−−−→ (q′′, I \ {A}) ∈ ∆′,
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• if Lmd(A) 6= SIT, then (q′, I)
A(0),back−−−−−−→ (q′′, I) ∈ ∆′. Moreover, if Aft(A) ∈

I, (q′, I)
A(1),back−−−−−−→ (q′′, I \ {Aft(A)}) ∈ ∆′.

Next, we consider the transitions of the form q′
A,start(B)−−−−−−→ q′′ ∈ ∆. For each

transition q′
A,start(B)−−−−−−→ q′′ ∈ ∆, I, I ′ ⊆ Actsit ∪ Aft6sit and b, b′ ∈ {0, 1}, we have

(q′, I),
A(b),start(B(b′))−−−−−−−−−−→ (q′′, I ′) ∈ ∆′ if one of the following constraints holds:

Case Lmd(B) = STD or Case Lmd(B) = STP

– Lmd(A) = SIT, A ∈ I and Aft(B) 6∈ I, then I ′ = I ∪ {Aft(B)} and b′ = 1;

– otherwise, I = I ′ and b′ = 0;

Case Lmd(B) = SIT

– I ′ = I ∪ {B} and b′ = 1;

Case Lmd(B) = STK

– Aft(B) 6∈ I, then I ′ = I ∪ {Aft(B)} and b′ = 1;

– otherwise, I = I ′ and b′ = 0.

Note that according to the semantics of start(B(b)), if Aft(B) ∈ I, then an
instance of B is already in the back stack, then it is safe to set b′ = 0, since b′

will not be stored into the back stack anyway.

Finally, we add the following transition rules in ∆′ to verify that the config-
uration (q, ρ) is reached in A.

– For every I ⊆ Actsit ∪ Aft6sit, α, α′ ∈ Sfxρ, and A(b) ∈ EAct such that

α
A(b)−−−→ α′, we have

• if α = enc(ρ), then (q, I)
A(b),back−−−−−−→ (qα′ , I

′),

• otherwise, (qα, I)
A(b),back−−−−−−→ (qα′ , I

′),

where

I ′ =

 I, if b = 0,
I \ {A}, if b = 1 ∧ Lmd(A) = SIT,
I \ {Aft(A)}, if b = 1 ∧ Lmd(A) 6= SIT.

From the construction, we know that (q0, ε)
A
=⇒ (q, ρ) iff the state (qε, ∅) is

reachable from the configuration ((q0, ∅), ε) in B.

Since the size of Sfxρ is linear in the length of ρ and the set of states (q′, I) ∈
Q×2Actsit∪Aft 6sit has a size at most exponential in |Actsit|+ |Aft6sit|, we know that
size of B is at most exponential in the size of A and (q, ρ). We conclude that the
reduction takes exponential time in the worst case.
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B.2 Proof of Theorem 1

We prove the theorem by reducing from the state reachability problem of two
counter machines.

A two-counter machine M is a triple (Q, q0, δ), where Q is a set of states,
q0 ∈ Q is the initial state, and δ ⊆ Q× {ifzi, inci, deci | i = 1, 2} ×Q is a set of
transitions. The state reachability problem is to ask whether a given state q is
reachable from q0, with the zero initial values for the two counters.

The intuition of the reduction is to construct an ASM with two tasks that
record the values of the two counters, and use STK (resp. SIT) activities to switch
between the two tasks. We shall focus on the first two claims. Other claims can
be shown in a very similar way, and are omitted.

Proof of the first claim. We construct an ASM B = (Q′,Sig, q′0, ∆) to simulate
the two-counter machine M, where

– Q′ = Q ∪ δ ∪ {q′0, q′1}, where q′0, q
′
1 are two fresh states not in Q ∪ δ,

– Sig = (Act, Lmd,Aft, B1), such that Act = {A1, A2, B1, B2, C1, C2}, and
Lmd,Aft are defined as follows,
• Lmd(A1) = Lmd(A2) = STD, Aft(A1) = 1, Aft(A2) = 2 (intuitively,
A1, A2 are put in two different tasks to simulate the values of the two
counters),

• B1, B2 are the root activities of the two tasks, Lmd(B1) = Lmd(B2) =
STK, Aft(B1) = Aft(A1), Aft(B2) = Aft(A2) (we will call the two tasks
as B1-task and B2-task respectively),

• Lmd(C1) = Lmd(C2) = STK, Aft(C1) = Aft(A1), Aft(C2) = Aft(A2)
(intuitively, C1 and C2 are used to switch between the two tasks when
incrementing/decrementing the two counters),

– ∆ comprises the following transitions,

• q′0
.,start(B1)−−−−−−→ q′1, q′1

B1,start(B2)−−−−−−−−→ q0,
• for each transition (q′, ifzi, q′′) ∈ δ,

∗ q′
Bi,�−−−→ q′′,

∗ q′
B3−i,start(Ci)−−−−−−−−−→ (q′, ifzi, q′′), q′

A3−i,start(Ci)−−−−−−−−−→ (q′, ifzi, q′′),

(q′, ifzi, q′′)
Ci,back−−−−→ (q′, ifzi, q′′), (q′, ifzi, q′′)

Bi,�−−−→ q′′,
• for each transition (q′, inci, q′′) ∈ δ,

∗ q′
Bi,start(Ai)−−−−−−−→ q′′, q′

Ai,start(Ai)−−−−−−−→ q′′,

∗ q′
B3−i,start(Ci)−−−−−−−−−→ (q′, inci, q′′), q′

A3−i,start(Ci)−−−−−−−−−→ (q′, inci, q′′),

(q′, inci, q′′)
Ci,back−−−−→ (q′, inci, q′′), (q′, inci, q′′)

Bi,start(Ai)−−−−−−−→ q′′,

(q′, inci, q′′)
Ai,start(Ai)−−−−−−−→ q′′,

• for each transition (q′, deci, q′′) ∈ δ,
∗ q′

Ai,back−−−−−→ q′′,

∗ q′
B3−i,start(Ci)−−−−−−−−−→ (q′, deci, q′′), q′

A3−i,start(Ci)−−−−−−−−−→ (q′, deci, q′′),

(q′, deci, q′′)
Ci,back−−−−→ (q′, deci, q′′), (q′, deci, q′′)

Ai,back−−−−−→ q′′.

From the construction, the state q is reachable from the initial configuration
(q0, (0, 0)) in M iff q is reachable from (q′0, ε) in B.
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Proof of the second claim. We construct an ASM C = (Q′′,Sig′, q′0, ∆
′) to sim-

ulate M. The construction of C is similar to B, except that we now use a SIT
activity C to switch between two tasks in lieu of two STK activities. In addition,
the root activities of the two tasks have the “standard” launch mode now. More
specifically,

– Q′′ = Q∪ δ ∪ (δ×{0, 1})∪{q′0, q′1, q′2}, where q′0, q
′
1, q
′
2 are three fresh states,

– Sig′ = (Act′, Lmd′,Aft′, B1), where

• Act′ = {A1, A2, B1, B2, C},
• Lmd′(A1) = Lmd′(A2) = Lmd′(B1) = Lmd′(B2) = STD, Lmd′(C) = SIT,
• Aft′(A1) = Aft′(B1) = 1, Aft′(A2) = Aft′(B2) = 2, and Aft′(C) = 3,

– ∆′ comprises the following transitions,

• q′0
.,start(B1)−−−−−−→ q′1, q′1

B1,start(C)−−−−−−−→ q′2, q′2
C,start(B2)−−−−−−−→ q0,

• for each transition (q′, ifzi, q′′) ∈ δ,
∗ q′

Bi,�−−−→ q′′,

∗ q′
B3−i,start(C)−−−−−−−−→ ((q′, ifzi, q′′), 0), q′

A3−i,start(C)−−−−−−−−→ ((q′, ifzi, q′′), 0),

((q′, ifzi, q′′), 0)
C,start(Ai)−−−−−−−→ ((q′, ifzi, q′′), 0),

((q′, ifzi, q′′), 0)
Ai,back−−−−−→ ((q′, ifzi, q′′), 1), ((q′, ifzi, q′′), 1)

Bi,�−−−→ q′′,
• for each transition (q′, inci, q′′) ∈ δ,

∗ q′
Bi,start(Ai)−−−−−−−→ q′′, q′

Ai,start(Ai)−−−−−−−→ q′′,

∗ q′
B3−i,start(C)−−−−−−−−→ (q′, inci, q′′), q′

A3−i,start(C)−−−−−−−−→ (q′, inci, q′′),

(q′, inci, q′′)
C,start(Ai)−−−−−−−→ q′′,

• for each transition (q′, deci, q′′) ∈ δ,
∗ q′

Ai,back−−−−−→ q′′,

∗ q′
B3−i,start(C)−−−−−−−−→ ((q′, deci, q′′), 0), q′

A3−i,start(C)−−−−−−−−→ ((q′, deci, q′′), 0),

((q′, deci, q′′), 0)
C,start(Ai)−−−−−−−→ ((q′, deci, q′′), 0),

((q′, deci, q′′), 0)
Ai,back−−−−−→ ((q′, deci, q′′), 1), ((q′, deci, q′′), 1)

Ai,back−−−−−→ q′′.

From the construction, the state q is reachable from the initial configuration
(q0, (0, 0)) in M iff q is reachable from (q′0, ε) in C.

C Details of Section 5.1

For the detailed construction of the TrPDS P, we start with two transducers
manipulating the back stack encoded by S1] · · · ]Sn]. Let B ∈ ActSTK.

The first transducer TB,1 checks that B is the root activity of the top task,
and replaces every symbol of the top task with †. The second transducer TB,2
checks that B is not the root activity of the top task, and replaces each symbol
of the task containing B—if it exists—with †. Note that for an input word, if B
is not the root activity of the top task, then TB,1 fails and does not produce any
output. Likewise, if B is the root activity of the top task, then TB,2 fails.
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Let Γ = Act ∪ {⊥, ], †}. In the TrPDS P, we shall encode each back stack of
A as a word in the regular language

Lconf =
(
(Act∗STDActSTK ∪ †+)]

)∗⊥.
For a word w ∈ Lconf , w can be split into subwords from (Act∗STDActSTK ∪ †+)],
that is, w = w1]w2] · · · ]wk]⊥, where wi ∈ Act∗STDActSTK ∪ †+ for each i ∈ [k].
We refer to w1, · · · , wk as the blocks of w. A block wi of w is non-trivial if
wi ∈ Act∗STDActSTK. For B ∈ ActSTK, a non-trivial block wi of w is said to be a
B-block if wi ∈ Act∗STDB.

Let Bconf = (Qconf , Qconf , Γ, δconf , Iconf , Fconf ) be the NFA recognizing
Lconf . The size of Bconf is polynomial in |ActSTK|. W.l.o.g., in Bconf , we as-
sume that there are no incoming transitions for each p ∈ Iconf .

Let B ∈ ActSTK. We define TB,1 = (QB,1, Γ, δB,1, IB,1, FB,1), where

– QB,1 = Qconf × {q(B,1)0 , q
(B,1)
1 , q

(B,1)
2 },

– δB,1 comprises

• the transitions (p, q
(B,1)
0 )

C,†−−→ (p′, q(B,1)0 ) for each C ∈ ActSTD and
(p, C, p′) ∈ δconf ,

• (p, q
(B,1)
0 )

B,†−−→ (p′, q(B,1)1 ) for each (p,B, p′) ∈ δconf ,

• (p, q
(B,1)
1 )

γ,γ−−→ (p′, q(B,1)1 ) for each γ ∈ Γ \ {B} and (p, γ, p′) ∈ δconf ,

• (p, q
(B,1)
1 )

],]−→ (p′, q(B,1)2 ) for each (p, ], p′) ∈ δconf ,

• (p, q
(B,1)
2 )

γ,†−−→ (p′, q(B,1)2 ) for each γ ∈ ActSTD and (p, γ, p′) ∈ δconf ,

• (p, q
(B,1)
2 )

B,†−−→ (p′, q(B,1)1 ) for each (p,B, p′) ∈ δconf ,

– IB,1 = Iconf × {q(B,1)0 },
– FB,1 = Fconf × {q(B,1)1 }.

In addition, we define TB,2 = (QB,2, Γ, δB,2, IB,2, FB,2), where

– QB,2 = Qconf × {q(B,2)0 , q
(B,2)
1 },

– δB,2 comprises the following transitions

• (p, q
(B,2)
0 )

γ,γ−−→ (p′, q(B,2)0 ) for each γ ∈ Γ \ {B} and (p, γ, p′) ∈ δconf ,

• (p, q
(B,2)
0 )

],]−→ (p′, q(B,2)1 ) for each (p, ], p′) ∈ δconf ,

• (p, q
(B,2)
1 )

γ,†−−→ (p′, q(B,2)1 ) for each γ ∈ ActSTD and (p, γ, p′) ∈ δconf ,

• (p, q
(B,2)
1 )

B,†−−→ (p′, q(B,2)0 ) for each (p,B, p′) ∈ δconf ,

– I(B,2) = Iconf × {q(B,2)0 },
– F(B,2) = Fconf × {q(B,2)0 }.

Note that Fconf × {q(B,2)0 } = F(B,2) implies that TB,2 simply outputs the input
string if B does not occur in the input string.

Let T = {TB,1, TB,2 | B ∈ ActSTK} ∪ {Tid}. According to the definition,
we know that the domain of TB,1 ∈ T is Lconf ∩ (Act∗STDB]Γ

∗), while that of
TB,2 ∈ T is Lconf ∪ (] · Lconf ). Note that we construct TB,1 and TB,2 in a way
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that, for each w in the domain of TB,1 (resp. TB,2), B may occur multiple times
in w. This would facilitate the construction of JR(T )K from T later.

Based on these transducers, P is constructed as (Q′, Γ,T , ∆′), where Q′ =
Q ∪ (Q×Q), and ∆′ comprises the following transitions,

– for each (q0, ., start(A0), q) ∈ ∆, we have (q0,⊥, A0]⊥, Tid, q) ∈ ∆′,
– for each (q, A, start(B), q′) ∈ ∆ withB ∈ ActSTD, we have (q, A,BA, Tid, q′) ∈
∆′,

– for each (q, A, start(A), q′) ∈ ∆ with A ∈ ActSTK, we have (q, A,A, Tid, q′) ∈
∆′,

– for each (q, A, start(B), q′) ∈ ∆ with B ∈ ActSTK and A 6= B, we have
(q,A,B]†, TB,1, q′) ∈ ∆′ (corresponding to the situation that the top task
is a B-task), and (q, A,B]A, TB,2, q′) ∈ ∆′ (corresponding to the situation
that the top task is not a B-task),

– for each (q, A, back, q′) ∈ ∆, we have the transitions (q, A, ε, Tid, (q, q′)) ∈ ∆′,
((q, q′), γ, γ, Tid, q′) ∈ ∆′ for each γ ∈ Act∪{⊥}, ((q, q′), ], ε, Tid, (q, q′)) ∈ ∆′,
and ((q, q′), †, ε, Tid, (q, q′)) ∈ ∆′,

– for each (q, A,�, q′) ∈ ∆, we have (q, A,A, Tid, q′) ∈ ∆′.
In order to show that P is indeed a finite TrPDS, it remains to show that

JR(T )K is finite.

Lemma 2. JR(T )K is finite, moreover, the size of JR(T )K is exponential in
|ActSTK|.
Proof. We will prove the lemma by utilising some special properties enjoyed by
the transductions from R(T ).

Let B ∈ ActSTK. Recall that TB,1 checks that the first block is a B-block and
replaces every symbol in all the B-blocks with † and TB,2 replaces every symbol
in all the B-blocks—if they exist—with †.

For convenience, for B ∈ ActSTK, we use R(TB) to denote R(TB,1)∪R(TB,2).
By the definition of TB,1 and TB,2, we know that R(T ) satisfies the following

properties:

– For each B ∈ ActSTK, R(TB,2) is an idempotent, that is, R(TB,2)◦R(TB,2) =
R(TB,2).

– For B,B′ ∈ ActSTK (B and B′ are not necessarily distinct), R(TB,1) ◦
R(TB′,1) = τ∅.

– R(T ) is associative and communicative, namely, for all τ1, τ2, τ3 ∈ R(T ),
(τ1 ◦ τ2) ◦ τ3 = τ1 ◦ (τ2 ◦ τ3), and τ1 ◦ τ2 = τ2 ◦ τ1.

– The left-quotients of R(T ) satisfy that
• for each B ∈ ActSTK, A ∈ ActSTD, and B′ ∈ ActSTK \ {B}, we have

∗ 〈A, †〉−1R(TB,1) = R(TB,1), and

〈B, †〉−1R(TB,1) = 〈], ]〉+1R(TB),

∗ 〈A,A〉−1R(TB,2) = R(TB,2), 〈], ]〉−1R(TB,2) = R(TB),

〈B′, B′〉−1R(TB,2) = 〈], ]〉+1R(TB),

〈†, †〉−1R(TB,2) = R(TB,2) ∪ 〈], ]〉+1R(TB);
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• for eachB ∈ ActSTK, except the aforementioned cases, 〈γ1, γ2〉−1R(TB,1) =
τ∅ and 〈γ1, γ2〉−1R(TB,2) = τ∅.

As a result, JR(T )K can be computed from T by repeatedly applying com-
position and left quotient until stablized. It turns out that the computation
stabilizes after applying composition, left quotient, composition, and left quo-
tient.

Let B1, · · · , Bk be an enumeration of the activities in ActSTK.

Step I. At first, we compute the closure of R(T ) under compositions, denoted
by Comp(R(T )), as the union of

T ′1 =
{
R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2) | r ≥ 1, i1 < · · · < ir

}
,

T ′2 =

{
R(TBi0 ,1) ◦ R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2)

∣∣∣∣ r ≥ 1, i1 < · · · < ir,
∀j ∈ [r], ij 6= i0

}
,

and T ′3 = {R(TBi,1) | i ∈ [k]} ∪ {τ∅}.
Step II. We compute the closure of Comp(R(T )) under left-quotients, denoted
by Quot(Comp(R(T ))).

Let i1, · · · , ir ∈ [k] such that i1 < · · · < ir. From the properties about left-
quotients, we know that

– for i0 ∈ [k] such that i0 6= i1, · · · , ir and A ∈ ActSTD, we have

〈A, †〉−1(R(TBi0 ,1) ◦ R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2))
= R(TBi0 ,1) ◦ R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2),

〈Bi0 , †〉−1(R(TBi0 ,1) ◦ R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2))
= 〈], ]〉+1(R(TBi0 ) ◦ R(TBi1 ) ◦ · · · ◦ R(TBir )),

– for A ∈ ActSTD, we have

〈A,A〉−1(R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2)) = R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2),

– 〈], ]〉−1(R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2)) = R(TBi1 ) ◦ · · · ◦ R(TBir ),
– for i0 ∈ [k] such that i0 6= i1, · · · , ir,
〈Bi0 , Bi0〉−1(R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2)) = 〈], ]〉+1(R(TBi1 ) ◦ · · · ◦ R(TBir )),

– and

〈†, †〉−1(R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2)) =
(R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2)) ∪ 〈], ]〉+1(R(TBi1 ) ◦ · · · ◦ R(TBir )).

Note that R(TBi1 ) ◦ · · · ◦ R(TBir ) is the union of r + 2 transductions from
Comp(R(T )), namely, τ∅, R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2), and

R(TBij ,1) ◦ R(TBi1 ,2) ◦ · · · ◦ R(TBij−1
,2) ◦ R(TBij+1

,2) ◦ · · · ◦ R(TBir ,2)

for j ∈ [r].
We then consider the left-quotients of R(TBi1 ) ◦ · · · ◦R(TBir ) for i1, · · · , ir ∈

[k] such that i1 < · · · < ir.
Let i1, · · · , ir ∈ [k] such that i1 < · · · < ir. Then
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– for A ∈ ActSTD and j ∈ [r],

〈A, †〉−1(R(TBi1 ) ◦ · · · ◦ R(TBir )) =⋃
j′∈[r]

R(TBi
j′ ,1

) ◦ R(TBi1 ,2) ◦ · · · ◦ R(TBi
j′−1

,2) ◦ R(TBi
j′+1

,2) ◦ · · · ◦ R(TBir ,2),

〈Bij , †〉−1(R(TBi1 ) ◦ · · · ◦ R(TBir )) = 〈], ]〉+1(R(TBi1 ) ◦ · · · ◦ R(TBir )),

– for A ∈ ActSTD,

〈A,A〉−1(R(TBi1 ) ◦ · · · ◦ R(TBir )) = R(TBi1,2) ◦ · · · ◦ R(TBir,2),

– 〈], ]〉−1(R(TBi1 ) ◦ · · · ◦ R(TBir )) = R(TBi1 ) ◦ · · · ◦ R(TBir ),

– for i0 ∈ [k] such that i0 6= i1, · · · , ir,

〈Bi0 , Bi0〉−1(R(TBi1 ) ◦ · · · ◦ R(TBir )) = 〈], ]〉+1(R(TBi1 ) ◦ · · · ◦ R(TBir )),

– 〈†, †〉−1(R(TBi1 )◦· · ·◦R(TBir )) = (R(TBi1,2)◦· · ·◦R(TBir,2))∪〈], ]〉+1(R(TBi1 )◦
· · · ◦ R(TBir )).

Let us consider the left-quotients of⋃
j′∈[r]

R(TBi
j′ ,1

) ◦ R(TBi1 ,2) ◦ · · · ◦ R(TBi
j′−1

,2) ◦ R(TBi
j′+1

,2) ◦ · · · ◦ R(TBir ,2)

for i1, · · · , ir ∈ [k] such that i1 < · · · < ir. For convenience, we use τ∪i1,··· ,ir to
denote this transduction. Then

– for A ∈ ActSTD, 〈A, †〉−1τ∪i1,··· ,ir = τ∪i1,··· ,ir ,

– for j ∈ [r], 〈Bij , †〉−1τ∪i1,··· ,ir = 〈], ]〉+1(R(TBi1 ) ◦ · · · ◦ R(TBir )).

Therefore, Quot(Comp(R(T ))) is

Comp(R(T )) ∪ {R(TBi1 ) ◦ · · · ◦ R(TBir ) | i1 < · · · < ir} ∪
{〈], ]〉+1(R(TBi1 ) ◦ · · · ◦ R(TBir )) | i1 < · · · < ir} ∪
{(R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2)) ∪ 〈], ]〉+1(R(TBi1 ) ◦ · · · ◦ R(TBir )) | i1 < · · · < ir} ∪
{τ∪i1,··· ,ir | i1 < · · · < ir}.

Step III. We compute the closure of Quot(Comp(R(T ))) under composition,
denoted by Comp(Quot(Comp(R(T )))).

It is easy to observe that for B ∈ ActSTK, B
′ ∈ ActSTK such that B 6= B′, we

have

– R(TB,1) ◦ R(TB′) = R(TB′) ◦ R(TB,1) = R(TB,1) ◦ R(TB′,2),

– R(TB) ◦ R(TB) = R(TB,2) ◦ R(TB) = R(TB) ◦ R(TB,2) = R(TB,2),

– R(TB,2) ◦ R(TB′) = R(TB′) ◦ R(TB,2).
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Therefore, Comp(Quot(Comp(R(T )))) is

Quot(Comp(R(T ))) ∪{
R(TBi1 ,2) ◦ · · · ◦ R(TBir ,2) ◦
R(TBi′1 ) ◦ · · · ◦ R(TBi′s )

∣∣∣∣ i1 < · · · < ir, i
′
1 < · · · < i′s,

{i1, · · · , ir} ∩ {i′1, · · · , i′s} = ∅

}
∪{

R(TBi′1,2) ◦ · · ·R(TBi′s,2) ◦ τ∪i1,··· ,ir
∣∣∣∣ i1 < · · · < ir, i

′
1 < · · · < i′s,

{i1, · · · , ir} ∩ {i′1, · · · , i′s} = ∅

}
.

Step IV. Finally, we observe that the closure of Comp(Quot(Comp(R(T ))))
under quotient is equal to Comp(Quot(Comp(R(T )))). Therefore, we conclude
that

JR(T )K = Comp(Quot(Comp(R(T )))) ∪ {τid}.

It is easy to see that the size of JR(T )K is exponential in |ActSTK|. ut

D Details of Section 5.2

D.1 Two-stack case

The construction of PA is divided into two steps. We first construct a PDS PA0

to simulate the A0-task of A. Then we incorporate the aforementioned “macro”
transitions into PA0

to get PA, by utilising

(Reach(q′, A, α))(q′,A,α)∈Q×(Act\{A1})×AbsA1
.

The PDS PA0
= (QA0

, ΓA0
, ∆A0

), where QA0
= (Q × {0, 1}) ∪ (Q × {1} ×

{pop}), ΓA0
= ActSTD ∪ {A2,⊥}, and ∆A0

comprises the following transitions,

– for each transition (q0, ., start(A0), q′) ∈ ∆, we have ((q0, 0),⊥, A0⊥, (q′, 0)) ∈
∆A0 , [initialization]

– for each b ∈ {0, 1} and (q′, A, start(B), q′′) ∈ ∆ such that B ∈ ActSTD, we
have ((q′, b), A,BA, (q′′, b)) ∈ ∆A0

, [push a standard activity]
– for each transition (q′, A, start(A2), q′′) ∈ ∆ such that A ∈ ActSTD, we

have both ((q′, 0), A,A2A, (q
′′, 1)) ∈ ∆0 and ((q′, 1), A, ε, (q′′, 1, pop)) ∈ ∆A0 ,

[push A2 or start popping]
– for each (q′, A2, start(A2), q′′) ∈ ∆, we have ((q′, 1), A2, A2, (q

′′, 1)) ∈ ∆A0
,

[the stack unchanged if A2 starts itself]
– for each q′ ∈ Q and A ∈ ActSTD, ((q′, 1, pop), A, ε, (q′, 1, pop)) ∈ ∆A0

, more-
over, for each q′ ∈ Q, ((q′, 1, pop), A2, A2, (q

′, 1)) ∈ ∆A0 , [pop until A2]
– for each b = 0, 1 and (q′, A, back, q′′) ∈ ∆ such that A ∈ ActSTD, we have

((q′, b), A, ε, (q′′, b)) ∈ ∆A0
, [pop a standard activity]

– for each (q′, A2, back, q
′′) ∈ ∆, we have ((q′, 1), A2, ε, (q

′′, 0)) ∈ ∆A0
, [pop

A2]
– for each b = 0, 1 and each (q, A,�, q′) ∈ ∆, we have ((q, b), A,A, (q′, b)) ∈ ∆′.

[no action]
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D.2 General case

Finally, we show how the decision procedure can be generalised to the more
general case that there are more than two “singleTask” activities. Let us assume
that A1 ∈ ActSTK satisfies that Aft(A1) = Aft(A0).

For the general case, the skeleton of the decision procedure for the reacha-
bility problem is similar to that of the two-task case. The additional technical
intricacy lies in that the abstraction of the non-A0 tasks is more involved and
the construction of Reach(q′, A, α) is considerably more complex.

Similarly to the two-task case, to simulate the non-A0 tasks of the ASMA, we
construct a TrPDS PA0

= (QA0
, ΓA0

,TA0
, ∆A0

), where ΓA0
= Act∪{†, ],⊥}.

In addition, from Theorem 5, an MA Mq = (Qq, ΓA0
,TA0

, δq, Iq, Fq) can be
constructed to represent pre∗PA0

(q).

Our goal is to define a finite abstraction for the non-A0-tasks of A, under the
assumption that the A0-task is nonempty in the back stack. When the A0-task
is nonempty, the non-A0-tasks of A are encoded as a word w ∈ (Act∗STD(ActSTK \
{A1})] ∪ †+])+⊥, which describes the content of the stack of PA0

where the
A1-task has not been started yet.

Similarly to the two-task case, we define a finite abstraction of the non-A0-
tasks ofA, incorporate it into the control states, and reduce the state reachability
problem of A to that of a PDS PA. The main idea of the reduction is to simulate
each A0;A0 ;A0 switching by a “macro”-transition of PA, where an A0;A0 ;A0

switching is a path in
A−→ such that in both the first and last configuration of

the path, the A0-task is the top task, and in all the intermediate configurations,
the A0-task is not the top task. Suppose that, for an A0;A0 ;A0 switching, in
the first (resp. last) configuration, q′ (resp. q′′) is the control state and α (resp.
β) is the finite abstraction of the non-A0 tasks. Then for the “macro”-transition
of PA, the control state will be updated from (q′, α) to (q′′, β), and the stack
content of PA is updated accordingly, viz.,

– if in the A0;A0 ;A0 switching, the A0-task becomes the top task again by
starting the activity A1 (in this case, the switching is called an active switch-
ing), then A1 will be pushed into the stack of PA if the stack does not contain
A1, and all the symbols above A1 will be popped otherwise,

– if in the A0;A0 ;A0 switching, the A0-task becomes the top task again by
popping empty all the tasks on top of the A0-task (in this case, the switching
is called a passive switching), then the stack of PA stays unchanged.

Similarly to the two-task case, to construct PA, we need compute Reach(q′, A, α),
which is the union of

– the set of triples (q′′, β, A1) such that (q′′, β) is reachable from (q′, α) by an
active A0;A0 ;A0 switching, in which A is the top activity of the A0-task in
the first configuration,

– the set of triples (q′′, β,⊥) such that (q′′, β) is reachable from (q′, α) by a
passive A0;A0 ;A0 switching, in which A is the top activity of the A0-task
in the first configuration.
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Since the non-A0 tasks of A are encoded as the stack contents of PA0
, the

finite abstraction can be actually defined for the words w ∈ (Act∗STD(ActSTK \
{A1})]∪ †+])+⊥. Note that such a word w encodes the contents of the non-A0-
tasks of A for the situation that the A0-task is nonempty in the back stack and
the A1-task has not been started yet.

To compute Reach(q′, A, α), we need an additional notation Remv(α,B) for
an abstraction α and B ∈ ActSTK\{A1}, which intuitively specifies how to obtain
the new abstraction from the abstraction α when a B activity is started. Let
us exemplify Remv(α,B) for the situation that w ∈ (Act∗STD(ActSTK \ {A1})] ∪
†+])+⊥ is the current stack content of PA0

, the abstraction of w is α, and w =
w1(w2B)]w3⊥ such that w1, w3 ∈ (Act∗STD(ActSTK \{A1})]∪†+])∗, B ∈ ActSTK \
{A1}, and w2 ∈ Act∗STD. If the activity B is started in A, then accordingly, the
stack content of PA0

is changed by rewriting the subword w2B, which encodes

the content of the B-task of A, into †|w2|+1, and adding B] to the front of
the word. Thus, Remv(α,B) is the abstraction of w1†|w2|+1]w3⊥, the new stack
content of PA0

(with the prefix B] ignored for technical reasons).

Abstraction. As a result, to facilitate the computation of Remv(α,B), for a word
w ∈ (Act∗STD(ActSTK \ {A1})]∪ †+])+⊥, we define the abstraction of w, denoted
by α(w), by splitting w into the segments corresponding to the nontrivial blocks
or the maximal segments containing only trivial blocks. Specifically, suppose
that w is split into w1, · · · , wk, (therefore w = w1 · · ·wk⊥), such that for each
i ∈ [k], either wi ∈ Act+], or wi ∈ (†+])+, moreover, for each i ∈ [k − 1], we
have wi ∈ Act+] or wi+1 ∈ Act+]. Note that k is linear in the number of tasks in
A, more precisely, k ≤ 2 · |rng(Aft)|+ 1. If wi ∈ Act+], we say wi is a nontrivial
segment of w, otherwise, it is a trivial segment of w. Then α(w) is defined as
α = [α1, · · · , αk] such that for each i ∈ [k],

– if wi is a trivial segment of w, then αi = (†, αi,1), where αi,1 is the set of

pairs (q′, q′′) ∈ Qq ×Qq such that q′
wi−→ q′′ in Mq,

– otherwise, we have αi = (Ai, αi,1, αi,2), where wi ∈ Act∗STDAi], αi,1 is the

set of pairs (q′, q′′) ∈ Qq ×Qq such that q′
wi−→ q′′ in Mq, and αi,2 is the set

of pairs (q′, q′′) ∈ Qq ×Qq such that q′
†|wi|−1]−−−−−→ q′′ in Mq.

Let AbsA0, A1
denote the set of abstractions of words from (Act∗STD(ActSTK \

{A1})] ∪ †+])+⊥. By convention, we assume that AbsA0, A1
contains a special

element ⊥ to denote the special situation that there are no non-A0 tasks in the
back stack. For α = [α1, · · · , αk] ∈ AbsA0, A1

, let Lα denote the set of words
w ∈ (Act∗STD(ActSTK \ {A1})] ∪ †+])+⊥ such that α(w) = α. Note that Lα is a
regular language, that is, we can construct an NFA Bα to accept the set of words
w ∈ (Act∗STD(ActSTK \ {A1})] ∪ †+])+⊥ such that the segments of w satisfy the
aforementioned state-reachability constraints of Mq in the definition of α(w).
Let α = [α1, · · · , αk]. For each i ∈ [k], let Bαi be the product of the automata
corresponding to the elements of αi. For instance, if αi = (Ai, αi,1, αi,2) with
Ai ∈ ActSTK \ {A1}, then Bαi is the product ofMq(q

′, q′′) for (q′, q′′) ∈ αi,1 and
M′q(q′, q′′) for (q′, q′′) ∈ αi,2, whereM′q is obtained fromMq by removing all the

33



Act-transitions and replacing each transition (q1, †, q2) with multiple transitions
(q1, A, q2) for each A ∈ Act \ {A1}. Moreover, let Bα be the NFA obtained by
composing sequentially the NFA Bαi for i ∈ [k]. Therefore, the size of Bα is at
most exponential in that of α.

Computation of Reach(q′, A, α). As mentioned before, in order to define Reach(q′, A, α),
we need compute Remv(α,B) for α ∈ AbsA0, A1

and B ∈ ActSTK \ {A1}.
Suppose α = [α1, · · · , αk] ∈ AbsA0, A1

andB ∈ ActSTK\{A1}. Then Remv(α,B)
is defined as follows: If there does not exist i ∈ [k] such that αi = (B,αi,1, αi,2),
then Remv(α,B) = α. Otherwise, let us assume αi = (B,αi,1, αi,2) for some
i ∈ [k]. Then Remv(α,B) is defined as follows:

– If i = 1 and α2 = (C,α2,1, α2,2) for some C ∈ ActSTK \ {A1}, then

Remv(α,B) = [(†, α1,2), α2, · · · , αk].

– If i = 1 and α2 = (†, α2,1), then

Remv(α,B) = [(†, α1,2 · α2,1), α3, · · · , αk],

where α1,2 · α2,1 is the composition of the two relations α1,2 and α2,1.
– If i = k and αk−1 = (C,αk−1,1, αk−1,2) for some C ∈ ActSTK \ {A1}, then

Remv(α,B) = [α2, · · · , αk−1, (†, αk,2)].

– If i = k and αk−1 = (†, αk−1,1), then

Remv(α,B) = [α2, · · · , αk−2, (†, αk−1,1 · αk,2)].

– If 1 < i < k, αi−1 = (†, αi−1,1) and αi+1 = (†, αi+1,1), then

Remv(α,B) = [α1, · · · , αi−2, (†, αi−1,1 · αi,2 · αi+1,1), αi+2, · · · , αk].

– If 1 < i < k, αi−1 = (C,αi−1,1, αi−1,2) for some C ∈ ActSTK \ {A1} and
αi+1 = (†, αi+1,1), then

Remv(α,B) = α1, · · · , αi−2, αi−1, (†, αi,2 · αi+1,1), αi+2, · · · , αk],

– If 1 < i < k, αi−1 = (†, αi−1,1), and αi+1 = (C,αi+1,1, αi+1,2) for some
C ∈ ActSTK \ {A1}, then

Remv(α,B) = [α1, · · · , αi−2, (†, αi−1,1 · αi,2), αi+1, · · · , αk],

– If 1 < i < k, αi−1 = (C,αi−1,1, αi−1,2) for some C ∈ ActSTK \ {A1} and
αi+1 = (C ′, αi+1,1, αi+1,2) for some C ′ ∈ ActSTK \ {A1}, then

Remv(α,B) = [α1, · · · , αi−2, αi−1, (†, αi,2), αi+1, · · · , αk].
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For Λ = {B1, . . . , Br}, we define Remv(Λ,α) = Remv(B1, (. . . ,Remv(Br, α))).
(The order of activities in Λ is irrelevant here.)

In order to compute Reach(q′, A, α), we construct a PA0, A1
to simulate the

non-A0 tasks ofA, with an additional assumption that the A1-task is not started.
More precisely, PA0, A1

= (QA0, A1
, ΓA0, A1

,TA0, A1
, ∆A0, A1

), where

– QA0, A1
= (Q ∪ (Q×Q) ∪ {q′0})× 2ActSTK\{A1} (where q′0 is a fresh state),

– ΓA0, A1
= (Act \ {A1}) ∪ {†, ],⊥},

– TA0, A1
= {Tid} ∪ {TB,1, TB,2 | B ∈ ActSTK \ {A1}},

– and ∆A0, A1
comprises the following transitions,

• for each (q′, A, start(B), q′′) ∈ ∆ such that A ∈ ActSTD ∪ {A1} and B ∈
ActSTK \ {A1}, we have ((q′0, ∅),⊥, B]⊥, Tid, (q′′, {B})) ∈ ∆A0, A1

,

• for each (q′, A, start(B), q′′) ∈ ∆ and Λ ⊆ ActSTK\{A1} with B ∈ ActSTD,
we have (((q′, Λ), A,BA, Tid, (q′′, Λ)) ∈ ∆A0, A1

,

• for each (q′, A, start(A), q′′) ∈ ∆ and Λ ⊆ ActSTK\{A1} with A ∈ ActSTK,
we have ((q′, Λ), A,A, Tid, (q′′, Λ)) ∈ ∆A0, A1

,

• for each (q′, A, start(B), q′′) ∈ ∆ with B ∈ ActSTK and A 6= B,

∗ for each Λ ⊆ ActSTK \ {A1} such that B ∈ Λ, we have

((q′, Λ), A,B]†, TB,1, (q′′, Λ)) ∈ ∆A0, A1

(corresponding to the situation that the top task is a B-task),
∗ for each Λ ⊆ ActSTK \ {A1}, we have

((q′, Λ), A,B]A, TB,2, (q′′, Λ ∪ {B})) ∈ ∆A0, A1

(corresponding to the situation that the top task is not a B-task),

• for each (q′, A, back, q′′) ∈ ∆ and Λ ⊆ ActSTK \{A1}, we have the transi-
tions ((q′, Λ), A, ε, Tid, (q′, q′′, Λ)) ∈ ∆A0, A1

, ((q′, q′′, Λ), γ, γ, Tid, (q′′, Λ)) ∈
∆A0, A1

for each γ ∈ (Act\{A1})∪{⊥}, ((q′, q′′, Λ), ], ε, Tid, (q′, q′′, Λ)) ∈
∆A0, A1

, and ((q′, q′′, Λ), †, ε, Tid, (q′, q′′, Λ)) ∈ ∆A0, A1
,

• for each (q′, A,�, q′′) ∈ ∆ and Λ ⊆ ActSTK \ {A1}, we have

((q′, Λ), A,A, Tid, (q′′, Λ)) ∈ ∆A0, A1
.

We are ready to define Reach(q′, A, α). For each (q′, A, α) ∈ Q × (ActSTD ∪
{A1})× AbsA0, A1

, Reach(q′, A, α) comprises

– the triples (q′′, β, A1) such that there exist B ∈ ActSTK \ {A1}, q1, q2 ∈
Q, Λ ⊆ ActSTK \ {A1}, C ∈ Act \ {A1}, w1 ∈ C(ΓA0, A1

)∗, and w2 ∈
LRemv(Λ,α) satisfying that (q′, A, start(B), q1) ∈ ∆, ((q1, {B}), B]⊥)

PA0, A1=====⇒
((q2, Λ), w1), (q2, C, start(A1), q′′) ∈ ∆, and (w1⊥−1)w2 ∈ Lβ ,

– or the triples (q′′,Remv(Λ,α),⊥) such that there exist q1 ∈ Q, B ∈ ActSTK \
{A1}, and Λ ⊆ ActSTK \ {A1} satisfying that (q′, A, start(B), q1) ∈ ∆ and

((q1, {B}), B]⊥)
PA0, A1=====⇒ ((q′′, Λ),⊥).
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Via Theorem 5, from PA0, A1
, we construct a TrNFA

B(q′,A) = (Q(q′,A), ΓA0, A1
,TA0, A1

, δ(q′,A), I(q′,A), F(q′,A))

to represent post∗P′
A0, A1

(Conf(q′,A)), where

Conf(q′,A) =
⋃

B∈ActSTK\{A1},(q′,A,start(B),q1)∈∆
{(q1, {B})} × {B]⊥}.

Note that an equivalent MA M(q′,A) can be constructed from B(q′,A). The
size of M(q′,A) is polynomial in that of B(q′,A), thus polynomial in |PA0, A1

| +
|JR(TA0, A1

)K|.
The sets Reach(q′, A, α) are characterised algorithmically by the following

lemma.

Lemma 3. For each (q′, A, α) ∈ Q×(ActSTD∪{A1})×AbsA0, A1
, Reach(q′, A, α)

is the union of

– the set of triples (q′′, β, A1) such that there exist q2 ∈ Q, B ∈ Act \ {A1},
and Λ ⊆ ActSTK \ {A1} satisfying that (q2, B, start(A1), q′′) ∈ ∆, and

Lβ ∩ (([B(ΓA0, A1
)∗ ∩ L(M(q′,A)((q2, Λ)))]⊥−1) · LRemv(Λ,α)) 6= ∅.

– the set of triples (q′′,Remv(Λ,α),⊥) such that ⊥ ∈ L(M(q′,A)((q
′′, Λ))) for

some nonempty Λ ⊆ ActSTK (the “nonempty” constraint is due to the fact
that in a switching at least one STK-activity is started).

Finally, the construction of PA is the same as the two-task case, by utilising
(Reach(q′, A, α))(q′,A,α)∈Q×(ActSTD∪{A1})×AbsA0, A1

.

Construction of PA. We first construct a PDS PA0
= (QA0

, ΓA0
, ∆A0

), to
simulate the A0-task of A. Here QA0 = (Q × {0, 1}) ∪ (Q × {1} × {pop}),
ΓA0 = ActSTD ∪ {A1,⊥}, and ∆A0 comprises the transitions. The construction
of PA0

is the same as the two-task case, except that A2 is replaced by A1.
We then define the PDS PA = (QA, ΓA0

, ∆A), where QA = (AbsA0, A1
×

QA0
) ∪ {q}, and ∆A comprises the following transitions,

– for each (p, γ, w, p′) ∈ ∆A0
and α ∈ AbsA0, A1

, we have ((α, p), γ, w, (α, p′)) ∈
∆A (here p, p′ ∈ QA0

, that is, of the form (q′, b) or (q′, b, pop)), [behaviour
of the A0-task]

– for each (q′, A, α) ∈ Q×(ActSTD∪{A1})×AbsA0, A1
and b ∈ {0, 1} such that

L(M(q′,A)((q, Λ))) 6= ∅ for some Λ ⊆ ActSTK\{A1}, we have ((α, (q′, b)), A,A, q) ∈
∆A,
[switch to the non-A0 tasks and reach q before switching back]

– for each (q′, A, α) ∈ Q × (ActSTD ∪ {A1}) × AbsA0, A1
and (q′′, β, A1) ∈

Reach(q′, A, α) such that β 6= ⊥,

• if A 6= A1, then we have ((α, (q′, 0)), A,A1A, (β, (q
′′, 1))) ∈ ∆A and

((α, (q′, 1)), A, ε, (β, (q′′, 1, pop))) ∈ ∆A,
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• if A = A1, then we have ((α, (q′, 1)), A1, A1, (β, (q
′′, 1))) ∈ ∆A,

[switch to the non-A0 tasks and switch back to the A0-task later
by launching A1]

– for each (q′, A, α) ∈ Q×(ActSTD∪{A1})×AbsA0, A1
, (q′′, β,⊥) ∈ Reach(q′, A, α)

and b ∈ {0, 1}, we have ((α, (q′, b)), A,A, (β, (q′′, b))) ∈ ∆A,
[switch to the non-A0 tasks and switch back to the A0-task later
when the non-A0 tasks become empty]

– for each α ∈ AbsA0, A1
, b ∈ {0, 1}, andA ∈ ActSTD∪{A1}, ((α, (q, b)), A,A, q) ∈

∆A,
[q is reached when the A0-task is the top task]

– for each q′ ∈ Q and α ∈ AbsA0, A1
with L(Bα) ∩ L(Mq(q

′)) 6= ∅, we have
((α, (q′, 0)),⊥,⊥, q) ∈ ∆A.
[q is reached after the A0-task becomes empty and the some non-A0

task becomes the top task]

Complexity analysis. We apply the complexity of the aforementioned construc-
tion and computation as follows.

– The size of AbsA0, A1
is exponential in |Mq| and |ActSTK|.

– For each (q′, A, α), the computation of Reach(q′, A, α) takes time exponential
in |ActSTK| and |Mq|. Therefore, the computation of all these Reach(q′, A, α)
takes time exponential in |ActSTK| and |Mq|.

– Since |Mq| is polynomial in |PA0
|+ |JR(TA0

)K|, it holds that |Mq| is poly-
nomial in |A| and exponential in |ActSTK|.

– Since the size of PA is polynomial in that of PA0
and the collection of

Reach(q′, A, α)’s, we deduce that the construction of the PDS PA takes time
doubly exponential in |ActSTK| and exponential in |A|.

– From Theorem 4, we know that the state reachability problem of PDS can
be solved in polynomial time. Therefore, the state reachability of A can be
solved in doubly exponential time in |A|.

We conclude that the state reachability problem of STK-dominating ASM is in
2-EXPTIME.
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