
An Automata-Theoretic Approach to
Synthesizing Binarized Neural Networks

Ye Tao1[0009−0007−1478−9144], Wanwei Liu1⋆[0000−0002−2315−1704], Fu
Song2,3,4[0000−0002−0581−2679], Zhen Liang5[0000−0002−1171−7061], Ji

Wang5[0000−0003−0637−8744], and Hongxu Zhu1

1 College of Computer Science and Technology, National University of Defense
Technology

{taoye0117,wwliu,zhuhongxu}@nudt.edu.cn
2 School of Information Science and Technology, ShanghaiTech University

songfu@shanghaitech.edu.cn
3 Institute of Software, Chinese Academy of Sciences & University of Chinese

Academy of Sciences
4 Automotive Software Innovation Center

5 Institute for Quantum Information & State Key Laboratory for High Performance
Computing, National University of Defense Technology

{liangzhen,wj}@nudt.edu.cn

Abstract. Deep neural networks, (DNNs, a.k.a. NNs), have been widely
used in various tasks and have been proven to be successful. However, the
accompanied expensive computing and storage costs make the deploy-
ments in resource-constrained devices a significant concern. To solve this
issue, quantization has emerged as an effective way to reduce the costs of
DNNs with little accuracy degradation by quantizing floating-point num-
bers to low-width fixed-point representations. Quantized neural networks
(QNNs) have been developed, with binarized neural networks (BNNs) re-
stricted to binary values as a special case. Another concern about neural
networks is their vulnerability and lack of interpretability. Despite the
active research on trustworthy of DNNs, few approaches have been pro-
posed to QNNs. To this end, this paper presents an automata-theoretic
approach to synthesizing BNNs that meet designated properties. More
specifically, we define a temporal logic, called BLTL, as the specification
language. We show that each BLTL formula can be transformed into an
automaton on finite words. To deal with the state-explosion problem, we
provide a tableau-based approach in real implementation. For the synthe-
sis procedure, we utilize SMT solvers to detect the existence of a model
(i.e., a BNN) in the construction process. Notably, synthesis provides a
way to determine the hyper-parameters of the network before training.
Moreover, we experimentally evaluate our approach and demonstrate its
effectiveness in improving the individual fairness and local robustness of
BNNs while maintaining accuracy to a great extent.

⋆ Corresponding Author

2 Y. Tao et al.

1 Introduction

Deep Neural Networks (DNNs) are increasingly used in a variety of applications,
from image recognition to autonomous driving, due to their high accuracy in clas-
sification and prediction tasks [27,29]. However, two critical challenges emerge,
high-cost and a lack of trustworthiness, that impede their further development.

On the one hand, a modern DNN typically contains a large number of param-
eters which are typically stored as 32-bit floating-point numbers (e.g., GPT-4
contains about 100 trillion parameters [14]), thus an inference often demands
more than a billion floating-point operations. As a result, deploying a modern
DNN requires huge computing and storage resources, thus it is challenging for
resource-constrained embedding devices. To tackle this issue, quantization has
been introduced, which compresses a network by converting floating-point num-
bers to low-width fixed-point representations, so that it can significantly reduce
both memory and computing costs using fixed-point arithmetic with a relatively
small side-effect on the network’s accuracy [23].

On the other hand, neural networks are known to be vulnerable to input
perturbations, namely, slight input disturbance may dramatically change their
output [12,3,28,4,35,5,6,7]. In addition, NNs are often treated as black box [17],
and we are truly dearth of understanding of the decision-making process in-
side the “box”. As a result, a natural concern is whether NNs can be trust-
worthy, especially in some safety-critical scenarios, where erroneous behaviors
might lead to serious consequences. One promising way to tackle this prob-
lem is formal verification, which defines properties that we expect the network
to satisfy and rigorously checks whether the network meets our expectations.
Numerous verification approaches have been proposed recently aiming at this
purpose [17]. Nevertheless, these approaches in general ignore rounding errors
in quantized computations, making them unable to apply for quantized neural
networks (QNNs). It has been demonstrated that specifications that hold for
a floating-point numbered DNN may not necessarily hold after quantizing the
inputs and/or parameters of the DNN [3,13]. For instance, a DNN that is ro-
bust to given input perturbations might become non-robust after quantization.
Compared to DNN verification [17,18,20,21,19,36,15], verifying QNN is truly a
more challenging and less explored problem. Evidences show that the verification
problem for QNNs is harder than DNNs [16], and only few works are specialized
for verifying QNNs [1,8,13,16,24,26,32,33,34,31].

In this paper, we concentrate on BNNs (i.e., binarized neural networks), a
special type of QNN. Although formal verification has been the primary explored
approach to verifying (quantized) neural networks, we pursue another promis-
ing line, synthesizing the expected binarized neural networks directly. In other
words, we aim to construct a neural network that satisfies the expected prop-
erties we specify, rather than verifying an existing network’s compliance with
those properties. To achieve this, we first propose, BLTL, an extension of LTLf

(namely, LTL defined on finite words), as the specification language. This logic
can conveniently describe data-related properties of BNNs. We then provide an
approach to converting a BLTL formula to an equivalent automaton. The syn-

An Automata-Theoretic Approach to Synthesizing BNNs 3

thesis task is then boiled down to find a path from an initial state to an accepting
state in the automaton.

Unfortunately, such a method suffers from the state-exploration problem.
To mitigate this issue, we observe that it is not necessary to synthesize the
entire BNN since the desired properties are only related to some specific hyper-
parameters of the network. To this end, we propose a tableau-based approach:
To judge whether a path is successfully detected, we check the satisfiability of
the associated BLTL formulas, and convert the problem into an IDL-solving
problem, which can be efficiently solved. Besides, we prove the existence of a
tracing-back threshold, which allows us to do backtracking earlier to avoid doing
trace searching that is unlikely to lead to a solution. The solution given by
the solver provides the hyper-parameters of the BNN, including the length of
the network and crucial input-output relations of blocks. Afterwards, one can
perform a block-wise training to obtain a desired BNN.

We implement a prototype synthesizing tool and evaluate our approach on
local robustness and individual fairness. The experiments demonstrate that our
approach can effectively improve the network’s reliability compared to the base-
line, especially for individual fairness.

The main contributions of this work are summarized as follows:

– We present a new temporal logic, called BLTL, for describing properties
of BNNs, and provide an approach to transforming BLTL formulas into
equivalent finite-state automata.

– We propose an automata-theoretic synthesis approach that determines the
hyper-parameters of a BNN model before training.

– We implement a prototype synthesis tool and evaluate the effectiveness on
two concerning properties, demonstrating the feasibility of our method.

Related Work. For BNNs, several verification approaches have been proposed.
Earlier work reduces the BNN verification problem to hardware verification (i.e.,
verifying combinatorial circuits), for which SAT solvers are harnessed [8]. Follow-
ing this line, [24] proposes a direct encoding from the BNN verification problem
into the SAT problem. [25] studies the effect of BNN architectures on the per-
formance of SAT solvers and uses this information to train SAT-friendly BNNs.
[1] provides a framework for approximately quantitative verification of BNNs
with PAC-style guarantees via approximate SAT model counting. Another line
of BNN verification encodes a BNN and its input region into a binary decision
diagram (BDD), and then one can verify some properties of the network by
analyzing BDD. [26] proposes an Angluin-style learning algorithm to compile a
BNN on a given input region into a BDD, and utilize a SAT solver as an equiva-
lence oracle to query. [32] has developed a more efficient BDD-based quantitative
verification framework by exploiting the internal structure of BNNs. Few work
has been dedicated to QNN verification so far. [13] shows that the properties
guaranteed by the DNN are not preserved after quantization. To resolve this
issue, they introduce an approach to verifying QNNs by using SMT solvers in
bit-vector theory. Later, [16] proves that verifying QNN with bit-vector specifi-
cations is PSPACE-Hard. More recently, [34,31] reduce the verification problem

4 Y. Tao et al.

into integer linear constraint solving which are significantly more efficient than
the SMT-based one.

Outline. The rest of the paper is organized as follows: In Section 2, we introduce
preliminaries. We present the specification language BLTL in Section 3. In Sec-
tion 4, we show how to translate a BLTL formula into an equivalent automaton,
which is the basic of tableau-based approach for synthesis, and technical details
are given in Section 5. The proposed approach is implemented and evaluated in
Section 6. We conclude the paper in Section 7.

2 Preliminaries

We denote by R, N, and B the set of real numbers, natural numbers, and Boolean
domain {0, 1}, respectively. We use Rn and Bn to denote the set of real number
vectors and binary vectors with n elements, respectively. For n ∈ N, let [n] be the
set {0, 1, 2, . . . , n− 1}. We will interchangeably use the terminologies 0-1 vector
and binary vector in this paper. For a binary vector b, we use dec(b) to denote its
corresponding decimal number, and conversely let bin(d) be the corresponding
binary vector which encodes the number d. For example, let b = (0, 1, 1)T,
then we have dec(b) = 3. Note that bin(dec(b)) = b and dec(bin(d)) = d. For

two binary vectors a = (a0, . . . , an−1)
T
and b = (b0, . . . , bn−1)

T
with the same

length, we denote by a ∼ b if ai ∼ bi for all i ∈ [n], otherwise a ̸∼ b, where
∼∈ {>,≥, <,≤,=}. Note that a ̸= b if ai ̸= bi for some i ∈ [n].

A (vectorized) Boolean function takes a 0-1 vector as input and returns
another 0-1 vector. Hence, it is essentially a mapping from integers to integers
when each 0-1 vector b is viewed as an integer dec(b). We denote by In the
identity function such that In (b) = b, for any b ∈ Bn, where the subscript n
may be dropped when it is clear from the context. We use composition operation
◦ to represent the function composition among Boolean functions.

A binarized neural network (BNN) is a feed-forward neural network, com-
posed of several internal blocks and one output block [26,32]. Each internal
block is comprised of 3 layers and can be viewed as a mapping f : {−1, 1}n →
{−1, 1}m. Slightly different from internal blocks, the output block outputs the
classification label to which the highest activation corresponds, thus, can be seen
as a mapping out : {−1, 1}n → Rp, where p is the number of classification labels
of the network.

Since the binary values −1 and +1 can be represented as their Boolean
counterparts 0 and 1 respectively, each internal block can be viewed as a Boolean
function f : Bn → Bm [32]. Therefore, ignoring the slight difference in the output
block, an n-block BNN N can be encoded via a series of Boolean functions
fi : Bℓi → Bℓi+1 (i = 0, 1, . . . , n − 1), and N works as the combination of these
Boolean functions, namely, it corresponds to the function,

fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0.

Integer difference logic (IDL) is a fragment of linear integer arithmetic, in
which atomic formulas must be of the form x− y ∼ c where x and y are integer

An Automata-Theoretic Approach to Synthesizing BNNs 5

variables, and c is an integer constant, ∼∈ {≤,≥, <,>,=, ̸=}. All these atomic
formulas can be transformed into constraints of the form x − y ≤ c [2]. For
example, x− y = c can be transformed into x− y ≤ c ∧ x− y ≥ c.

The task of an IDL-problem is to check the satisfiability of an IDL formula
in conjunctive normal form (CNF)

(x1 − y1 ≤ c1) ∧ · · · ∧ (xn − yn ≤ cn),

which can be in general converted into the cycle detection problem in a weighted,
directed graph with O(n) nodes and O(n) edges, and solved by e.g., Bellman-
Ford or Dijkstra’s algorithm, in O(n2) time [22]. IDL can be generalized to
Boolean combinations of atomic formulas of the form x− y ∼ c.

3 The Temporal Logic BLTL

3.1 Syntax and Semantics of BLTL

Let us fix a signature Σ, consisting of a set of desired Boolean functions and 0-1
vectors. Particularly, let ΣV be the subset of Σ containing only 0-1 vectors.

Terms of BLTL are described via BNF as follows:

t ::= b | f (t) | ▷kt

where b ∈ ΣV is a 0-1 vector, called vector constant, f ∈ Σ \ΣV is a Boolean
function, and k ∈ N is a constant, and ▷k in ▷kt denotes k placeholders for k
consecutive blocks of a BNN (i.e., k Boolean functions) to be applied onto the
term t. We remark that ▷0t = t.

BLTL formulas are given via the following grammar:

ψ ::= ⊤ | t ∼ t | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where ∼∈ {≤,≥, <,>,=}, X is the Next operator and U is the Until operator.
We define the following derived Boolean operators, quantifiers with finite

domain, and temporal operators:

ψ1 ∧ ψ2
def
= ¬(¬ψ1 ∨ ¬ψ2) Fψ

def
= ⊤Uψ Gψ

def
= ¬F¬ψ

ψ1 → ψ2
def
= (¬ψ1) ∨ ψ2 ψ1Rψ2

def
= ¬(¬ψ1U¬ψ2) Xψ

def
= ¬X¬ψ

∀x ∈ Bk.ψ
def
=

∧
b∈Bk∩ΣV

ψ[x/b] ∃x ∈ Bk.ψ
def
= ¬∀x ∈ Bk.¬ψ

where ψ[x/b] denotes the BLTL formula obtained from ψ by replacing each
occurrence of x with b.

The semantics of BLTL formulas is defined w.r.t. a BNN N given by the
composition of Boolean functions fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0, and a position
i ∈ N. We first define the semantics of terms, which is given by the function
J•KN ,i, inductively:

– JbKN ,i = b for each vector constant b;

6 Y. Tao et al.

– Jf (t)KN ,i = f (JtKN ,i);

– J▷ktKN ,i =

{
(fi+slen(t)+k−1 ◦ · · · ◦ fi+slen(t))(JtKN ,i), if k ≥ 1;
JtKN ,i, if k = 0;

where fi is the identity Boolean function I if i ≥ n, slen(b) = 0, slen(f(t)) =
slen(t) + 1 and slen(▷kt) = slen(t) + k.

Note that we assume the widths of Boolean functions and their argument
vectors are compatible.

Proposition 1. We have: J▷k ▷k′
tKN ,i = J▷k+k′

tKN ,i.

Subsequently, the semantics of BLTL formulas is characterized via the satis-
faction relation |=, inductively:

– N , i |= ⊤ always holds;
– N , i |= t1 ∼ t2 iff Jt1KN ,i ∼ Jt2KN ,i;
– N , i |= ¬φ iff N , i ̸|= φ;
– N , i |= φ1 ∨ φ2 iff N , i |= φ1 or N , i |= φ1;
– N , i |= Xψ iff i < n− 1 and N , i+ 1 |= ψ;
– N , i |= ψ1Uψ2 iff there is j such that i ≤ j < n, N , j |= ψ2 and N , k |= ψ1

for each i ≤ k < j;

We may write N |= ψ in the case of i = 0. In the sequel, we denote by L (ψ)
the set of BNNs {N | N |= φ} for each formula φ, and denote by ψ1 ≡ ψ2 if
N , i |= ψ1 ⇔ N , i |= ψ2 for every BNN N and i.

Proposition 2. The following statements hold:

1. Gψ ≡ ⊥Rψ;
2. Fψ ≡ ψ ∨ XFψ;
3. Gψ ≡ ψ ∧ XGψ;
4. ψ1Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2));
5. ψ1Rψ2 ≡ ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)).

For a BLTL formula φ and a BNN N , the model checking problem w.r.t. φ
and N is to decide whether N |= φ holds.

With the above derived operators, together with the patterns ¬¬ψ ≡ ψ
and ¬(t1 ∼ t2) ≡ t1 ̸∼ t2, BLTL formulas can be transformed into negation
normal form (NNF) by pushing the negations (¬) inward, till no the negations
are involved.

Given two sets of formulas Γ and Γ ′ in NNF, we say that Γ ′ is a proper
closure of Γ , if the following conditions hold:

– Γ ⊆ Γ ′.
– ψ1 ∧ ψ2 ∈ Γ ′ implies that both ψ1 ∈ Γ ′ and ψ2 ∈ Γ ′.
– ψ1 ∨ ψ2 ∈ Γ ′ implies that either ψ1 ∈ Γ ′ or ψ2 ∈ Γ ′.
– ψ1Uψ2 ∈ Γ ′ implies ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)) ∈ Γ ′.
– ψ1Rψ2 ∈ Γ ′ implies ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)) ∈ Γ ′.

An Automata-Theoretic Approach to Synthesizing BNNs 7

We denote by Cl(Γ) the set consisting of all proper closures of Γ (note that
Cl(Γ) is a family of formula sets.) We also denote by Sub(ψ) the set of the
subformulas of ψ except that

– if ψ1Uψ2 ∈ Sub(ψ), then ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)) ∈ Sub(ψ);
– if ψ1Rψ2 ∈ Sub(ψ), then ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)) ∈ Sub(ψ).

3.2 Illustrating Properties Expressed by BLTL

In this section, we demonstrate the expressiveness of BLTL. Since BLTL has the
ability to express Boolean logic and arithmetic operations, we can see that many
concerning properties can be specified using BLTL.

We can partition a vector into segments of varying widths, and then define
a Boolean function, denoted by ei, to extract the i-th segment with width of n,
namely, ei : Bm → Bn, where m is the width of vector b. We use b[i] to refer to
ei (b) in the case that ei (b) ∈ B.

Local Robustness. Given a BNN N and a n-width input u, N is robust w.r.t.
u, if all inputs in the region B (u, ϵ), are classified into the same class as u [1].
Here, we consider B (u, ϵ) as the set of vectors that differ from u in at most ϵ
positions, where ϵ is the maximum number of positions at which the values differ
from those of u. The local robustness can be described as follows:

∀x ∈ Bn.

|u|∑
i=1

(x[i]⊕ u[i]) ≤ ϵ→ N (x) = N (u)

Individual Fairness. In the context of a BNN N with an input of t attributes
and n-width, where the s-th attribute is considered sensitive, N is fair w.r.t the
s-th attribute, when no two input vectors in its domain differ only in the value
of the s-th attribute and yield different outputs [30,37]. The individual fairness
can be formulated as:

∀a, b ∈ Bn. (¬ (es(a) = es(b)) ∧ ∀i ∈ [t]− {s}.ei(a) = ei(b)) → N (a) = N (b)

where ei denotes the extraction of the i-th attribute, Bn is the domain of N ,
and a, b are input vectors.

In practice, it is possible to select inputs in the Bn, and modify the sensitive
attribute to obtain the proper pairs, which only differ in the sensitive attribute.
For any such pair (b, b′),we formulate the specification as N (b) = N (b′).

Specification for Internal Blocks. BLTL can specify block-level properties. For
instance, the formula

∀x ∈ B4.F (x ≥ a → ▷x = a)

states that there exists a block in the network that behaves as follows: for any
4-bit input whose value is greater than or equal to a, the corresponding output
is equal to a.

8 Y. Tao et al.

4 From BLTL to Automata

In this section, we present both an explicit and an implicit construction that
translate a BLTL formula into an equivalent finite-state automaton. We first
show how to eliminate the placeholders ▷k in terms ▷kt and atomic formulas
t1 ∼ t2.

4.1 Eliminating Placeholders

To eliminate the placeholders ▷k in terms ▷kt, we define the apply operator
[] : T ×Σ \ΣV → T , where T denotes the set of terms. [t, f], written as t[f],
is called the application of the term t w.r.t. the Boolean function f ∈ Σ, which
instantiates the innermost placeholder of the term t by the Boolean function f .
Below, we give a formal description of the application.

Let us fix a term t. According to Proposition 1, t can be equivalently trans-
formed into the following canonical form

▷ℓkgk−1

(
▷ℓk−1gk−2

(
· · · g0

(
▷ℓ0b

)
· · ·

))
where b is a vector constant, ℓ0 ≥ 0 and ℓi > 0 for each i > 0. Hereafter, we
assume that t is in the canonical form, and let len(t) =

∑k
i=0 ℓi.

When t is ▷-free, i.e., len(t) = 0, we let t[f] = t. When len(t) > 0, we say
that the Boolean function f ∈ Σ is applicable w.r.t. the term t, if:

1. b ∈ dom f ;
2. if ℓ0 = 1, then ran f = dom g0.

Intuitively, the above two conditions ensure that f (b) and g0◦f are well-defined.
If f ∈ Σ is applicable w.r.t. the term t, we let t[f] be the term:

t[f] =

{
▷ℓkgk−1

(
▷ℓk−1gk−2

(
· · · g0

(
▷ℓ0−1b′

)
· · ·

))
, if ℓ0 > 1

▷ℓkgk−1

(
▷ℓk−1gk−2

(
· · · g1

(
▷ℓ1b′′

)
· · ·

))
, if ℓ0 = 1

where b′ = f (b) and b′′ = (g0 ◦ f) (b).
It can be seen that len(t[f]) = len(t)−1. By iteratively applying this operator,

the placeholders ▷k in the term t can be eliminated. For convenience, we write
t[f0, f1, . . . , fi] for the shorthand of

t[f0][f1] · · · [fi],

provided that each Boolean function fi is applicable w.r.t. t[f0][f1] · · · [fi]. Like-
wise, we call t[f0, f1, . . . , fi] the application of t w.r.t. the Boolean functions
f0, f1, · · · , fi.

In particular, the collapsion of term t, denoted by t ↓, is the term t[I, . . . , I︸ ︷︷ ︸
len(t)

],

namely, t ↓ is obtained from t w.r.t. len(t) identity functions.

An Automata-Theoretic Approach to Synthesizing BNNs 9

We hereafter denote by Cons(Σ) the set of constraints t1 ∼ t2 over the
signatureΣ and lift the apply operator [] from terms to atomic formulas t1 ∼ t2.
For a constraint γ = t1 ∼ t2 ∈ Cons(Σ), we denote by γ[f] the constraint t1[f] ∼
t2[f]; and by γ ↓ the constraint t1 ↓ ∼ t2 ↓. Note that the former implicitly
assumes that the Boolean function f is applicable w.r.t. both terms t1 and t2
(in this case, we call that f is applicable w.r.t. γ), whereas the latter requires
that the terms t1 ↓ and t2 ↓ have the same width (we call that t1 and t2 are
compatible w.r.t. collapsion). In addition, we let len(γ) = max(len(t1), len(t2)),
and in the case that len(γ) = 0, we let γ[f] = ⊤ (resp. γ[f] = ⊥) for any Boolean
function f if γ is evaluated to true (resp. false).

We subsequently extend the above notations to constraint sets. Suppose that

Γ ⊆ Cons(Σ), we let Γ [f]
def
= {γ[f] | γ ∈ Γ}, and let Γ ↓ def

= {γ ↓ | γ ∈ Γ}.
Remind that the notation Γ [f] makes sense only if the Boolean function f is
applicable w.r.t. Γ , namely f is applicable w.r.t. each constraint γ ∈ Γ . Likewise,
the notation Γ ↓ indicates that t1 and t2 is compatible w.r.t. collapsion for each
constraint t1 ∼ t2 ∈ Γ .

Theorem 1. For a BNN N given by fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0, and a
constraint γ ∈ Cons(Σ), we have:

1. N , i |= γ iff N , i+ 1 |= γ[fi] for each i < n.
2. N , i |= γ iff N , i |= γ ↓ for each i ≥ n.

Indeed, since γ ↓ must have the form b1 ∼ b2, where both b1 and b2 are Boolean
constants, then the truth value of γ ↓ can always be directly evaluated.

4.2 Automata Construction

Given a BLTL formula φ in NNF, we can construct a finite-state automaton
Aφ = (Qφ,Σ, δφ, Iφ, Fφ), where:

– Qφ =
⋃

Γ⊆Sub(φ) Cl(Γ). Recall that Cl(Γ) ⊆ 2Sub(φ) if Γ ⊆ Sub(φ), thus each

state must be a subset of Sub(φ).

– For each q ∈ Qφ, let Cons(q)
def
= q ∩ Cons(Σ), let q′ = {ψ | Xψ ∈ q} and let

q′′ = {ψ | Xψ ∈ q}. Then, for each Boolean function f ∈ Σ, we have

δφ(q, f) =

{
∅, ⊥ ∈ q

Cl(q′ ∪ q′′ ∪ Cons(q)[f]), ⊥ ̸∈ q
.

– Iφ = {q ∈ Qφ | φ ∈ q} is the set of initial states.
– Fφ is the set of accepting states such that for every state q ∈ Qφ, q ∈ Fφ

only if {ψ | Xψ ∈ q} = ∅, ⊥ ̸∈ q and Cons(q) ↓ is evaluated true.

For a BNN N given by fN = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0, we denote by
N ∈ L (Aφ) if the sequence of the Boolean functions f0, f1, · · · , fn−1, regarded
as a finite word, is accepted by the automaton Aφ.

10 Y. Tao et al.

Intuitively, N accepts an input word iff it has an accepting run q0, q1 · · · , qn,
where qi is constituted with a set of formulas that make the specification φ
valid at the position i. In this situation, Iφ refers to the states involving φ and

q0 ∈ Iφ. For the transition qi
fi−→ qi+1, q

′
i and q′′i indicate the sets of formulas

which should be satisfied in the next position i + 1 according to the semantics
of next (X) and weak next (X). Additionally, Cons(qi+1) is obtained by applying
the Boolean function fi to the constraints in qi.

The following theorem reveals the relationship between φ and Aφ.

Theorem 2. Let N be a BNN given by a sequence of Boolean functions for a
BLTL formula φ, we have:

N |= φ if and only if N ∈ L (Aφ).

The proof is given in Appendix A.1 and an example of the construction is given
in Appendix A.2.

4.3 Tableau-Based Construction

We have successfully provided a process for converting an BLTL formula into
an automaton on finite words. At first glance, it seems that the model checking
problem w.r.t. BNN can be immediately boiled down to a word-problem of finite
automata. Nevertheless, a careful analysis shows that this would result in a
prohibitively high cost. Actually, for a BLTL formula φ, the state set of Aφ is⋃

Γ⊆Sub(φ) Cl(Γ) ⊆ 2Sub(φ), thus the number of states is exponential in the size
of the length of φ. To avoid explicit construction, we provide an “on-the-fly”
approach when performing synthesis.

Suppose the BLTL φ is given in NNF and the BNN N is given as a se-
quence of Boolean functions f0, f1, . . . , fn−1, using the following approach, we
may construct a tree Tφ,N which fulfills the followings:

– Tφ,N is rooted at ⟨0, {φ}⟩;
– For an internal node ⟨i, Γ ⟩ with i < n− 1, it has a child ⟨j, Γ ′⟩ only if there

is a tableau rule
i Γ
j Γ ′

where j is either i or i+ 1.
– A leaf ⟨i, Γ ⟩ of Tφ,N is a (Modal)-node with i = n − 1, where nodes to

which only the rule (Modal) can be applied are called (Modal)-nodes.

Tableau rules are listed in Figure 1. For the rule (Modal), we require that
Γ consists of atomic formulas being of the form t1 ∼ t2. In the rules (True)
and (False), we require that len(t1 ∼ t2) = 0 and it is evaluated to true and
false, respectively.

Suppose ⟨n, Γ ∪{Xψ1, . . . ,Xψm}∪ {Xφ1, . . . ,Xφk}⟩ is a leaf of Tφ,N . We say
it is successful if m = 0 and Γ ↓ is evaluated to true. In addition, we say a path

An Automata-Theoretic Approach to Synthesizing BNNs 11

(And)
i Γ, φ1 ∧ φ2

i Γ, φ1, φ2
(Or-j)

i Γ, φ1 ∨ φ2

i Γ, φj
(j = 1, 2)

(True)
i Γ, t1 ∼ t2
i Γ,⊤ (False)

i Γ, t1 ∼ t2
i Γ,⊥

(Until)
i Γ, φ1Uφ2

i Γ, φ2 ∨ (φ1 ∧ X(φ1Uφ2))

(Release)
i Γ, φ1Rφ2

i Γ, φ2 ∧ (φ1 ∨ X(φ1Rφ2))

(Modal)
i Γ,Xψ1, . . . ,Xψm,Xφ1, . . . ,Xφk

i+ 1 {γ[fi] | γ ∈ Γ, len(γ) > 0}, ψ1, . . . , ψm, φ1, . . . , φk

Fig. 1. Tableau rules for Automata Construction

of Tφ,N is successful if it ends with a successful leaf, and no node along this path
contains ⊥.

In the process of the on-the-fly construction, we start by creating the root
node, then apply the tableau rules to rewrite the formulas in the subsequent
nodes. In addition, before the rule (Modal) or (Or-j) is applied, we preserve
the set of formulas, which allows us to trace back and construct other parts of
the automaton afterward. We exemplify how to achieve the synthesis task via
the construction in Section 5.

Theorem 3. N |= φ if and only if Tφ,N has a successful path.

Proof. Let Aφ be the automaton corresponding to φ. According to Theorem 2,
it suffices to show that N ∈ L (Aφ) iff Tφ,N has a successful path.

Suppose, N is accepted by Aφ with the run q0, q1, . . . , qn, we also create the
root node ⟨0, Γ0 = {φ}⟩. Inductively, we have the followings statements for each
node ⟨i, Γj⟩ which is already constructed:

1) Γj ⊆ qi;
2) N , i |= ψ for each ψ ∈ qi (see the proof of Thm. 2)

Then, if ⟨i, Γj⟩ is not a leaf, we create a new node ⟨i′, Γ ′
j⟩ in the following way:

– i′ = i if ⟨i, Γj⟩ is not a (Modal)-node, otherwise i′ = i+ 1;
– if rule (Or-k) (k = 1, 2) is applied to ⟨i, Γj⟩ to some φ1 ∨ φ2 ∈ Γj , we

require that φk ∈ Γj ; for other cases, Γ ′
j is uniquely determined by Γj and

the tableau rule which is applied.

It can be checked that both Items 1) and 2) still hold at ⟨i′, Γ ′
j⟩. Then, we can

see that the path we constructed is successful since qn is an accepting state of
Aφ.

For the other way round, suppose that Tφ,N involves a successful path

⟨0, Γ0,0⟩, ⟨0, Γ0,1⟩, . . . , ⟨0, Γ0,ℓ0⟩, ⟨1, Γ1,0⟩, ⟨1, Γ1,1⟩, . . . , ⟨1, Γ1,ℓ1⟩, . . . ,
⟨i, Γi,0⟩, ⟨i, Γi,1⟩, . . . , ⟨i, Γi,ℓi⟩, . . . , ⟨n, Γn,0⟩, ⟨n, Γn,1⟩, . . . , ⟨n, Γn,ℓn⟩

12 Y. Tao et al.

then, the state sequence q0, q1, . . . , . . . , qn yields an accepting run of Aφ on N ,

where qi =
⋃ℓi

j=0 Γi,j . ⊓⊔

5 BNN Synthesis

Let us now consider a more challenging task: Given a BLTL specification φ, to
find some BNN N such that N |= φ. In the synthesis task, the parameters of
the desired BNN are not given, even, we are not aware of the length (i.e., the
number of blocks) of the network. To address this challenge, we leverage the
tableau-based method (cf. Section 4.3) to construct the automaton for the given
specification φ and check the existence of the desired BNN at the same time.
But when performing the tableau-based rewriting, we need to view each block
(i.e., a Boolean function) fi as an unknown variable (called block variable in
what follows).

The construction of the tableau-tree starts from the root node ⟨0, φ⟩ in a
depth-first search manner. During the construction, for each internal node ⟨i, Γ ⟩,
the following steps are taken: Firstly, rules other than (Or-1) and (Modal) are
applied to Γ until no further changes occur. Then rule (Or-j) is applied to
the disjunctions in the formula set, and we always first try rule (Or-1) when
the rewriting is performed. Lastly, rule (Modal) is applied to generate node
⟨i+ 1, Γ ′⟩, which becomes the next node in the path, and the Boolean function
fi used in the rewriting is just a block variable. Particularly, we retain a stack
of nodes on which either rule (Or-j) or (Modal) is applied for backtracing. A
node is called a (Or-j) node if rule (Or-j) is applied onto it. Once an X-free
(Modal)-node is reached, we verify the success of the path. However, since now
the blocks are no longer concrete in this setting, an atomic formula of the form
γ[fi, . . . , fi+k] cannot be immediately evaluated even if it is ▷-free. As a result,
whether a path is successful cannot be evaluated directly.

To address this issue, we invoke an integer different logic (IDL) solver to
examine the satisfiability of the atomic formulas in the (Modal)-nodes along
the path, and we declare success if all of them are satisfiable and in addition, it
ends up with an X-free (Modal)-node. Meanwhile, the model given by the solver
would reveal hyper-parameters of the BNN, which then we adopt to obtain the
expected BNN. For a node ⟨i, Γ ⟩, we call i to be the depth counter. Once the
infeasibility is reported by the IDL solver, or some specific depth counter (call
it the threshold) is reached, a trace-back to the nearest (Or-1) node is required:
all the nodes under the nearest (Or-1) node (including itself) are popped from
the stack and then apply rule (Or-2) to that node (it becomes a (Or-2) node),
but this time we do not push anything into the stack, because both choices for
the disjunctive formula have been tried so far. If no (Or-1) nodes remains in the
stack when doing trace-back, we declare the failure of the synthesis.

Now, there are two issues to deal with during that process. The first is, how
to determine if the aforementioned ‘threshold’ is reached; second, how can we
convert the satisfiability testing into IDL-solving.

An Automata-Theoretic Approach to Synthesizing BNNs 13

5.1 The Threshold

There exists a näıve bound for the first problem, which is just the state number
of Aφ. However, this bound is in general not compact (i.e., doubly exponential
in the size of the formula φ), and thus we provide a tighter bound.

We first introduce the following notion. Two modal nodes ⟨i, Γ ⟩ and ⟨j, Γ ′⟩
are isomorphic, denoted by ⟨i, Γ ⟩ ∼= ⟨j, Γ ′⟩, if Γ can be transformed into Γ ′

under a (block) variable bijection. The following lemma about isomorphic model
nodes is straightforward.

Lemma 1. If ⟨i, Γ ⟩ ∼= ⟨j, Γ ′⟩ and the node ⟨i, Γ ⟩ could lead to a successful leaf
(i.e., satisfiable leaf), then so does the node ⟨j, Γ ′⟩.

Thus, given φ, the threshold can be the number of equivalence classes w.r.t.
∼=. To make the analysis clearer, we here introduce some auxiliary notions.

– We call an atomic constraint γ occurring in φ to be an original constraint
(or, non-padded constraint); and call a formula being of the form γ[fi, . . . , fj]
padded constraint, where fi, . . . , fj are block variables.

– A (padded or non-padded) constraint with length 0 (i.e., ▷-free) is called
saturated. In general, such a constraint is obtained from a non-padded con-
straint γ via applying k layer variables, where k = len(γ).

Theorem 4. Let φ be a closed BLTL formula, and let

– c = #(Cons(Σ) ∩ Sub(φ)), i.e., the number of (non-padded) constraints oc-
curring in φ;

– k = max{len(γ) | γ ∈ Cons(Σ) ∩ Sub(φ)}, i.e., the maximum length of non-
padded constraints occurring in φ;

– p be the number of temporal operators in φ

then, 2(k+1)c+p + 1 is a threshold for synthesis.

The proof is shown in Appendix A.3.

5.2 Encoding with IDL Problem

Another problem is how to convert the satisfiability testing into IDL-solving. To
tackle this problem, we present a method that transforms BLTL atomic formulas
to IDL constraints.

We may temporarily view a Boolean function g : Bm → Bn as a (partial)
integer function with domain [2m], namely, we equivalently view g maps dec(b)
to dec(g(b)).

For a ▷-free term t = (fk◦fk−1◦· · ·◦f0)(b), we say that (fi◦fi−1◦· · ·◦f0)(b)
is an intermediate term of t where i ≤ k. In what follows, we denote by T the set
of all intermediate terms that may occur in the process of IDL-solving, which is
a part of synthesis that check the satisfiability of atomic formulas in successful
leaves.

14 Y. Tao et al.

Remind that in a term or an intermediate term, a symbol g may either be a
fixed function or a variable that needs to be determined by the IDL-solver (i.e.,
block variables). To make it clearer, we in general use g0, g1, . . . to designate the
former functions, whereas use f0, f1, etc for the latter cases.

The theory of IDL is limited to handling the Boolean combinations of the
form x − y ∼ c, where x, y are integer variables and c is an integer constant.
However, since functions occur in the terms, they cannot be expressed using IDL.
To this end, we note that we merely care about partial input-output relations of
the functions, which consist of mappings among T , and then the finite mappings
can be expressed by integer constraints. Thus, for each intermediate term t ∈ T ,
we introduce an integer variable vt.

Then, all constraints describing the synthesis task are listed as follows.

(1) For each BLTL constraint t1 ∼ t2, we have a conjunct vt1 ∼ vt2 .
(2) For each block variable f : Bn → Bm and each f(t) ∈ T , we add the bound

constraints 0 ≤ vf(t) and vf(t) ≤ 2m.
(3) For each block variable f and every pair of terms t1, t2 ∈ T , we have the

constraint: vt1 = vt2 → vf(v1) = vf(v2), which guarantees f to be a mapping.
(4) For every fixed function g, we impose the constraint vg(t) = dec(g(bin(vt)))

for every t ∈ T .

Once the satisfiability is reported by the IDL-solver, we extract partial map-
ping information of fi’s from the solver’s model, by analyzing equations of the
form vt = c, where c is an integer called the value of t. We iterate over the model
and record the value of terms, when we encounter an equation in the form of
vfi(t) = c, we query the value of t, and obtain one input-output relation of fi.
Eventually, we get partial essential mapping information of such fi’s.

5.3 Utilize the Synthesis

A BNN that satisfies the specification can be obtained via block-wise training,
namely, training each block independently to fulfill its generated input-output
mapping relation, which is extracted by the IDL-solver during the synthesis
process. Indeed, such training is not only in general lightweight but also able to
reuse the pre-trained blocks.

Let us now consider a more general requirement that we have both high-level
temporal specification (such as fairness, robustness) and data constraints (i.e.,
labels on a dataset), and is asked to obtain a BNN to meet all these obligations.

A straightforward idea is to express all data constraints with BLTL, and
then perform a monolithic synthesis. However, such a solution seems to be in-
feasible, because the large amount of data constraints usually produces a rather
complicated formula, and it makes the synthesis extremely difficult.

An alternative approach is to first perform the synthesis w.r.t. the high-level
specification, then do a retraining upon the dataset. However, the second phase
may distort the result of the first phase. In general, one need to conduct an
iterative cycle composed of synthesis-training-verification, yet the convergence

An Automata-Theoretic Approach to Synthesizing BNNs 15

of such process cannot be guaranteed. Thus, we need make a trade-off between
these two types of specifications.

More practically, synthesis can be used as an “enhancement” procedure. Sup-
pose, we already have some BNN trained with the given dataset, then we are
aware the hyper-parameters of that. This time, we have more information when
doing synthesis, e.g., the threshold is replaced by the length of the network, and
the shape (i.e., the width of input and output) of each block are also given. With
this, we may perform a more effective IDL-solving process, and then retrain each
block individually. Definitely, this might affect the accuracy of network, and some
compromise also should be done.

6 Experimental Evaluation

We implement a prototype tool in Python, which uses Z3 [9] as the off-the-shelf
IDL solver and PyTorch to train blocks and BNNs. To the best of our knowl-
edge, few existing work on synthesizing BNN has been done so far. Hence, we
mainly investigate the feasibility of our approach by exploring how much the
trustworthiness of BNN can be enhanced, and the corresponding trade-off on
accuracy degradation. The first two experiments focus on evaluating the effec-
tiveness of synthesis in enhancing the properties of BNNs. We set BNNs with
diverse architectures as baselines, and synthesize models via the “enhancement”
procedure, wherein the threshold matches the length of the baselines, and the
shape of blocks are constrained to maintain the same architecture as the base-
lines. Eventually, the blocks are retrained to fulfill the partial mapping, and the
synthesized model is obtained through retraining on the dataset. We compare
the synthesized models and their baselines on two properties: local robustness
and individual fairness. Moreover, we also study the potential of our approach
to assist in determining the network architecture.

Datasets. We train models and evaluate our approach over two classical datasets,
MNIST [10] and UCI Adult [11]. MNIST is a dataset of handwritten digits, which
contains 70,000 gray-scale images with 10 classes, and each image has 28 × 28
pixels. In the experiments, we downscale the images to 10 × 10, and binarize
the normalized images, and then transform them into 100-width vectors. UCI
Adult contains 48,842 entries with 14 attributes, such as age, gender, workclass
and occupation. The classification task on the dataset UCI Adult is to predict
whether an individual’s annual salary is greater than 50K. We first remove un-
usable data, retain 45,221 entries, and then transform the real-value data into
66-dimension binarized vectors as input.

Experimental Setup. In the block-wise training, different loss functions are em-
ployed for internal and output blocks: the MSE loss function for internal blocks
and the cross-entropy loss function for output blocks. The training process en-
tails a fixed number of epochs, with 150 epochs for internal blocks and 30 epochs
for output blocks. The experiments are conducted on a 3.6G HZ CPU with 12

16 Y. Tao et al.

cores and 32GB RAM, and the blocks and BNNs are trained using a single
GeForce RTX 3070 Ti GPU.

Table 1. BNN baselines.

Name Arch Acc Name Arch Acc

R1 100-32-10 82.62% F1 66-32-2 80.12%
R2 100-50-10 84.28% F2 66-20-2 79.88%
R3 100-50-32-10 83.50% F3 66-32-20-2 78.13%

Baseline. We use six neural networks with different architectures as baselines,
where three models R1-R3 are trained on the MNIST for 10 epochs with a
learning rate of 10−4 to study local robustness. For individual fairness, we train
3 models (F1-F3) on the UCI Adult for 10 epochs, with a learning rate of
10−3, and split the dataset into a training set and a test set in a 4:1 ratio. The
detailed information is listed in Table 1, Column (Name) indicates the name
of BNNs, and Column (Arch) presents their architectures. The architecture of
each network is described as by a sequence {ni}si=0, where s is the number of the
blocks in the network, and ni and ni+1 indicate the input and output dimensions
of the i-th block. For instance, 100-32-10 indicates that the BNN has two blocks,
the input dimensions of these blocks are 100 and 32 respectively, and the number
of classification labels is 10. Column (Acc) shows the accuracy of the models on
the test set.

6.1 Local Robustness

In this section, we evaluate the effectiveness of our approach for enhancing the
robustness of models in different cases. We use the metric, called Adversarial
Attack Success Rate (ASR), to measure a model’s resistance to adversarial at-
tacks. ASR is calculated as the proportion of perturbed inputs that leads to a
different prediction result compared to the original input.

We choose 30 image vectors from the training set, and set the maximum
perturbation to four levels, ϵ ∈ {1, 2, 3, 4}. The value of ϵ indicates the maximum
number of positions that can be modified in one image vector. One selected input
vector, one maximum perturbation ϵ and one baseline model constitute a case,
resulting in a total of 360 cases.

For each of the 360 cases, we make a synthesized model individually and com-
pare its ASR with the corresponding baseline. For the local robustness property
(cf. Section 3.2), since the input space is too large to enumerate, we need to
sample inputs within B (u, ϵ) when describing the specification, which is formu-

lated as
∧k

i=1 (N (u) = N (bi)), where each bi is a sample and k is the number
of samples. We here sample 100 points within the maximum perturbation limit
ϵ. The specification is written as

∧k
i=1 (▷

nu = ▷nbi), where n is the number of
the block of the baseline. Subsequently, we use the block constraint (cf. Section
5.2), 0 ≤ vfi(t) ≤ 2m, to specify the range of output of each block. To make
the bound tighter, we retain the maximal and minimal activations of each block

An Automata-Theoretic Approach to Synthesizing BNNs 17

1 2 3 40

10

20

30

40

50

60

AS
R%

42.3
47.3 48.9

51.4

25.0

33.7

22.0
26.7

R1
R1+

(a) Arch:100-32-10

1 2 3 40

10

20

30

40

50

60

AS
R%

44.4
48.3

44.8
41.5

36.4 34.7 34.4 33.9

R2
R2+

(b) Arch:100-50-10

1 2 3 40

10

20

30

40

50

60

AS
R%

40.1 41.8 43.3 44.2

30.9

40.8

31.7
37.4

R3
R3+

(c) Arch:100-50-32-10

Fig. 2. Results of local robustness.

using calibration data run on the baseline, and then take the recorded values
as bounds. Eventually, the generated mappings are used in the block-wise train-
ing, and then the enhanced BNN is obtained through retraining on the MNIST
dataset.

We also take 100 samples for each case and compare the ASR for baselines
and their synthesized counterparts. The results are shown in Figure 2, where blue
bars represent the baselines, while green bars represent synthesized models. We
use the sign + to denote the synthesized models. Figure 2(a) (resp. Figure 2(b)
and Figure 2(c)) depicts the percentage of average ASR of R1 (resp. R2 and
R3) and the counterpart R1+ (resp. R2+ and R3+) (the vertical axis), with
different ϵ (1, 2, 3, 4) (the horizontal axis). The results demonstrate a decrease
in ASR by an average of 43.45%, 22.12%, and 16.95% for R1, R2 and R3,
respectively.

Whilst the models’ robustness are enhanced, their accuracy are slightly de-
creased. Table 2 shows the results of the accuracy of the models, where Acc+
represents the average accuracy for synthesized models with the same architec-
tures.

Table 2. The average accuracy of R1-R3 and their synthesized models.

R1 R2 R3

Acc 82.62% 84.28% 83.50%
Acc+ 81.33% 81.72% 78.75%

6.2 Individual Fairness

In this section, we investigate the individual fairness w.r.t two sensitive features,
namely, sex (Male and Female) and race (White and Black) on the UCI Adult
dataset.

We consider F1-F3 as baselines, and randomly select 1000 entries for both
F1 and F2, and 200 entries for F3 from the training dataset, and then generate
proper pairs by modifying the value of the sensitive attribute while keeping all
other attributes the same. For example, we modify the value of Male to Female.
After forming specifications using the approach mentioned in Section 3.2 with the
pairs, we proceed with the “enhancement” procedure and retraining to obtain

18 Y. Tao et al.

Table 3. Results of individual fairness.

Model Feature Acc Acc+ Fair Fair+ Synthesis Time(s)

F1 sex 80.12% 74.53% 92.91% 99.94% 241.67
F1 race 80.12% 74.54% 92.92% 100% 216.46
F2 sex 79.88% 75.71% 95.68% 97.83% 215.61
F2 race 79.88% 75.18% 94.64% 98.47% 212.46
F3 sex 78.13% 74.48% 89.67% 99.83% 90.39
F3 race 79.88% 74.09% 89.16% 98.27% 95.75

the synthesized models. We then evaluate the models on the test dataset by
measuring the fairness score. We count the number of the fair pairs (i.e., the
pairs only differ in the sensitive attribute, and yield the same predication result):
fair num, and compute the fairness score, fair num

test size , where test size is the size of
the test set.

The results are listed in Table 3, where the baselines and the sensitive at-
tributes are shown in Columns 1,2. Columns 3,4 (Acc/Acc+) demonstrate the
accuracy of baselines and synthesized models, and Columns 5,6 (Fair/Fair+)
show their fairness scores. The results show that all the models’ individual fair-
ness is significantly improved, some of which even reach 100% (e.g., Row 2,
the fairness score increase from 92.92% to 100%). However, the enhancement
is accompanied by the accuracy loss, Columns 3,4 show that all models suffer
from a certain degree of accuracy decrease. Our tool efficiently synthesized the
hyper-parameters within a few minutes, as shown in Column 7.

Furthermore, we examine the ability of our approach on helping determine
the architecture of the BNNs. For both sex and race, we sample 200 entries in
the training dataset to generate proper pairs, and formulate the specification
without using the bound constraints or fixing the number of block, as follows,

F(
k∧
i

(xi = yi)) ∧ (

k∧
i

(xi = ▷2ai ∧ yi = ▷2bi) ∨ (

k∧
i

(xi = ▷3ai ∧ yi = ▷3bi)))

where (ai, bi) is the proper pair, and k is the number of samples. The formula
indicates the presence of consecutive blocks in the model, with a length of either
2 or 3. For each proper pair (ai, bi), their respective outputs (xi,yi) must be
equal.

After synthesizing the partial input-output relation of block functions fi’s,
we determine the length of the network by selecting the maximum i among the
block functions fi’s. The dimensions of the blocks are set to the maximum input
and output dimensions in the partial relation obtained for the corresponding fi.

We make a slight adjustment to the synthesis framework, when finding a
group of hyper-parameters, we continue searching for one more feasible group,
resulting in two groups of hyper-parameters for sex and race. We showcase the
synthesized models in Table 4. Column 1 indicates the sensitive attribute of
interest, and Columns 2,3 give the architecture and the length of the BNNs
respectively. Column 4 shows the number of partial mappings we obtained in the

An Automata-Theoretic Approach to Synthesizing BNNs 19

Table 4. The synthesized models whose architectures are given by our tool.

Attr Arch Len #Mapping Acc Fair

sex 66-10-10-2 3 1117 74.38% 99.51%
sex 66-8-2 2 559 74.69% 99.72%
race 66-9-8-2 3 952 74.38% 94.59%
race 66-8-2 2 567 74.13% 99.71%

synthesis task. Our tool successfully generates models with varying architectures
and high individual fairness, which are presented in Columns 5,6 respectively.

7 Conclusion

In this paper, we have presented an automata-based approach to synthesizing
binarized neural networks. Specifying BNNs’ properties with the designed logic
BLTL, the synthesis framework uses the tableau-based construction approach
and the IDL-solver to determine hyper-parameters of BNNs and relations among
some parameters. Subsequently, we may perform a block-wise training. We im-
plemented a prototype tool and the experiments demonstrate the effectiveness of
our approach in enhancing the local robustness and individual fairness of BNNs.
Although our approach shows the feasibility of synthesizing trustworthy BNNs,
there is still a need to further explore this line of work. In the future, beyond
the input-output relation of BNNs, we plan to focus on specifying properties
between the intermediate blocks. Additionally, we aim to extend the approach
to handle the synthesis task of multi-bits QNNs.

Acknowledgements This work is partially supported by the National Key
R & D Program of China (2022YFA1005101), the National Natural Science
Foundation of China (61872371, 62072309, 62032024), CAS Project for Young
Scientists in Basic Research (YSBR-040), and ISCAS New Cultivation Project
(ISCAS-PYFX-202201).

References

1. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1249–1264
(2019)

2. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-lib standard: Version 2.0. In:
Proceedings of the 8th international workshop on satisfiability modulo theories
(Edinburgh, UK). vol. 13, p. 14 (2010)

3. Bu, L., Zhao, Z., Duan, Y., Song, F.: Taking care of the discretization problem:
A comprehensive study of the discretization problem and a black-box adversarial
attack in discrete integer domain. IEEE Trans. Dependable Secur. Comput. 19(5),
3200–3217 (2022)

20 Y. Tao et al.

4. Chen, G., Chen, S., Fan, L., Du, X., Zhao, Z., Song, F., Liu, Y.: Who is real bob?
adversarial attacks on speaker recognition systems. In: Proceedings of the 42nd
IEEE Symposium on Security and Privacy (SP). pp. 694–711 (2021)

5. Chen, G., Zhang, Y., Zhao, Z., Song, F.: Qfa2sr: Query-free adversarial transfer at-
tacks to speaker recognition systems. In: Proceedings of the 32nd USENIX Security
Symposium (2023)

6. Chen, G., Zhao, Z., Song, F., Chen, S., Fan, L., , Wang, F., Wang, J.: Towards
understanding and mitigating audio adversarial examples for speaker recognition.
IEEE Trans. Dependable Secur. Comput. pp. 1–17 (2022)

7. Chen, G., Zhao, Z., Song, F., Chen, S., Fan, L., Liu, Y.: AS2T: Arbitrary source-to-
target adversarial attack on speaker recognition systems. IEEE Trans. Dependable
Secur. Comput. pp. 1–17 (2022)

8. Cheng, C.H., Nührenberg, G., Huang, C.H., Ruess, H.: Verification of binarized
neural networks via inter-neuron factoring: (short paper). In: Verified Software.
Theories, Tools, and Experiments: 10th International Conference, VSTTE 2018,
Oxford, UK, July 18–19, 2018, Revised Selected Papers 10. pp. 279–290. Springer
(2018)

9. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems: 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings 14. pp. 337–340. Springer (2008)

10. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141–142 (2012)

11. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.
uci.edu/ml

12. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A.,
Kohno, T., Song, D.: Robust physical-world attacks on deep learning visual clas-
sification. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1625–1634 (2018)

13. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: Tools and Algorithms for the Construction and Anal-
ysis of Systems: 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, Part II 26. pp. 79–97. Springer
(2020)

14. Gpt-4, https://openai.com/product/gpt-4
15. Guo, X., Wan, W., Zhang, Z., Zhang, M., Song, F., Wen, X.: Eager falsification

for accelerating robustness verification of deep neural networks. In: Proceedings of
the 32nd IEEE International Symposium on Software Reliability Engineering. pp.
345–356 (2021)

16. Henzinger, T.A., Lechner, M., Zikelic, D.: Scalable verification of quantized neural
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35,
pp. 3787–3795 (2021)

17. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi,
X.: A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science
Review 37, 100270 (2020)

18. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural net-
works with symbolic propagation: Towards higher precision and faster verification.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://openai.com/product/gpt-4

An Automata-Theoretic Approach to Synthesizing BNNs 21

In: Static Analysis: 26th International Symposium, SAS 2019, Porto, Portugal,
October 8–11, 2019, Proceedings 26. pp. 296–319. Springer (2019)

19. Liang, Z., Ren, D., Liu, W., Wang, J., Yang, W., Xue, B.: Safety verification for
neural networks based on set-boundary analysis. In: David, C., Sun, M. (eds.) Theo-
retical Aspects of Software Engineering. pp. 248–267. Springer Nature Switzerland,
Cham (2023)

20. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends® in Op-
timization 4(3-4), 244–404 (2021)

21. Liu, W.W., Song, F., Zhang, T.H.R., Wang, J.: Verifying relu neural networks from
a model checking perspective. Journal of Computer Science and Technology 35,
1365–1381 (2020)

22. Lösbrock, C.D.: Implementing an incremental solver for difference logic. Master’s
thesis, RWTH Aachen university (2018)

23. Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., Van Baalen, M.,
Blankevoort, T.: A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295 (2021)

24. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verify-
ing properties of binarized deep neural networks. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 32 (2018)

25. Narodytska, N., Zhang, H., Gupta, A., Walsh, T.: In search for a SAT-friendly
binarized neural network architecture. In: International Conference on Learning
Representations (2020)

26. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by angluin-
style learning. In: Theory and Applications of Satisfiability Testing–SAT 2019:
22nd International Conference, SAT 2019, Lisbon, Portugal, July 9–12, 2019, Pro-
ceedings 22. pp. 354–370. Springer (2019)

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

28. Song, F., Lei, Y., Chen, S., Fan, L., Liu, Y.: Advanced evasion attacks and mitiga-
tions on practical ml-based phishing website classifiers. Int. J. Intell. Syst. 36(9),
5210–5240 (2021)

29. Fsd chip-tesla, https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
30. Zhang, P., Wang, J., Sun, J., Dong, G., Wang, X., Wang, X., Dong, J.S., Dai, T.:

White-box fairness testing through adversarial sampling. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. pp. 949–960
(2020)

31. Zhang, Y., Song, F., Sun, J.: QEBVerif: Quantization error bound verification of
neural networks. In: Proceedings of the 35th International Conference on Computer
Aided Verification. pp. 413–437 (2023)

32. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based
quantitative analysis framework for binarized neural networks. In: Computer Aided
Verification: 33rd International Conference, CAV 2021, Virtual Event, July 20–23,
2021, Proceedings, Part I 33. pp. 175–200. Springer (2021)

33. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: Precise quantitative analysis
of binarized neural networks: A bdd-based approach. ACM Trans. Softw. Eng.
Methodol. 32(3) (2023)

34. Zhang, Y., Zhao, Z., Chen, G., Song, F., Zhang, M., Chen, T., Sun, J.: QVIP:
an ilp-based formal verification approach for quantized neural networks. In: Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. pp. 1–13 (2022)

https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip

22 Y. Tao et al.

35. Zhao, Z., Chen, G., Wang, J., Yang, Y., Song, F., Sun, J.: Attack as defense: charac-
terizing adversarial examples using robustness. In: Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
pp. 42–55 (2021)

36. Zhao, Z., Zhang, Y., Chen, G., Song, F., Chen, T., Liu, J.: CLEVEREST: accelerat-
ing cegar-based neural network verification via adversarial attacks. In: Proceedings
of the 29th International Symposium on Static Analysis. pp. 449–473 (2022)

37. Zheng, H., Chen, Z., Du, T., Zhang, X., Cheng, Y., Ji, S., Wang, J., Yu, Y.,
Chen, J.: Neuronfair: Interpretable white-box fairness testing through biased neu-
ron identification. In: Proceedings of the 44th International Conference on Software
Engineering. pp. 1519–1531 (2022)

A Appendix

A.1 Proof of Theorem 2

Proof. Still let f0, f1, · · · , fn−1 be the encoding of a BNN N :
(⇒): Suppose that N ∈ L (Aφ), and q0, q1, · · · , qn be an accepting run of Aφ

on N , remind that each qi is a formula set, by induction on both the index (in
the backward way) and formulas’ structure, we prove the following claim:

N , i =⇒ ψ for ever ψ ∈ qi.

– The case is trivial if ψ = ⊤; and ψ ̸= ⊥ since q0, q1, . . . qn is an accepting
run.

– If ψ = t1 ∼ t2, we need to distinguish two cases:
1) When i = n, then ψ ∈ Cons(qn). We have that ψ ↓ is evaluated to true,

because qn ∈ Fφ. Therefore, N , n |= ψ holds from Thm. 1.
2) If i < n, then we have ψ[fi] ∈ qi+1 according to the automaton construc-

tion. Inductively, we have N , i + 1 |= ψ[fi], and we can then conclude
that N , n |= ψ according to Thm. 1.

– If ψ = ψ1 ∧ψ2, then we have ψ1 ∈ qi and ψ2 ∈ qi, because qi is some proper
closure. Thus N , i |= ψj holds for j = 1, 2 by induction.

– The case of ψ = ψ1 ∨ ψ2 are similar to the above.
– If ψ = ψ1Uψ2, then ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)) ∈ qi, and subsequently either
ψ2 ∈ qi or both ψ1 ∈ qi and X(ψ1Uψ2) ∈ qi. For the former case, we can
ensure that N , i |= ψ2. For the latter case, since X(ψ1Uψ2) ∈ qi we can
guarantee that qi ̸∈ Fφ and i < n, subsequently ψ1Uψ2 ∈ qi+1. Therefore,
we in this case have both N , i |= ψ1 and N , i+ 1 |= ψ1Uψ2 by induction.

– If ψ = ψ1Rψ2 then ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)) ∈ qi, which indicates that either
ψ1, ψ2 ∈ qi or ψ2,X(ψ1Rψ2) ∈ qi. For the former case, we can easily infer
N , i |= ψj for j = 1, 2 by induction, which implies N , i |= ψ holds. For the
latter case, first, we have N , i |= ψ2; in addition, we have X(ψ1Rψ2) ∈ qi,
and it could be distinguished by two cases:
1) i = n, then N , i |= X(ψ1Rψ2) trivially holds in this case;
2) i < n, then we have ψ1Rψ2 ∈ qi+1, and we also have N , i |= X(ψ1Rψ2)

by induction.

An Automata-Theoretic Approach to Synthesizing BNNs 23

(⇐): On the other way round, suppose that N |= φ, then let

qi = {ψ ∈ Sub(φ) | N , i |= ψ}

for each i ≤ n.
We first show that that each qi is some proper closure of some subset of

Sub(φ). Therefore, we have qi ∈ Qφ for each i.

– If ψ1 ∧ ψ2 ∈ qi, then N , i |= ψj for j = 1, 2, thus both ψ1 and ψ2 are in qi.
– If ψ1 ∨ ψ2 ∈ qi, then either N , i |= ψ1 or N , i |= ψ2, which implies that
ψ1 ∈ qi or ψ2 ∈ qi.

– Suppose that ψ1Uψ2 ∈ qi, we can immediately infer that ψ2∨(ψ1∧X(ψ1Uψ2)) ∈
qi according to Proposition 2.

– Similar for the case for the formula ψ1Rψ2.

Thus, we can conclude that each qi ∈ Qφ. Next, we also need to show that
qi+1 ∈ δ(qi, fi) for every i < n.

– First of all, since qi consists of closed formulas which is satisfied by N at
step i, we can conclude that ⊥ ̸∈ qi.

– For each constraint γ ∈ Cons(qi), according to Theorem 1 and the construc-
tion, we have γ(fi) ∈ qi+1. Therefore, Cons(qi)[fi] ⊆ qi+1.

– For each Xψ ∈ qi, since i < n and N , i |= Xψ, then we have ψ ∈ qi+1 and
subsequently q′i ⊆ qi+1 (cf. the automaton construction). Likewise, we can
also infer that q′′i ⊆ qi+1.

– Therefore, qi+1 ∈ Cl(Cons(qi)[fi]∪q′i∪q′′i), because qi+1 must be some proper
closure.

In addition, we have φ ∈ q0 because N |= φ, and we thus have q0 ∈ Iφ. Moreover,
we claim that qn ∈ Fφ due to N , n |= ψ for each ψ ∈ qn, in detail:

– γ ↓ has to evaluated to true, if γ ∈ Cons(qn), according to Theorem 1;
– q′n must be ∅ according to the semantics definition on X operator.

Then, we can conclude that q0, q1, . . . , qn is an accepting run of Aφ on N .

A.2 Example of the Automata Construction

Consider the BLTL formula φ = X ((▷a = ▷b) ∧ X (a = c))∨▷a ≤ b. We exem-
plify the automata construction using φ. The constructed automaton is shown
in Fig 3, where q1, q3 ∈ Iφ, and q2 ∈ Fφ. It is easy to see that q0, q1, q2 is an
accepting path over the input f1, f2. We note that q4 ̸∈ Fφ, since the formula
f1(a) ≤ b is evaluated false.

A.3 Proof of Theorem 4

Proof. Observe that a counter remains unchanged a (Modal)-node is encoun-
tered, thus we concentrate to the slicing of the tableau consisting of (Modal)-
nodes only. First of all, we have the following observations:

24 Y. Tao et al.

q0 q1

q3 q4

φ,φ′ ▷a = ▷b
Xa = c

f1(a) ≤ b

q2

f2(a) = f2(b)

a = c

φ′

▷a ≤ b

f1

f1

f2

b = (0, 0)T

f1(a) = (1, 0)Ta = (0, 1)T

c = (0, 1)T

f2(a) = (0, 1, 1)T

f2(b) = (0, 1, 1)T

Fig. 3. The automaton for φ = X ((▷a = ▷b) ∧ X (a = c)) ∨ ▷a ≤ b, where φ′ =
X ((▷a = ▷b) ∧ X (a = c)).

– Suppose, ⟨i, Γ ⟩ is a (Modal)-node, a (padded or non-padded, but not sat-
urated) constraint γ ∈ Γ , then we ensure that γ[fi] must occur in the next
(Modal)-node whose counter is i+ 1.

– Thus, each padded constraint in a (Modal)-node must be of the form
γ[fℓ, fℓ+1, . . . , fℓ+t] where γ is a non-padded constraint, and t < len(γ).
Namely, indices of the layer variables of a padded constraint must be suc-
cessive. For such a constraint, we call ℓ and ℓ+ t the starting index and the
ending index, respectively.

– In a same (Modal)-node, all padded constraints share a same ending index,
but their staring indices may be different. Thus, for a (Modal)-node, if the
(common) ending index is w, then each starting index must be less than
w − k. Since we are now concerned about the number of equivalent classes
of ∼=, according to Lemma 1, we may fix the ending index to be k, therefore
starting indices belong to the set {1, 2, . . . , k}.

– Call two padded constraints to be homologous if they are obtained from a
same original constraint via applying different layer variable list. Note that
homologous is also an equivalent relation, and each equivalent class must
be of the form {γ[fℓ, fℓ+1, . . . , fk] | ℓ ≤ 1} for each γ ∈ Cons(Σ) ∩ Sub(φ),
denoted that set as H(γ).

Let us now count the upper bound of the equivalence class number of (Modal)-
nodes. In a (Modal)-node, we categorize the formulas into two sets: the first
consists of constraints, and the second one is constituted with X- and/or X-
guarded formulas.

(1) For each original constraint γ, the first set may contain a subset of H(γ) ∪
{γ}, hence this part has no more than 2(k+1)c possibles.

(2) In a (Modal)-node, each X-guarded (resp. X-guarded) formula corresponds
a subformula of φ, whose out-most operator is either X (resp. X) or U (resp.
R). Thus, the number of such formulas occurring in the node is not more
than p, and such part yields not more than 2p subsets.

As a result, once the counter becomes 2(k+1)c+p + 1, we may declare that some
isomorphic (Model)-node already exists in the current path, hence it could be
a candidate value of threshold.

	An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks

