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Abstract. A Dynamic Pushdown Network (DPN) is a set of pushdown systems
(PDSs) where each process can dynamically create new instances of PDSs. DPNs
are a natural model of multi-threaded programs with (possibly recursive) pro-
cedure calls and thread creation. Thus, it is important to have model-checking
algorithms for DPNs. We consider in this work model-checking DPNs against
single-indexed LTL and CTL properties of the form

∧
fi s.t. fi is a LTL/CTL

formula over the PDS i. We consider the model-checking problems w.r.t. simple
valuations (i.e, whether a configuration satisfies an atomic proposition depends
only on its control location) and w.r.t. regular valuations (i.e., the set of the con-
figurations satisfying an atomic proposition is a regular set of configurations). We
show that these model-checking problems are decidable. We propose automata-
based approaches for computing the set of configurations of a DPN that satisfy
the corresponding single-indexed LTL/CTL formula.

1 Introduction

Multithreading is a commonly used technique for modern software. However, mul-
tithreaded programs are known to be error prone and difficult to analyze. Dynamic
Pushdown Networks (DPN) [4] are a natural model of multi-threaded programs with
(possibly recursive) procedure calls and thread creation. A DPN consists of a finite set
of pushdown systems (PDSs), each of them models a sequential program (process) that
can dynamically create new instances of PDSs. Therefore, it is important to investi-
gate automated methods for verifying DPNs. While existing works concentrate on the
reachability problem of DPNs [4,18,17,9,15,24], model checking for the Linear Tem-
poral Logic (LTL) and the Computation Tree Logic (CTL) which can describe more
interesting properties of program behaviors has not been tackled yet for DPNs.

In general, the model checking problem is undecidable for double-indexed proper-
ties, i.e., properties where atomic propositions are interpreted over the control states
of two or more threads [11]. This undecidability holds for pushdown networks even
without thread creation. To obtain decidable results, in this paper, we consider single-
indexed LTL and CTL model checking for DPNs, where a single-index LTL or CTL
formula is a formula of the form

∧
fi such that fi is a LTL/CTL formula over the PDS i.
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A DPN satisfies
∧

fi iff every PDS i that runs in the network satisfies the subformula fi.
We first consider LTL model-checking for DPNs with simple valuations where whether
a configuration of a PDS i satisfies an atomic proposition depends only on the control
state of the configuration. Then, we consider LTL model-checking for DPNs with regu-
lar valuations where the set of configurations of a PDS satisfying an atomic proposition
is a regular set of configurations. Finally, we consider CTL model-checking for DPNs
with simple and regular valuations. We show that these model-checking problems are
decidable. We propose automata-based approaches for computing the set of configura-
tions of a DPN that satisfy the corresponding single-indexed LTL/CTL formula.

It is non-trivial to do LTL/CTL model checking for DPNs, since the number of in-
stances of PDSs can be unbounded. Checking independently whether all the different
PDSs satisfy the corresponding subformula fi is not correct. Indeed, we do not need
to check whether an instance of a PDS j satisfies f j if this instance is not created dur-
ing a run. To solve this problem, we extend the automata-based approach for standard
LTL/CTL model-checking for PDSs [2,8,7,20]. For every process i, we compute a finite
automatonAi recognizing all the configurations from which there exists a run σ of the
process i that satisfies fi. Ai also memorizes the set of all the initial configurations of
the instances of PDSs that are dynamically created during the run σ. Then, to check
whether a DPN satisfies a single-indexed LTL/CTL formula, it is sufficient to check
whether the initial configurations of the processes are recognized by the corresponding
finite automata and whether the set of generated instances of PDSs that are stored in the
automata also satisfy the formula. This condition is recursive. To solve it, we compute
the largest setD f p of the dynamically created initial configurations that satisfy the for-
mula f . Then, to check whether a DPN satisfies f , it is sufficient to check whether the
initial configurations of the different processes are recognized by the corresponding fi-
nite automata and whether the dynamically created initial configurations that are stored
in the automata are inD f p.

To compute the finite automata Ai s, we extend the automata-based approaches for
standard LTL [2,7,8] and CTL [20] model-checking for PDSs. For every i, 1 ≤ i ≤ n,
we construct a Büchi Dynamic PDS (resp. alternating Büchi Dynamic PDS) which is a
synchronization of the PDS i and the LTL (resp. CTL) formula fi. Büchi Dynamic PDS
(resp. alternating Büchi Dynamic PDS) is an extension of Büchi PDS (resp. alternating
Büchi PDS) with the ability to create new instances of PDSs during the run. The finite
automataAi s we are looking for correspond to the languages accepted by these Büchi
Dynamic PDSs (resp. alternating Büchi Dynamic PDSs). Then, we show how to solve
these language problems and compute the finite automataAi s.

Related Work. The DPN model was introduced in [4]. Several other works use DPN
and its extensions to model multi-threaded programs [4,9,17,18,24]. All these works
only consider reachability issues. Ground Tree Rewrite Systems [10] and process
rewrite systems [5,19] are two models of multi-threaded programs with procedure calls
and threads creation. However, [19] only considers reachability problem and [10,5] only
consider subclasses of LTL. We consider LTL and CTL model checking problems.

Pushdown networks with communication between processes are studied in
[3,6,1,22]. These works consider systems with a fixed number of threads. [15,16] use



Model Checking Dynamic Pushdown Networks 35

parallel flow graphs to model multi-threaded programs. However, all these works only
consider reachability. [25] considers safety properties of multi-threaded programs.

[11,12,13] study single-index LTL/CTL and double-indexed LTL model
checking problems for networks of pushdown systems that synchro-
nize via a finite set of nested locks. [14] considers model-checking on
properties that are expressed in a kind of finite automata for such net-
works of pushdown systems. These works don’t consider dynamic threads
creation.

Outline. Section 2 gives the basic definitions. Section 3 and Section 4 show LTL and
CTL model-checking for DPNs, respectively. Due to lack of space, proofs are omitted
and can be found in the full version of this paper [21].

2 Preliminaries

2.1 Dynamic Pushdown Networks

Definition 1. A Dynamic Pushdown Network (DPN) M is a set {P1, ...,Pn} s.t. for
every i, 1 ≤ i ≤ n, Pi = (Pi, Γi, Δi) is a dynamic pushdown system (DPDS), where Pi

is a finite set of control locations s.t. Pk ∩ Pi = ∅ for k � i, Γi is the stack alphabet,
and Δi is a finite set of transition rules in the following forms: (a) qγ ↪→ p1ω1 or (b)
qγ ↪→ p1ω1�p2ω2 s.t. q, p1 ∈ Pi, γ ∈ Γi, ω1 ∈ Γ∗i , p2ω2 ∈ P j×Γ∗j for some j, 1 ≤ j ≤ n.

A global configuration ofM is a multiset G over
⋃n

i=1 Pi × Γ∗i . Each element qω ∈
Pi×Γ∗i ∩G denotes that an instance ofPi running in parallel in the network is at the local
configuration qω, i.e., Pi is at the control location q and its stack content is ω. If ω = γu
for γ ∈ Γi and there is in Δi a transition (a) qγ ↪→ p1ω1 or (b) qγ ↪→ p1ω1 � p2ω2 s.t.
p2ω2 ∈ P j × Γ j, then the instance of Pi can move from qω to the control location p1

and replace γ by ω1 at the top of its stack, i.e., Pi moves to p1ω1u. The other instances
in parallel in the network stay at the same local configurations. In addition, transition
(b) will create a new instance of P j starting from p2ω2. Formally, a DPDS Pi induces
an immediate successor relation =⇒i as follows: for every ω ∈ Γ∗i , if qγ ↪→ p1ω1 ∈ Δi,
then qγω =⇒i p1ω1ω; if qγ ↪→ p1ω1 � p2ω2 ∈ Δi, then qγω =⇒i p1ω1ω � {p2ω2}. To
unify the presentation, if qγω =⇒i p1ω1ω, we sometimes write qγω =⇒i p1ω1ω � ∅
instead. The transitive and reflexive closure of =⇒i is denoted by =⇒∗i . Formally, for
every pω ∈ Pi×Γ∗i , pω =⇒∗i pω�∅; and if pω =⇒i p1ω1�D1 and p1ω1 =⇒∗i p2ω2�D2,
then pω =⇒∗i p2ω2 � D1 ∪ D2. =⇒+i is defined as usual.

A DPDS Pi can be seen as a pushdown system (PDS) with the ability of dynami-
cally creating new instances of PDSs. The initial local configuration of a newly created
instance is called DCLIC (for Dynamically Created Local Initial Configuration).

A local run of an instance of Pi from a local configuration c0 is a sequence of local
configurations c0c1... over Pi × Γ∗i s.t. for every j ≥ 0, c j =⇒i c j+1 � D for some D. A
global run ρ ofM from a global configuration G is a (potentially infinite) set of local
runs. Initially, ρ contains exactly the local runs starting from the local configurations
in G. Whenever a DCLIC c is created by some local run of ρ, a new local run starting
from c is added into ρ. For every i, 1 ≤ i ≤ n, let ℘(σ) = i iff σ is a local run of an
instance of Pi, and ℘(pω) = ℘(p) = i iff p ∈ Pi. LetDi = {p2ω2 ∈ ⋃n

i=1 Pi ×Γ∗i | qγ ↪→
p1ω1 � p2ω2 ∈ Δi} be the set of potential DCLICs of the DPDS Pi.
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2.2 LTL and Büchi Automata

From now on, we fix a set of atomic propositions AP.

Definition 2. The set of LTL formulas is given by (where a ∈ AP):
ψ ::= a | ¬ψ | ψ ∧ ψ | Xψ | ψUψ.

Given an ω-word η = α0α1... over 2AP, let η(k) denote αk, and ηk denote the suffix
of η starting from αk. η |= ψ (η satisfies ψ) is inductively defined as follows: η |= a iff
a ∈ η(0); η |= ¬ψ iff η 
|= ψ; η |= ψ1 ∧ ψ2 iff η |= ψ1 and η |= ψ2; η |= Xψ iff η1 |= ψ;
η |= ψ1Uψ2 iff there exists k ≥ 0 such that ηk |= ψ2 and for every j, 1 ≤ j < k, η j |= ψ1.

Definition 3. A Büchi automaton (BA) B is a tuple (G, Σ, θ, g0, F) where G is a finite
set of states, Σ is the input alphabet, θ ⊆ G × Σ ×G is a finite set of transitions, g0 ∈ G
is the initial state and F ⊆ G is a finite set of accepting states.

A run of B over an ω-word α0α1... is a sequence of states q0q1... s.t. q0 = g0 and
(qi, αi, qi+1) ∈ θ for every i ≥ 0. A run is accepting iff it infinitely often visits some
states in F.

It is well-known that given a LTL formula f , one can construct a BA B f s.t. Σ = 2AP

recognizing all the ω-words that satisfy f [23].

2.3 Single-Indexed LTL for DPNs

LetM = {P1, ...,Pn} be a DPN. A single-indexed LTL formula is a formula f of the
form

∧n
i=1 fi s.t. for every i, 1 ≤ i ≤ n, fi is a LTL formula in which the validity of

the atomic propositions depends only on the DPDS Pi. Let λ : AP −→ 2
⋃n

i=1 Pi×Γ∗i be
a valuation which assigns to each atomic proposition a set of local configurations. A
local run p0ω0 p1ω1... of Pi satisfies fi iff the ω-word α0α1... where for every j ≥ 0,
α j = {a ∈ AP | p jω j ∈ λ(a)}, satisfies fi. A local configuration c of Pi satisfies fi iff
Pi has a local run σ from c that satisfies fi. If D is the set of DCLICs created during
the run σ, we write c |=D fi.M satisfies f iff it has a global run ρ such that for every i,
1 ≤ i ≤ n, each local run of Pi in ρ satisfies the formula fi.

2.4 Multi-automata and Predecessors

From now on, we fix a DPN M = {P1, ...,Pn} where for every i, 1 ≤ i ≤ n,
Pi = (Pi, Γi, Δi), and a single-indexed LTL formula f =

∧n
i=1 fi. To check whether

M satisfies f is non-trivial. Indeed, it is not correct to check independently whether
each Pi satisfies fi. Instead, we need to check whether there exists a global run ρ from
a global configuration G s.t. an instance of Pi satisfies the formula fi only if it is an
instance in G or it is dynamically created during the run ρ. Thus, it is important to
memorize the set of DCLICs that are created during a run. To this aim, we introduce the
function prePi : 2Pi×Γ∗i ×2Di −→ 2Pi×Γ∗i ×2Di as follows. prePi (U) = {(c,D1 ∪ D2) | ∃c′ ∈
Pi × Γ∗i , s.t. c =⇒i c′ � D1 and (c′,D2) ∈ U}. Intuitively, if Pi moves from c to c′ and
generates the DCLIC D1 and (c′,D2) ∈ U, then (c,D1 ∪ D2) ∈ prePi(U). The transitive
and reflexive closure of prePi is denoted by pre∗Pi

. Formally, pre∗Pi
(U) = {(c,D1 ∪D2) |

∃c′ ∈ Pi × Γ∗i , s.t. c =⇒∗i c′ � D1 and (c′,D2) ∈ U}. Let pre+Pi
(U) = pre∗Pi

(prePi (U)).
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To finitely represent (infinite) sets of local configurations of DPDSs and DCLICs
generated by DPDSs, we use Multi-automata and Alternating Multi-automata.

Definition 4. An Alternating Multi-automaton (AMA) is a tuple Ai =

(Qi, Γi, δi, Ii, Acci), where Qi is a finite set of states, Ii ⊆ Pi is a finite set of ini-
tial states corresponding to the control locations of the DPDS Pi, Acci ⊆ Qi is a finite
set of final states, δi ⊆ (Qi × Γi) × 2Di × 2Qi is a finite set of transition rules.
A MA is a AMAAi s.t. δi ⊆ (Qi × Γi) × 2Di × Qi.

We write p
γ/D−−−−→i {q1, ..., qm} instead of (p, γ,D, {q1, ..., qm}) ∈ δi, where D is a set of

DCLICs. We define the relation−→∗i⊆ (Qi×Γ∗i )×2Di×2Qi as the smallest relation s.t.: (1)

q ε/∅−−−→∗i {q} for every q ∈ Qi, (2) if q
γ/D−−−−→i {q1, ..., qm} and qk

ω/Dk−−−−→∗i S k for k, 1 ≤ k ≤ m,

then q
γω/D∪⋃m

k=1 Dk−−−−−−−−−−−→∗i ⋃m
k=1 S k. Let L(Ai) be the set of tuples (pω,D) ∈ Pi × Γ∗i × 2Di

s.t. p ω/D−−−→∗i S for some S ⊆ Acci. A set W ⊆ Pi × Γ∗i × 2Di is regular iff there exists an
AMAAi s.t. L(Ai) = W. A set of local configurations C ⊆ Pi ×Γ∗i is regular iff C × {∅}
is a regular set.

Given a DPDS Pi and a regular set W ⊆ Pi × Γ∗i × 2Di accepted by a MA

Ai = (Qi, Γi, δi, Ii, Acci), we can construct a MA Apre∗
i = (Qi, Γi, δ

′
i , Ii, Acci) that exactly

accepts pre∗Pi
(W). W.l.o.g., we assume that Ai has no transition leading to an initial state

and that Pi = Ii. Apre∗
i is constructed by the following saturation procedure (an adaption

of the saturation procedure of [2]).

– For every pγ ↪→ p1ω1 ∈ Δi and p1
ω1/D−−−−→∗i q, add a new rule p

γ/D−−−−→i q;

– For every pγ ↪→ p1ω1�p2ω2 ∈ Δi and p1
ω1/D−−−−→∗i q, add a new rule p

γ/D∪{p2ω2}−−−−−−−−−−→i q.

The procedure adds only new transitions to Ai. Since the number of states is fixed,
the number of possible new transitions is finite. Thus, the saturation procedure always
terminates. We can show that each transition can be processed only once. Thus, the
number of transition rules added into Apre∗

i is at most O(|Δi| · |Qi|2 · 2|Di|). The intuition
behind this procedure is that, for every ω′ ∈ Γ∗i : suppose pγ ↪→ p1ω1 � p2ω2 ∈ Δi and

the tuple (p1ω1ω
′,D) is accepted by the automaton, i.e., p1

ω1/D1−−−−−→∗i q ω′/D2−−−−−→∗i g for some

g ∈ Acci and D = D1 ∪ D2. Then, we add the new transition rule p
γ/D1∪{p2ω2}−−−−−−−−−−−→i q that

allows the automaton to accept (pγω′,D∪ {p2ω2}), i.e., p
γ/D1∪{p2ω2}−−−−−−−−−−−→i q ω′/D2−−−−−→∗i g. The

case pγ ↪→ p1ω1 ∈ Δi is similar. Thus, we obtain the following theorem.

Theorem 1. Given a MA Ai recognizing a regular set W of the DPDS Pi, we can con-
struct a MA Apre∗

i recognizing pre∗Pi
(W) in time O(|Δi| · |Qi|2 · 2|Di|).

3 Single-Indexed LTL Model-Checking for DPNs

In this section, we consider LTL model checking w.r.t. a labeling function l :
⋃n

i=1 Pi −→ 2AP assigning to each control location a set of atomic propositions. In this
case, the valuation λl (called simple valuation) is defined as follows: for every a ∈ AP,
λl(a) = {pω ∈ ⋃n

i=1 Pi×Γ∗i | a ∈ l(p)}. A global configurationG satisfies f =
∧

fi iffM
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has a global run ρ from G s.t. every local run σ of ρ satisfies f℘(σ) where ℘(σ) denotes
the index of the DPDS which corresponds to the local run σ. Checking whether G sat-
isfies f is non-trivial since the number of local runs of ρ can be unbounded. We cannot
check all the different instances of the DPDSs independently. Indeed, we don’t have to
check whether an instance of Pi (for some i, 1 ≤ i ≤ n) satisfies fi if this instance is
not created during the execution. We can solve this problem in a naive way as follows:
Given an initial global configuration G, we can guess the set of DCLICs D ⊆ ⋃n

i=1Di

which are created in a global run from G such that the global run satisfies f . Then, it is
sufficient to check that every local configuration c ∈ G ∪ D satisfies the LTL formula
f℘(c) when disallowing the transition rules which create a DCLIC outside of D and dis-
carding the DCLICs inside of D. Checking whether c satisfies f℘(c) could be solved by
LTL model-checking for PDSs [2,7] if we discard the DCLICs of the DPDS. However,
this naive technique is very complicated as it necessitates an exponential number of
calls to the LTL model checking algorithm of PDSs. Moreover, it is very complex. We
have to consider all the possible sets of DCLICs whose number is at most O(2|

⋃n
i=1Di |),

and for each set D of DCLICs, we have to perform at most O(|⋃n
i=1Di|) times of LTL

model-checking algorithm for PDSs, where LTL model-checking for PDSs is in time
O(|P℘(d)|2 · |Δ℘(d)| · 2| f℘(d)|) [2,7]. Thus, the complexity of checking whether G satisfies f
or not will be O(2|

⋃n
i=1Di | ·∑d∈⋃n

i=1Di∪G(|P℘(d)|2 · |Δ℘(d)| · 2| f℘(d)|)).
To overcome these problems, we propose in this section a direct algorithm. We com-

pute for every i, 1 ≤ i ≤ n, a MA Ai such that (c,D) ∈ L(Ai), where c is a local
configuration of Pi and D ⊆ Di is a set of DCLICs, iff Pi has a local run σ from c
that satisfies fi such that D is the set of DCLICs created during the local run σ. Then, a
global configuration G satisfies f =

∧
fi iff for every configuration c ∈ G, there exists

a set of DCLICs Dc s.t. (c,Dc) ∈ L(A℘(c)) and every d ∈ Dc satisfies f . This condition
is recursive. However, it can be effectively checked since there is only a finite number
of DCLICs. Checking this condition naively is not efficient. To obtain a more efficient
procedure, we compute the largest setD f p ⊆ ⋃n

i=1Di of DCLICs such that d ∈ D f p iff
d is a DCLIC and there exists a global run ofM starting from d that satisfies f . Then,
to check whether a global configuration G satisfies f , it is sufficient to check for every
c ∈ G whether there exists Dc ⊆ D f p s.t. (c,Dc) ∈ L(A℘(c)).

3.1 Computing the MAsAi

To compute the MAs Ai, for i, 1 ≤ i ≤ n, we extend the automata-based approach
for standard LTL model-checking for PDSs [2,7]. We first compute a Büchi automaton
(BA) Bi that corresponds to the formula fi, for i, 1 ≤ i ≤ n. Then, we synchronize
the BAs with the DPDSs to obtain Büchi DPDSs. The MAs Ai we are looking for
correspond to the languages accepted by these Büchi DPDSs.

Definition 5. A Büchi DPDS (BDPDS) is a tuple BPi = (Pi, Γi, Δi, Fi), where
(Pi, Γi, Δi) is a DPDS and Fi ⊆ Pi is a finite set of accepting control locations.

A BDPDS is a kind of DPDS with a Büchi acceptance condition Fi. Runs of a BDPDS
are defined as local runs for DPDSs. A run σ of BPi is accepting iff σ infinitely often
visits some control locations in Fi. Let L(BPi) be the set of all the pairs (c,D) ∈ Pi ×
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Γ∗i × 2Di s.t. BPi has an accepting run from c and the run generates the set of DCLICs
D.

Let Bi = (Gi, 2AP, θi, g0
i , Fi) be the BA recognizing all theω-words that satisfy fi. We

compute a BDPDS BPi such that Pi has a local run from pω that satisfies fi and gener-
ates a set of DCLICs D iff ([p, g0

i ]ω,D) ∈ L(BPi). We define BPi = (Pi ×Gi, Γi, Δ
′
i , F
′
i )

as follows: for every p ∈ Pi, [p, g] ∈ F′i iff g ∈ Fi; and for every (g1, l(p), g2) ∈ θi, we
have:

1. [p, g1]γ ↪→ [p1, g2]ω1 ∈ Δ′i iff pγ ↪→ p1ω1 ∈ Δi;
2. [p, g1]γ ↪→ [p1, g2]ω1 � D ∈ Δ′i iff pγ ↪→ p1ω1 � D ∈ Δi.

Intuitively,BPi is a product of Pi and the BA Bi. Bi has an accepting run g0g1... over an
ω-word l(p0)l(p1)... that corresponds to a local runσ = p0ω0 p1ω1... ofPi iffBPi has an
accepting run σ′ = [p0, g0]ω0 [p1, g1]ω1..., and D is the set of DCLICs created during
the runσ iff D is the set of DCLICs created during the runσ′. Suppose the run ofPi is at
p jω j, then the run ofBi can move from g j to g j+1 iff (g j, l(p j), g j+1) ∈ θi. This is ensured
by Items 1 and 2 expressing that BPi can move from [p j, g j]ω j to [p j+1, g j+1]ω j+1 iff
(g j, l(p j), g j+1) ∈ θi. The accepting control locations F′i = {[p, g] | p ∈ Pi, g ∈ Fi}
ensures that the run ofBi visits infinitely often some states in Fi iff the run of BPi visits
infinitely often some control locations F′i . Item 2 ensures that the run of Pi creates a
DCLIC p2ω2 iff the run of BPi creates this DCLIC. Thus, we obtain the following
theorem.

Lemma 1. Pi has a local run from pω that satisfies fi and creates a set of DCLICs D
iff ([p, g0

i ]ω,D) ∈ L(BPi), where BPi can be constructed in time O(|Δi| · 2| fi|).

The complexity follows from the fact that the number of transition rules of BPi is at
most O(|Δi| · 2| fi|).
Computing L(BPi): Let us fix an index i, 1 ≤ i ≤ n. We show that computing L(BPi)
boils down to pre∗Pi

computations.

Proposition 1. Let BPi = (Pi, Γi, Δi, Fi) be a BDPDS, BPi has an accepting run from
c ∈ Pi ×Γ∗i and D is the set of DCLICs created during this run iff ∃D1,D2,D3 ⊆ Di s.t.
D = D1 ∪ D2 ∪ D3, and

(α1) : c =⇒∗i pγω � D1 for some ω ∈ Γ∗i ;
(α2) : pγ =⇒+i gu � D2 and gu =⇒∗i pγv � D3, for some g ∈ Fi, v ∈ Γ∗i .

Intuitively, an accepting run from c will reach a configuration pγω (Item α1) fol-
lowed by a repeatedly executed cycle (Item α2) which is a sequence of configurations
with an accepting location g. The execution of the cycle returns to the control location
p with the same symbol γ at the top of the stack. The rest of the stack will never be
popped during this cycle. Repeatedly executing the cycle yields an accepting run (since
g ∈ Fi) and the set of DCLICs generated during this cycle is D2 ∪ D3. Thus, the set
of DCLICs created by the accepting run starting from c is D1 ∪ D2 ∪ D3. To compute
L(BPi), we reformulate the above conditions as follows:
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Proposition 2. Let BPi = (Pi, Γi, Δi, Fi) be a BDPDS, BPi has an accepting run from
c ∈ Pi × Γ∗i and D is the set of DCLICs created during this run iff ∃D1,D′2 ⊆ Di s.t.
D = D1 ∪ D′2, and

(β1) : (c,D1) ∈ pre∗Pi
({p} × γΓ∗i × {∅});

(β2) : (pγ,D′2) ∈ pre+Pi
((Fi×Γ∗i ×2Di )∩pre∗Pi

({p}×γΓ∗i ×{∅})) (note that D′2 = D2∪D3).

Intuitively, items β1 and β2 are reformulations of items α1 and α2, respectively.
By Proposition 2, we can get that L(BPi) = {(c,D1 ∪ D′2) ∈ Pi × Γi × 2Di |
Items β1 and β2 hold}. Since Fi × Γ∗i × 2Di and {p} × γΓ∗i × {∅} are regular sets, us-

ing Theorem 1, we can construct two MAs A′ and A′′ accepting pre+Pi
((Fi ×Γ∗i × 2Di)∩

pre∗Pi
({p} × γΓ∗i × {∅})) and pre∗Pi

({p} × γΓ∗i × {∅}). The intersection (Fi × Γ∗i × 2Di ) ∩
pre∗Pi

({p} × γΓ∗i × {∅}) is easy to compute. Since Fi ×Γ∗i × 2Di denotes all the configura-
tions whose control locations are accepting, we only need to let the initial states of A′′
be the states of Fi. Since the set Pi × Γi × 2Di is finite, we can determine all the tuples
(pγ,D′2) ∈ Pi × Γi × 2Di s.t. Item β2 holds. The set of pairs (c,D1) is the union of all
the sets pre∗Pi

({p} × γΓ∗i × {∅}). Thus, we can get L(BPi). For every BDPDS Pi and MA

Ai, pre∗Pi
(L(Ai)) and pre+Pi

(L(Ai)) can be computed in time O(|Δi| · |Qi|2 · 2|Di|), where
|Qi| = O(|Pi|). Thus, we get that:

Lemma 2. For every BDPDS BPi = (Pi, Γi, Δi, Fi), we can construct a MA Ai in time
O(|Δi| · |Γi| · |Pi|3 · 2|Di|) such that L(Ai) = L(BPi).

From Lemma 1 and Lemma 2, we get:

Theorem 2. Given a DPNM = {P1, ...,Pn}, a single-indexed LTL formula f =
∧n

i=1 fi
and a labelling function l, we can compute MAs A1, ...,An in time O(

∑n
i=1(|Δi| · 2| fi| ·

|Γi| · |Pi|3 · 2|Di|)) s.t. for every i, 1 ≤ i ≤ n, every pω ∈ Pi × Γ∗i and D ⊆ Di, pω |=D fi
iff ([p, g0

i ]ω,D) ∈ L(Ai).

3.2 Single-Indexed LTL Model-Checking for DPNs with Simple Valuations

Given a DPNM = {P1, ...,Pn} and a single-indexed LTL formula f =
∧n

i=1 fi, by The-
orem 2, we can construct a set of MAs {A1, ...,An} s.t. for every i, 1 ≤ i ≤ n, and every
local configuration pω ∈ Pi × Γ∗i , pω |=D fi iff ([p, g0

i ]ω,D) ∈ L(Ai). Then, to check
whether a global configuration G satisfies f , we need to check whether for every local
configuration c ∈ G, there exists a set of DCLICs Dc s.t. (c,Dc) ∈ L(A℘(c)) and every
DCLIC d ∈ Dc satisfies f , i.e., there exists a set of DCLICs Dd s.t. (d,Dd) ∈ L(A℘(d)),
etc. This condition is recursive. It can be solved, because the number of DCLICs is
finite. To obtain a more efficient procedure, we compute the maximal set of DCLICs
D f p s.t. for every d ∈ ⋃n

i=1Di, d satisfies f iff d ∈ D f p. Then, to check whether G
satisfies f , it is sufficient to check whether for every c ∈ G, there exists Dc ⊆ D f p s.t.
(c,Dc) ∈ L(A℘(c)).

Let {A1, ...,An}, s.t. for every i, 1 ≤ i ≤ n, Ai = (Qi, Γi, δi, Ii, Acci), be
the set of the computed MAs. Intuitively, D f p should be equal to the set of lo-
cal configurations pω ∈ ⋃n

i=1Di s.t. there exists D ⊆ D f p s.t. pω |=D f℘(p), i.e.,
([p, g0

℘(p)]ω,D) ∈ L(A℘(p)). Thus, D f p can be defined as the greatest fixpoint of the
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function F(X) = {pω ∈ DI | ∃D ⊆ X s.t. ([p, g0
℘(p)]ω,D) ∈ L(A℘(p))}. This set

can then be computed iteratively as follows: D f p =
⋂

j≥0 D j, where D0 = DI and
D j+1 = {pω ∈ DI | ∃D ⊆ D j, ([p, g0

℘(p)]ω,D) ∈ L(A℘(p))} for every j ≥ 0. Since
⋃n

i=1Di is a finite set, and for every j ≥ 0, D j+1 is a subset of D j, there always exists a
fixpoint m ≥ 0 such that Dm = Dm+1. Then, we can get thatD f p = Dm.

For every pω ∈ ⋃n
i=1Di and D ⊆ D℘(p), to avoid checking whether ([p, g0

℘(p)]ω,D) ∈
L(A℘(p)) at each step when computing D0,D1, ..., we can compute all these tuples that
satisfy this condition once and store them in a hash table. We can show that whether or
not ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)) can be decided in time O(|ω| · |δ℘(p)| · |Q℘(p)| · 2|D℘(p)|).
Thus, we can get the hash table in time O(

∑
pω∈⋃n

i=1Di
(|ω| · |δ℘(p)| · |Q℘(p)| ·2|D℘(p)|)). Given

D j and the hash table, we can compute D j+1 in time O(
∑

pω∈⋃n
i=1Di

2|D℘(p)|). Thus we can
getD f p in time O(

∑
pω∈DI

(|ω| · |δ℘(p)| · |Q℘(p)| · 2|DI |) + |DI |2 · 2|DI |).

Theorem 3. We can compute D f p in time O(
∑

pω∈⋃n
i=1Di

(|ω| · |δ℘(p)| · |Q℘(p)| · 2|D℘(p)|+
|⋃n

i=1Di| · 2|D℘(p)|)) s.t. for every c ∈ ⋃n
i=1Di, c satisfies the single-indexed LTL formula

f iff c ∈ D f p.

Then, from Theorem 3 and Theorem 2, we get the following theorem.

Theorem 4. Given a DPNM = {P1, ...,Pn}, a single-indexed LTL formula f =
∧n

i=1 fi
and a labelling function l, we can compute MAs A1, ...,An in time O(

∑n
i=1(|Δi| · 2| fi| ·

|Γi| · |Pi|3 · 2|Di|)) s.t. for every global configurationG, G satisfies f iff for every pω ∈ G,
there exists D ⊆ D f p s.t. ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)).

You can see that the complexity of our technique is better than the one of the naive
approach given at the beginning of Section 3.

3.3 Single-Indexed LTL Model-Checking with Regular Valuations

We generalize single-indexed LTL model checking for DPNs w.r.t. simple valuations
to a more general model checking problem where the set of configurations in which
an atomic proposition holds is a regular set of local configurations. Formally, a regular
valuation is a function λ : AP −→ 2

⋃n
i=1 Pi×Γ∗i s.t. for every a ∈ AP, λ(a) is a regular

set of local configurations of Pi for i, 1 ≤ i ≤ n. The previous construction can be
extended to deal with this case. For this, we follow the approach of [8]. We compute,
for i, 1 ≤ i ≤ n, a new DPDSP′i , which is a kind of synchronization of the DPDS Pi and
the deterministic finite automata corresponding to the regular valuations. This allows to
determine whether atomic propositions hold at a given step by looking only at the top
of the stack of P′i , for every i, 1 ≤ i ≤ n. By doing this, we can reduce single-indexed
LTL model checking for DPNs with regular valuations to single-indexed LTL model
checking for DPNs with simple valuations. Due to lack of space, we omit the details.
They can be found in the full version of this paper [21].

Theorem 5. Given a DPNM = {P1, ...,Pn}, a single-indexed LTL formula f =
∧n

i=1 fi
and a regular valuation λ, we can compute MAs A1, ...,An in time O(

∑n
i=1(|Δi| · 2| fi| ·

|Γi| · |S tatesi| · |Pi|3 ·2|Di|)) s.t. for every global configurationG, G satisfies f iff for every
pω ∈ G, there exists D ⊆ D f p s.t. ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)), where |S tatesi| denotes
the number of states of the automata corresponding to the regular valuation λ.
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4 Single-Indexed CTL Model Checking for DPNs

In this section, we consider single-indexed CTL model-checking for DPNs with regular
valuations. Single-indexed CTL model-checking for DPNs with simple valuations is a
special case.

4.1 Single-Indexed CTL

For technical reasons, we suppose that CTL formulas are given in positive normal form,
i.e., only atomic propositions are negated. Indeed, any CTL formula can be translated
into positive normal form by pushing the negations inside. Moreover, we use the re-
lease operator R as the dual of the until operator U. Let AP be a finite set of atomic
propositions. The set of CTL formulas is given by (where a ∈ AP):

ψ ::= a | ¬a | ψ ∧ ψ | ψ ∨ ψ | AXψ | EXψ | A[ψUψ] | E[ψUψ] | A[ψRψ] | E[ψRψ].

The other standard CTL operators can be expressed by the above operators. E.g., EFψ =
E[trueUψ], AFψ = A[trueUψ], EGψ = E[ f alseRψ] and AGψ = A[ f alseRψ]. The
closure cl(ψ) of ψ is the set of all the subformulas of ψ including ψ. Let At(ψ) = {a ∈
AP | a ∈ cl(ψ)} and clR(ψ) = {φ ∈ cl(ψ) | φ = E[ψ1Rψ2] or φ = A[ψ1Rψ2]}.

Let λ : AP → 2
⋃n

i=1 Pi×Γ∗i a regular valuation assigning to each atomic proposition a
regular set of local configurations. A local configuration c satisfies a CTL formula fi,
(denoted c |=λ fi), iff there exists D ⊆ Di s.t. c |=λD fi holds, where |=λD is inductively
defined in Figure 1. Intuitively, c |=λD fi means that c satisfies fi and the executions
that made c satisfy fi create the set of DCLICs D, i.e., when a transition rule qγ ↪→
p1ω1 � p2ω2 is used to make fi satisfied, p2ω2 is in D. We write c |=D fi instead of
c |=λD fi when λ is clear from the context.

A single-indexed CTL formula f is a formula of the form
∧

fi s.t. for every i, 1 ≤
i ≤ n, fi is a CTL formula in which the validity of the atomic propositions depends only
on the DPDS Pi. A global configuration G satisfies f =

∧
fi iff for every c ∈ G, there

exists a set of DCLICs D ⊆ D℘(c) s.t. c |=D f℘(c) and for every d ∈ D, d also satisfies f .

4.2 Alternating BDPDSs

Definition 6. An Alternating BDPDS (ABDPDS) is a tuple BP′i = (P′i , Γi, Δ
′
i , Fi),

where P′i is a finite set of control locations, Γi is the stack alphabet, Fi ⊆ P′i is a
set of accepting control locations, Δ′i is a finite set of transition rules in the form of
pγ ↪→ {p1ω1, ..., phωh} � {q1u1, ..., qkuk} s.t. pγ ∈ P′i × Γi, {p1ω1, ..., phωh} ⊆ P′i × Γ∗i
and {q1u1, ..., qkuk} ⊆ Di.

An ABDPDS BP′i induces a relation �→i ⊆ (P′i × Γ∗i ) × (2P′i×Γ∗ × 2Di ) defined as
follows: for every ω ∈ Γ∗i , if pγ ↪→ {p1ω1, ..., phωh} � {q1u1, ..., qkuk} ∈ Δi, then
pγω �→i {p1ω1ω, ..., phωhω} � {q1u1, ..., qkuk}. Intuitively, if BP′i is at the configura-
tion pγω, it can fork into h copies in the configurations p1ω1ω, ..., phωhω and creates k
new instances of ABDPDSs starting from the DCLICs q1u1, ..., qkuk, respectively. We
sometimes write pγ ↪→ {p1ω1, ..., phωh} if pγ ↪→ {p1ω1, ..., phωh} � ∅ ∈ Δi.
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c|=λ∅a ⇐⇒ c ∈ λ(a);
c|=λ∅¬a ⇐⇒ c � λ(a);
c|=λDψ1 ∧ ψ2 ⇐⇒ ∃D1,D2 ⊆ ⋃n

i=1 Di s.t. D = D1 ∪ D2, c|=λD1
ψ1 and c|=λD2

ψ2;
c|=λDψ1 ∨ ψ2 ⇐⇒ c|=λDψ1 or c|=λDψ2;
c|=λDAX ψ ⇐⇒ For every c1, ..., cm ∈ Pi × Γ∗i s.t. for j , 1 ≤ j ≤ m,∃Dj,D′

j ⊆
⋃n

i=1 Di, c =⇒i c j � D′
j, c j|=λD j

ψ

and D =
⋃m

j=1(Dj ∪ D′
j);

c|=λDEX ψ ⇐⇒ There exist c′ ∈ Pi × Γ∗i , D′,D′′ ⊆ ⋃n
i=1 Di s.t. c=⇒i c′ � D′′, c′|=λD′ψ and D = D′ ∪ D′′;

c|=λDA[ψ1Uψ2] ⇐⇒ For every path σ = c0c1... with c0 = c, for every m ≥ 1,∃D′
m ⊆
⋃n

i=1 Di, s.t. cm−1 =⇒ cm � D′
m,

and ∃k ≥ 0, s.t. ∃Dk ⊆ ⋃n
i=1 Di, ck |=λDk

ψ2,∀ j, 0 ≤ j < k, c j|=λD j
ψ1 and D =

⋃
σ(
⋃k

j=1 D′
j ∪
⋃k

j=0 Dj);
c|=λDE[ψ1Uψ2] ⇐⇒ There exists a path σ = c0c1... with c0 = c, for every m ≥ 1, ∃D′

m ⊆
⋃n

i=1 Di, such that
cm−1 =⇒ cm � D′

m, and ∃k ≥ 0, s.t. ∃Dk ⊆ ⋃n
i=1 Di, ck |=λDk

ψ2,∀ j, 0 ≤ j < k, c j|=λD j
ψ1,

and D =
⋃k

j=1 D′
j ∪
⋃k

j=0 Dj;
c|=λDA[ψ1Rψ2] ⇐⇒ For every path σ = c0c1... with c0 = c, for every m ≥ 1, ∃D′

m ⊆
⋃n

i=1 Di, such that
cm−1 =⇒ cm � D′

m, and either ∀ j ≥ 0,∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2 and Dσ =
⋃

j≥1 D′
j ∪
⋃

j≥0 Dj,

or ∃k ≥ 0, ∃D′′
k ⊆
⋃n

i=1 Di s.t. ck |=λD′′k ψ1 and ∀ j, 0 ≤ j ≤ k, ∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2,

Dσ =
⋃k

j=0 Dj ∪ D′′
k ∪
⋃k

j=1 D′
j.D =

⋃
σ Dσ;

c|=λDE[ψ1Rψ2] ⇐⇒ There exists a path σ = c0c1... with c0 = c, for every m ≥ 1,∃D′
m ⊆
⋃n

i=1 Di, such that
cm−1 =⇒ cm � D′

m, and either ∀ j ≥ 0, ∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2 and D =
⋃

j≥1 D′
j ∪
⋃

j≥0 Dj,

or ∃k ≥ 0,∃D′′
k ⊆
⋃n

i=1 Di s.t. ck |=λD′′k ψ1 and ∀ j, 0 ≤ j ≤ k,∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2, and

D =
⋃k

j=0 Dj ∪ D′′
k ∪
⋃k

j=1 D′
j.

Fig. 1. Semantics of CTL

A run of BP′i from a configuration pω ∈ P′i × Γ∗i is a tree rooted by pω, the other
nodes are labeled by elements of P′i ×Γ∗i . If a node is labelled by qu whose children are
p1ω1, ..., pmωm, then, necessarily, qu �→ {p1ω1, ..., pmωm}�D for some D ⊆ Di. The run
is accepting iff each branch of this run infinitely often visits some control locations in
Fi. Let L(BP′i ) be the set of all the pairs (c,D) ∈ P′i ×Γ∗i ×2Di s.t. BP′i has an accepting
run from c and that creates the set of DCLICs D.

4.3 Computing Corresponding Alternating BDPDSs

To perform single-indexed CTL model-checking for DPNs with regular valuations, we
follow the approach for LTL model-checking for DPNs. But, in this case, we need alter-
nating MAs and Alternating BDPDSs, since CTL formulas can be translated to alternat-
ing Büchi automata. We compute a set of AMAsA′1, ...,A′n s.t. for every i, 1 ≤ i ≤ n and
every local configuration pω of Pi, pω |=D fi iff ([p, fi]ω,D) ∈ L(A′i). Later, we com-
pute the largest set of DCLICs D′f p such that a DCLIC d satisfies f iff d ∈ D′f p. Then,
to check whether a global configuration G satisfies f , it is sufficient to check whether
for every pω ∈ G, there exists D ⊆ D′f p s.t. ([p, f℘(p)]ω,D) ∈ L(A′℘(p)). To compute
the AMAs, we construct a set of alternating BDPDSs BP′i which are synchronizations
of the DPDSs Pi with formulas fi s.t. the AMAs we are looking for correspond to the
languages accepted by these alternating BDPDSs BP′i s. We first show how to compute
the alternating BDPDSs BP′i . Then, we show how to compute the languages of these
alternating BDPDSs BPi s, i.e. the AMAs.

We fix an index i, 1 ≤ i ≤ n. We construct an ABDPDS BP′i s.t. for every pω ∈
P′i × Γ∗i , pω |=D fi iff ([p, fi]ω,D) ∈ L(BP′i). We suppose w.l.o.g. that the DPDS Pi has
a bottom-of-stack � which is never popped from the stack. For every a ∈ At( fi), since
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λ(a) is a regular set of local configurations of Pi, let Ma = (Qa, Γi, δa, Ia, Acca) be a
MA s.t. L(Ma) = λ(a) × {∅}, and M¬a = (Q¬a, Γi, δ¬a, I¬a, Acc¬a) a MA s.t. L(M¬a) =
(Pi×Γ∗i \λ(a))×{∅}, i.e., the set of configurations where a does not hold. To distinguish
between all the initial states p in Ma and M¬a, we write pa and p¬a instead. W.l.o.g., we
assume that the set of states Qas, and Q¬as are disjoint for every a ∈ At( fi).

Let BP′i = (P′i , Γi, Δ
′
i , Fi) be the ABDPDS such that P′i = Pi × cl( fi) ∪⋃a∈At( fi)(Qa ∪

Q¬a); Fi = Pi × clR( fi)∪⋃a∈At( fi)(Acca ∪ Acc¬a); and Δ′i is the smallest set of transition
rules s.t. for every control location p ∈ Pi, every subformulaψ ∈ cl( fi) and every γ ∈ Γi,
we have:

1. if ψ = a or ψ = ¬a, where a ∈ At( fi); [p, ψ]γ ↪→ {pψγ} ∈ Δ′i ;
2. if ψ = ψ1 ∧ ψ2; [p, ψ]γ ↪→ {[p, ψ1]γ, [p, ψ2]γ} ∈ Δ′i ;
3. if ψ = ψ1 ∨ ψ2; [p, ψ]γ ↪→ {[p, ψ1]γ} ∈ Δ′i and [p, ψ]γ ↪→ {[p, ψ2]γ} ∈ Δ′i ;
4. if ψ = EXψ1; [p, ψ]γ ↪→ {[p′, ψ1]ω} � {p′′ω′} ∈ Δ′i if pγ ↪→ p′ω � p′′ω′ ∈ Δi;

[p, ψ]γ ↪→ {[p′, ψ1]ω} ∈ Δ′i if pγ ↪→ p′ω ∈ Δi;
5. if ψ = AXψ1; [p, ψ]γ ↪→ {[p′, ψ1]ω | pγ ↪→ p′ω � p′′ω′ ∈ Δi} � {p′′ω′ | pγ ↪→

p′ω � p′′ω′ ∈ Δi} ∈ Δ′i ;
6. if ψ = E[ψ1Uψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ} ∈ Δ′i , and [p, ψ]γ ↪→ {[p, ψ1]γ, [p′, ψ]ω} �
{p′′ω′} ∈ Δ′i if pγ ↪→ p′ω � p′′ω′ ∈ Δi, [p, ψ]γ ↪→ {[p, ψ1]γ, [p′, ψ]ω} ∈ Δ′i if
pγ ↪→ p′ω ∈ Δi;

7. if ψ = A[ψ1Uψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ} ∈ Δ′i and [p, ψ]γ ↪→ {[p, ψ1]γ, [p′, ψ]ω |
pγ ↪→ p′ω � p′′ω′ ∈ Δi} � {p′′ω′ | pγ ↪→ p′ω � p′′ω′ ∈ Δi} ∈ Δ′i ;

8. if ψ = E[ψ1Rψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ, [p, ψ1]γ} ∈ Δ′i , and [p, ψ]γ ↪→ {[p, ψ2]γ,
[p′, ψ]ω}� {p′′ω′} ∈ Δ′i if pγ ↪→ p′ω� p′′ω′ ∈ Δi, [p, ψ]γ ↪→ {[p, ψ2]γ, [p′, ψ]ω} ∈
Δ′i if pγ ↪→ p′ω ∈ Δi;

9. if ψ = A[ψ1Rψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ, [p, ψ1]γ} ∈ Δ′i and [p, ψ]γ ↪→ {[p, ψ2]γ,
[p′, ψ]ω | pγ ↪→ p′ω � p′′ω′ ∈ Δi} � {p′′ω′ | pγ ↪→ p′ω � p′′ω′ ∈ Δi} ∈ Δ′i .

10. for every transition (q1, γ, q2) in
⋃

a∈At( fi)(δa ∪ δ¬a); q1γ ↪→ {q2ε} ∈ Δ′i ,
11. for every q ∈ ⋃a∈At( fi)(Acca ∪ Acc¬a); q� ↪→ {q�} ∈ Δ′i .

For every pω ∈ P′i × Γ∗i , BP′i has an accepting run σ from [p, fi]ω and D is the set
of DCLICs created by σ iff pω |=D fi. The intuition behind each rule is explained as
follows.

If ψ = a ∈ At( fi), for every pω ∈ P′i ×Γ∗i , pω satisfies ψ iff BP′i has an accepting run
from [p, a]ω. To check this, BP′i moves to the initial state corresponding to p in Ma (i.e.
pa) by Item 1 allowing to check whether Ma accepts ω. Then the run of BP′i from paω
mimics the run of Ma from the initial state p. Checking whether Ma acceptsω is ensured

by Item 10. IfBP′i is at state q1 with γ on the top of the stack and q1
γ−→ q2 is a transition

of Ma, then BP′i pops γ from the stack and moves the control location from q1 to q2.
Popping γ from the stack allows to check the rest of the stack content. The configuration
pω is accepted by Ma iff the run of Ma reaches a final state q ∈ Acca, i.e., the run of
BP′i from pω reaches the control location q with the empty stack, i.e., the stack only
contains �. Thus, BP′i should have an infinite run from q� which infinitely often visits
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some control locations in Fi. This is ensured by adding a loop on the configuration q�
(Item 11) and adding q into Fi. The case ψ = ¬a s.t. a ∈ At( fi) is similar.

If ψ = ψ1 ∧ ψ2, then, for every pω ∈ P′i × Γ∗i , pω satisfies ψ iff pω satisfies ψ1 and
ψ2. This is ensured by Item 2 stating that BP′i has an accepting run from [p, ψ1 ∧ ψ2]ω
iff BP′i has an accepting run from [p, ψ1]ω and [p, ψ2]ω. Item 3 is similar to Item 2.

Item 4 expresses that if ψ = EXψ1, then, for every pγu ∈ P′i × Γ∗i s.t. γ ∈ Γi, pγu
satisfies ψ iff there exists a transition t1 = pγ ↪→ p′ω ∈ Δi or t2 = pγ ↪→ p′ω � p′′ω′ ∈
Δi such that p′ωu satisfies ψ1. Thus, BP′i should have an accepting run from [p, ψ]γu
iff BP′i has an accepting run from [p′, ψ1]ωu. Moreover, if t2 is the fired transition rule,
the created DCLIC p′′ω′ should also be created by BP′i . Item 5 is analogous.

If ψ = E[ψ1Uψ2], then, for every pγu ∈ P′i × Γ∗i s.t. γ ∈ Γi, pγu satisfies ψ iff either
it satisfies ψ2, or it satisfies ψ1 and there exists a transition t1 = pγ ↪→ p′ω ∈ Δi or
t2 = pγ ↪→ p′ω � p′′ω′ ∈ Δi such that p′ωu satisfies ψ. Thus, BP′i has an accepting
run from [p, ψ]γu iff either BP′i has an accepting run from [p, ψ2]γu or BP′i has an
accepting run from [p, ψ1]γu and [p′, ψ]ωu. This is ensured by Item 6. Moreover, if t2
is the fired transition rule, the created DCLIC p′′ω′ should also be created by BP′i . The
case ψ = A[ψ1Uψ2] is analogous.

Item 8 expresses that if ψ = E[ψ1Rψ2], then, for every pγu ∈ P′i × Γ∗i s.t. γ ∈ Γi,
pγu satisfies ψ iff it satisfies ψ2, and either it satisfies also ψ1, or there exists a transition
t1 = pγ ↪→ p′ω ∈ Δi or t2 = pγ ↪→ p′ω � p′′ω′ ∈ Δi such that p′ωu satisfies ψ.
This guarantees that ψ2 holds either always, or until both ψ1 and ψ2 hold. The fact that
the state [p, ψ] is in Fi ensures that paths where ψ2 always hold are accepting. If t2 is
the fired transition rule, the created DCLIC p′′ω′ should also be created by BP′i . The
intuition behind Item 9 is analogous to Item 8. Then, we obtain the following lemma.

Lemma 3. For every i, 1 ≤ i ≤ n, we can compute an ABDPDS BP′i with O(|Pi| · | fi| +∑
a∈At( fi)(|Qa|+ |Q¬a|)) states and O

(
(|Pi| · |Γi|+ |Δi|)| fi|+∑a∈At( fi)(|δa|+ |δ¬a|)) transition

rules such that for every (pω,D) ∈ Pi × Γ∗i × 2Di , pω |=D fi iff ([p, fi]ω,D) ∈ L(BP′i ).

4.4 Computing L(BP′
i
)

Let us fix an index i, 1 ≤ i ≤ n, the AMAA′i we are looking for corresponds to L(BP′i).
To compute this language, it is insufficient to simply compute the set of configura-
tions from which BP′i has an accepting run, since we also need to memorize the set
of DCLICs created during the run of BP′i . To this aim, we follow the automata-based
approach for CTL model-checking of PDSs presented in [20]. We first characterize the
set L(BP′i ), then we compute the AMAA′i such that L(A′i ) = L(BP′i).
Characterizing L(BP′i): To characterize L(BP′i), we introduce the function preBP′i :

2P′i×Γ∗i ×2Di −→ 2P′i×Γ∗i ×2Di as follows: preBP′i (U) = {(c,D) | c �→i {c1, ..., cm} � D0, ∀ j :
1 ≤ j ≤ m, (c j,D j) ∈ U, and D =

⋃m
j=0 D j}. The transitive and reflexive clo-

sure of preBP′i is denoted by pre∗BP′i . Formally, pre∗BP′i (U) = {(c,D) | (c,D) ∈
U or there exist c1, ..., cm s.t. c �→i {c1, ..., cm} � D0, ∀ j : 1 ≤ j ≤ m, (c j,D j) ∈
pre∗BP′i (U), and D =

⋃m
j=0 D j}. Let pre+BP′i (U) = pre∗BP′i (preBP′i (U)).

Let YBP′i =
⋂

j≥1 Y j where Y0 = P′i × Γ∗i × {∅}, Y j+1 = pre+BP′i (Y j ∩ Fi × Γ∗i × 2Di)

for every j ≥ 0. Intuitively, (c,D) ∈ Y1 iff BP′i has a run from c s.t. each path of this
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Algorithm 1. Computation of YBP′i .
Input : An ABDPDS BP′i = (P′i , Γi, Δ

′
i , Fi);

Output: An AMAA′i = (Qi, Γi, δi, Ii, {qf }) s.t. L(A′i) = YBP′i ;
1 Let k := 0, δi := {(qf , γ, ∅, {qf }) for every γ ∈ Γi}, and ∀p ∈ P′i , p0 := qf ;
2 repeat we call this loop loop1

3 k := k + 1;

4 Add a new transition rule pk ε/∅−→i {pk−1} in δi for every p ∈ Fi;
5 repeat we call this loop loop2

6 For every pγ ↪→ {p1ω1, ..., phωh} � D in Δ′i ,

7 and every case pk
j

ω j/D j−−−−−→∗i R j for all j, 1 ≤ j ≤ h;

8 pk
γ/D∪⋃h

j=1 D j−−−−−−−−−−−→i
⋃h

j=1 Rj in δi

9 until No new transition rule can be added;

10 Remove from δi the transition rules pk ε/∅−−−→i {pk−1}, ∀p ∈ Fi;

11 Replace in δi transition rule pk γ/D−−−−→i R by pk γ/D−−−−→i π
k(R), ∀p ∈ P′i , γ ∈ Γi,R ⊆ Qi;

12 until k > 1 and ∀p ∈ P′i , γ ∈ Γi,R ⊆ P′i × {k} ∪ {qf },D ⊆ Di , pk γ/D−→i R ∈ δi iff

pk−1 γ/D−→i π
−1(R) ∈ δi;

run visits accepting control locations at least once and D is the set of DCLICs created
during this run. (c,D) ∈ Y j iff BP′i has a run from c s.t. each path of this run visits some
control locations in Fi at least j times and D is the set of DCLICs created during this
run. Since YBP′i =

⋂
j≥1 Y j, for every (c,D) ∈ YBP′i , BP′i has a run from c s.t. each path

visits some control locations in Fi infinitely often and D is the set of all the DCLICs
created during this run. Thus, we get:

Proposition 3. L(BP′i) = YBP′i .

Computing YBP′i : We show that YBP′i can be represented by an AMA A′i =
(Qi, Γi, δi, Ii,
Acci) where Qi ⊆ P′i × N ∪ {q f } and q f is the unique final state, i.e., Acci = {q f }. Let
qk denote (q, k) ∈ P′i × N. Intuitively, to compute YBP′i , we will compute iteratively the
different Y js. The iterative procedure computes different AMAs. To force termination,
we use an acceleration based on the projection functions π−1 and πk: for every S ⊆ Qi,

π−1(S ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{qk | qk+1 ∈ S } ∪ {q f } if q f ∈ S or ∃q1 ∈ S ,

{qk | qk+1 ∈ S } else.

πk(S ) = {qk | ∃ j, 1 ≤ j ≤ k s.t. q j ∈ S } ∪ {q f | q f ∈ S }.
Algorithm 1 computes an AMA A′i recognizing YBP′i . Let us explain the intuition be-
hind the different lines of this algorithm. Let A0 be the automaton obtained after the
initialization (Line 1). It is clear that A0 accepts Y0. Let Ak be the AMA obtained at step
k (a step starts at Line 3). For every p ∈ P′i , state pk denotes state p at step k, i.e., Ak

recognizes a tuple (pω,D) iff pk ω/D−−−→∗i {q f }. Suppose the algorithm is at the beginning
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of the kth step (loop1). Line 4 adds the ε-transition pk ε/∅−−−−→i {pk−1} for every p ∈ Fi.
Then, we obtain L(Ak−1) ∩ Fi × Γ∗i × 2Di . loop2 (Lines 5-9) is the saturation proce-
dure that computes pre∗BP′i (L(Ak−1) ∩ Fi × Γ∗i × 2Di). Line 10 removes the ε-transition

pk ε/∅−−−−→i {pk−1} for every p ∈ Fi. After this, we obtain pre+BP′i (L(Ak−1)∩ Fi × Γ∗i × 2Di).
Thus, in case of termination, the algorithm outputs YBP′i . The substitution at Line 11 is
used to force termination. Thus, we can show the following theorem.

Theorem 6. Algorithm 1 always terminates and produces YBP′i .

Proof Sketch. The proof follows the proof of [20]. Algorithm 1 follows the idea of
the algorithm of [20]. computing an AMA recognizing the language of an ABDPDS
when transition rules are in the form of pγ ↪→ {p1ω1, ..., phωh}, i.e.,Di = ∅ . The main
differences are:

To compute pre∗BP′i (L(Ak−1)∩Fi×Γ∗i ×2Di), instead of using the following saturation
procedure given in [2] that computes reachable configurations of Alternating PDSs:

If pγ ↪→ {p1ω1, ..., pmωm} ∈ Δ′i and pk
j
ω j/∅−−−−→∗i R j, for j, 1 ≤ j ≤ m, add pk γ/∅−→i

∪m
j=1R j in δi.
We use the following saturation procedure:

If pγ ↪→ {p1ω1, ..., phωh} � D ∈ Δ′i and pk
j
ω j/Dj−−−−−→∗i R j for j, 1 ≤ j ≤ h, add

pk γ/D∪⋃h
j=1 Dj−−−−−−−−−−−→ ∪h

j=1 R j in δi.
The idea behind our saturation procedure is the following: suppose pγ ↪→

{p1ω1, ..., phωh} � D ∈ Δ′i and for every j, 1 ≤ j ≤ h, (p jω jω
′,D j) is in L(A′k−1) ∩

Fi×Γ∗i ×2Di (i.e., pk
j

ω j/D′j−−−−−→∗i R j
ω′/D′′j−−−−−→∗i {q f } and D j = D′j∪D′′j ). Then, Lines 3-6 add the

new transition rule pk
γ(D∪⋃h

j=1 D′j)−−−−−−−−−−−→i
⋃h

j=1 R j that allows to accept (pγω′,D∪⋃h
j=1 D j),

i.e., (pγω′,D ∪⋃h
j=1 D j) ∈ pre∗BP′i ({(p1ω1ω

′,D1), ..., (p jω jω
′,D j)}). �

Complexity. Following [20], we can show that loop2 can be done in time O(|P′i | · |Δ′i | ·
24|P′i |+|Di|). The substitution (Line 11) and termination condition (Line 12) can be done
in time O(|Γi| · |P′i | · 22|P′i |+|Di|) and O(|Γi| · |P′i | · 2|P

′
i |+|Di|), respectively. Putting all these

estimations together, the global complexity of Algorithm 1 is O(|P′i |2 · |Δ′i | · |Γi| ·25|P′i |+|Di|).

By Proposition 3 and Theorem 6, we get:

Lemma 4. Given an ABDPDS BP′i , we can construct an AMA A′i with O(|Γi| · |P′i | ·
2|P′i |+|Di|) transitions and O(|P′i |) states in time O(|P′i |2 · |Δ′i | · |Γi| · 25|P′i |+|Di|) s.t. L(BP′i) =
L(A′i ).

From Lemma 4 and Lemma 3, we get:

Lemma 5. We can compute AMAsA′1, ...,A′n in time O(
∑n

i=1((|Pi| · | fi|+k)2 · ((|Pi| · |Γi|+
|Δi|)| fi| + d) · |Γi| · 25(|Pi |·| fi|+k)+|Di|)) s.t. for every i, 1 ≤ i ≤ n, pω ∈ Pi × Γ∗i , pω |=D fi iff
([p, fi],D) ∈ L(A′i ), where k =

∑
a∈At( fi)(|Qa| + |Q¬a|) and d =

∑
a∈At( fi)(|δa| + |δ¬a|).

4.5 CTL Model-Checking For DPNs with Regular Valuations

By Lemma 5, we obtain a set of AMAs {A′1, ...,A′n} s.t. for every i, 1 ≤ i ≤ n and
every local configuration pω ∈ Pi × Γ∗i , pω |=D fi iff ([p, fi]ω,D) ∈ L(A′i ). Following
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the approach for single-indexed LTL model-checking for DPNs, to obtain an efficient
procedure, we compute the largest set D′f p of DCLICs s.t. for every d ∈ ⋃n

i=1Di, d
satisfies f iff d ∈ D′f p. Then, to check whether a global configurationG satisfies f , it is
sufficient to check whether for every pω ∈ G, there exists D ⊆ D′f p s.t. ([p, f℘(p)]ω,D) ∈
L(A′℘(p)).D′f p can be computed as done in Section 3.2. We can show that:

Theorem 7. We can compute AMAs A′1, ...,A′n in time O(
∑n

i=1((|Pi| · | fi| + k)2 · ((|Pi| ·
|Γi|+ |Δi|)| fi|+d) · |Γi| ·25(|Pi|·| fi|+k)+|Di|)) s.t. for every global configurationG, G satisfies f
iff for every pω ∈ G, there exists D ⊆ D′f p such that ([p, f℘(p)]ω,D) ∈ L(A′℘(p)), where
k =
∑

a∈At( fi)(|Qa| + |Q¬a|) and d =
∑

a∈At( fi)(|δa| + |δ¬a|).
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