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Abstract. Backbone is the set of literals that are true in all formula’s models. Computing a part of backbone efficiently could
guide the following searching in SAT solving and accelerate the process, which is widely used in fault localization, product con-
figuration, and formula simplification. Specifically, iterative SAT testings among literals are the most time consumer in backbone
computing. We propose a Greedy-Whitening based algorithm in order to accelerate backbone computing. On the one hand, we
try to reduce the number of SAT testings as many as possible. On the other hand, we make every inventible SAT testing more
efficient. The proposed approach consists of three steps. The first step is a Greedy-based algorithm which computes an under-
approximation of non-backbone BL | (®). Backbone computing is accelerated since SAT testings of literals in BL| (®) are saved.
The second step is a Whitening-based algorithm with two heuristic strategies which computes an approximation set of backbone
BL(®). Backbone computing is accelerated since more backbone are found at an early stage of the computing by testing the
literals in BL(®) first, which makes every individual SAT testing more efficient. The exact backbone is computed in the third step
which applies iterative backbone testing on the approximations. We implemented our approach in a tool BONE and conducted
experiments on instances from Industrial tracks of SAT Competitions between 2002 and 2016. Empirical results show that BONE

is more efficient in industrial and crafted formulas.

Keywords: Backbone, satisfiability, approximation, greedy, whitening

1. Introduction

The backbone of a satisfiable formula is a set of lit-
erals that are true in all formula’s models, which plays
an important role for understanding the hardness of
problems in computation complexity. For satisfiability
problem [20], backbone provides a good explanation
for the apparent inevitably high cost of heuristic search
near the phase boundary.

The identification of backbone has many practical
applications [14,17,18,23]. The seminal work of using
backbone information in solving SAT formulas is in-
troduced in [5]. Dubois and Dequen designed an ef-
ficient DPL-type algorithms for solving hard random
k-SAT formulas, more specifically, 3-SAT formulas.
They chose backbone variables as branch nodes for
the tree developed by a DPL-type procedure. Exper-
iments show that the performance of handling unsat-
isfiable hard 3-SAT formulas had improved signifi-
cantly. Backbone improves the performance of the ran-
dom SAT solver like WalkSAT [22] by making bi-
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ased moves in a local search [21,25]. In addition, back-
bone can significantly contributes to the Lin-Kernighan
local search algorithms for Travel Salesman Problem
[24]. Another recent successful application of back-
bone is post-silicon fault localisation in integrated cir-
cuits [26,27].

However, deciding whether a literal is a backbone
literal is co-NP complete [7,10]. Many heuristic ap-
proaches were proposed to compute backbone, such as
model enumeration, iterative SAT-testing and filtering
with modern SAT solvers. Marques-Silva et al. con-
ducted an experimental evaluation by integration ex-
isting algorithms with optimisations in a modern SAT
solver and showed that backbone computation for large
practical formulae is feasible [11,12,15].

In this paper, we propose a novel Greedy-Whitening
based approach BONE for computing backbones.
Greedy Algorithm is widely used in optimization ap-
plication. We use Greedy Algorithm to greedily select
the best fit variables at each iteration. Whitening Algo-
rithm [4,8,9] was used to find essential nodes that can-
not be colored as white without changing the color of
their adjacent nodes in a k-coloring problem, based on
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a given coloring plan. Getting a new coloring plan is
intuitively easier with known essential nodes.

There are two types of backbone computing algo-
rithms, upper bound estimations and literals testing.
The upper bound estimations tries to find the exact
backbone by removing (adding) literals from the set of
all literals (an empty literal set) of the given formula.
The literals testing tests the satisfiability of the origi-
nal formula together with the given literals (as assump-
tions), backbone information is extracted from the SAT
solving process.

The insight of our Greedy-Whitening approach has
two-folds: 1) we present a fast procedure to compute
an under-approximation set of non-backbone based on
Greedy Algorithm, which prunes the search space dur-
ing the computation of backbone; 2) we also com-
putes an approximation of backbone in polynomial
time based on Whitening Algorithm, and the elements
in this set have high possibility to be backbone liter-
als which help us to compute the exact backbone using
SAT solvers.

We implemented our approach in a tool BONE and
evaluated this tool with empirical experiments. We
tested 784 industrial and crafted formulae with time
limits, the formulae are selected from SAT competi-
tions during 2002 to 2016." 9 more formulas are solved
by BONE. For selected industrial formulas, BONE
solved 34 from satisfiable industrial formulae in 3600
seconds and reduces 21% total solving time compar-
ing to MINIBONES. Especially, for group mrpp, BONE
reduces 38% solving time.

2. Preliminaries

We fix a finite set X’ of Boolean variables. A literal
[ is either a Boolean variable x € X or its negation
—x. The negation of a literal —x is x, i.e., =—x = x.
A clause ¢ is a disjunction of literals \/_, /;, which
may be regarded as the set of literals {/; | 1 < i < n}.
W.Lo.g., we assume that for every clause ¢, if [ € ¢,
then —/ ¢ ¢.

A formula ® over X is a Boolean combination of
variables X'. We assume that formulae are given in con-
junctive normal form (CNF), namely each formula &
is a conjunction of clauses /\]_; ¢; which may be re-
garded as a set of clauses {¢; | 1 < i < n}. Given a
formula @, let var(®) (resp. L(P) and cls(P)) denote
the set of variables (resp. literals and clauses) used in

1 http://www.satcompetition.org/

®. The size |®| of @ is the number of literals of ®. We
use || D] to denote Z¢e¢ |¢|, and =L (D) to denote the
set {—l |l € L(D)}.

Given a formula ® and a literal [ € L(®), let
®; C P be the set of clauses {¢p € ® | [ € ¢}. Given
two different variables x1, xp, € var(®), x| and x; are
adjacent variables iff there exists a clause ¢ € @ such
that (x1 € ¢) A (x2 € ).

An assignment is a function A : X — {0, 1}, where
1 (resp. 0) denotes true (resp. false). Given an assign-
ment A and a literal / that is x or —x, let A[—/] be the
assignment which is equal to A except for A[—I](x) =
—A(x). Given a set of variables x = {x, ..., x,}, let
A[—L] denote the assignment A[—x1]...[—x,].

An assignment A satisfies a formula @, denoted by
A | @, iff assigning A(x) to x for x € var(P) makes
d true.

Definition 1 (Backbone). Given a satisfiable formula
@, a literal [ is a backbone literal of ® iff for all as-
signments X such that A = &, A(l) = 1. The backbone
BL(®) of ® is the set of backbone literals of ®.

It is known that the backbone BL(®) for each for-
mula @ is unique [5]. The backbone of an unsatisfiable
formula can be defined as an empty set. Therefore, in
this work, we focus on satisfiable formulae. We will
use BL(®) to denote the set £(P) \ BL(P).

Definition 2. Given an assignment A of a formula ®,
X is a model of ® iff A = ®.

Theorem 1 ([7,10]). Given a satisfiable formula ®
and a literal I, deciding whether [ is a backbone literal
is co-NP complete.

Definition 3 (Satisfied literal). Given a model A of the
formula @ and a clause ¢ € &, for each literal [ € ¢,
I is a satisfied literal of ¢ iff A(l) = 1.1 is a unique
satisfied literal of ¢ if there is no satisfied literal I’ of

e\ {1}

For instance, let us consider the formula ® =
(=l v =b, L, 3 v 1}, var(®) = {x1, x2, X3, X4},
L®) = {=h,l1, =, 13,14}, Py, = {=l1 Vv =i}
and BL(®) = {/{, —l»}. Given a model A such that
A1) = 1, AM(—lp) = 1. The satisfied literal of clause
(=l Vv =) is —lp.

3. Overview of our approach

We show the overview of our approach BONE
in Fig. 1. Taking a satisfiable formula & as an in-
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Fig. 1. Overview of our approach.

put, BONE first computes a subset of non-backbone
BL|(®) € BL(®). Then, BONE computes an interme-
diate set of backbone éT.(dD) based on the set ﬁl(cb),
where each literal / € BL(®) has a high possibility
to be a backbone literal of ®. Finally, BONE removes
non-backbone literals from ﬁ(cb) and adds backbone
literals into ﬁ(@) to compute the exact backbone
of ®.

As shown in Fig. 1, BL|(®) only contains a part of
non-backbone literals. Most of the literals in EI\_(CD) are
backbone, only a small part of them is non-backbone.
With more known backbone literals, SAT testings are
accelerated.

Computing an under-approximation of non-backbone.
Given a satisfiable formula &, we first compute a
model A of ® by calling a SAT solver. From the model
A, we compute a base under-approximation of non-
backbone. Later, we apply a Greedy-based algorithm
to add more non-backbone literals into the base set,
which results in BL| (®).

The algorithm iteratively computes new models un-
til no new model can be found. We choose to change
the literal that satisfies the least clauses at each itera-
tion, as the number of clauses effected by this literal
is the least one, provided a higher possibility to find a
new model. K models will be generated after the k iter-
ations. New non-backbone literals are found from each
new model. It’s worth noticing that for every literal that
has different assignment in all models, we can put them
into the under-approximation of non-backbone literals.

Computing an approximation of backbone. At this
step, we apply a Whitening-based algorithm to com-
pute an approximation BL(®). Whitening Algorithm
was used to compute essential nodes that cannot be
colored as white without changing the color of its ad-
jacent nodes in a graph coloring problem.

We consider essential nodes as ’possible’ backbone
literals in backbone computing. To increase the pro-

portion of backbone literals found by Whitening Algo-
rithm, we use two heuristic strategies to refine Whiten-
ing Algorithm. First, we check whether the generated
assignment is a model to eliminate some of the non-
backbone literals returned by Whitening-based Algo-
rithm. Moreover, we use assumptions features of MIN-
ISAT [12] to find some accurate backbone literals. If
the conflict size returned by the assumptions features
is one, then the negation of the conflict literal is a back-
bone literal. If the formula is satisfiable under the given
assumptions, then we get a new model. By comparing
the new model with the old one, we are also able to find
non-backbone literals. With the refinement of heuristic
strategies, Whitening-based Algorithm is able to return
a set of literals that are highly likely to be backbone.

Computing exact backbone. Based on EE(CD), we test
whether a literal [ € ﬁ@)) is a backbone one by one.
A naive but efficient approach [13] is to test the satisfi-
ability of ® A [, and ® A —I. It’s widely used in back-
bone computing approaches because of its efficiency,
therefore, we implemented an iterative SAT testing ap-
proach to compute exact backbone based on the idea
of this naive approach. Iterative SAT testing algorithm
uses SAT solvers to test whether a literal is a backbone
literal or not. For instance, if ® A —/ is unsatisfiable but
® is satisfiable, then / must be a backbone literal of ®.

We use the model A = @ and ﬁ(cb), ﬁl(cb) com-
puted in the previous steps as input. We first itera-
tively select one literal / from ét(@) \ ﬁL(QD) such
that A = —I[ and test [ by checking the satisfiability of
® A [ (dashed area in Fig. 1). If [ is a backbone, we
will add [ into @ as a clause. Adding known backbone
literals into @ as clauses potentially speedups the later
SAT testing [5,12,19]. If a new model is generated, we
are able to find some non-backbone literals by compar-
ing the difference between the newly generated model
and the original one. Then, we do the same testing for
literals from L£(®) \ (KL(QD) U ﬁ(cb)) (dotted area in
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Fig. 1). After this step, the exact backbone and non-
backbone are found.

Comparing to the approach of directly test all liter-
als in £(®), there are two contributions of BONE. One
is that we reduce the number of SAT calls using the
known non-backbone literals §E(<I>). The another one
is that we first check literals that have high probability
to be backbone literals so that backbone literals can be
found as early as possible.

4. Greedy-based computing ﬁl(cb)

In this section, we propose an algorithm to compute
the under approximation of non-backbone, namely
Greedy-based Algorithm. As mentioned in Section 3,
Greedy-based Algorithm is a straight forward algo-
rithm which is able, for a given model, to compute
parts of non-backbone in quadratic time. It’s able to
reduce the number of total SAT calls since literals in
BL|(®) don’t need SAT testings. Experiments show
that Greedy-based Algorithm reduces 5% solving time.

4.1. Computing ﬁl(cb) using one model

Computing BL| (P) using only one model is equiva-
lent to rotatable literals mentioned in [12]. Given a for-
mula @, we first compute a model A using SAT solver.
We then compute the set of non-backbone literals using
A, referred as L(®, A). To compute L(D, 1), we first
find clauses that have at least two satisfied literals and
put them into a set, refereed as ®,. We then scan all
literals in £(®), and skip literal / and —/ if [ satisfies a
clause ¢ ¢ ®,. The rest literals are in L(®, A).

The only line in this naive Algorithm is computing
the non-backbone literals set of a given model A.

Theorem 2. L(®, 1) C BL(P).

Proof. Suppose aliteral/ € L(®P, A). According to the
Naive Algorithm, A(/) = 1, and there must exists a lit-
eral I’ in any clause ¢ € ®;, such that (I’ € ¢) AI('#
D A (A(") = 1). Therefore, there must exist a model
A’ = A[—I]. It concludes that [ is a non-backbone lit-
eral of ®, i.e., | € BL(®d). Given a formula ® and a
model A = &, suppose a literal [ € L(®, A), then for
every clause ¢ € ®;, there must exists a literal /; such
that [/ # I, and A(l) = 1, A(l2) = 1. [ is another satis-
fied literal of ¢. Therefore, there must exists an assign-
ment A[—/] = &, since all clauses contains / will be
continue satisfied by another literal in that clause. [

4.2. Computing EL(CD) using Greedy-based
algorithm

To save more SAT testings, we propose the Greedy-
based algorithm shown in Algorithm 2 to get more
non-backbone literals. Comparing to Algorithm 1,
Greedy-based algorithms is able to compute more non-
backbone literals using more models generated from
the original model A. The rotatable literals in [12] is a
subset of the result in Greedy-based Algorithm.

We use HS to denote the heuristic strategy of greedy
algorithm. In the default Minisat 2.2 setting, the literals

Algorithm 1: Naive Algorithm: Computing non-
backbone literals using A

Input : a satisfiable formula  and a model A

of @ L
Output: a set of literals BL| (P)
CD|:2 =

foreach ¢ € ® do
if 31,1, € ¢ A1 # [, then

if A(l1) = 1 A A(ly) = 1 then
\; L (D)Zz = (blzz U {¢};

N oA W N =

6 L(D,)) = L(D);

7 foreach/ € L(®, 1) do

8 foreach ¢ s.t. [ € ¢ do

9 if ¢ ¢ O, then

10 L(®, 1) :=L(D, M)\ {I};
L break;

12 return L(®P, 1);

Algorithm 2: Greedy-based algorithm

Input : a satisfiable formula & and a model A
of @ o
Output: a set of literals BL| ()

1 ﬁl(cb) = L(P, 1);

2 C := HS(D);

31:=0;

4 whilei < |C| do

5 =i+ 1,1 :=Cl[i];

6 if A[—/] = ® then

7 ﬁL(tb) = ﬁl(cb)UL((b,)\[—‘l]);

8 BL|(®) :=BL|(®) U{VI|l € 1,1’ € A};
9 A=Al

10 return BL|(®);
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are weighted by the number of appearance in clauses
initially, revision are made during the solving process
according to the number of appearance in conflicts. In
Greedy-based Algorithm, we want to find literals that
affect the least of the given formula &, therefore, the
reverse of weighted literals in Minisat 2.2 solver is the
correct order of HS that we wished. C is an order set of
literals, resulted from the heuristic strategy HS. When
changing the assignment of a literal /, the less clauses
[ satisfies, the less clauses are affected, the higher pos-
sibility that a new model is found.

Given a formula ® and a model A, we construct the
ordered set of literals C according to HS at Line 2.
From Line 4, we start to change the assignment of the
literal in C one by one. At Line 6, for each selected
literal /, we construct a new assignment A[—/] from the
model X and check whether A[—[] satisfies ® in poly-
nomial time. If A[—/] satisfies ®, then we add the set
of non-backbone literals L(®, A[—/]) into ﬁt (®), and
assign A[—/] to A which will be severed as the model of
® at the next step. With A changing at every iteration,
we are able to obtain more various assignments and
find more non-backbone literals. If A keeps the same
at each iteration, we can only obtain the assignments
A=), [ € L(D), which is not as various as the assign-
ments by changing model X at every iteration.

Theorem 3. BL|(®) C BL(®).

Proof. Suppose a literal / € BL|(®), if [ is added to
BL|(®) at Line 1, then/ € L(®, 1), [ € BL(®) (Theo-
rem 2). Otherwise, [ is added to ﬁL(CD) at Line 6, we
know that there must exists a model A/, [ € L(®, )
(Line 6). Since L(®, \) € BL(®) (Theorem 2), [ €
BL(®). It concludes that KL(CD) CBL(®). O

Theorem 4. The complexity of Greedy-based Algo-
rithm from Line 2 to Line 10 is O (m X n), where m is
the size of L(®) and n is the size of clauses in .

Proof. Given a model A |= @ as the input of Greedy-
based Algorithm. Started from Line 1, we scan all m
clauses to count number of satisfied literals, and scan
all n literals to compute L(®P, A). The complexity of
Line 1 is O(m x n). With the information collected
from Line 1, Line 2 will be finished in O(mz) time
since it needs to sort a set of literals decreasingly ac-
cording to HS. Line 4 scans all literals, the complex-
ity is O (m). With the information from Line 1, Line 6
will be finished in O(1) time. The complexity of the
loop started from 4 is O(m). The total complexity of
Greedy-based Algorithm is O (m x n). O

Greedy-based Algorithm saved 5% solving time in
total. With non-backbone literals recognized ahead,
SAT testing numbers are reduced. Backbone comput-
ing is expediting by the save of SAT testings.

5. Whitening-based computing BT_(CD)

In this section, we propose an algorithm to compute
approximate set of backbone literals BL(®), namely
Whiten-based Algorithm. As mentioned in Section 3,
finding more backbone at the earlier stage of the com-
puting provides benefits for the later backbone com-
puting. Experiments show that the proportions of back-
bone in BL(®) are generally higher than that in the
original formula. Moreover, 20% solving time is saved
by Whiten-based Algorithm.

5.1. Whitening algorithm

In [9], the authors proposed an Whitening algo-
rithm that computed the essential nodes in a color-
ing problem named Whitening Algorithm. We propose
a Whitening-based Algorithm for "possible’ backbone
(essential) literals computing based on the original one.
We use W, to denote the clauses that have at least two
satisfied literals to a given model. We use W, to rep-
resent a set of variables, every variable x in W, only
satisfies clauses in W.. W, and W, are updated concur-
rently.

We first compute a set of clauses that have at least
two satisfied literals under the current model, named
W, at Line 1. We find variables that only satisfied
clauses in W,, and put them into a set of variables,
named W, at Line 2. We then start to iteratively extend
W, and W, from Line 3. For every variable v € W, if
a clause contains —wv, it will be added to W, at Line 4.
After that, we compute W,, again with the extended W,.
We repeat the procedure until no clause are added to
W,. At last, the complement of W, is the set of essen-
tial variables. It’s important that no elements are taken
away from W, the algorithm will terminate since the
number of clauses is finite.

Given a model A, the complexity of Whitening Algo-
rithm is polynomial since it doesn’t need SAT testing.
For any variable x € W,, all clauses in @, will have
at least two satisfied literals in the assignment A[—x],
one is —x, the other is one of the satisfied literals of
¢ under A. In this way, Whitening Algorithm extended
W, without SAT testing.
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Limited by the only model given to Whitening Al-
gorithm, only a part of backbone variables are in W,,.
Different models will have different W,.. For example,
given a formula

(maVvbvVv-—c)A(—aVv —bVc)

A(—avbVvd)A(—cvd)A(aVvd)

and a model A such that L(a) = 1 AA(D) = 1 AA(c) =
1 A A(d) = 1. At Line 4, W, is initialized with
{(mavbvd),(avd)}. W,isinitialized with {a}. The
result of Whitening Algorithm is empty set. It indicates
that non of the variable is backbone. Actually, d is a
backbone literal, since there does not exist a model A
that A(—d) = 1.

Given a model A, the assignment change of a given
variable v will generate a new assignment A[—v]. As
we record the assignments generated during the com-
pute step by step, we found that a is a non-backbone
variable, because A[—a] is another model. b, ¢ are non-
backbone variables because A[—a, —b] and A[—a, —c]
are models of the given formula. However, neither
A[—a, —=b, =d] nor A[—a, —c, —d] is a model of the
given formula.

We consider that an iteration of a repeat loop ended,
if the last line of code in the loop body has been ex-
ecuted. In Algorithm 3, we consider that an iteration
of the repeat loop ended when Line 5 was executed.
A new iteration of the repeat loop started after that if
the terminating condition of the loop hasn’t been satis-
fied by then.

The detail iteration of Algorithm 3 using the given
example are as follows: At Line 1, (—a v b Vv d) and
(avd) were added to W,. W, = {(—aVbVvd), (avd)}.
At Line 2, only a is added to W,,. Variable d was not

Algorithm 3: Whitening-based algorithm

Input : aformula ® and a model A of &
Output: white clauses W, and white variables
Wy

1 Wei={ped®|d1,hedp: A= A}

2 Wyi={xevar(®) |[AExAx ¢ LD\ W,)or
AME—x A—x ¢ L@\ Wok

3 repeat

4 We =W, U{p € ®|var(p) N W, # 0},

5 Wy=WyU{xevar(®) | A=ExAx ¢

L@\ W)or AfE—xA—x¢&L(DP\ W)}
6 until No Update of W, and W,;
7 return var(®) \ Wy;

added to W, since variable d appeared in (—c V d),
which is not in W,.. W, = {a}.

In the first iteration of the repeat loop started from
Line 3, we added (—a v b Vv —¢) and (—a Vv —b V ¢)
to WeatLined4. W, = {(—aVvbVvd),(aVvd),(—aVv
bV —c¢), (—a Vv —b VvV c)}. We added b, ¢ to W, since
all clauses that literal b and literal ¢ appeared were in
W.. W, = {a, b, c}. The repeat loop continued at Line
6 since both W, and W,, were updated.

In the second iteration, (—c¢ V d) was added to W,
at Line 4, since variable ¢ appears in (—c VvV d). W, =
{(—ravbvd),@vd),(—aVvbVv-—c),(—aVv-bv
¢), (a v d)}. At Line 5, we added variable d into W,
since all clauses that literal d appeared were in W,,.
W, = {a, b, c,d}. Since both W, and W, were up-
dated, the repeat loop continued at Line 6.

In the third iteration, no clause was added to W, at
Line 4, since all clauses were already in W,. No vari-
able was added to W, at Line 5, since all variables were
already in W,. The repeat loop exited at Line 6 because
neither W, nor W, updated. The program returned an
empty set at Line 7.

5.2. Assignments checking based Whitening
algorithm

To avoid missing backbone literals like d, we pro-
pose a Whitening-check-based Algorithm (WCB for
short) to compute the approximation of backbone liter-
als with satisfiability check of each generated assign-
ment. Pre(x) is used to record the literals that changed
its assignment at each iteration. With the changed lit-
erals, we are able to generate a new assignment at each
iteration. We choose a variable x € W, at each iter-
ation, and update W, by adding &, W, is extended
accordingly. For every new variables x” in W, we test
the satisfiability of assignment A[—(Pre(x) U {x, x'}].
x’ maintains in W, if a new model is found. Otherwise,
x’ removes from W,. Algorithm stops when there is no
new clause added to W,.

We compute W, and W, at the first two lines, and ex-
tend W, and W, at Line 4. At Line 10, we test whether
the generated assignment is a model of the given for-
mula ®. At each iteration, we change the assignment of
x € Wy, itresults in adding x” to W,,. If the assignment
A[—(Pre(x) U {x, x'})] passes the satisfiability check at
Line 10, x’ remains in W,,, and Pre(x”) is Pre(x) U {x}.
Otherwise, x’ is removed from W,,.

The WCB Algorithm finds some missing backbone
literals in Whitening Algorithm. Since the test of sat-
isfiability at Line 10 is in polynomial time, the time
complexity remains the same.
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Theorem 5. Vx € W,, x € BL| (D).

Proof. Given a formula @ and a model A = &, sup-
pose a variable x’ € W,,. If x’ is added to W, at Line
2, then there must exists a literal [ = x or =] = x,
for every clause ¢ that contains /, there must exists an-
other literal //, such that A(/") = 1. Therefore, there
must exists another model A/ = A[—=I] of ®, x is a
non-backbone literal of ®. If x’ is added to W, at Line
11, there must exists a variable x, where a new model
A[—Pre(x) U {x, x’}] of ® is generated at Line 10.
Therefore, there exists two different models A; and A,
of @, such that A;(x") = 0 and A(x") = 1. x" isa
non-backbone literal of ®. [

We detail the computation of Algorithm 4 on the
same example we used above. The formula in the ex-
ample is

(maVvbVv-—=c)A(—aVv -—bVc)
A(—avbVvd)A(—eVvd)A(aVvd)

W, was initialized as {(—aVvbVvd), (avd)} at Line 1,
W, was initialized as {a} at Line 2. Pre(a) was initial-
ized as empty set at Line 3. In the first iteration of the

Algorithm 4: WCB Algorithm with Assignment
Satisfiability Checking
Input : a satisfiable formula & and a model A
of ®
Output: a set of literals BL| (P)
Wei={ped |3, bhep: =L ADLY
Wy ={x evar(®) | A(x) =1Vp € &, : ¢ €
Wels
Vx € Wy, Pre(x) = @;
repeat
foreach x € W, do
foreach ¢ € ®_, do
| We =W, Ud;

foreach x’ ¢ W, A x’ € ®_, do

9 if . C W, then

10 if A[~(Pre(x) U {x, x'D)] = ®
then

1 W, == W, Ux’;

12 L Pre(x’) := Pre(x) U x;

[ S

N S R W

=)

3 until No update of Wy;
return var(®) \ W,;

—
'S

repeat loop started from Line 4, x was assigned with
a at Line 5, all clauses that contains —a were added to
We, We = {(—aVvbvd), (avd), (—avbVv-—c), (—aVv
—b VvV c)}.

In the first iteration of foreach loop started from Line
5, and the first iteration of the foreach loop started
from Line 8, b was assigned to x’, since all clauses that
contains b were in W,, we went to the true branch of
Line 9. At Line 10, we tested whether A(—a, —b) =
(—a A —=b A ¢ A d) is a model of the given formula,
b was added to W, at Line 11, since A(—a, —b) is a
model of the given formula. Pre(b) was assigned with
{a} at Line 12.

In the second iteration of the foreach loop started
from Line 8, ¢ was assigned to x’, since (—a v =b V ¢)
was in W,, which is the only clause containing ¢, we
tested whether A(—a, —~c¢) = (—a Ab A—c Ad)isa
model. A(—a, —c¢) is a model and we added ¢ to W, at
Line 11, Pre(c) was assigned with a at Line 12.

At the third iteration of the foreach loop started from
Line 8, d was assigned to x’, since (—c¢ V d) was not
in W,, the iteration ended at Line 12, the foreach loop
stared from Line 8, and the foreach loop started from
Line 5 ended.

In the second iteration of the repeat loop, x was as-
signed to a and b in the first two iterations of the fore-
ach loop started from Line 6, these iterations ended
without changing W, or W,.. x was then assigned to ¢
in the third iteration of the foreach loop started from
Line 6, (—c V d) was added to W, after Line 7. In the
first iteration of the foreach loop started from Line 8, d
was assigned to x’, since A(—c, —d) is not a model of
the given formula, W, remains the same, at the foreach
loop started from Line 8, and Line 5 ended.

In the third iteration of the repeat loop, x was as-
signed to a, b, and c in each iterations, W, and W, re-
mains the same after all the iterations. There is no up-
date of W, or W,, the repeat loop ended. The program
returns {d} at Line 14.

5.3. Computing parts of exact backbone using
assumptions

Although WCB Algorithm is able to compute an
approximation set of backbone, it still needs at least
one SAT testing to determine whether a literal is back-
bone, which may need a long solving time. Inspired by
[12], we use assumptions in MINISAT as a heuristic
strategy to accelerate SAT testing, named Whitening-
assumptions-based Algorithm, WAB for short.
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Experiments show that given the same formula @,
SAT testings with assumptions are generally faster then
the ones without assumptions. It’s because that as-
sumptions help to make the initial decisions of a SAT
solving, given an assumption y with k literals in it, it
reduces 2¥ states of the searching spaces. SAT testing
with a longer assumptions will return faster.

A formula & is satisfiable with assumption y in-
dicates that there exists a model A = &, such that
VI € y, A(l) = 1. We use SAT(®, y) to denote a SAT
testing of ® with the assumption of y. We use (b, A, r)
to denote the result of SAT(®, y). If b is assigned to
1, a model is returned in A, otherwise, a reason of un-
satisfiable is returned in 7. For every literal [ € ét(@),
=l is selected to y. If there is exactly one reason [, re-
turned from SAT(®, y), it indicates that —/, must be a
backbone of ®.

Given a model A and a satisfiable formula ®. We
initialize  with BL(®) at Line 2. We add —I to y for
everyl € éT.(dD) to block the known model A. At Line
4, we compute the result of SAT(®, y). All literals in y
will be removed from ét(@) at Line 11 if b is assigned
to 1. Otherwise, all literals in » are removed from y at
Line 9. Once y is empty, the iteration stops. If there is
exactly one literal /, in r, —/; must be backbone and
added to BL| (®) at Line 8.

Theorem 6. Given a satisfiable formula ® and a set
of assumptions y, =l € BL(®) ifl, € y and I}, is the
only reason that ® is not satisfiable under the assump-
tion of y.

Proof. Given a satisfiable formula ® and a set of as-
sumptions y, suppose literal /; is the only reason re-
turned r from SAT(®, y), i.e., VI € r,l = I,. It means
that there doesn’t exist a model A = ®, such that
A(lp) = 1. Therefore, —I, is a backbone literal of @,
i.e., =l € BL(®). U

WAB Algorithm (Algorithm 5) is able to compute
the approximation of backbones of the given formula.
When the length of unsatisfiable reason is 1, WAB
saved solving time when determining if a variable
is a backbone. Experiments show that, SAT testings
with assumptions are generally finished within 1 sec-
ond, while original SAT testing may take more than 1
minute.

Compared with the original Whitening Algorithm,
the accuracy of Whitening-based Algorithm improved
by two heuristic strategies (WCB and WAB) has in-
creased. Missing backbone are added to the approxi-

Algorithm 5: WAB Algorithm for computing
under-approximation of backbone BL | (P)

Input : a satisfiable formula  and ET_(CD)
Output: under-approximation of backbone
literals BL | (®)

1 BL| (D) :=0;

2y =1l € L(®) | -l € BL(®)};
3 repeat

4 (b, M, r) ;== SAT(D, y);

5 if b == 0 then

6 if |r| == 1 then

7 lh =,

8 L BL|(®) :=BL|(®) U {—=lp};
9 L y=v\n;

10 if b == 1 then

11 BL(®) := BL(®) \ y;
12 ﬁL(tb) = ﬁL(GD)Uy;
13 break;

14 until y == ¢;
5 return BL| (®);

-

mation through WCB and accurate backbone are con-
firmed with WAB. With a higher accuracy, backbone
computing are guided better with §E(<I>).

In BONE, we first compute the under-approximation
of non-backbone literals BL|(®), using Greedy-based
Algorithm. Then we compute an over-approximation
EI(CD) of backbone literals using WCB, we use WAB
to find exact backbone and non-backbone literals in the
BL(®). The scheme graph is shown in Fig. 2.

6. Experimental study

To study the performance of BONE, we compare
it to state-of-the-art tool MINIBONES [12] and analy-
sis total solving time for different groups of formulae.
Different algorithms are implemented in MINIBONES.
We choose the best algorithms of MINIBONES recom-
mended by the author in [12], namely, CoreBased al-
gorithm with a chunk size of 100.

We implemented BONE in C++ interfacing MIN-
ISAT 2.2 [6].The experiments were conducted on a
cluster of IBM iDataPlex 2.83 GHz, each industrial
formula was running with a memory limit of 4 GB.
Each random formula was running with a memory
limit of 256 MB.



Y. Zhang et al. / Towards backbone computing: A Greedy-Whitening based approach 275

Input Formula

Greedy-based Algorithm

WCB

Non—backbone under—approximation

Backbone over—approximation

Exact Backbone and non—backbone

Fig. 2. Scheme Graph of BONE.

In the experiments, we separate formulae into
groups based on different applications. We study the
performance of BONE in 3 different groups, under
different time limits. In 3600 seconds, results show
that BONE saved 21% solving time in total and per-
forms the best in manthey group, saving 34% of solv-
ing time. In 16000 seconds, results show that BONE
solved 2 more formulae (49 formulae) than MINI-
BONES does.

Experiments show that both BONE and MINIBONES
are good at solving industrial formulae which have
clear partitions of variables. In the experiments of ran-
dom formulae, results indicate that BONE is good at
solving formula with more variables that have over 10
adjacent variables.

6.1. Benchmark setup

We select 784 crafted and industrial formulas from
SAT competitions between 2002 and 2016. 291 formu-
las can’t find a model using Minisat 2.2 in 3600 sec-
onds. 196 formulas are unsatisfiable formulas, which
do not have any backbone.

To study the performance difference between MINT-
BONES and BONE under different formula group, we
choose three industrial groups: mrpp, manthey and
dimacs. mrpp comes from multi robot path planning
problems, manthey comes from finding gray codes
problems, these codes might attack encryptions, and
dimacs comes from graph problems. These groups are
neither nor too hard. Both BONE and MINIBONES
need more than 5 seconds to solve the formulas in these
groups. In every group, 2/3 formulas can be solved by
Minisat 2.2 in 3600 seconds. Both BONE and MINI-
BONES use Minisat 2.2 as SAT solving, solving by
Minisat 2.2 is the basis of finishing finding backbone
literals.
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Fig. 3. Numbers of Solving Formulas of MINIBONES and BONE.
6.2. Means of presentation

We use st to denote the solving time and sc to rep-
resent SAT testings number. Comparisons of solving
time among individual formula are shown as plots fig-
ures. In the figures, each line represents a tool perfor-
mance of the formulae. The x-axis stands for the in-
dividual formula and the y-axis stands for the solving
time of the corresponding formula.

6.3. Experimental results on industrial formulae

BONE solved 132 formulas in 3600 seconds, while
MINIBONES solved 123 formulas. All formulas solved
by MINIBONES are also solved by BONE. BONE
solved 9 more formulas than MINIBONES. Figure 3
shows the number of solved formulas of MINIBONES
and BONE. The x-axis is solving time (seconds), the
y-axis is the number of formulas that MINIBONES and
BONE can solved under this time limitation. The red
line stands for the solving formulas number of BONE
and the blue dotted line stands for the solving formu-
las number of MINIBONES. As we can observe, MINI-
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Table 1

Total Solving Time and SAT Testing Number
of MINIBONES and BONE

Tool st (s) sc

BONE 35779 1860897

MINIBONES 38497 3246679
Table 2

Solving Time Comparison on Industrial Formulae

Benchmark st of BONE(s) st of MINIBONES (s) st Difference

mrpp 6112 6900 11%

manthey 4845 7363 34%

dimacs 1339 1369 2%

total 12296 15632 21%
Table 3

Number of SAT Testings Comparison on Industrial Formulae

Benchmark sc of BONE(s) sc of MINIBONES (s) sc Difference

mrpp 28261 28839 3%
manthey 49356 72943 33%
dimacs 2018 2042 1%
total 79635 103224 23%

BONES solved less formulas than BONE under a longer
time limitation, it indicates that BONE has a better scal-
ability than MINIBONES when the formulas requires a
longer time to solve.

Consider the formulas that are solved by both MINI-
BONES and BONE, the total SAT testing number and
solving time are listed in Table 1. BONE saved 7%
solving time than MINIBONES. BONE saved 43%
SAT testing numbers than MINIBONES. It indicates
that BONE saved solving time by saving SAT test-
ing.

To study the performance difference in different
problems, we analyze the result of formulas in mrpp,
manthey, dimacs groups. Among the 72 industrial for-
mulae, both BONE and MINIBONES are able to solve
34 of them in 3600 seconds (1 hour). If more solving
time is provided, BONE solved 49 formulae in 16000
seconds (almost 5 hours) while MINIBONES solved 47
formulae. The details of solving time and SAT tests
number comparison of each group are shown in Ta-
ble 2, and Table 3 (with 1 hour time limits). The st
of Difference is the one minus division between st of
BONE and st of MINIBONES, indicating how much
solving time has been saved by BONE.

Solving time and SAT testings number of these three
groups are listed in Table 2, and Table 3. We can ob-
serve that BONE performs the best on manthey group,
saved 34% solving time, with 33% saving on SAT test-
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Fig. 4. Solving Time Comparison on Industrial Formulae.

ings. In total, BONE saved 21% solving time and 23%
SAT testings. BONE saved 11% solving time and 3%
SAT testings in mrpp group, while saving 2% time and
1% SAT testings in dimacs group. It proves the obser-
vation in [12] from experiment concepts that less SAT
testing will lead to a faster solving.

Figure 4 shows the solving time of all 34 industrial
formulae. The x-axis represented the id of the formula,
the y-axis represented the solving time (seconds). The
blue line shows the solving time of MINIBONES, each
small triangle represents the solving time of the corre-
sponding formula. While the red line represented the
solving time of BONE, each cross represents the solv-
ing time of the corresponding formula using BONE. As
we can observe, there are only 3 formulae that MINI-
BONES outperforms BONE.

When we take a look at the formulae in manthey
group that BONE performs the best, we find that they
all have a star-like adjacent structure as shown in
Fig. 5(a). It means that the variables is separate into dif-
ferent partitions, different variables from different par-
titions only appears in a few clauses at the same time.
Each branch in the graph stands for a partition.

Figure 5(b) is the adjacent structure of formulae that
can’t be solved in 16000 seconds using both tools. It’s
obvious that there is no clear partition among the vari-
ables.

For industrial formulae, BONE performs better than
MINIBONES in general. We also found that the perfor-
mance of BONE and MINIBONES are related to the ad-
jacent structure of the given formula. A formula with
clear partitions of variables tend to performs better on
both BONE and MINIBONES.
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(a) Formulae with clear variables partition

(b) Formulae with a tightly co-related variables

Fig. 5. Figure (a) shows the star-like adjacent structure, indicates that variables separate into individual partitions, both BONE and MINIBONES
are able to solve these formulae in 3600 seconds, BONE saved 34% solving time in total. Figure (b) shows the adjacent structure with a core
and no branches, indicates that variables are tightly co-related in the formula. These formulae are more complex than the formula in 5(a), BONE
solved 2 more formulae than MINIBONES among these formulae, within 16000 seconds.

6.4. Result analysis

Iterative SAT testings, which will hold the assign-
ment of a literal / using assumptions, take the major
part of solving time in BONE. Different solving trees
will be generated when choosing different /. The SAT
testing will be faster if a SAT solving tree is able to
find conflicts earlier. Conflicts will be found earlier if
the chosen literal / is a backbone literal and mainly ap-
pears in a small part of the clauses in the formula, due
to the reducing of searching clauses. Therefore, given
a formula ® in manthey group, iterative SAT testing of
a backbone literal / € BL(®) will be faster since ® has
a clear partitions of variables and each backbone literal
mainly appears in a subset of cls(®). In this way, com-
puting é[(d)) in BONE performs better on formulae in
manthey group. There is no big difference of ﬁL(Cb)
performance among groups since the computing time
that ﬁL(CD) is only related to the numbers of clauses
and variables of the formula.

Intuitively, given a formula ® a model A = &, a lit-
eral [, A(l) = 1, [ can be determined using a unique
SAT testing =/ A ®. In our Greedy-based, WAB Al-
gorithm, and MINIBONES Algorithm, a non-backbone
(backbone) literal / could be determined without using
=l A ®. We calculate the number of literals that de-
termined as non-backbone (backbone) literals without
using unique SAT testing in BONE and MINIBONES.
The number comparison of these literals in BONE and
MINIBONES are listed in Table 4. We use pl to present

Table 4

Number of Literals Determined without Unique SAT Testing in
MINIBONES and BONE

Benchmark  Average pl of pl of p!
Literals MINIBONES BONE Difference
Number

mrpp 6163 858 782 9%

manthey 2457 1739 1638 6%

dimacs 5087 638 276 57%

total 13707 3235 2696 17%

these literals. We say that a literal is pruned by BONE
or MINIBONES, if no unique SAT testing are needed
in determining the literal. The difference row presents
how much more literals that BONE has pruned than
MINIBONES.

7. Related work

There are basically two types of backbone comput-
ing algorithms, model enumeration and literals testing.
Model enumeration tries to find every model of the
given formula, it uses SAT solvers as oracles. Zhu et
al. proposed an iterative SAT testing based algorithm
[26,27] and applied to fault localisation, experimen-
tal results demonstrate that the use of backbone re-
duced the size of searching space of it, such as slid-
ing windows and trace buffer. In this algorithm, an up-
per bound of backbone estimation is refined by enu-
merating the models of the given formula. BONE com-
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putes the non-backbone subset at the first step, which
is the complement of upper bound of backbone estima-
tion.

Literals testing decide whether a set of literals are
backbone based on the procedure of SAT solving.
Kaiser and Kiihlin proposed algorithms for comput-
ing backbones [13] using SAT solvers. It tries to re-
duce SAT testings by reusing the previous SAT test-
ing results. Since it is based on SAT techniques, it
is still applicable when BDDs reach their space lim-
its. It have been applied to automotive product data
verification. BONE is able to generate more models
without SAT testing than this algorithm. Climer et al.
proposed a graph-based approach to discover back-
bones which approximates lower and upper bounds to
compute backbones [3]. It is able to consistently find
two to three more times backbone than previous work
CDT [2]. It’s an algorithm using geometry techniques,
which is similar to analysing the procedure of SAT
solving.

Marques-Silva et al. investigated algorithms for
computing backbones emphasizing the integration of
existing algorithms which include model enumera-
tion, iterative SAT-testing and filtering with modern
SAT solvers, as well as optimisations. They conducted
an experimental evaluation of existing techniques and
showed that backbone computation for large practical
formulae is feasible, with over 70,000 variables and
250,000 more clauses. [11,12,15]. The CoreBased Al-
gorithm with a chunk size of 100 is selected and rec-
ommend by the author, which is also the configuration
of MINIBONES in our experiments.

BONE is a combination of model enumeration and
literals testing. Greedy-based Algorithm enumerates a
set of models based on a given model A, the literals
that are not always assigned to 1 are added to ﬁL(GD).
Whitening-based Algorithm computes a set of ’possi-
ble’ literals BL(P) by analyzing the solving procedure
with assumptions, which consists of literals. Through
analyzing the unsatisfiable reason of a SAT testing, we
are able to find a part of accurate backbone and a set of
literals that are more possible to be backbone. Exper-
iments demonstrate that the proportions of backbone
in BL(®) are generally higher than that in the original
formula. Moreover, comparing to MINIBONES, with
the best configuration selected by the author of it, 15%
solving time are saved by testing the literals in BL(®)
first.

For applications, Dubois and Dequen proposed a
heuristic search based on backbone information of
hard 3-SAT formulae. It’s able to solve unsatisfi-

able formula with more than 700 variables, which
yields DPL-type algorithms with a significant per-
formance improvement over the best previous algo-
rithms [5].

Another work similar to Greedy-based Algorithm in
BONE is model rotation, introduced in [1,16]. Model
rotation is used to compute MUS of an unsatisfiable
formula. New transition clause were found by rotating
the literals in the previous transition clause. All MUS
must contain transition clause, experiments show that
model rotation techniques found more than a half tran-
sition clauses in MUS computing, saved 75% comput-
ing time without increasing the length of MUS.

8. Conclusion and future work

In this paper, we proposed a backbone comput-
ing approach named BONE, using Greedy-Whitening
based algorithm. First, we computed an under-
approximation of non-backbone BL|(®) using
Greedy-based Algorithm which is able, for a given
model, to compute a part of non-backbone in quadratic
time. Literals in ﬁl(cb) didn’t need an iterative SAT
testing which can save of solving time. Next, we
computed an approximation of backbone BL(D) using
Whitening-based Algorithm. The elements in BL(®)
would be backbone with high possibility. We itera-
tively extended the set of clauses W, and variables W,
accordingly. BL(®) was the complement of W,. Ex-
periments showed that the proportions of backbone in
BL(®) were higher than that in the original formula.
Finding more backbone earlier will expedite backbone
computing. It’s because that more known backbone
can prune more states in SAT solving. At last, we iter-
atively confirmed backbone from previous approxima-
tions.

We compared BONE with state-of-art tool MINI-
BONES, on both industrial formulas and crafted for-
mulas. Experimental results for industrial formulae
demonstrated that both BONE and MINIBONES were
able to solve 34 formulae from 72 formulae in 3600
seconds. Among the three industrial groups, BONE
saved 21% solving time in total than MINIBONES does.
BONE performed the best in manthey group. For ev-
ery formula in manthey, BONE needed less solving
time than MINIBONES does. BONE solved 49 formulae
while MINIBONES solved 47 formula when the time
limit was 16000 seconds. In general, BONE performs
better on formulae with clear variables partitions.
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There were two major strategies used in Greedy-
Whitening Algorithm, experiments showed that they
performed differently on different benchmarks when
applied independently, it opens a possibility for portfo-
lio approach. How to decide which strategy to use on
a given benchmark is the most important part portfolio
approach.

In the future, we will try to apply the whitening
algorithm to other existing backbone computing ap-
proaches. Whitening algorithm is an approximation al-
gorithm which can find a more exact upper bound
of backbone literals, it can be applied as the pre-
processing method for other backbone computing al-
gorithms. Another future work is to explore the use of
satisfying partial assignment in backbone computing.
A satisfying partial assignment, no clause in the for-
mula will be assigned to false under the satisfying par-
tial assignment. Backbone computing efficiency may
be improved since the computing of satisfying partial
assignment is in polynomial time, while the compute
of a model is a NP-hard problem.
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